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Abstract

We present a new way in which to model biological processes using

graphical inputs and outputs. This method is grounded in higher cate-

gory theory and can be viewed as an extension of the popular Petri net

approach for biological modelling. We implement a stochastic process

algorithm in globular, a rewriting program for higher categories. We

use this to model a basic viral invasion process, following the membrane

operations of the brane calculi of Luca Cardelli. Comparisons with the

standard non-spatial modelling framework motivate a new chemical ki-

netics model for biochemical processes. Two potential kinetics models

are proposed and discussed in detail.
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Chapter 1

Introduction

The discipline of biology tends to rely heavily on different types of diagrams, accom-

panied by detailed qualitative descriptions, to describe processes. The motivation

for the work put forth in this dissertation is as follows: Connecting mathematics to

biological diagrams in an intuitive way is one of the most promising ways to establish

a firm mathematical foundation for the field of biology. Such a foundation would

secure a rigorous backbone for a subject which generally entertains mathematics on

a case by case basis.

In creating this new foundation, it is important to conserve as much as possible

from what is already accepted and useful in biology. To this end, our research

is an extension of Petri nets, a tool for describing processes which already has

widespread use in systems biology and which is compatible with quantitative data.

By acknowledging that Petri nets are presentations of strict symmetric monoidal

categories, we are able to harness the power of the categorical graphical calculus

developed by the Quantum Group at Oxford. As this calculus has already been used

to gain insight into quantum, thermodynamic, and classical processes [7, 14, 36],

and as biological processes will necessarily fall into at least one of these areas [32],

it is reasonable to expect this approach to be fruitful.

As the graphical calculus has been extended to higher categories, we can take

advantage of the fact that process inputs and outputs can be two-dimensional

structures, with the ultimate goal of having three-dimensional inputs and outputs.

This allows spatial data to be included in our modelling approach. Additionally,

through the use of the graphical reasoning engine globular [13], we can apply

various dynamics to these processes. While deterministic or stochastic dynamics

could be applied, in this work, we focus on the latter. Because our representation of

processes is spatially rich, this motivates a new model for stochastic chemical kinetics,
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one which can take advantage of a higher spatial resolution than standard methods.

Two possible models are proposed and their physical implications explored.

1.1 Current Biological Modelling Methods

Before laying the groundwork for our modelling approach, we give a brief overview

of current biological modelling methods. We introduce some of the most closely

related modelling approaches as well as provide a more general scope of types of

biological modelling. We delay discussion of Petri nets and graphical calculi until

the next sections.

1.1.1 Differential Equations Modelling

Ordinary and partial differential equation modelling techniques are good for de-

scribing average behaviour, where the average may be over different time scales or

different space scales. In the case of ordinary differential equations, the systems

modelled are assumed to be well-mixed. Differential equations models also assume

that species are continuous, rather than discrete, quantities [27, page 55].

1.1.2 Molecular Dynamics (MD) Modelling

Molecular dynamics modelling is concerned with the spatial trajectories of the molec-

ular or atomic components of biological systems. It requires the calculation of the

forces between atoms/molecules caused by chemical bonds, electrostatics and van

der Waals interactions. Such detailed modelling is understandably computationally

demanding, and much effort is spent on writing efficient algorithms and developing

specialised hardware [39]. The aim is to see whether certain spatial arrangements of

atoms/molecules occur more often on average than others; to predict such arrange-

ments; and to see how these arrangements are affected under various conditions,

such as the presence of different molecules [31]. Molecular dynamics modelling

can be deterministic or stochastic, and while it was originally carried out with only

classical laws, quantum approaches are now being undertaken [31].

