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Abstract

In this dissertation we develop a new formal graphical framework for

causal reasoning. Starting with a review of monoidal categories and their

associated graphical languages, we then revisit probability theory from

a categorical perspective and introduce Bayesian networks, an existing

structure for describing causal relationships. Motivated by these, we pro-

pose a new algebraic structure, which we term a causal theory. These take

the form of a symmetric monoidal category, with the objects representing

variables and morphisms ways of deducing information about one vari-

able from another. A major advantage of reasoning with these structures

is that the resulting graphical representations of morphisms match well

with intuitions for flows of information between these variables. These

categories can then be modelled in other categories, providing concrete

interpretations for the variables and morphisms. In particular, we shall

see that models in the category of measurable spaces and stochastic maps

provide a slight generalisation of Bayesian networks, and naturally form a

category themselves. We conclude with a discussion of this category, clas-

sifying the morphisms and discussing some basic universal constructions.
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Introduction

From riding a bicycle to buying flowers for a friend, causal relationships form a basic

and ubiquitous framework informing, at least informally, how we organise, reason

about, and choose to interact with the world. It is perhaps surprising then that

ideas of causality often are entirely absent from our formal scientific frameworks,

whether they directly be models of the world, such as theories of physics, or methods

for extracting information from data, as in the case of statistical techniques. It is

the belief of the author that there remains much to be gained from formalising our

intuitions regarding causality.

Indeed, taking the view that causal relationships are fundamental physical facts

about the world, it is interesting to discover and discuss these in their own right. Even

if one views causality only as a convenient way to organise information about depen-

dencies between variables, however, it is hard to see how introducing such notions

into formal theories, rather than simply ignoring these intuitions, will not benefit at

least some of them. The artificial intelligence community gives a tangible example of

this, with the widespread use of Bayesian networks indicating that causal relation-

ships provide a far more efficient way to encode, update, and reason with information

about random variables then simply working with the entire joint variable.

In what follows we lay out the beginnings of a formal framework for reasoning

about causality. We shall do this by extending the aforementioned existing ideas for

describing causal relationships between random variables through the use of category

theory, and in particular the theory of monoidal categories.

Overview of the literature

More precisely, in this dissertation we aim to bridge three distinct ideas. The first is

the understanding of probability theory and probabilistic processes from a categorical

perspective. For this we work with a category first defined by Lawvere a half-century

ago in the unpublished manuscript [13], in which the objects are sets equipped with

a σ-algebra and the morphisms specify a measure of the codomain for each element
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of the domain, subject to a regularity condition. These ideas were later developed, in

1982, in a short paper by Giry [9], and have been further explored by Doberkat [6],

Panangaden [15], and Wendt [25], among others, in recent years.

The second idea is that of using graphical models to depict causal relationships.

Termed Bayesian networks, these were first discussed predominantly in the machine

learning community in the 1980s, with the seminal work coming in the influential

book Pearl [18]. Since then Bayesian networks have been used extensively to discuss

causality from both computational and philosophical perspectives, as can be seen in

recent books Pearl [19] and Williamson [26].

The third body of work, which will serve as a framework to unite the above two

ideas, is the theory of monoidal categories and their graphical calculi. An introductory

exposition of monoidal categories can be found in Mac Lane [14], while the survey

by Selinger [20] provides an excellent overview of the graphical ideas. Here our work

is in particular influenced by that of the very recent paper by Coecke and Spekkens

[4], which uses monoidal categories to picture Bayesian inference, realising Bayesian

inversion as a compact structure on an appropriate category.

Outline

Since they serve as the underlying framework for this thesis, we begin with a chapter

reviewing the theory of monoidal categories, the last of the above ideas. We conclude

this first chapter by discussing how the idea of a monoid can be generalised through

a category we call the ‘theory of monoids’, with monoids themselves being realised

as monoidal functors from this category into the category Set of sets and functions,

while ‘generalised monoids’ take the form of monoidal functors from the theory of

monoids into other categories. It is in this sense the ‘causal theories’ that we will

define are theories. In Chapter 2 we turn our attention to reviewing the basic ideas

of measure theoretic probability theory from a categorical viewpoint. Here we pay

particular attention to the category, which will shall call Stoch, defined by Lawvere.

Chapter 3 then provides some background on Bayesian networks, stating a few results

about how they capture causal relationships between random variables through ideas

of conditional independence. This motivates the definition of a causal theory, which

we present in Chapter 4. Following our exploration of these categories and how to

represent their morphisms graphically, we turn our attention to their models. Al-

though models in Set and Rel are interesting, we spend most of the time discussing

models in Lawvere’s category Stoch. This chapter is concluded by a discussion of

confounding variables and Simpson’s paradox, where we see some of the strengths of
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causal theories and in particular their graphical languages. In short, we show we can

take the directed graph structure of a Bayesian network more seriously than just a

suggestive depiction of dependencies. In the final chapter, Chapter 5, we discuss some

properties of the category of stochastic causal models of a fixed causal theory. These

are models in a certain full subcategory of Stoch that omits various pathological

eventuations, and have a close relationship with Bayesian networks.

New contributions

The main contribution of this dissertation is the presentation of a new algebraic

structure: causal theories. These are a type of symmetric monoidal category, and we

will discuss how these capture the notion of causal relationships between variables;

deterministic, possibilistic and probabilistic models of these categories; how their

graphical calculi provide intuitive representations of reasoning and information flow;

and some of the structure of the category of probabilistic models. In doing so we

also move the discussion of Bayesian networks from the finite setting preferred by

the computationally-focussed Bayesian network community to a more general setting

capable of handling non-discrete probability spaces.

In particular, I claim all results of Chapters 4 and 5 as my own as well as, except

for Proposition 2.17, the discussion of deterministic stochastic maps of Section 2.4.
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Chapter 1

Preliminaries on Monoidal
Categories

Our aim is to explore representations of causal relationships between random variables

from a categorical perspective. In this chapter we lay the foundations for this by

introducing the basic language we will be working with—the language of monoidal

categories—and, by way of example, informally discussing the notion of a ‘theory’.

We begin with a review of the relevant notions from category theory. Recall that

a category C consists of a collection ObC of objects, for each pair A,B of objects a

set Mor(A,B) of morphisms, and for each triple A,B,C of objects a function, or

composition rule, Mor(A,B) ×Mor(B,C) → Mor(A,C), such that the composition

rule is associative and obeys a unit law. We shall write A ∈ C if A is an object of

the category C, and f in C if f is a morphism in the category C. As we shall think

of them, categories are the basic algebra structure capturing the idea of composable

processes, with the objects of a category different systems of a given type, and the

morphisms processes transforming one system into another.

We further remind ourselves that a functor is a map from one category to another

preserving the composition rule, that under a mild size constraint the collection of

categories itself forms a category with functors as morphisms, and that in this category

products exist. Moreover, the set of functors between any two categories itself has the

structure of a category in a standard, nontrivial way, and we call the morphisms in

this category natural transformations, with the invertible ones further called natural

isomorphisms. Two categories are equivalent if there exists a functor in each direction

between the two such that their compositions in both orders are naturally isomorphic

to the identity functor.
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The reader seeking more detail is referred to Mac Lane [14], in particular Chap-

ters I and II. In general our terminology and notation for categories will follow the

conventions set out there.

1.1 Monoidal categories

The key structure of interest to us in the following is that of a symmetric monoidal cat-

egory. A monoidal category is a category with two notions of composition—ordinary

categorical composition and the monoidal composition—, and symmetric monoidal

categories may be thought of as the algebraic structure of processes that may occur

simultaneously as well as sequentially. These categories are of special interest as they

may be described precisely with a graphical notation possessing a logic that agrees

well with natural topological intuitions. Among other things, this has been used to

great effect in describing quantum protocols by Abramsky and Coecke [2], and this

work in part motivates that presented here.

Definition 1.1 (Monoidal category). A monoidal category (C,⊗, I, α, ρ, λ) consists

of a category C, together with a functor ⊗ : C × C → C, a distinguished object I ∈ C,
for all objects A,B,C ∈ C isomorphisms αA,B,C : (A ⊗ B) ⊗ C → A ⊗ (B ⊗ C) in

C natural in A,B,C, and for all objects A ∈ C isomorphisms ρA : A ⊗ I → A and

λA : I ⊗A→ A in C natural in A. To form a monoidal category, this data is subject

to two equations: the pentagon equation(
(A⊗B)⊗ C

)
⊗D

αA,B,C⊗idD

tt α(A⊗B),C,D

$$

(
A⊗ (B ⊗ C)

)
⊗D

αA,(B⊗C),D

��

(A⊗B)⊗ (C ⊗D)

αA,B,(C⊗D)

zz

A⊗
(
(B ⊗ C)⊗D

)
idA⊗αB,C,D **

A⊗
(
B ⊗ (C ⊗D)

)
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and the triangle equation

(A⊗ I)⊗B
αA,I,B

//

ρA⊗idB

!!

A⊗ (I ⊗B)

idA⊗λB

}}

A⊗B

We call ⊗ the monoidal product, I the monoidal unit, the isomorphisms α, α−1 as-

sociators, and the isomorphisms ρ, ρ−1 and λ, λ−1 right- and left-unitors respectively.

Collectively, we call the associators and unitors the structure maps of our monoidal

category. We will often just write C for a monoidal category (C,⊗, I, α, ρ, λ), leaving

the remaining data implicit.

The associators express the fact that the product objects (A ⊗ B) ⊗ C and

A ⊗ (B ⊗ C) are in some sense the same—they are isomorphic via some canoni-

cal isomorphism—, while the unitors express the fact that A, A⊗I, and I⊗A are the

same. If these objects are in fact equal, and the structure maps are simply identity

maps, then we say that our monoidal category is a strict monoidal category. In this

case then any two objects that can be related by structure maps are equal, and so

we may write objects without parentheses and units without ambiguity. Although,

importantly, this is not true in all cases, it is essentially true: loosely speaking,

the triangle and pentagon equations in fact imply that any diagram of their general

kind, expressing composites of structure maps between different ways of forming the

monoidal product of some objects, commutes. This is known as Mac Lane’s coherence

theorem for monoidal categorise; see Mac Lane [14, Corollary of Theorem VII.2.1] for

a precise statement and proof.

In a monoidal category, the objects A ⊗ B and B ⊗ A need not in general be

related in any way. In the cases we will interest ourselves, however, we will not want

the order in which we write the objects in a tensor product to matter—all products

consisting of a given collection of objects should be isomorphic, and isomorphic in a

way we need not worry about the isomorphism itself. This additional requirement

turns a monoidal category into a symmetric monoidal category.

Definition 1.2 (Symmetric monoidal category). A symmetric monoidal category

(C,⊗, I, α, ρ, λ, σ) consists of a monoidal category (C,⊗, I, α, ρ, λ) together with a

collection of isomorphisms σA,B : A ⊗ B → B ⊗ A natural in A and B such that
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σB,A ◦ σA,B = idA⊗B and such that for all objects A,B,C the hexagon

(A⊗B)⊗ C
αA,B,C

vv

σA,B⊗idC

((

A⊗ (B ⊗ C)

σA,B⊗C

��

(B ⊗ A)⊗ C

αB,A,C

��

(B ⊗ C)⊗ A

αB,C,A
((

B ⊗ (A⊗ C)

idB⊗σA,Cvv

B ⊗ (C ⊗ A)

commutes.

We call the isomorphisms σ−,− swaps.

As for monoidal categories, we have a coherence theorem for symmetric monoidal

categories, stating in essence that all diagrams composed of identities, associators,

unitors, and swaps commute. Details can again be found in Mac Lane [14, Theorem

XI.1.1].

Examples 1.3 (FVect, Mat). An historically important example of a symmetric

monoidal category is that of FVectR, the category of finite vector spaces over R
with linear maps as morphisms, tensor product as monoidal product. Here R is the

monoidal unit, and the structure maps are the obvious isomorphisms of tensor prod-

ucts of vector spaces. Note that this is not a strict symmetric monoidal category: it is

not true for real vector spaces U, V,W that we consider (U⊗V )⊗W and U⊗(V ⊗W )

as equal, but we do always have a canonical isomorphism between the two.

A related strict symmetric monoidal category is Mat(R), the category with ob-

jects natural numbers, morphisms from m ∈ N to n ∈ N given by n × m matrices

over R, composition given by composition of matrices, monoidal product given by

multiplication on objects and Kronecker product of matrices on morphisms.

Example 1.4 (Set). The category Set of sets and functions forms a symmetric monoidal

category with the cartesian product ×. In this category any singleton set {∗} may be

taken as the monoidal unit. Indeed, any category with finite products can be viewed

as a symmetric monoidal category by taking the binary categorical product as the

monoidal product, and the terminal object as the monoidal unit. The associators, un-

itors, and swaps are then specified by the unique isomorphisms given by the universal

property of the product.
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Example 1.5 (Rel). The category Rel of sets and relations forms a symmetric monoidal

category with cartesian product × and unit {∗}. Here the monoidal product r ⊗ s :

X × Z → Y ×W of relations rX → Y and s : Z → W is the relation such that

(x, z) ∈ X × Z is related to (y, w) ∈ Y ×W if and only if x is related to y by r and

z is related to w by s.

Intuitively, the standard embedding of Set into Rel, given by viewing functions

as relations, is an embedding that respects the monoidal structure. To make this

precise we need to talk about monoidal functors.

When working with monoidal categories, it is often desirable to have functors

between these categories preserve the monoidal structure, and to have natural trans-

formations between these functors preserve the monoidal structure too. The same is

true in the case of functors between symmetric monoidal categories. We thus intro-

duce the notions of monoidal functors, symmetric monoidal functors, and monoidal

natural transformations.

Definition 1.6 (Monoidal functor). Let C, C ′ be monoidal categories. A monoidal

functor (F, F⊗, F∗) : C → C ′ from C to C ′ consists of a functor F : C → C ′, for all

objects A,B ∈ C morphisms

F⊗,A,B : F (A)⊗ F (B)→ F (A⊗B)

in C ′ which are natural in A and B, and for the units I of C and I ′ of C ′ a morphism

F∗ : I ′ → F (I) in C ′, such that for all A,B,C ∈ C the hexagon

(FA⊗ FB)⊗ FC
αFA,FB,FC

tt

F⊗,A,B⊗idFC

))

FA⊗ (FB ⊗ FC)

idFA⊗F⊗,B,C

��

F (A⊗B)⊗ FC

F⊗,A⊗B,C

��

FA⊗ F (B ⊗ C)

F⊗,A,B⊗C **

F ((A⊗B)⊗ C)

FαA,B,Cuu

F (A⊗ (B ⊗ C))
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and the two squares

F (A)⊗ I ′

id⊗F∗

��

ρ
// F (A)

F (A)⊗ F (I)
F⊗,A,I

// F (A⊗ I)

Fρ

OO
I ′ ⊗ F (A)

F∗⊗id

��

λ // F (A)

F (I)⊗ F (A)
F⊗,I,A

// F (I ⊗ A)

Fλ

OO

commute.

We further say a monoidal functor is a strong monoidal functor if the morphisms

F⊗,A,B and F∗ are isomorphisms for all A,B ∈ C.

Definition 1.7 (Symmetric monoidal functor). A symmetric monoidal functor

(F, F⊗, F∗) : C → C ′ between symmetric monoidal categories C and C ′ is a monoidal

functor (F, F⊗, F∗) such that

FA⊗ FB
F⊗,A,B

//

σ′FA,FB

��

F (A⊗B)

FσA,B

��

FB ⊗ FA
F⊗,B,A

// F (B ⊗ A)

commutes for all A,B ∈ C.

Definition 1.8 (Monoidal natural transformation). A monoidal natural transforma-

tion θ : F ⇒ G between two monoidal functors F and G is a natural transformation

θ : F ⇒ G such that the triangle

FI
θI // GI

I ′
F∗

``

G∗

>>

(MNT1)

and square

FA⊗ FB θA⊗θB //

F⊗,A,B

��

GA⊗GB

G⊗,A,B

��

F (A⊗B)
θA⊗B

// G(A⊗B)

(MNT2)

commute for all objects A,B.

Example 1.9. FVectR and Mat(R) are equivalent via strong monoidal functors. It is

a corollary of the Mac Lane Coherence theorems that any monoidal category can be
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‘strictified’—that is, for any monoidal category there exists a strict monoidal category

equivalent to it via strong monoidal functors—and that a symmetric monoidal cat-

egory can be strictified into a strict symmetric monoidal category. For more details

see [14, Theorem XI.3.1].

1.2 Graphical calculi

One of the draws of expressing concepts as symmetric monoidal categories is that

the structure of these categories naturally lends itself to being expressed pictorially.

These pictures, known as string diagrams, represent the morphisms of a monoidal

category, and have the benefit of hiding certain structural equalities and making use

of our topological intuitions to suggest other important equalities. The aim of this

section is merely to give the reader a basic working understanding of how to read and

draw these diagrams; we leave the precise definition of a string diagram and proofs

of their expressiveness to the survey [20] of Selinger.

String diagrams are drawn in two dimensions with, roughly speaking, one dimen-

sion representing the categorical composition and the other representing monoidal

composition. We shall take the convention, common but far from universal, that

we read composition up the page, leaving horizontal juxtaposition to represent the

monoidal product of maps. Under this convention then, a string diagram consists of

a graph with edges labelled by objects and vertices labelled by morphisms, which as

a whole represents a morphism with domain the monoidal product of the edges at

the lower end of the diagram, and codomain the monoidal product of the edges at

the top.

The simplest example, consisting of just a single edge, represents the identity map:

idX =

X

X

More generally, we represent a morphism f : X → Y by drawing in sequence up the

page an edge labelled by X, ending at a vertex labelled by f , which then gives rise

10



to an edge labelled by Y :

f = f

Y

X

If X = A⊗B ⊗ C, and Y = D ⊗ E, we could also represent f as:

f =

A B C

D E

f

Given maps f : X → Y and g : Y → Z, we represent their composite g ◦ f by

placing a vertex g on the Y -edge leaving the vertex f :

g ◦ f =
f

Z

X

g

If the types of the maps are known, we lose no information if we omit the labels

of edges that are connected to the vertices of the maps, as we have done for edge

representing Y in the above diagram. For the sake of cleanness and readability, we

shall most often just label the ‘input’ and ‘output’ edges at the top and bottom of

the diagram.

The monoidal product of two maps is given by their horizontal juxtaposition, with

juxtaposition on the right representing monoidal product on the right, and on the left

representing left monoidal product. As an example, given morphisms f : X → Y and

g : Z → W , we write their product f ⊗ g : X ⊗ Z → Y ⊗W as:

f ⊗ g =

Y

X

f

Z

W

g

The monoidal unit is an object with special properties in the category, and as a result

the conventions for representing the unit diagrammatically are a little different: we
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don’t draw it or its identity map

idI =

This has the advantage of any diagram representing a morphism f : A → B also

representing the ‘equivalent’ morphism f ⊗ idI : A ⊗ I → B ⊗ I, among other

equivalent morphisms.

To read an arbitrary string diagram, it is often easiest to start at the lower edge

and move up the diagram, reading off a morphism for every horizontal cross-section

intersecting a vertex. The string diagram then represents the composite of these

morphisms in the order that the morphisms were read, applying associators and

unitors as needed for the map to be well-defined. For example, reading in this way

the diagram

f

h

g

k

represents the map (f ⊗ g) ◦ (h⊗ k). Note that it may also be read (f ◦ h)⊗ (g ◦ k),

or even (f ◦ idX ◦ h) ⊗ (g ◦ k) ⊗ idI where X is the codomain of f , but in any case

all these different algebraic descriptions of the picture represent the same morphism.

This is a key feature of string diagrams: many equalities of algebraic representations

of morphisms become just the identity of diagrams. Furthermore, we need not be

too careful about the precise geometry of the diagrams; the following topologically

equivalent diagrams in fact also express equal morphisms:

f

h

g

k
=

f

h

g

k
=

f

h

g
k

This holds true in general.

Theorem 1.10 (Coherence of the graphical calculus for monoidal categories). Two

morphisms in a monoidal category are equal with their equality following from the

axioms of monoidal categories if and only if their diagrams are equal up to planar

deformation.

Proof. Joyal-Street [11, Theorem 1.2].
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In a symmetric monoidal category, we usually omit the label for the swap, denoting

it instead just by the intersection of two strings:

σA,B =

A B

B A

σA,B =

A B

B A

We will also later take such an approach for other chosen maps, such as the multipli-

cation and unit of a monoid.

The defining identities of the swap may then be written graphically as

A B

A B

=

A B

A B

(Sym1)

and

A B

C AB

C

=

A B

C AB

C

(Sym2)

Including these identity into our collection of allowable transformations of diagrams

gives coherence theorem for symmetric monoidal categories.

Theorem 1.11 (Coherence of the graphical calculus for symmetric monoidal cate-

gories). Two morphisms in a symmetric monoidal category are equal with their equal-

ity following from the axioms of symmetric monoidal categories if and only if their

diagrams are equal up to planar deformation and local applications of the identities

Sym1 and Sym2.

Proof. Joyal-Street [11, Theorem 2.3].

Just as two diagrams represent the same morphism in a monoidal category if they

agree up to planar isotopy, this theorem may be regarded geometrically as stating

that two diagrams represent the same morphism in a monoidal category if they agree

up to isotopy in four dimensions.
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These two theorems show that the graphical calculi go beyond visualisations of the

morphisms, having the ability to provide bona-fide proofs of equalities of morphisms.

As a general principle, one which we shall demonstrate in this dissertation, this fact

combined the intuitiveness of manipulations and the encoding of certain equalities

and structural isomorphisms make the string diagrams better than the conventional

algebraic language for understanding monoidal categories.

1.3 Example: the theory of monoids

This section serves to both give examples of the constructions defined in this chapter

and, more importantly, give a flavour of the spirit in which we will aim to use monoidal

categories to discuss causality.

Recall that a monoid is a set with an associative, unital binary operation. We

shall classify these as strong monoidal functors from a category Th(Mon) into Set,

and hence say that this category Th(Mon) describes the theory of monoids. The

study of this category and its functorial images then gives new and interesting per-

spectives of the concept of a monoid, its generalisations, and relationships to other

mathematical structures. In analogy to this, we will later define causal theories as

monoidal categories that can be modelled within other categories through monoidal

functors.

Define the category Th(Mon) as follows: fix some symbol M , and let the objects

of Th(Mon) be any natural number of copies of this symbol. We shall write the

objects M⊗n, where n ∈ N is the number of copies of M . Then the monoidal product

on the objects of Th(Mon) is just addition of number of copies of M , with I = M⊗0

the monoidal unit. By definition this is a strict monoidal category, so we need not

worry about the structure maps.

In addition to the identity morphism on each object, we also include morphisms

: M ⊗M → M and : I → M and all their composites and products, subject to

the relations

= (associativity)

and

= = (unitality)
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These equations correspond respectively to the associativity and unitality laws for

the monoid.

Now given any monoid (X, ·, 1), we can define the strong monoidal functor F :

Th(Mon) → Set mapping M⊗n to the n-fold cartesian product Xn of the set X,

m to the monoid multiplication function X × X → X; (x, y) 7→ x · y, and e to

the function {∗} → X; ∗ 7→ 1 with image the monoid unit. This is well-defined as

the relations obeyed by m and e are precisely those required to ensure the monoid

operation · is associative and unital. Furthermore, taking the canonical isomorphisms

Xm ×Xn ∼−→ Xm+n given by the universal property of products, we see that F is a

strong monoidal functor.

Conversely, given any strong monoidal functor (F, F⊗, F∗) : Th(Mon) → Set, it

is straightforward to show, using the naturality of F⊗ and the diagrams obeyed by the

definition of a strong monoidal functor, that the triple (FM,Fm◦F⊗,M,M , Fe◦F∗(∗))
is a well-defined monoid. From here it also can be shown that these two constructions

are inverses up to isomorphism, and so we have bijections isomorphism classes of
monoids

←→


isomorphism classes of
strong monoidal functors

Th(Mon)→ Set

 .

This shows that the strong monoidal functors from Th(Mon) to Set classify all

monoids.

In fact, the category Th(Mon) classifies not only monoids themselves, but also

the maps between them. Indeed, given monoids X, X ′ and corresponding strong

monoidal functors F , F ′, we also have a bijection{
monoid homomorphisms

X → X ′

}
←→

{
monoidal natural transformations

F ⇒ F ′

}
.

This bijection sends a monoid homomorphism ϕ : X → X ′ to the monoidal natural

transformation defined on M ∈ Th(Mon) by ϕ : FM → F ′M . The requirement

that monoid homomorphisms preserve the identity corresponds to the triangle MNT1

that monoidal natural transformations must obey, with the requirement that monoid

homomorphisms preserve the monoid multiplication corresponds to the square MNT2.

It is further possible to show that these bijections respect composition of monoid

homomorphisms and monoidal natural transformations. This shows that the category

of monoids is equivalent to the category of strong monoidal functors from Th(Mon)

to Set. It is in this strong sense that Th(Mon) classifies monoids, and for this reason

we call this category the theory of monoids.

15



One advantage of this perspective is that we may now talk of monoid objects

in other monoidal categories, which are often interesting structures in their own

right. This often gives insight into the relationships between known mathematical

structures. For example, the category of monoid objects in the monoidal category

(Ab,⊗,Z) of abelian groups with tensor product as monoidal product and Z as the

monoidal unit can be shown to be precisely the category of rings.

We will use this idea of defining generalised monoid-like objects in categories other

than Set in pursuing a categorical definition of a causal theory. In particular, we will

be interested in commutative comonoid objects.

Definition 1.12 (Commutative comonoid). As for in defining Th(Mon), fix a sym-

bol M , and define the symmetric monoidal category Th(CComon) to be the sym-

metric monoidal category with objects tensor powers of M and morphisms generated

by the swaps and the maps : M →M ⊗M , : M → I, subject to the relations

= (coassociativity)

= = (counitality)

and

= (commutativity)

A commutative comonoid in a symmetric monoidal category C is a strong sym-

metric monoidal functor Th(CComon) → C. Abusing our terminology slightly, we

will often just say that the image of M under this functor is a commutative comoniod.
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Chapter 2

Categorical Probability Theory

Probability theory concerns itself with random variables : properties of a system that

may take one of a number of possible outcomes, together with a likelihood for each

possible observation regarding the property. We call the property itself the variable,

and together the likelihoods for the observations form a probability assignment for

the variable. As we will mainly concern ourselves with relationships between random

variables, we have particular interest in rules that specify a probability assignment

on one variable given a probability assignment on another—this can be seen as the

latter variable having some causal influence on the former.

In this chapter we will develop the standard tools to talk about all these things,

but with emphasis on a categorical perspective. These categorical ideas originate

with Lawvere [13], and were extended by Giry in [9]. We caution that the termi-

nology we have used for the basic concepts in probability is slightly nonstandard,

but predominantly follows that of Pearl [19] and the Bayesian networks community.

Although it will not affect the mathematics, we will implicitly take a frequentist view

of probability to complement our physical interpretation of causality.

2.1 The category of measurable spaces

The idea of a variable is captured by measurable spaces. These consist of a set X,

thought of as the set of ‘outcomes’ of the variable, and a collection Σ of subsets of

X obeying certain closure properties, which represent possible observations about X

and which we call the measurable sets of X. We then talk of probability assignments

on these measurable spaces via a function P : Σ→ [0, 1] satisfying some consistency

properties. While the collection of measurable sets is often taken to be the power set

P(X) when X is finite, for larger sets some restrictions are usually necessary if one

wants to assign interesting collections of probabilities to the space.
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Given a measurable set A, we think of the number P (A) as the chance that

the outcome of the random variable with outcomes represented by X will lie in the

subset A. As an example, the process of rolling a six-sided die can be described by the

measurable space with set of outcomes X = {1, 2, 3, 4, 5, 6} and measurable subsets

Σ = P(X) all subsets of X. The statement that the die is fair is then the statement

that the probability associated to any subset A ⊆ X is P (A) = 1
6
|A|.

We formalise this in the following standard way; more details can be found in [3]

or [21], or indeed any introductory text to probability theory.

Definitions 2.1 (σ-algebra, measurable space). Given a set X, a σ-algebra Σ on

X is a set Σ of subsets of X that contains the empty set and is closed under both

countable union and complementation in X. We call a pair (X,Σ) consisting of a set

X and a σ-algebra Σ on X a measurable space.

On occasion we will just write X for the measurable space (X,Σ), leaving the

σ-algebra implicit. In these cases we will write ΣX to mean the σ-algebra on X.

Example 2.2 (Discrete and indiscrete measurable spaces). Let X be a set. The power

set P(X) of X forms a σ-algebra, and we call (X,P (X)) a discrete measurable space.

At the other extreme, distinct whenever X has more than one element, is the σ-

algebra {∅, X}. In this case we call (X, {∅, X}) an indiscrete measurable space.

Even beyond the two of the above example, it is not hard to find σ-algebras: we

may construct one from any collection of subsets. Indeed, we say that the σ-algebra

Σ(G) generated by a collection G = {Gi}i∈I of subsets of a set X is the intersection

of all σ-algebras on X containing G. An explicit construction can be given by taking

all countable intersections of the sets in G and their complements, and then taking all

countable unions of the resulting sets. We say that a measurable space is countably

generated if there exists a countable generating set for it.

Example 2.3 (Borel measurable spaces). Many frequently used examples of measur-

able spaces come from topological spaces. The Borel σ-algebra BX of a topological

space X is the σ-algebra generated by the collection of open subsets of the space.

Example 2.4 (Product measurable spaces). Given measurable spaces (X,ΣX), (Y,ΣY ),

we write ΣX ⊗ ΣY for the σ-algebra on X × Y generated by the collection subsets

{A× B ⊆ X × Y | A ∈ ΣX , B ∈ ΣY }. We call this the product σ-algebra of ΣX and

ΣY , and call the resulting measurable space (X×Y,ΣX⊗ΣY ) the product measurable
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space of (X,ΣX) and (Y,ΣY ). Note that as (A×B)∩ (A′×B′) = (A∩A′)× (B∩B′)
and (A×B)c = (A×Bc) ∪ (Ac ×B), we may write

ΣX ⊗ ΣY =

{⋃
i∈I

(Ai ×Bi)

∣∣∣∣Ai ∈ ΣX , Bi ∈ ΣY

}
.

The product measurable space is in fact a categorical product in the category of

measurable spaces. To understand this, we first must specify the notion of morphism

corresponding to measurable spaces. Just as continuous functions reflect the open sets

of a topology, the important notion of map for measurable sets is that of functions

that reflect measurable sets.

Definition 2.5 (Measurable function). A function f : X → Y between measure

spaces (X,ΣX) and (Y,ΣY ) is called measurable if for each A ∈ ΣY , f−1(A) ∈ ΣX .

We write Meas for the category of measurable spaces and measurable functions.

It is easily checked that this indeed forms a category with composition simply com-

position of functions.

It is also not difficult to check that the product measurable space (X×Y,ΣX⊗ΣY )

is the product of the measurable spaces (X,ΣX) and (Y,ΣY ) in this category. As the

projection maps πX : X × Y → X and πY : X × Y → Y of the set product are

measurable maps, it is enough to show that for any measurable space (Z,ΣZ) and

pair of measurable functions f : (Z,ΣZ) → (X,ΣX), and g : (Z,ΣZ) → (X,ΣX) the

unique function 〈f, g〉 : Z → X × Y given by the product in Set is a measurable

function. Since for all countable collections {Ai×Bi}i∈I of subsets of X ×Y we have

〈f, g〉−1

(⋃
i∈I

(Ai ×Bi)

)
=
⋃
i∈I

〈f, g〉−1(Ai ×Bi) =
⋃
i∈I

(f−1(Ai) ∩ g−1(Bi)),

this is indeed true.

Note also that any one point set 1 = {∗} with its only possible σ-algebra {∅, 1}
is a terminal object in Meas. We thus may immediately view Meas as a symmetric

monoidal category, with the symmetric monoidal structure given by the fact that

Meas has finite products. The swaps σX,Y : X × Y → Y × X; (x, y) 7→ (y, x) of

Meas are the same as those of the symmetric monoidal category Set. We shall by

default consider Meas as a symmetric monoidal category in this way.

Similarly, we may also show that the full subcategories FinMeas and CGMeas

with objects finite measurable spaces and countably generated measurable spaces

respectively are also a symmetric monoidal category with monoidal product the cat-

egorical product.
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2.2 Measures and integration

The reason we deal with measurable spaces is that these form the basic structure

required for an object to carry some idea of a probability distribution. More pre-

cisely, we deal with measurable spaces because they can be endowed with probability

measures.

Definitions 2.6 (Measure, measure space). Given a measurable space (X,Σ), a

measure µ on (X,Σ) is a function µ : Σ→ R≥0 ∪ {∞} such that:

(i) the empty set ∅ has measure µ(∅) = 0; and

(ii) if {Ai}i∈I is a countable collection of disjoint measurable sets then µ(∪i∈IAi) =∑
i∈I µ(Ai).

Any such triple (X,Σ, µ) is then known as a measure space. When µ(X) = 1, we

further call µ a probability measure, and (X,Σ, µ) a probability space.

We will have to pay close attention to the properties of the collections, in fact σ-

ideals, of sets of measure zero of probability spaces in the following. These represent

possible observations of our random variable that nonetheless are ‘never’ observed,

giving us very little information about their causal consequences. Very often we will

pronounce functions equal ‘almost everywhere’ if they agree but for a set of a measure

zero. More generally, we say a property with respect to a measure space is true almost

everywhere or for almost all values if it holds except on a set of measure zero. We

also say that a measure space is of full support if its only subset of measure zero is

the empty set ∅. Such spaces are necessarily countable measure spaces.

Example 2.7 (Finite and countable measurable spaces). We shall say that a measur-

able space (X,Σ) is a finite measurable space if Σ is a finite set. In this case there

exists a finite generating set {A1, . . . , An} for Σ consisting of pairwise disjoint subsets

of X, and measures µ on (X,Σ) are in one-to-one correspondence with to functions

m : {A1, . . . , An} → R≥0, with µ(A) =
∑

Ai⊆Am(Ai) for all measurable subsets A

of X. Measures may thus also be thought of as vectors with non-negative entries in

Rn, with probability measures those vectors whose entries also sum to 1. We may

similarly define countable measurable spaces, and note that measures on these spaces

are in one-to-one correspondence with functions m : N→ R≥0.

Writing n for some chosen set with n ∈ N elements, note that this suggests each

finite measurable space is in some sense ‘isomorphic’ to n = (n,P(n)) for some n.

Although this is not true in Meas, we will work towards constructing a category in

which this is true.

20



We give two more useful examples of measures.

Example 2.8 (Borel measures, Lebesgue measure). A Borel measure is a measure

on a Borel measurable space. An important collection of examples of these are the

Lebesgue measures on (Rn,BRn). These may be characterised as the unique Borel

measure on Rn such that the measure of each closed n-dimensional cube is given by

its n-dimensional volume. See any basic text on measure theory, such as [21, Chapter

1], for more details.

When speaking of R as a measure space, we will mean R with its Borel σ-algebra

and Lebesgue measure. In particular, when referring to a real-valued measurable

function, we shall take the codomain as having this structure.

Example 2.9 (Product measures). Given measure spaces (X,ΣX , µ) and (Y,ΣY , ν), we

may define the product measure µ×ν on the product measurable space (X×Y,ΣX⊗
ΣY ) as the unique measure on this space such that for all A ∈ ΣX and B ∈ ΣY ,

µ× ν(A×B) = µ(A)ν(B).

A proof of the existence and uniqueness of such a measure can be found in [21,

Theorem 6.1.5].

One way in which measures interact with measurable functions is that measures

may be ‘pushed forward’ from the domain to the codomain of a measurable map.

Definition 2.10 (Push-forward measure). Let (X,ΣX , µ) measure space, (Y,ΣY )

measurable space, and f : X → Y be a measurable function. We then define the

push-forward measure µf of µ along f to be the map ΣY → R given by

µf (B) = µ(f−1(B)).

Note that µf (Y ) = µ(f−1(Y )) = µ(X), so the push-forward of a probability measure

is again a probability measure.

As causality concerns the relationships between random variables, we shall be

particularly interested in measures on product spaces, so-called joint measures. An

important example of a push-forward measure is that of the marginals of a joint mea-

sure. These are the push-forward measures of a joint measure along the projections of

the product space: given a joint measure space (X ×Y,ΣX ⊗ΣY , µ) with projections

πX : X×Y → X and πY : X×Y → Y , we define the marginal µX of µ on X to be the

push forward measure of µ along πX , and similarly for µY . We also say that we have
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marginalised over Y when constructing the marginal µX from the measure µ. Note

that the marginals of a joint probability measure are again probability measures.

Observe that for each point x in its domain, a measurable function f : (X,ΣX)→
(Y,ΣY ) induces a ‘point measure’

δf,x(B) =

{
1 if f(x) ∈ B,
0 if f(x) /∈ B,

on its codomain (Y,ΣY ). From this point of view, the push-forward measure of some

measure µ on (X,ΣX) along f can be seen as taking the ‘µ-weighted average’ or

‘expected value’ of these induced point measures on (Y,ΣY ). More precisely, the

push-forward measure may be defined as the integral of these point measures with

respect to µ.1

For the sake of completeness, we quickly review the definition of the integral for

bounded real-valued measurable functions nonzero on a set of finite measure, but the

reader is referred to Ash [3, §1.5] or Stein and Shakarchi [21, Chapter 2] for full detail.

We first define the integral of simple functions. Let (X,Σ, µ) be a measure space,

and let A be subset of X. We write χA : X → R for the characteristic function

χ(x) =

{
1 if x ∈ A;

0 if x /∈ A,

and call a weighted sum ϕ =
∑N

k=1 ckχAk of characteristic functions of measurable sets

a simple function. The integral
∫
A
ϕdµ of a simple function ϕ over the measurable

set A with respect to µ is defined to be∫
A

ϕdµ =
N∑
k=1

ckµ(Ak ∩ A)

when this sum is finite. Note that this implies that the integral over X of the char-

acteristic function of a measurable set A is just µ(A).

Let now f be a bounded real-valued measurable function such that the set {x ∈
X | f(x) 6= 0} is of finite measure. It can be shown there then exists a uniformly

bounded sequence {ϕn}n∈N of simple functions supported on the support of f and

1A complementary perspective views the integral in terms of push-forwards, but only once we
have define the standard notion of multiplying functions with measures to produce a new measure.
Indeed, given a bounded real-valued measurable function f and a measure µ on a measurable space
(X,Σ), this new measure fµ is equal to

∫
A
f dµ on each A ∈ Σ, and this allows us to see the integral∫

A
f dµ as the value, on the set ∗, of the push-forward measure of the measure χAfµ along the

unique map X → ∗ to the terminal object.
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converging to f for almost all x. Using this sequence, we define the integral
∫
A
f dµ

of f over A with respect to µ to be∫
A

f dµ = lim
n→∞

∫
A

ϕn dµ.

By our assumptions, this limit always exists, is finite, and is independent of the

sequence {ϕn}n∈N. Where we do not write the domain of integration A, we mean

that the integral is taken over the entire domain X of f .

We will not discuss the technicalities of the integral further, but instead note that

in the case of Lebesgue measure the notion of integration agrees with that of Riemann

integration, and for finite measure spaces it can be viewed as analogous to matrix

multiplication—this will be explained fully in the following section. Our examples

will be limited to these cases.

More generally, this idea of averaging measures will play a crucial role in how we

reason about consequences of causal relationships. As an illustration, suppose that we

have measurable spaces C and R, representing say cloud cover and rain on a given day

respectively, and for each value of cloud cover—that is, each measurable set in C—we

are given the probability of rain. We will assume this forms a real-valued measurable

function f on C. If we are further given a measure µ on C representing how cloudy

a day is likely to be, we can ‘average’ over this measure to give a probability of rain

on that day. This averaging process is given by the integral of f with respect to µ.

Implicitly here we are talking about conditional probabilities—for each outcome

of the space C we get a measure on R. This idea will form our main idea of map

between measurable spaces.

2.3 The category of stochastic maps

Measurable functions describe a deterministic relationship between two variables:

if one fixes an outcome of the domain variable, a measurable function specifies a

unique corresponding outcome for the codomain. When describing a more stochastic

world, such as that given by a Markov chain, such certainty is often out of reach. In

these cases stochastic maps—variously also called stochastic kernels, Markov kernels,

conditional probabilities, or probabilistic mappings—may often be useful instead.

These are more general, mapping outcomes of the domain to probability measures

on, instead of points of, the codomain.
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Definition 2.11 (Stochastic map). Let (X,ΣX) and (Y,ΣY ) be measurable spaces.

A stochastic map k : (X,ΣX)→ (Y,ΣY ) is a function

k(x,B) : X × ΣY −→ [0, 1]

such that

(i) for each x ∈ X the function kx := k(x,−) : ΣY → [0, 1] is a probability measure

on Y ; and

(ii) for each measurable set B ⊆ Y the function kB := k(−, B) : X → [0, 1] is

measurable.

The composite of stochastic maps

` ◦ k : (X,ΣX)
k−→ (Y,ΣY )

`−→ (Z,ΣZ)

is defined by the integral

` ◦ k(x,C) =

∫
Y

`(−, C) dkx,

where x ∈ X and C ∈ ΣZ . That this is a well-defined stochastic map follows imme-

diately from the basic properties of the integral.

Note that these definitions are those suggested by our discussion at the close of the

previous section: put more succinctly, a stochastic map is a measure-valued function

(subject to a measurability requirement), and the composite ` ◦ k(x,C) of stochastic

maps ` and k is given by integrating the measures `y on the codomain (Z,ΣZ) with

respect to the measure kx on the intermediate variable (Y,ΣY ).

We give a few examples.

Example 2.12 (Probability measures as stochastic maps). Observe that a stochastic

map k : 1→ (X,Σ) is simply a probability measure on (X,Σ).

Example 2.13 (Deterministic stochastic maps). In the previous section we discussed

how a measurable function f : (X,ΣX) → (Y,ΣY ) induces ‘point measures’ on its

codomain. We can now interpret these as defining the stochastic map δf : (X,ΣX)→
(Y,ΣY ) given by

δf : X × ΣY −→ [0, 1];

(x,B) 7−→ δf,x(B) =

{
1 if f(x) ∈ B;

0 if f(x) /∈ B.
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We call this the deterministic stochastic map induced by f . More generally, we call

any stochastic map taking values in only in the set {0, 1} a deterministic stochastic

map.

Observe that given measurable functions f : (X,ΣX)→ (Y,ΣY ) and g : (Y,ΣY )→
(Z,ΣZ), the composite of their induced maps is given by

δg ◦ δf (x,C) =

∫
Y

δg(−, C) dδf,x = δf,x(g
−1(C)) =

{
1 if g ◦ f(x) ∈ C;

0 if g ◦ f(x) /∈ C,

where x ∈ X and C ∈ ΣZ . Thus δg ◦ δf = δg◦f .

More generally, for a stochastic map k and measurable function f of the types

required for composition to be well-defined, we have k ◦ δf (x,B) = k(f(x), B), and

δf ◦ k(x,B) = k(x, f−1(B)).

Example 2.14 (Stochastic matrices). Let X and Y be finite measurable spaces of

cardinality n and m respectively. Note that if x, x′ ∈ X are such that x lies in a

measurable set A if and only if x′ does, then for any stochastic map k : X → Y the

measurability of kB for each B ∈ ΣY implies the measures kx and kx′ must be equal.

Thus, with reference to Example 2.7, we may assume without loss of generality X and

Y are discrete. Then, observing that all maps with discrete domain are measurable

and recalling that probability distributions on a finite discrete measurable space m

may be considered as vectors in Rm with non-negative entries that sum to one, we see

that stochastic maps k : X → Y may be considered as m× n matrices K with non-

negative entries and columns summing to one. Indeed, the correspondence is given by

having the yxth entry Ky,x of K equal to k(x, {y}) for all x ∈ X and y ∈ Y . We call

such matrices—matrices with entries in [0, 1] and columns summing to 1—stochastic

matrices.

Let also Z be a discrete finite measurable space, and let ` : Y → Z be a stochastic

map, with corresponding stochastic matrix L. Then for all x ∈ X and z ∈ Z, we

have

` ◦ k(x, {z}) =

∫
Y

`(−, {z}) dkx =
∑
y∈Y

`(y, {z})k(x, {y}),

and writing this in matrix notation then gives

` ◦ k(x, {z}) =
∑
y∈Y

Lz,yKy,x = (LK)z,x.

Thus our representation of finite stochastic maps as stochastic matrices respects com-

position. This hints at an equivalence of categories.
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We are now in a position to define the main category of interest: let the category

of stochastic maps, denoted Stoch, be the category with objects measurable spaces

and morphisms stochastic maps. It is straightforward to show this is a well-defined

category. In particular, the associativity of the composition rule follows directly from

the monotone convergence theorem [9, Theorem 1], and for each object (X,Σ) of

Stoch the delta function δ : (X,Σ)→ (X,Σ) defined by

δ(x,A) =

{
1 if x ∈ A;

0 if x /∈ A,

—that is, the deterministic stochastic map induced by the identity function on X—is

the identity map.

Viewed with this new category, Example 2.13 defines a functor δ : Meas→ Stoch.

In fact, we may further endow Stoch with a symmetric monoidal structure such that

this is a symmetric monoidal functor. For this we take the product of two objects to

be their product measurable space, and the product

k ⊗ ` : (X × Z,ΣX ⊗ ΣZ)→ (Y ×W,ΣY ⊗ ΣW )

of two stochastic maps k : (X,ΣX) → (Y,ΣY ) and ` : (Z,ΣZ) → (W,ΣW ) to be the

unique stochastic map extending

k ⊗ `
(
(x, z), B ×D

)
= k(x,B)`(z,D),

where x ∈ X, z ∈ Z, B ∈ ΣY and D ∈ ΣW . This assigns to each pair (x, z) the

product measure of kx and `z on Y ×W , and indeed results in a well-defined functor

⊗ : Stoch × Stoch → Stoch. Using as structural maps the induced deterministic

stochastic maps of the corresponding structural maps in Meas then gives Stoch the

promised symmetric monoidal structure.

Remark 2.15. Observe that any indiscrete σ-algebra (∗, {∅, ∗}) is a terminal object

in Stoch: from any other measurable space (X,Σ) there only exists the map

t(x,B) =

{
1 if B = ∗;
0 if B = ∅.

Example 2.12 thus shows that the points of an object of Stoch are precisely the

probability measures on that space.

While Stoch has a straightforward definition and interpretation, the generality of

the concept of a σ-algebra means that Stoch admits a few pathological examples that
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indicate it includes more than what we want to capture. For this reason, and for the

clarity that simpler cases can bring, we will mostly work with two full subcategories of

Stoch. The first is FinStoch, the category of finite measurable spaces and stochastic

maps. Building on Example 2.14, and as promised in Example 2.7, this is monoidally

equivalent to the skeletal symmetric monoidal category SMat with objects natural

numbers and morphisms stochastic matrices. As categories of vector spaces are well

studied, this characterisation gives much insight into the structure of FinStoch.

The main disadvantage of FinStoch is that many random variables are not finite.

One category admitting infinite measure spaces—and used by Giry [9], Panangaden

[15], and Doberkat [6], among others—is the category of standard Borel spaces,2

which can be skeletalised as the countable measurable spaces and the unit interval

with its Borel σ-algebra. We will favour the less frequently used but slightly more

general category CGStoch, the full subcategory of Stoch obtained by restricting the

objects to the countably generated measurable spaces. This setting is general enough

to handle almost all examples of probability spaces that arise in applications, but has

a few nice properties that Stoch does not. In the next section we see one of them:

the deterministic stochastic maps here are precisely those that arise from measurable

functions.

2.4 Deterministic stochastic maps

Recall that the deterministic stochastic maps are those that take only the values 0

and 1. These will play a crucial role in maps between collections of causally related

random variables. The key reason for this is that these maps show much more respect

for the structure of the measurable spaces than general stochastic maps. For example,

for a stochastic map to be an isomorphism in Stoch, it must be deterministic.

Proposition 2.16. Let k : (X,ΣX) → (Y,ΣY ) be an isomorphism in Stoch. Then

k is deterministic.

Proof. Our argument rests on the fact that if f : X → [0, 1] is a measurable function

on a probability space (X,Σ, µ) such that
∫
f dµ = 1, then µ(f−1{1}) = 1.

Write h for the inverse stochastic map to k, and fix B ∈ ΣY . We begin by

defining A = k−1
B {1}, where we remind the reader that kB is the measurable function

2A measurable space is a standard Borel space if it is the Borel measurable space of some Polish
space. A topological space is a Polish space if it is the underlying topological space of some com-
plete separable metric space. This category then has objects standard Borel spaces and morphisms
stochastic maps between them.
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k(−, B) : X → [0, 1]. Note that we then have B ⊆ h−1
A {1}, since for any y ∈ B that

h is the inverse to k gives
∫
k(−, B) dhy = 1, so by the above fact hy(A) = 1, and

hence y ∈ h−1
A {1}.

It is enough to show that for any x ∈ X, k(x,B) = 0 or 1. If x ∈ A we are

done: by definition then k(x,B) = 1. Suppose otherwise. Then, again as h and k are

inverses,
∫
h(−, A) dkx = 0. But∫

h(−, A) dkx ≥ kx
(
h−1
A {1}

)
≥ kx(B).

Thus k(x,B) = 0, as required.

In the previous section, we showed that every measurable function induces a de-

terministic stochastic map. One of the reasons that we prefer to work with countably

generated measurable spaces is that in CGStoch the converse is also true.

Proposition 2.17. Let (Y,ΣY ) be a measurable space with ΣY countably generated.

Then a stochastic map k : X → Y is deterministic if and only if there exists a

measurable function f : X → Y with k = δf .

Proof. A proof can be found in [5, Proposition 2.1], but we outline a version here to

demonstrate the use of the countable generating set, and point out that we assume

the axiom of choice.

We have seen that measurable functions induce deterministic maps. For the

converse, let G be a countable generating set for ΣY . Now for each x ∈ X let

Bx =
⋂
{B∈G | k(x,B)=1}B. This is a measurable set as G is countable, and has kx-

measure 1 as its complement may be written as a countable union of sets of kx-

measure zero. Choosing then for each x some y ∈ Bx, we define f such that f(x) = y.

It is then easily checked that k = δf , and f is measurable as each kB is.

Remark 2.18. On the other hand, one need not look too hard for a deterministic

stochastic map that is not induced by a measurable function when dealing with non-

countably generated measurable spaces.3 Indeed, take any uncountable set X, and

endow it with the σ-algebra generated by the points of X. This means that set is

measurable if and only if it or its complement is countable. It is then easily checked

3For fun, we note that if we further add the requirement that every subset of our codomain be
measurable, then we do need to look quite hard. We say that a cardinal is a measurable cardinal
if there exists a countably-additive two-valued measure on its power set such that it has measure 1
and each point has measure 0. If we are looking for such measures, then our set has to be a strongly
inaccessible cardinal [22]. These are truly huge; in some models of set theory they’re too huge to
exist!
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that assigning countable sets measure 0 and uncountable measurable sets measure 1

defines a measure. This gives a deterministic stochastic map from the terminal object

to X not induced by any measurable function.

Remark 2.19. Note that the measurable function specifying a deterministic stochastic

map need not be unique, so we should not view the deterministic stochastic maps

as merely the collection of measurable maps lying inside CGStoch. As an example

of this, consider the one point measurable space (∗, {∅, ∗}) and any other indiscrete

measurable space (X,Σ). Then all of the |X| functions f : ∗ → X are measurable,

and all induce the deterministic stochastic map δf (∗,∅) = 0; δf (∗, X) = 1. In this

way Stoch captures the intuition that every indiscrete measuarable space is the same.

In particular, non-bijective measurable endofunctions can induce the identity

stochastic map, so measurable spaces may be isomorphic in Stoch even if they are

not isomorphic in Meas. This lets FinStoch admit the skeletalisation SMat, even

while the classification of isomorphic objects in FinMeas is not nearly so neat.

More abstractly, this shows that although our symmetric monoidal functor δ :

Meas → Stoch is injective on objects, it is not faithful, and so we can not view

Meas as a subcategory of Stoch.

Although inducing deterministic stochastic maps from measurable functions is

in general a many-to-one process, we may always take quotients of our measurable

spaces so it becomes one-to-one. We briefly explore this idea in order to further our

understanding of deterministic stochastic maps.

Call two outcomes of a measurable space distinguishable if there exists a measur-

able subset containing one but not the other, and indistinguishable otherwise. Indis-

tinguishability gives an equivalence relation on the outcomes of a measure space. We

may take a quotient by this equivalence relation, and use the quotient map to induce

a σ-algebra on the quotient set, defining a set in the quotient to be measurable if

its preimage is. In this quotient space all outcomes are distinguishable; we call this

an empirical measurable space. The quotient map in fact induces an isomorphism in

Stoch.

We call a deterministic monomorphism in Stoch an embedding of measurable

spaces. These are deterministic stochastic maps induced by injective measurable

functions on the empiricisations, and so may be thought of as maps that realise a

measurable space as isomorphic to a sub-measurable space of another. We call an epi-

morphism in Stoch a coarse graining of measurable spaces. These are deterministic

stochastic maps induced by surjective measurable functions on the emipiricisations,
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and so may be thought of as maps that remove the ability to distinguish between

some outcomes of the domain.

The following proposition then gives a precise understanding of deterministic

stochastic maps in CGStoch.

Proposition 2.20. In CGStoch, every deterministic stochastic map may be factored

as a coarse graining followed by an embedding.

Proof. We may without loss of generality assume spaces are empirical. Then we may

treat the deterministic stochastic maps as functions, and we know that each function

factors into a surjection followed by an injection.

2.5 Aside: the Giry monad

To shed further light on the close relationship between Meas and Stoch, we mention

a few results that first stated in [13], and proved in [9]. The main observation is that

Stoch forms a relation-like version of Meas. More precisely, we observe that just

as Rel is the Kleisli category for the power set monad on Set, Stoch is the Kleisli

category for Giry monad on Meas.

Recall that a monad on a category C consists of a functor T : C → C and natural

transformations η : 1C ⇒ T and µ : T 2 ⇒ T such that for all objects X ∈ C the

diagrams

T (T (T (X)))

µT (X)

��

T (µX)
// T (T (X))

µX

��

T (T (X)) µX
// T (X)

and

T (X)

T (ηX)

��

ηT (X)
// T (T (X))

µX

��

T (T (X)) µX
// T (X)

commute. Also recall that the Kleisli CT category of such a monad on C is the category

with objects that of C, for all X, Y ∈ C homsets homC(X,TY ), and composition of

f ∗ : XT → YT , g∗ : YT → ZT , defined by f : X → TY , g : Y → TZ, given by

g∗ ◦T f ∗ = (µ ◦ Tg ◦ f)∗.

As mentioned above, it can be checked that the functor mapping a set to its

power set can be viewed as a monad on Set, and the Kleisli category for this monad

is isomorphic to Rel. In the case of Meas and Stoch, we define the functor of the

Giry monad P : Meas→Meas to be the functor taking a measurable space (X,Σ)
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to the set of all probability measures on (X,Σ) with the smallest σ-algebra such that

the evaluation maps

PX × Σ −→ [0, 1];

(µ,B) 7−→ µ(B).

are measurable.4 The associated natural transformations of the monad are that 1→
P sending a point to its point measure, and that P2 → P sending a measure on the

set of measures to its integral. It can then be shown that this forms a well-defined

monad, with Kleisli category Stoch.

As Stoch is the Kleisli category for P , P can be factored through Stoch, and in

fact through the functor δ : Meas → Stoch. This is done by defining the functor

ε : Stoch → Meas sending a measurable space X to PX and a stochastic map

k : X → Y to the measurable function εk : PX → PY defined by

εk : PX −→ PY ;

µ 7−→
(
B ∈ ΣY 7→

∫
X
k(x,B) dµ

)
.

We then have an adjunction δ a ε

Meas
δ

--
Stoch

ε
mm

with composite γ ◦ δ = P .

Finally, note that if X is finite or countably generated then PX is finite or

countably countably generated respectively too, so we may also view FinStoch and

CGStoch as Kleisli categories of monads on FinMeas and CGMeas respectively.

4We earlier saw hints that a stochastic map may be viewed as a measure-valued measurable
function. We now see the precise meaning of this statement: a stochastic map is defined by a
measurable function X → PX.
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Chapter 3

Bayesian Networks

In the first chapter we discussed a formalism for representing processes, while in the

second we introduced a way to think of these processes as probabilistic. In this short

third chapter we now add to this some language for describing selected probabilistic

processes as causal.

As in the case of probability, although the intuition for the concept is clear, any

attempt to make precise what is meant by causality throws up a number of philo-

sophical questions. We shall not delve into these here, but instead say that we will

naively view a causal relationship as an asymmetric one between two variables, in

which the varying of one—the cause—necessarily induces variations in the other—

the effect. In particular, we think of a causal relationship as implying a physical,

objective, mechanism through which this occurs.

The structure we have chosen, Bayesian networks, has roots in graphical models

in statistics, and was first proposed as a language for causality by Pearl in [17], with

special interest in applications to machine learning and artificial intelligence. Since

then Bayesian networks have played a significant role in discussions of causality from

both a computational and a philosophical perspective. This chapter in particular

relies on expositions by Pearl [19] and Williamson [26].

3.1 Conditionals and independence

Much of the difficulty in the discussion of causality arises from the fact that causal

relationships can never be directly observed. We instead must reconstruct such rela-

tionships from hints in independencies between random variables. The key point is

that if A causes B, then A and B cannot be independent.
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Definition 3.1 (Independence). Let (X,ΣX) and (Y,ΣY ) be measurable spaces, and

let P be a joint probability measure on the product space (X ×Y,ΣX ⊗ΣY ). We say

that X and Y are independent with respect to P if P is equal to the product measure

of PX and PY , and dependent with respect to P otherwise.

Independent joint distributions can also be characterised as those that are of the

form

P (A×B) =

∫
A

c(−, B) dPX ,

for all A ∈ ΣX and B ∈ ΣY , where c : X → Y is a stochastic map that factors

through the terminal object of Stoch. Indeed, to find such a c corresponding to any

independent joint distribution, we may just take the stochastic map defined by

c(x,B) = PY (B)

for all x ∈ X. This general idea gives a recipe for deconstructing, or factorising, a

joint probability measure P into a marginal PX on one factor and a stochastic map

PY |X : X → Y from that factor to the product of the others. We call this stochastic

map a conditional for the joint measure.

Definition 3.2 (Conditional). Let (X,ΣX) and (Y,ΣY ) be measurable spaces, and

let P be a joint probability measure on the product space (X × Y,ΣX ⊗ ΣY ). Then

we say that a stochastic map PY |X : (X,ΣX) → (Y,ΣY ) is a conditional for P with

respect to X if for all A ∈ ΣX and B ∈ ΣY we have

P (A×B) =

∫
A

PY |X(−, B) dPX .

Note that the above integral consequently defines a measure on X × Y equal to P .

Considering the marginals as stochastic maps 1→ (X,ΣX), this also implies that

PY = PY |X ◦ PX .

This says that PY |X is a stochastic map from X to Y that maps the marginal PX

to the marginal PY . As there are many joint measures with marginals PX and PY ,

however, this is not a sufficient condition for PY |X to be the conditional for P with

respect to X.

While this is so, given a joint probability measure with marginals again probability

measures, under mild constraints it is always true that there exists a conditional for

it, and that this conditional is ‘almost’ unique. This is made precise by the following
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proposition. Recall that given a measurable space (X,Σ), we call a measure µ on X

perfect if for any measurable function f : X → R there exists a Borel measurable set

E ⊆ f(X) such that µ(f−1(E)) = µ(X). This proposition represents another reason

why we will occasionally restrict our attention to CGStoch.

Proposition 3.3 (Existence of regular conditionals). Let (X,ΣX) and (Y,ΣY ) be

countably generated measurable spaces, and let µ be a measure on the product space

such that the marginal µX is perfect. Then there exists a stochastic map k : (X,ΣX)→
(Y,ΣY ) such that for all A ∈ ΣX and B ∈ ΣY we have

µ(A×B) =

∫
A

k(−, B) dµX .

Furthermore, this stochastic map is unique in the sense that if k′ is another stochastic

map with these properties, then k and k′ are equal µX almost everywhere.

Proof. Existence is proved in Faden [7, Theorem 6]. Uniqueness is not difficult to

show, but can be found in Vakhania, Tarieladze [23, Proposition 3.2].

The existence of conditionals gives rise to a more general notion of independence,

aptly named conditional independence.

Definition 3.4 (Conditional independence). Let (X,ΣX), (Y,ΣY ), (Z,ΣZ) be mea-

surable spaces, and let P be a joint probability measure on the product space X ×
Y × Z. We say that X and Y are conditionally independent given Z (with respect to

P ) if

(i) a conditional PXY |Z : (Z,ΣZ)→ (X × Y,ΣX ⊗ ΣY ) exists; and

(ii) for each z ∈ Z, X and Y are independent with respect to the probability measure

PXY |Z(z,−).

This notion gives us far more resolution in investigations of how variables can

depend on each other, and hence in finding causal relationships. For example, the

variables representing the amount of rain on a given day in London and in Beijing

are dependent—on a winter day it on average rains more than a summer one in both

cities—, but we can tell they are not causally related because they are condition-

ally independent given the season. A key feature of Bayesian networks is that it

allows us to translate facts about causal relationships into facts about conditional

independence, and vice versa.
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The following lemma helps with further conceptualising conditional independence.

In particular, conditions (iii) and (iv) say that if X and Y are conditionally indepen-

dent given Z, then upon knowing the outcome of Z, the outcome of X gives no

information about the outcome of Y , and the outcome of Y gives no information

about the outcome of X.

Lemma 3.5 (Countable conditional independence). Let X, Y, Z be countable discrete

measurable spaces with a joint probability measure P such that the marginals on Z,

XZ, Y Z each have full support. The following are equivalent:

(i) X and Y are conditionally independent given Z.

(ii) PX|Z(z, {x})PY |Z(z, {y}) = PXY |Z(z, {(x, y)}) for all x ∈ X, y ∈ Y , z ∈ Z.

(iii) PX|Y Z(y, z, {x}) = PX|Z(z, {x}) for all x ∈ X, y ∈ Y , z ∈ Z.

(iv) PY |XZ(x, z, {y}) = PY |Z(z, {y}) for all x ∈ X, y ∈ Y , z ∈ Z.

Proof. The equivalence of (i) and (ii) is just the definition of conditional independence,

noting that in the discrete case the conditionals are uniquely determined by their

values on individual outcomes. The equivalence of (ii), (iii), and (iv) follow from

elementary facts in probability theory; a proof can be found in [12].

3.2 Bayesian networks

We introduce Bayesian networks with an example.

Example 3.6. Suppose that we wish to add a causal interpretation to a joint prob-

ability measure on the binary random variables A = {a,¬a}, B = {b,¬b}, and

C = {c,¬c} representing the propositions that, upon being presented with a food:

A: you like, or appreciate, the food.

B: the food is nutritionally beneficial.

C: you choose to eat the food.

Let these random variables have joint probability measure given by the table
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x P (x)
a, b, c 0.24
a, b,¬c 0
a,¬b, c 0.18
a,¬b,¬c 0.18
¬a, b, c 0.06
¬a, b,¬c 0.10
¬a,¬b, c 0
¬a,¬b,¬c 0.24

Intuitively, the causal relationships between our variables are obvious: liking a food

influences whether you choose to eat it, and so does understanding it has health

benefits, but otherwise there are no causal relationships between the variables—liking

a food does not cause it to be more (or less) healthy. We shall represent these causal

relationships by the directed graph

A B

C

where we have drawn an arrow from one variable to another to indicate that that

variable has causal influence on the other. The above joint probability measure and

graph comprise what we will later define as a Bayesian network.

Note that we could not have chosen just any directed graph with vertices A,

B, and C, as assertions about causal relationships have consequences that must be

reflected in the joint probability measure. For example, as in the above graph neither

A or B cause of each other, nor have a common cause, we expect that A and B are

independent with respect to the marginal PAB. This is true. Writing probability

measures as n×1 stochastic matrices with respect to the bases {x,¬x} for the binary

variables and {ab, a¬b,¬ab,¬a¬b} for the variable AB, we have

PA =

(
0.6
0.4

)
; PB =

(
0.4
0.6

)
and hence

PA ⊗ PB = PAB =


0.24
0.36
0.16
0.24


Furthermore, the above graph suggests that the probability measure on C can be

written as a function of the outcomes of both its causes A and B. We thus expect

36



that the measure has factorisation

P (xa, xb, xc) =

∫
(xa,xb)

∫
xc

dPC|ABdPAB =

∫
xa

∫
xb

∫
xc

dPC|ABdPBdPA,

where xa ∈ A, xb ∈ B, xc ∈ C. As these variables are finite, we might also write this

requirement as

P (xa, xb, xc) = PC|AB(xa, xb, {xc})PB({xb})PA({xa}).

Again, this is also true, with

PC|AB =

(
1 0.5 0.375 0
0 0.5 0.625 1

)
.

Motivated by this, we will later define a compatibility requirement in terms of the

existence of a certain factorisation. Note that although in general a probability mea-

sure will have many factorisations; the directed graph specifies a factorisation that

we attach greater—causal—significance to.

An advantage of expressing the causal relationships as a graph is that we may read

from it other, acausal, dependencies. For example, while A and B are independent,

the above graph suggests that if we know something about their common consequence

C, this should induce some dependence between them. Indeed we find this does occur.

Observe that

PAB|C(c,−) =


0.5

0.375
0.125

0

 ,

which indicates that of the foods you choose to eat, the foods you like are more likely

to be unhealthy than those you dislike.

More than this, however, marking certain relationships as causal affects our un-

derstanding of how a joint probability measure should be interpreted; we will see an

example of this in the next chapter.

To make these ideas precise we introduce some definitions. Recall that a directed

graph G = (V,A, s, t) consists of a finite set V of vertices, a finite set A of arrows, and

source and target maps s, t : A → V such that no two arrows have the same source

and target—precisely, such that for all a, a′ ∈ A either s(a) 6= s(a′) or t(a) 6= t(a′).

An arrow a ∈ A is said to be an arrow from u to v if s(a) = u and t(a) = v, while

a sequence of vertices v1, . . . , vk ∈ V is said to form a path from v1 to vk if for all

i = 1, . . . , k − 1 there exists an arrow ai ∈ A from vi to vi+1. A path is also called a

cycle if in addition v1 = vk. A directed graph is acyclic if it contains no cycles.
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As demonstrated in the above example, directed acyclic graphs provide a depiction

of causal relationships between variables; the direction represents the asymmetry of

the causal relationship, while cycles are disallowed as variables cannot have causal

influence on themselves. When we think of the set of vertices of a directed acyclic

graph as the set of random variables of a system, we will also call the graph a causal

structure.

Given a directed graph, we use the terminology of kinship to talk of the relation-

ships between vertices, saying that a vertex u is a parent of a vertex v if there is an

arrow from u to v, u is an ancestor of v if there is a path from u to v, u is a child of

v if there is an arrow from v to u, and u is a descendent of v if there is a path from u

to v. We will in particular talk of the parents of a vertex frequently, and so introduce

the notation

pa(v) = {u ∈ V | there exists a ∈ A such that s(a) = u, t(a) = v}

for the set of parents of a vertex. When dealing with graphs as causal structures,

we will also use the names direct causes, causes, direct effects, and effects to mean

parents, ancestors, children, and descendants respectively.

We say that an ordering {v1, . . . , vn} of the set V is an ancestral ordering if vi is

an ancestor of vj only when i < j.

Definition 3.7 (Bayesian network). Let G = (V,A, s, t) be a directed acyclic graph,

for each v ∈ V let Xv be a measurable space, and let P be a joint probability measure

on
∏

v∈V Xv. We say that the causal structure G and the joint probability measure P

are compatible if there exists an ancestral ordering of the elements V such that there

exist conditionals such that

P (A1 × A2 × · · · × An) =

∫
A1

∫
A2

. . .

∫
An

PXn|pa(Xn) . . . PX2|pa(X2)PX1 .

A Bayesian network (G,P ) is a pair consisting of a compatible joint probability

measure and causal structure.

A better understanding of this compatibility requirement can be gained from the

examining following theorem.

Theorem 3.8 (Equivalent compatibility conditions). Let G be a causal structure, let

{(Xv,Σv) | v ∈ V } be a collection of finite measurable spaces indexed by the vertices of

G, and let P be a joint probability measure on their product space. Then the following

are equivalent:
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(i) P is compatible with G.

(ii) P (x1, . . . , xn) =
∏n

i=1 PXi|pa(Xi)(pa(xj), {xi}), where pa(xj) is the tuple consist-

ing of xj such that Xj ∈ pa(Xi).

(iii) P obeys the ordered Markov condition with respect to G: given any ancestral

ordering of the variables, each variable is independent of its remaining preceding

variables conditional on its parents.

(iv) P obeys the arental Markov condition with respect to G: each variable is inde-

pendent of its nondescendents conditional on its parents.

Proof. This follows from Corollaries 3 and 4 to Theorem 3.9 in Pearl [18].

As an illustration of the relevance of causal structure, we note that conditional

independence relations between variables of a Bayesian network can be read from

the causal structure using a straightforward criterion. Call a sequence of vertices

v1, . . . , vk ∈ V an undirected path from v1 to vk if for all i = 1, . . . , k − 1 there exists

an arrow ai ∈ A from vi to vi+1 or from vi+1 to vi. An undirected paths v1, v2, v3 of

three vertices then take the form of a

(i) chain: v1 → v2 → v3 or v1 ← v2 ← v3,

(ii) fork : v1 ← v2 → v3; or

(iii) collider : v1 → v2 ← v3.

An undirected path from a vertex u to a vertex v is said to be d-separated by a set of

nodes S if either the path contains a chain or a fork such that the centre vertex is in

S, or if the path contains a collider such that the neither the centre vertex nor any

of its descendants are in S. A set S then d-separates a set U from a set T if every

path from a vertex in U to a vertex in T is d -separated by S.

The main idea of this definition is that causal influence possibly creates depen-

dence between two random variables if one variable is a cause of the other, the vari-

ables have a common cause, or the variables have a common consequence and the

outcome of this consequence is known. In this last case, knowledge of the conse-

quence ‘unseparates’ the two variables along the path through the known common

consequence. On the other hand, any information gained through having a common

cause is rendered moot if we have knowledge about a variable through which the

causal influence is mediated. These ideas are captured by the following theorem.
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Theorem 3.9. Let (G,P ) be a Bayesian network. If sets U and T of vertices of G

are d-separated by a third set S, then with respect to P , the product random variables∏
u∈U Xu and

∏
t∈T Xt are conditionally independent given

∏
s∈S Xs.

Proof. See Verma and Pearl [24].

An example of this is the way the variables A and B are independent in Example

3.6, but dependent conditional on C.
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Chapter 4

Causal Theories

We now tie the elements of the last three chapters together to propose and develop a

novel algebraic structure: a causal theory. After introducing these structures, we dis-

cuss their models in various categories and how such models might be interpreted, and

then look at a possibly confusing situation that causal theories and their associated

graphical language help make lucid.

4.1 The category associated to a causal structure

We wish to fashion a category that captures methods of reasoning with causal rela-

tionships. In this category, we will want our objects to represent the variables of a

situation, while the morphisms should represent the ways one can deduce knowledge

about one variable from another. Furthermore, as we will want to deal with more

than one variable at a time, and the outcomes their joint variable may take, this

category will be monoidal.

As we may only reason about causal relationships once we have some causal rela-

tionships to reason with, we start by fixing a set of symbols for our variables and the

causal relationships between them. Let G = (V,A, s, t) be a directed acyclic graph.

From this we construct a strict symmetric monoidal category CG in the following way.

For the objects of CG we take the set NV of functions from V to the natural

numbers. These may be considered collections of elements of the set of variables V ,

allowing multiplicities, and we shall often just write these as strings w of elements

of V . Here the order of the symbols in the string is irrelevant, and we write ∅ for

empty string, which corresponds to the zero map of NV . We view these objects as the

variables of the causal theory, and we further call the objects which are collections

consisting of just one instance of a single element of V the atomic variables of the

causal theory.
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There are two distinct classes of generating morphisms for CG. The first class is

the collection of comonoid maps : for each atomic variable v ∈ V , we include mor-

phisms
v

: v → vv and
v

: v → ∅. These represent the ideas of duplicating some

information about v, or forgetting some. The maps of the second class are called the

causal mechanisms. These consist of, for each atomic variable v ∈ V , a morphism

[v|pa(v)] : pa(v) → v, where pa(v) is the string consisting of the parents of v in any

order, and represent the ways we may use information about a collection of variables

to infer facts about another. We then use these morphisms as generators for a strict

symmetric monoidal category, taking all products and well-defined compositions, sub-

ject only to the constraint that for each v ∈ V the pair (
v
,
v
) forms a comonoid.

As the swaps are identity maps, these comonoids are immediately commutative.

We call this category CG the causal theory of the causal structure G. Morphisms

of CG represent ways to reason about the outcome of the codomain variable given

some knowledge about the domain variable.

As the causal mechanisms are labelled with their domain and codomain, there is

usually no need to label the strings when representing morphisms of C with string

diagrams. We also often do not differentiate between the comonoid maps with labels,

as the context makes which comonoid map we are applying. The order in which

we write the string representing the set pa(v) corresponds to the order of the input

strings.

Example 4.1. The causal theory of the causal structure

A B

C

of Example 3.6 is the symmetric monoidal category with objects collections of the

letters A, B, and C, and morphisms generated by counit and comultiplication maps

on each of A, B, and C, as well as causal mechanisms [A] : ∅ → A, [B] : ∅ → B,

and [C|AB] : AB → C. We depict these causal mechanisms respectively as

A B
and C|AB

We now list a few facts to give a basic understanding of the morphisms in these

categories. These morphisms represent predictions of the consequences of the domain
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variable on the codomain variable. As causal structures are acyclic—giving rise to

a ‘causal direction’, or (noncanonical) ordering on the variables—, causal theories

similarly have such a direction, and this puts limits on the structure. Indeed, one

consequence is that a morphism can only go from an effect to a cause if it factors

through the monoidal unit; this represents ‘forgetting’ the outcome of the effect, and

reasoning about the outcomes of the cause from other, background, information. We

say a map is inferential if it does not factor through the monoidal unit.

Proposition 4.2. Let CG be a causal theory, and let v, v′ be atomic variables in CG.

If there exists an inferential map v → v′, then v is an ancestor of v′ in G.

Proof. We reason via string diagrams to prove the contrapositive.

Observe that a generating map is inferential if and only if, in its string diagram

representation, the domain is topologically connected to the codomain, and that this

property is preserved by the counitality relation the comonoid maps must obey. Thus

it is also true in general: a morphism in CG is inferential if and only if, in all string

diagram representations, the domain is topologically connected to the codomain.

Note also that for all generating maps with string diagrams in which the domain

and codomain are connected, the domain and codomain are nonempty and each ele-

ment of the domain is either equal to or an ancestor of each element of the codomain.

This property is also preserved by the counitality relation. Thus, if v is not an an-

cestor of v′, in all string diagram representations of a map v → v′ the domain is not

topologically connected to the codomain. Taking any such string diagram and con-

tinuously deforming it by moving all parts of the component connected to the domain

below all parts of the component connected to the codomain, we thus see that the

map may be rewritten as one that factors through the monoidal unit.

In fact the converse also holds: if v is an ancestor of v′, then there always exists

an inferential map v → v′. Indeed, if w,w′ are objects in CG containing each atomic

variable no more than once—that is, when w,w′ ⊆ V—, we can construct a map

w → w′ in the following manner.

1. Take the smallest subgraph Gw→w′ of G containing the vertices of w and w′,

and all paths in V that terminate at an element of w′ and do not pass through

w. 1

1Precisely, this means we take the subgraph with set of arrows Aw→w′ ⊆ A consisting of all a ∈ A
for which there exist a1, . . . , an with

(i) s(a1) = t(a),
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2. For each vertex v ∈ Vw→w′ let kv be the number of arrows of Aw→w′ with source

v. Then:

(i) for each v ∈ w take the string diagram representing the composition of

kv − 1 comultiplications on v or, when kv = 0, the counit of v.

(ii) For each v ∈ w′ take the string diagram for [v|pa(v)] composed with a

sequence of kv comultiplications on v.

(iii) For each v ∈ Vw→w′ \ (w ∪ w′) take the string diagram for [v|pa(v)], com-

posed with either a sequence of kv− 1 comultiplications on v or, if kv = 0,

composed with the counit on v.

3. From this collection of string diagrams, create a single diagram by connecting

an output of one string diagram to an input of another if the set Aw→w′ contains

an arrow from the indexing vertex of the first diagram to the indexing vertex

of the second.

Due to the symmetry of the monoidal category CG and the associativity of the

comultiplication maps, this process uniquely defines a string diagram representing a

morphism from w to w′. Moreover, this map is inferential whenever there exists some

v ∈ w that is an ancestor of some v′ ∈ w′. These maps are in a certain sense the

uniquely most efficient ways of predicting probabilities on w′ using information about

w, and will play a special role in what follows. For short, we will call these maps

causal conditionals and write them maps [w′||w], or simply [w′] when w = ∅. In this

last case, we will also call the map [w′] the prior on [w′].

Example 4.3. This construction is a little abstruse on reading, but the main idea is

simple and an example should make it much clearer. Let G be the causal structure

(ii) s(ai+1) = t(ai) for i = 1, . . . , n− 1,

(iii) t(an) ∈ w′,

(iv) s(ai) /∈ w for i = 1, . . . , n,

and vertices

Vw→w′ = w ∪ w′ ∪ {v ∈ V | v = s(a) or t(a) for some a ∈ Aw→w′}.

Note that for each v ∈ Vw→w′ \ w, the set of parents of v in this subgraph is equal to the set of
parents of v in the whole graph G.
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A

B

C

D

E

F

and suppose that we wish to compute the causal conditional [DE||B]. Step 1 gives

the subgraph GB→DE

A

B

C

D

E

consisting of all paths to D or E not passing through B.

Step 2 then states that the causal conditional [DE||B] comprises the maps

idB = D|C E|DC
A C|AB

and we then compose these mimicking the topology of the graph GB→DE to give the

map

[DE||B] =

A

C|AB

D|C

E|DC
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4.2 Interpretations of causal theories

Causal theories express abstractly avenues of causal reasoning, but this serves no

purpose in describing specific causal relationships until we attach meanings, or an

interpretation, to the objects and morphisms of the theory. The strength of separating

out the syntax of reasoning is that these interpretations may now come from any

symmetric monoidal category. Stated formally, let C be a causal theory, and let D be

any symmetric monoidal category. Then a model of C in D, or just a causal model,

is a strong monoidal functor M : C → D.

We explore the basic properties of causal models in a few categories. To demon-

strate the basic ideas, we first take a brief look at models in Set and Rel; models

in these categories will be useful for describing deterministic and possibilistic causal

relationships respectively. While Meas is another obvious candidate setting for ex-

amining causal models, we merely note that causal models here behave somewhat

similarly to Set and move on to Stoch, the main category of interest. Here causal

models generalise Bayesian networks. As Bayesian networks are known to provide

a useful tool for the discussion of causality, this lends support to the idea that the

richer structure of causal models in Stoch do too.

Models in Set

Due to its familiarity, we begin our discussion of causal models with an examination

of the forms they take in Set. In both Set and Rel the objects are sets. For the

purposes of causal models, it is useful to view these sets as variables, with the elements

the possible outcomes of the variable. With this interpretation, we can understand

Set as a subcategory of Meas in which every measurable space is discrete, making

it possible to measure any subset of the outcomes of each variable. Morphisms in

Set—that is, set functions—then assign a single outcome of the codomain variable

to each outcome of the domain variable, and so can be said to describe deterministic

causal relationships.

Given a causal theory C, a model of C in Set by definition consists of a strong

monoidal functor M : C → Set. To specify such a functor up to isomorphism, it is

enough to specify the image of each atomic variable and each generating map, subject

to the constraints that the generating maps chosen are well-typed with respect to the

chosen images of the atomic variables, and that the images of the comultiplication and

counit obey the laws of a commutative comonoid. Indeed, once these are specified,

the values of the functor on the remaining objects and morphisms of C are, up to

46



isomorphism, determined by the definition of a strong monoidal functor. Note also

that as long as the aforementioned constraints are fulfilled we have a well-defined

strong monoidal functor.

We first observe, as we will also in the case of Stoch, that each object of Set

has a unique comonoid structure, and this comonoid is commutative. To wit, for

each set X, there is a unique map X → {∗}, taking the product of this map and

the identity map X → X gives the projection maps X × X → X, and the only

function X → X × X that composes to the identity with the projection map on

each factor is the diagonal map x 7→ (x, x). Moreover, choosing the diagonal map

as a comultiplication indeed gives a commutative comonoid with this map. It is a

consequence of this that we need not worry about the comonoid maps; choosing a set

for each variable also chooses the comonoid maps for us.

On the other hand, as the causal mechanisms need not obey any equations, so

having defined a map on the objects, any choice of functions from the product set

of all the direct causes of each variable to the variable itself then gives a model of

the causal theory in Set. Each such function returns the outcome of its codomain

variable given a configuration of the outcomes of its causes. In this sense a model of a

causal theory in Set specifies how causes affect their consequences in a deterministic

way.

As maps from the monoidal unit in Set are just a pointings of the target set,

the priors M [w] of a causal model are just a choice of an outcome for each of the

atomic variables in w. In the case of an atomic variable with no causes, the prior

M [v] : {∗} → Mv is simply the causal mechanism M [v|pa(v)], and just picks an

element of the set Mv. One might interpret this as the ‘default’ state of the variable

v, and subsequently interpret the prior M [V ] on the set of all variables V as the

default state of all variables in the system.

We shall see this as a general feature of models of causal theories; the priors specify

what can be known about the system in some default state, while more generally the

morphisms describe the causal relationships between variables even when not in this

state.

Models in Rel

In the category Rel, we interpret a relation r : X → Y to mean that that if X has the

outcome x ∈ X, then Y may only take the outcomes y related to x via r. This is a

possibilistic notion of causality, in which the outcomes of the causes do not determine
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a single outcome of the effect variable as in Set, but only put some constraint on the

possible outcomes of the effect variable.

A curious property of the category Rel is that any relation X → Y may also

be viewed as a relation Y → X in a natural way—that is, Rel is equipped with

a contravariant endofunctor that squares to the identity, or a dagger functor. This

means that we have a way of reversing the direction any morphism we choose, and in

this sense Rel itself is acausal. This makes causal models all the more useful when

working in Rel, as they provide a way of privileging certain relations with a causal

direction.

For any object in Rel, we may view the functions forming the unique comonoid

on this set in Set as relations, and hence have a commutative comonoid in Rel. An

interesting collection of causal models M : C → Rel in Rel are those in which all

objects are given these comonoid structures. Note that a map s : {∗} → X from the

monoidal unit to an object X in Rel is simply a subset S of X and, assuming X has

the comonoid structure in which the comonoid maps are functions, for any relation

r : X → Y the composite

r

s

is then equal to the set

{(x, y) ∈ X × Y | x ∈ S, y ∼r x}.

Thus when the comonoid maps of the model are those of Rel inherited from Set, it

is easy to see that the priors [w] in Rel are given by the subset of the product set of

the atomic variables in w consisting of all joint outcomes that are possible given the

constraints of the causal mechanisms.

In this setting, however, commutative comonoids are more general; for example,

any collection of abelian groups forms a commutative comonoid on the union of the

sets of elements of these groups [16]. We leave examination of causal structures for

these other comonoid structures, and their interpretations, for later work.

Models in Stoch

We begin our discussion of causal models in Stoch by showing that for Stoch too we

need not worry about selecting comonoid maps; the deterministic comonoid structure

Stoch inherits from Set is the only comonoid structure on each object.
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Lemma 4.4. Each object of Stoch has a unique comonoid structure. Moreover, this

comonoid structure is commutative.

Proof. Fix an object (X,Σ) in Stoch. We first show the existence of a comonoid

structure on X by showing that the stochastic maps

: (X,Σ) −→ (X ×X,Σ⊗ Σ);

defined by

: X × (Σ⊗ Σ) −→ [0, 1];

(x,A) 7−→

{
1 if (x, x) ∈ A,
0 if (x, x) /∈ A,

and

: (X,Σ) −→ (∗, {∅, ∗})

defined by

: X × {∅, ∗} −→ [0, 1];

(x, ∗) 7−→ 1,

(x,∅) 7−→ 0,

form the comultiplication and counit for a comonoid structure respectively.

Indeed, observe that both these maps are deterministic stochastic maps, with

specified by the measurable function X → X × X;x 7→ (x, x) and specified by

X → ∗;x 7→ ∗. From here it is straightforward to verify that these functions obey

coassociativity and counitality as functions in Meas, and hence these identities are

true in Stoch.

We next prove uniqueness. As the monoidal unit (∗, {∅, ∗}) is terminal, there is

a unique stochastic map from (X,Σ) to the terminal object, and so is the only

possible choice for the counit of a comonoid on (X,Σ). Suppose that δ : (X,Σ) →
(X ×X,Σ⊗Σ) is a stochastic map such that (δ, ) forms a comonoid. We will show

in fact that for all x ∈ X and A ∈ Σ⊗ Σ we have

δ(x,A) =

{
1 if (x, x) ∈ A;

0 if (x, x) /∈ A,

and so δ = . Note that as δx = δ(x,−) is a probability measure on (X ×X,Σ⊗Σ)

it is enough to show that δ(x,A) = 1 whenever (x, x) ∈ A.
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To begin, note that counitality on the right implies that

δ =

so for all x ∈ X and B ∈ Σ we have

δx(B ×X) = δ(x,B ×X) =

∫
X×X

χB×X dδx

=

∫
X×X

(−,−, B) dδx

= δ (x,B)

= id(X,Σ)(x,B)

=

{
1 if x ∈ B;

0 if x /∈ B.

Similarly, counitality on the left implies that for all x ∈ X and B ∈ Σ we have

δx(X ×B) =

{
1 if x ∈ B;

0 if x /∈ B.

We shall use these facts in the following.

Fix x ∈ X and let now A ∈ Σ ⊗ Σ be such that (x, x) ∈ A. Recalling our

characterisation of product σ-algebras in Example 2.4, we may assume A is of the

form A = ∪i∈I(Ci×Di), where I is a countable set and Ci, Di ∈ Σ for all i ∈ I. There

thus exists 0 ∈ I such that (x, x) ∈ C0×D0, and hence x ∈ C0 and x ∈ D0. Since we

have shown above that this implies that δx(C
c
0×X) = δx(X ×Dc

0) = 0, we then have

δx(A) = δx(∪i∈I(Ci ×Di))

≥ δx(C0 ×D0)

= δx((C0 ×X) ∩ (X ×D0))

= 1− δx((Cc
0 ×X) ∪ (X ×Dc

0))

≥ 1− (δx(C
c
0 ×X) + δx(X ×Dc

0))

= 1,

so δ(x,A) = 1 as required.

It remains to check that this comonoid is commutative. Recalling that the swap

: (X × X,Σ ⊗ Σ) −→ (X × X,Σ ⊗ Σ) on (X,Σ) ⊗ (X,Σ) is the deterministic

stochastic map given by X × X → X × X; (x, y) 7→ (y, x), it is immediately clear

that the comultiplication is commutative.
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Arguing as for models of Set, given a causal theory C, strong monoidal functors

P : C → Stoch are thus specified by arbitrary choices of measurable space for each

atomic variable, and a subsequent arbitrary choices of causal mechanisms of the

required domain and codomain.

These interpretations of the causal mechanisms give rise to a joint probability

measure compatible with the causal structure underlying the causal theory. Indeed,

this can be seen as the key difference between a model of a causal theory in Stoch and

a Bayesian network: models of causal theories privilege factorisations, while Bayesian

networks only care about the joint probability measure.

Theorem 4.5. Let G be a directed acyclic graph with vertex set V and let

P : CG → Stoch be a model of the causal theory CG in Stoch. Then the causal

structure G and the probability measure defined by the prior P [V ] are compatible.

Proof. Recall that [V ] is the prior on the collection consisting of one copy of each

of the atomic variables V . For each v ∈ V we have a measurable space Pv, and

as P [V ] : ∅→ PV is a point of Stoch it defines a joint probability measure on the

product measurable space PV . We must show that P [V ] has the required factorisa-

tion.

To this end, choose some ancestral ordering of V , writing V now as {v1, . . . , vn}
with the elements numbered according to this ordering. By construction, the string

diagram of the prior [V ] consists of one copy of each causal mechanism [vi|pa(vi)]

and ki copies of each comultiplication
vi

, where ki is the number of children of the

vertex vi. As each vi appears exactly once as the codomain of the causal mechanisms

[vi|pa(vi)], the coassociativity of each comonoid and the rules of the graphical calculus

for symmetric monoidal categories, show that any way of connecting these elements

to form a morphism ∅ → V produces the same morphism. In particular, we may

build [V ] as the composite of the morphisms [V ]i : v1 . . . vi−1 → v1 . . . vi defined by

[V ]i =
. . .

. . .

. . .

. . .
vi|pa(vi)

(vj /∈ pa(vi)) (vj ∈ pa(vi))

v1v2 . . . vi

v1v2 . . . vi−1

. . .

. . .
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In words, the morphism [V ]i is the morphism v1 . . . vi−1 → v1 . . . vi constructed by

applying a comultiplication to each of the parents of vi, and then applying the causal

morphism [vi|pa(vi)]. Note that as we have ordered the set V with an ancestral

ordering, all parents of vi do lie in the set of predecessors of vi.

Observe now that given any stochastic map k : (X,ΣX) → (Y,ΣY ), if is the

unique comultiplication on X, then the composite

k
: (X,ΣX) −→ (X × Y,ΣX ⊗ ΣY )

is given by(
(idX ⊗ k) ◦

)
(x,A×B) =

∫
X×X

χA(−)k(−, B) d
x

= χA(x)k(x,B)

for all x ∈ X, A ∈ ΣX , B ∈ ΣY . Furthermore, if µ : ∗ → (X,ΣX) is a measure on X,

then

µ

k
: (∗, {∅, ∗}) −→ (X × Y,ΣX ⊗ ΣY )

is given by (
(idX ⊗ k) ◦ ◦ µ

)
(A×B) =

∫
A

k(x,B) dµ

for all A ∈ ΣX , B ∈ ΣY .

Thus, taking the image under P , each of the maps [V ]i gives

P [V ]i(x1, . . . , xi−1, A1 × · · · × Ai) =
i−1∏
j=1

χAj(xj)P [vi|pa(vi)](x1, . . . , xi−1, Ai).

for all xj ∈ Pvj, Aj ∈ ΣPvj , and composing them gives

P [V ](A1 × · · · × An) = P [V ]n ◦ · · · ◦ P [V ]2 ◦ P [V ]1(A1 × A2 × · · · × An)

=

∫
A1

P [V ]n ◦ · · · ◦ P [V ]2(−, A2 × · · · × An)dP [v1|pa(v1)]

=
...

=

∫
A1

∫
A2

. . .

∫
An

dP [vn|pa(vn)] . . . dP [v2|pa(v2)]dP [v1|pa(v1)]

for all Aj ∈ ΣPvj . This is a factorisation of P [V ] of the required type.
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We call the pair (G,P [V ]) the Bayesian network induced by P . Thus we see that,

given a causal structure and any stochastic causal model of its theory, the induced

joint distribution on the atomic variables of the theory forms a Bayesian network with

the causal structure. On the other hand, if we have a Bayesian network on this causal

structure, we may construct a stochastic causal model inducing this distribution, but

only by picking some factorisation of our joint distribution. To iterate, this is the

key distinction between Bayesian networks and stochastic causal models: a Bayesian

network on a causal structure requires only that there exist a factorisation for the

distribution respecting the causal structure, while a stochastic causal model explicitly

chooses a factorisation.

An advantage of working within a causal theory, rather than just with the induced

Bayesian network, is that the additional structure allows neat representations of op-

erations that one might want to do to a Bayesian network. The remainder of this

dissertation comprises a brief exploration of this. We conclude this section by noting

that the priors of the causal theory represent the marginals of the induced Bayesian

network.

Theorem 4.6. Given a model of P : C → Stoch of a causal theory CG and a set

w of atomic variables of CG, the prior P [w] is equal to the marginal on the product

measurable space of the variables in w of the induced Bayesian network.

Proof. We first note a more general fact: given a joint probability measure on X ×
Y expressed as a point in Stoch, marginalisation over Y can be expressed as the

composite of this point with the product of the identity on X and counit on Y .

Indeed, if µ : ∗ → X × Y is a probability measure, then

( ◦ µ)(A) =

∫
X×Y

(x, y, A) dµ =

∫
X×Y

χA(x) dµ = µX(A).

Thus the marginals of P [V ] may be expressed by composing P [V ] with counits on

the factors marginalised over. We wish to show that these are the priors P [w] of C.
Reasoning inductively, to show this it is enough to show that the composite of a prior

with the product of a counit on one of its factors and identity maps on the remaining

factors is again a prior.

Let w be a set of atomic variables of C and let v ∈ w. We will show that the

composite of P [w] with the product of the counit on v and identity on w \ {v} is

equal to the prior P [w \ {v}]. We split into two cases: when v has a consequence in

G∅→w, and when v has no consequences in G∅→w. For the first case, observe that

G∅→w = G∅→w\{v} and kv ≥ 1. Thus the priors [w] and [w \ {v}] are the same but
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for the fact we compose with one extra comultiplication after the causal mechanism

[v|pa(v)] in the case of the prior [w]. Thus the composite of [w] with a counit on v is

equal to [w \ {v}] by the counitality law on v.

To deal with the second case we must work in Stoch and make use of the fact

that the monoidal unit in Stoch is terminal. Indeed, as the monoidal unit in Stoch

is terminal, in Stoch we have the equality of morphisms

pa(v)

. . .
v|pa(v)

=

pa(v)

. . .

As v has no consequences in G∅→w, the causal mechanism [v|pa(v)] is not followed

with any comultiplications in the construction of [w]. Thus, after composing P [w]

with a counit on v we may invoke the above identity, and then invoke the counitality

law for each of the parents of v. This means that P [w] is equal to the morphism

constructed without the causal mechanism [v|pa(v)], and with one fewer comultipli-

cations on each of the parents of v. But this is precisely the morphism P [w \ {v}].
This proves the theorem.

4.3 Application: visualising Simpson’s paradox

One of the strengths of causal theories is that their graphical calculi provide a guide

to which computations should be made if one wants to respect a causal structure, and

in doing so also clarify what these computations mean. An illustration can be found

in an exploration of confounding variables and Simpson’s paradox. This section owes

much to Pearl [19, Chapter 6], extending the basics of that discussion with our new

graphical notation.

Simpson’s paradox refers to the perhaps counterintuitive fact that it is possible for

to have data such that, for all outcomes of a confounding variable, a fixed outcome

of the independent variable makes another fixed outcome of the dependent variable

more likely, and yet also that upon aggregation over the confounding variable the

same fixed outcome of the independent variable makes the same fixed outcome of the

dependent variable less likely. This is perhaps best understood through an example.

Consider the following, somewhat simplified, scenario: let us imagine that we

wish to test the efficacy of a proposed new treatment for a certain heart condition.

In our clinical experiment, we take two groups of patients each suffering from the

heart condition and, after treating the patients in the proposed way, record whether
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they recover. In addition, as we know that having a healthy blood pressure is also an

important factor in recovery, we also take records of whether the blood pressure of

the patient is within healthy bounds or otherwise at the conclusion of the treatment

programme. This gives three binary variables: an independent variable T = {t,¬t},
a dependent variable R = {r,¬r}, and a third, possibly confounding variable B =

{b,¬b}, where will think of the variables as representing the truth or otherwise of the

following propositions:

T: the patient receives treatment for heart condition.

R: the patient has recovered at the conclusion of treatment.

B: the patient has healthy blood pressure at post-treatment checkup.

Suppose then that our experiment yields the data of Figure 4.1.

T
t ¬t

R
r 39 42
¬r 61 58

TB
t, b ¬t, b t,¬b ¬t,¬b

R
r 30 40 9 2
¬r 10 40 51 18

Figure 4.1: The table on the left displays the experiment data for the treatment and
recovery of patients, while the table on the right displays the experiment when further
subdivided according to the blood pressure of the patients measured post-treatment.

In these data we see the so-called paradox: for both patients with healthy and

unhealthy blood pressure, treatment seems to significantly improve the chance of

recovery, with the recovery rates increasing from 50% to 80% and from 10% to 15%

respectively when patients are treated. On the other hand, when the studies are taken

a whole, it seems treatment has no significant effect on the recovery rate, which drops

slightly from 42% to 39%. Given this result, it is not clear whether the experiment

indicates that treatment improves or even impairs chance of recovery. Should we or

should we not then recommend the treatment?

The answer depends on the causal relationships between our variables. Suppose

that the treatment acts in part via affecting blood pressure. Then the causal structure

of the variables is given by the graph
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T

R

B

In this case we should make our decision with respect to the aggregated data: else

when we condition on the post-treatment blood pressures we eliminate information

about how the treatment is affecting blood pressure, and so eliminate information

about an important causal pathway between treatment and recovery. We therefore

should not recommend treatment—although when we control for blood pressure the

treatment seems to improve chances of recovery, the treatment also makes it less likely

that a healthy blood pressure will be reached, offsetting any gain.

On the other hand, suppose that the treatment works in a way that has no effect

on blood pressure. Then from the fact that the blood pressure and treatment variables

are not independent we may deduce that the blood pressure variable biased selection

for the treatment trial, and so the causal structure representing these variables is

T

R

B

Here we should pay attention to the data when divided according to blood pressure,

as by doing this we control for the consequences of this variable. We then see that no

matter whether a patient has factors leading to healthy or unheathly blood pressure,

the treatment raises their chance of recovery by a significant proportion.

These ideas are codified in the corresponding causal theories and their maps, with

the causal effect of treatment on recovery expressed via the causal conditional [R||T ].

For the first structure, let the corresponding causal theory be C1, and the data give

the following interpretations of the causal mechanisms P : C1 → FinStoch:

T =

(
0.5
0.5

)
B|T =

(
0.4 0.8
0.6 0.2

)
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R|TB =

(
0.75 0.15 0.5 0.1
0.25 0.85 0.5 0.9

)
Here we have written the maps as their representations in SMat with respect to the

basis ordering given in our definition of the variables. The causal conditional P [R||T ]

is then

P [R||T ] = B|T

R|TB

T

R

=

(
0.39 0.42
0.61 0.58

)

The elements of the first row of this matrix represent the probability of recovery

given treatment and no treatment respectively, and so this agrees with our assertion

that in this case we should view the treatment as ineffective, and perhaps marginally

harmful.

On the other hand, writing the corresponding causal theory to the second causal

structure as C2, in this case the data gives the stochastic model Q : C2 → FinStoch

defined by the maps

T =

(
0.5
0.5

)
B =

(
0.6
0.4

)

R|TB =

(
0.75 0.15 0.5 0.1
0.25 0.85 0.5 0.9

)
We then may compute the causal conditional [R||T ] to be

Q[R||T ] =
B

R|TB

T

R

=

(
0.51 0.34
0.49 0.66

)

This again agrees with the above assertion that with this causal structure the treat-

ment is effective, as here the probability of recovery with treatment is 0.51, compared

with a probability of recovery without treatment of 0.34. In this case the map Q[R||T ]

57



is the only inferential map from T to R; it thus may be seen as the only way to deduce

information about R from information about T consistent with their causal relation-

ship. Thus within the framework given by the causal theory, there is no possible way

to come to the wrong conclusion about the efficacy of the treatment.

In the first case, however, there is one other map; we may infer information about

recovery given treatment via

B|T

R|TB

T

R

T

=

(
0.51 0.34
0.49 0.66

)

As suggested by the form of the string diagram, this may be interpreted as the chance

of recovery if the effect of the treatment on blood pressure is nullified, but nonetheless

assuming that the proportion of patients presenting healthy blood pressures at the

conclusion of the treatment was typical. In particular, this indicates that if it was

inevitable that a group of patients would end up with healthy blood pressure levels

in the proportion specified by [B|T ] ◦ [T ], then the treatment would be effective for

this group.

Note that the string diagrams themselves encode the flow of causal influence in

their depictions of the conditionals. In doing so they make the source of confusion

patently clear: we may judge the effect of treatment on recovery in two different ways,

one in which use information about how treatment affected blood pressure, and one

in which we forget this link and assume the variables are unrelated.

Finally, observe that causal structures are thus very relevant when interpreting

data, and awareness of them can allow one to extract information that could not

otherwise be extracted. Indeed, although under the second causal structure the fact

that the blood pressure variable biased our selection procedure for treatment—making

it more likely that we treated those with unhealthy blood pressure—can be seen as

ill-considered experiment design, we see that nonetheless an understanding of the

causal structure allowed us to recover the correct conclusion from the data. This

becomes critically useful in cases when we do not have the abilities to correct such

biases methodologically, such as when data is taken from observational studies rather

than controlled experiments.
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Chapter 5

The Structure of Stochastic Causal
Models

Our aim through this dissertation has been to develop tools to discuss causality, and

in particular causal relationships between random variables. Our claim is now these

are well described by stochastic causal models : models P : C → CGStoch of a

causal theory C in CGStoch. Indeed, we have seen these are slight generalisations of

Bayesian networks in which the factorisation of the joint distribution is made explicit.

One advantage of moving to this setting is that we now have a natural notion of map

between causal models: a monoidal natural transformation between their functors.

We begin this chapter by exploring these, before using the knowledge we gain to look

at the existence or otherwise of some basic universal constructions in the category of

stochastic causal models.

5.1 Morphisms of stochastic causal models

Fix a causal theory C. Although we have so far had no problems discussing models

of causal theories in Stoch, we shall define the stochastic causal models of C to be

the objects of the category CGStochCSSM of strong symmetric monoidal functors

C → CGStoch. This more restrictive definition allows for a more well-behaved

notion of maps between stochastic causal models. Indeed, we take the notion of

morphism in CGStochCSSM—a monoidal natural transformation between functors—

to be the notion of map between stochastic causal models. As we will see in this

section, these are much like deterministic stochastic maps. Our aim will be to define

the terms in, and then prove, the following theorem:

Theorem 5.1. Morphisms of stochastic causal models factor into a coarse graining

followed by an embedding.
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To this end, let P,Q : C → CGStoch be stochastic causal models, and let

α : P ⇒ Q be a monoidal natural transformation. By definition, this means we have

a collection of stochastic maps αw : Pw → Qw such that for all variables w,w′ ∈ C
and all morphisms r : Pw → Pw′ the following diagrams commute:

Pw Pr //

αw

��

Qw

Qr

��

Pw′ αw′
// Qw′

P∅ α∅
// Q∅

∗
P∗

aa

Q∗

==

Pw ⊗ Pw′
αw⊗αw′ //

P⊗,w,w′

��

Qw ⊗Qw′

Q⊗,w,w′

��

Pww′ αww′
// Qww′

We can, however, write this definition a bit more efficiently.

As P∅ and Q∅ are isomorphic to the monoidal unit, and as the monoidal unit ∗
of CGStoch is terminal, the above triangle gives no constraints on the morphisms.

The lower square specifies the relationships between the maps αw and αw′ and the

map αww′ on the product variable. Due to this, it suffices to define the natural

transformation α only on the atomic variables v of C, and let the commutativity of

the square specify the maps αw on the remaining variables. It thus remains to ensure

that our maps αv on the atomic variables v satisfy the defining square of a natural

transformation.

We first consider the constraints given by the comonoid maps. The counit maps

provide no constraint: since Q∅ is terminal, the diagram

Pv
αv //

��

Qv

��

P∅ ∼
α∅

// Q∅

always commutes. On the other hand, the comultiplication maps heavily constrain

the αv: they require that

Pv
αv //

��

Qv

��

Pv ⊗ Pv
αv⊗αv

// Qv ⊗Qv
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or in string diagrams:

αvαv
= αv

The following lemma shows that this is true if and only if each αv must be determin-

istic.

Lemma 5.2. A stochastic map is a comonoid homomorphism if and only if it is

deterministic.

Proof. Let k : X → Y be a stochastic map. As the monoidal unit is terminal in

CGStoch, all stochastic maps preserve the counit. We thus want to show that

kk
=

k

if and only if k is deterministic.

Now, given x ∈ X and B ∈ ΣY , the left hand side of the above equality takes

value

(k ⊗ k) ◦ (x,B ×B) =

∫
k ⊗ k(−,−, B ×B) d

x

=

∫
k(−, B)k(−, B)d

x

= k(x,B)2,

while the right hand side equals

◦ k(x,B ×B) =

∫
(−, B ×B) dkx

=

∫
χB dkx

= k(x,B).

Thus if k is a comonoid homomorphism, then k(x,B)2 = k(x,B), and hence k(x,B) =

0 or 1. This shows that k is deterministic. Conversely, if k is deterministic, then

k(x,B)2 = k(x,B) for all x ∈ X, B ∈ ΣY , so k is a comonoid homomorphism.

Summing up, a morphism α : P ⇒ Q of stochastic causal models is specified by a

collection {αv}v∈VC of deterministic stochastic maps αv : Pv → Qv such that for all
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atomic variables v ∈ VC the squares

P (pa(v))
αpa(v)

//

P [v|pa(v)]

��

Q(pa(v))

Q[v|pa(v)]

��

Pv αv
// Qv

commute.

We say that a morphism α of stochastic models of C is an embedding if for all

objects v of C the deterministic stochastic map αv is an embedding. Similarly, we say

that a morphism α of stochastic models of C is a coarse graining if for all objects v of

C the deterministic stochastic map αv is a coarse graining. Theorem 5.1 now follows

from Proposition 2.20, with the causal model it factors through having the induced

structure.

We caution that despite the similar terminology to deterministic stochastic maps,

the situation here differs as stochastic causal models consist of much more data than

measurable spaces, and so the compatibility requirements a morphism must obey

here are much stricter. For example, while in CGStoch it is always possible to find a

deterministic map between any two objects, this is rarely possible in CGStochCSSM .

Let P,Q : C → CGStoch be stochastic causal models, and let α : P ⇒ Q be a

morphism between them. Then for any prior [w] of C, the diagram

Pw
αw // Qw

∗

P [w]

YY

Q[w]

EE

commutes. This says that the pushforward measure of any prior P [w] along the

deterministic stochastic map αw must agree with Q[w]. No such map exists, for

example, when Pw, Qw are binary discrete measurable spaces and P [w], Q[w] have

matrix representations

P [w] =

(
p

1− p

)
, Q[w] =

(
q

1− q

)
with p, q ∈ [0, 1] and q 6= 0, p, 1− p, or 1.

As diagrams involving all morphisms of C, and not just the priors, are required

to commute, still more constraints apply. Although there are exceptions for finely-

tuned parameters, it is generically true that if one wishes to find a coarse graining
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γ : P ⇒ Q between two causal models, then two outcomes of a measurable space

Pw can be identified by the map γw only when they define the same measure on the

codomain for all maps Pϕ : Pw → Pw′, where ϕ : w → w′ is any morphism of C with

domain w. The intuition here is that coarse grainings allow us to group outcomes

and treat them as a single outcome. But for this to be possible, the outcomes must

behave similarly enough to treat as one. Since outcomes now have consequences, we

have much higher ability to see differences between them, and hence coarse grainings

are far more restrictive for causal models than for measurable spaces.

As embeddings do not identify distinguishable outcomes of the domain, we need

not worry about such complications in understanding restrictions on their construc-

tion. Nonetheless, if ε : P ⇒ Q is an embedding of stochastic causal models, then

since the push-forward measure of any prior P [w] along the deterministic stochastic

map εw must agree with Q[w], any measurable set of Qw not intersecting the image of

CGStoch-embedding must have Q[w]-measure zero. Furthermore, for the naturality

squares of the morphisms ϕ : w → w′ of C to commute, each map Qϕ must behave as

Pϕ on the image of εw. This means that an embedding ε : P ⇒ Q forces the priors

of P and Q to be the ‘same’ up to sets of measure zero.

5.2 Basic constructions in categories of stochastic

causal models

In this final section we continue our characterisation of categories of stochastic causal

models by exploring a few universal constructions. In particular, we show that these

categories have a terminal object, but no initial object, and in general no products

or coproducts either. Again fix a causal theory C.

Proposition 5.3. The functor T : C → CGStoch sending all objects of C to the

monoidal unit ∗ of CGStoch and all morphisms of C to the identity map on ∗ is a

terminal object in the category CGStochCSSM of stochastic causal models of C.

Proof. Note first that, since the monoidal product of ∗ with itself is again ∗, the

constant functor T : C → CGStoch is a well-defined stochastic causal model.

Let P : C → CGStoch be a stochastic causal model of C. We construct a

monoidal natural transformation α : P ⇒ T . Then for each w ∈ C, define αw : Pw →
Tw = ∗ to be the unique stochastic map Pw → ∗. This exists as ∗ is terminal in

CGStoch. Furthermore, from the fact that ∗ is terminal in CGStoch it is immediate

that for each morphism of C the required naturality square commutes. As these maps
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to the terminal object are each deterministic, we thus have a well-defined morphism

of stochastic causal models.

By construction it is clear that this is the unique morphism of causal models

P → T . This proves the proposition.

The functor T is an example of what we will call a trivial model. Given a

measure space (X,Σ, µ), we define the trivial model on (X,Σ, µ) to be the func-

tor Tµ : C → CGStoch sending each atomic variable v of C to X, and each causal

mechanism [v|pa(v)] to the map Tµ(pa(v)) −→ ∗ µ−→ Tv = X assigning to each

element of Tµ(pa(v)) the measure µ. This represents the situation in which all the

atomic variables are the same random variable with the same prior, and have no

causal influence on each other. We shall use these to show the non-existence of an

initial object, products, and coproducts.

Proposition 5.4. The category CGStochCSSM of stochastic causal models of C has

no initial object.

Proof. We prove by contradiction. Suppose that I : C → CGStoch is an initial

object of CGStochCSSM .

Let (B,P(B), ν) be the discrete measure space with two outcomes {b1, b2} such

that the probability of each outcome is one half, and let Tν be the trivial model of this

space. Note that as ν has full support, the only measure space (X,Σ, µ) for which

there exists a monic deterministic stochastic map k : X → B such that

X
k // B

∗

µ

XX

ν

FF

commutes is (B,P(B), ν) itself. In this case k must also be an epimorphism in

CGStoch; k is either the identity map, or the map s : B → B induced by the

function sending b1 to b2 and b2 to b1. Thus any map of stochastic causal models

α : P → Tν with codomain Tν must be defined objectwise by coarse grainings of

CGStoch, and hence itself be an epimorphism in CGStochCSSM .
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In particular, the unique morphism of stochastic causal models θTν : I ⇒ Tν must

be an epimorphism. Since, by uniqueness, the diagram

Tν
α +3 Tν

I

θTν

T\

θTν

BJ

must commute for any morphism of stochastic models α : Tν ⇒ Tν , this implies

that the only such morphism is the identity map. But it is readily observed that

defining αv = s : B → B for each atomic variable v of C gives a monoidal natural

transformation α : Tν ⇒ Tν not equal to the identity. We thus have a contradiction,

and so CGStochCSSM has no initial object, as claimed.

Example 5.5 (Two objects which have no product). We again work with Tν , where

(B,P(B), ν) be the discrete measure space with two outcomes {b1, b2} such that the

probability of each outcome is one half. We will see that the product of Tν with itself

does not exist. Suppose to the contrary that a product X does exist, with projections

π1, π2 : X ⇒ Tν . We assume without loss of generality that each Xv is empirical;

recall that this means that each point of the set Xv is measurable.

Given the identity monoidal natural transformation id : Tν ⇒ Tν , there exists a

unique monoidal natural transformation θ : Tν ⇒ X such that

Tν

Tν

id

4<

id
"*

θ +3 X

π1

KS

π2
��
Tν

commutes. This shows that for each atomic variable v ∈ C, Xv has an outcome x1

of measure 1
2

such that θv is induced by a function mapping b1 to x1, and π1v and

π2v are induced by functions mapping x1 to b1. Similarly, we also have x2 ∈ Xv of

measure 1
2

such that θv is induced by a function mapping b2 to x2, and π1v and π2v

are induced by functions mapping x2 to b2. Note that each Xv then has no other

outcomes of positive measure.

Let now α : Tν ⇒ Tν be the monoidal natural transformation of the previous proof

defined by αv = s : B → B, where s is induced by the function sending b1 to b2 and
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b2 to b1. Then there exists a unique monoidal natural transformation θ′ : Tν ⇒ X

such that

Tν

Tν

α

4<

id
"*

θ′ +3 X

π1

KS

π2
��
Tν

commutes. Now as ν(b1) = ν(b2) = 1
2
, for each atomic v ∈ C the stochastic map

θ′v : B → Xv must then be induced either by the function mapping b1 to x1 and b2 to

x2, or by the function mapping b1 to x2 and b2 to x1. Both cases give a contradiction.

In the first case, the composite (π1 ◦ θ′)v is then equal to the identity map on B,

contradicting the definition of α. In the second case, the composite (π2 ◦ θ′)v is equal

to s, and hence not equal to idB as required.

Thus no product stochastic causal model Tν × Tν exists.

Example 5.6 (Two objects which have no coproduct). Let T be the terminal ob-

ject of CGStochCSSM , and let Tλ be the trivial model on the Lebesgue measure

([0, 1],B[0,1], λ) of the unit interval. We show that these two stochastic causal models

have no coproduct in CGStochCSSM . To this end, suppose that a coproduct X does

exist, with injections i1 : Tλ ⇒ X and i2 : T∗ ⇒ X. We again assume without loss of

generality that each Xv is empirical.

To show the difficulties in constructing a coproduct, we use the test object Tµ

defined as the trivial model on the measure space (B,P(B), µ) with B = {b1, b2},
µ(b1) = 1 and µ(b2) = 0. Note that there is a unique map β : T ⇒ Tµ; this is

induced on each atomic v ∈ C by the function sending the unique point ∗ of Tv to

b1 ∈ B = Tµv. This is the only such map as, since ∗ is a point of measure 1, its

image must be a point measure on a point of measure 1. Note also this implies that

for each v ∈ C the set Xv consists of a point x1 such that a measurable subset of Xv

has X[v]-measure 1 if x1 ∈ Xv, and measure 0 otherwise.

Consider now maps α : Tλ ⇒ Tµ. These are defined by, for each atomic v ∈ C,
a choice of a Lebesgue measure 0 subset of [0, 1]. We then may let αv : [0, 1] → B

be induced by the function mapping each element of this measure zero subset to b2,

and then remaining elements to b1. In particular, for each p ∈ [0, 1], let αp : Tλ ⇒ Tµ

be the monoidal natural transformation such that for all atomic v ∈ C the map

(αp)v : [0, 1] → B is induced by the function mapping p → b2 and each element of
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[0, 1] \ {p} to b1. By the universal property of the coproduct, for each such map there

exists a unique map θ : X ⇒ Tµ such that

Tλ

i1
��

αp

"*
X θ +3 Tµ

T

i2

KS

β

4<

commutes. This implies that for each atomic v the function inducing the deterministic

stochastic map i1v : [0, 1]→ Xv does not map p to x1. But this implies that the push-

forward measure of λ along i1v is the zero measure, contradicting the commutativity

of the diagram

[0, 1]
i1v // Xv

∗

λ

YY

X[v]

EE

This shows that T and Tλ do not have a coproduct in CGStochCSSM .
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Further Directions

In arriving at this point we have seen that causal theories provide a framework for

reasoning about causal relationships, with the morphisms of these categories repre-

senting methods of inference, the topology of the string diagrams for these morphisms

providing an intuitive visualisation of information flow, and the stochastic models of

causal theories slight generalisations of Bayesian networks.

There are many directions in which this study could be continued. One obvious

avenue for further exploration is to continue the work of the previous chapter in

the characterisation of categories of stochastic causal models. This should, at the

very least, provide additional insight into relationships between Bayesian networks.

Although we have seen that products and coproducts do not exist in the category

of stochastic causal models, and it is likely similar arguments show other types of

limits and colimits do not exist, one suggestion is to examine ideas of families and

moduli of stochastic causal models. For this, call Bayesian networks equivalent if

there are measure-preserving measurable functions between their joint probability

distributions that compose to the identity almost everywhere, and call two stochastic

causal models equivalent if their induced Bayesian networks are equivalent. It may

then be possible to put some geometric structure on the set of stochastic causal

models, and subsequently define a moduli problem. This will perhaps generalise

work on the algebraic geometry of Bayesian networks, such as that in [8]. One could

also explore the relationships between the categories of stochastic causal models of

distinct causal theories. Here one might define a functor between such categories if

there exists a map of directed graphs between their underlying causal structures.

A weakness of causal theories is that their morphisms only describe predictive

inference; reasoning that infers information about causes from their consequences.

In general we are interested in other modes of inference too, and extension of the

framework to allow discussion of these would make it much more powerful. In the

probabilistic case, it can be shown that all conditionals of a joint distribution can be

written as morphisms if one can also write Bayesian inverses of the causal conditionals.

68



Given variables w,w′, these may be characterised as maps k : w′ → w such that

w′||w

w

w′w

=

k

w

w′||w

w′w

Methods for constructing such maps often run into issues of uniqueness on outcomes

of measure zero in the prior. While in Coecke and Spekkens [4] give a method for

realising the Bayesian inverse of a finite stochastic map as transposition with respect

to a compactness structure in Mat when the prior is of full support, and Abramsky,

Blute, and Panangaden [1] give a category, similar to Stoch, in which Bayesian

inversion may be viewed as a dagger-functor, work remains to be done to merge these

ideas with those presented here.

Another topic deserving investigation is suggested by the fact that, although a

joint probability distribution is compatible with a causal structure if it satisfies the

required set of conditional independence relations, not every possible combination of

conditional independence relations of a set of random variables can be represented by

a causal structure. Indeed, the number of combinations of conditional independence

relations grows exponentially in number of atomic variables, while the number of

causal structures grows only quadratically. It is possible that the richer structure of

categories may allow us to define causal theories more general than those arising from

causal structures, such that models in some category are those that satisfy precisely

a given set of conditional independencies, and no more.

Finally, Sections 4.2 and 4.3 suggest their own further lines of investigation. While

we have focussed on models in Stoch and its subcategories, it would also be worth-

while to understand more thoroughly models in Rel, and models in the category

Hilb of Hilbert spaces and linear maps may be interesting from the perspective of

quantum theory. It would also be interesting to find further examples of applications

of the graphical languages for causal theories. One option is to look at representa-

tions of algorithms used on Bayesian networks, such as Gibbs sampling in Bayesian

networks [10].
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