1.1.3 Deterministic Modelling

Deterministic modelling is still appropriate for certain biological systems: there is

enough variety in gene regulatory networks that some have stochastic behaviour

while others have deterministic behaviour [5].
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1.1.4 Stochastic Modelling

Stochastic systems behave differently than deterministic systems do in that given an

initial state, one cannot predict the ending state of a stochastic simulation. Wilkinson

notes: “The deterministic approach to kinetics fails to capture the discrete and

stochastic nature of chemical kinetics at low concentrations. As many intra-cellular

processes involve reactions at extremely low concentrations, such discrete stochastic

effects are often relevant for systems biology models” [40, page 178]. Examples of

biological processes exhibiting stochastic behaviour include gene regulation, human

brain dynamics [29, page 2], cell polarization [29], cell differentiation [33], and

circadian rhythms [38].

Stochastic modelling is often used to bridge the gap between the averaged

differential equations picture and the highly detailed molecular dynamics models.

This use of stochastic modelling is regarded as mesoscale modelling.

1.1.4.1 Gillespie’s Algorithm

We briefly introduce the Gillespie algorithm approach; more discussion on this

method can be found in section 3.1. In 1992, Gillespie provided a rigorous derivation

for the chemical master equation [19]. His derivation is based on the assumption

that the reactant molecules of any chemical reaction in a well-mixed environment at

thermal equilibrium behave in the same way that particles of an ideal gas behave.

These particles are assumed to be spherical in shape. It is assumed that when the

distance between the centres of these two particles is less than or equal to the

sum of their radii, the molecules will “collide;” whether the collision results in a

reaction is determined by the rate for that reaction. Gillespie developed a stochastic

modelling procedure based on this chemical master equation (CME) model, which

has been subsequently extended in various ways [20]. Because it is based on

standard chemical kinetics assumptions and is relatively computationally efficient

when compared to other algorithms, “Gillespie’s method is the method of choice

in many situations” [26, page 108]. There are many different modifications of

Gillespie’s “Discrete Stochastic Simulation Algorithm,” including an inhomogeneous

(spatial) version; see [23, 37] for examples of applications of this method. This

version involves breaking the system into smaller three-dimensional components

called voxels, where, while collectively the voxels do not represent a well-mixed

situation, each individual voxel is assumed to be well-mixed. The drawback with

this algorithm is that there is a limit to how small the voxels can be: two reactants
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for a chemical process need to be present in the same voxel for the reaction to occur.

This means the voxel has to be big enough to include both molecules. Our proposed

model does not enforce such limitations of spatial resolution.

1.1.5 Membrane-Based Modelling

1.1.5.1 Brane Calculi

Luca Cardelli’s brane calculi [16] describes basic membrane operations, such as

mating and fusion, using a process calculi. These operations can be used, for example,

to describe the life cycle of a virus. We adapt these membrane operations into our

modelling framework in 2.2.

1.1.5.2 Membrane Computing

Membrane computing, whose models are referred to as “P Systems”, is an abstraction

of the compartmentalization via membranes of biological systems. It thus falls under

the discipline of Natural Computing. The guiding principle is that only certain types

of computations or “rules” can be carried out in certain compartments. This approach

is used to model not only biological systems but any other system capable of being

expressed in this format [3].

While work has also been done with Petri nets in membrane computing, the

inputs for the processes are still limited to being one-dimensional [6, Chapter 15].

Stochastic P systems have also been developed [6, Chapter 18].

Also of note is the chemtainer calculus, which is similar to many membrane

computing approaches in its compartmentalisation approach, and is an extension of

the brane calculi [17].

1.2 Foundations for Our Modelling Approach

The target application of the work done thus far is biological systems at the molecular

level. Such systems are inhomogeneous: cells are not well-mixed bags of chemicals,

but rather spatially arranged sets of components. Including this spatial characteristic

allows for more realistic behaviour, particularly in situations where certain chemicals

are present in small quantities. Additionally, biological systems are almost never in

chemical equilibrium, so we will exclude this case as well. The proposed modelling

scheme is stochastic, continuous in time, and discrete in species numbers.
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It is important to keep in mind that Petri nets and category theory diagrams are

mathematical structures and are therefore not restricted to biological applications.

Our work relates features of biological systems to features of mathematical structures.

1.2.1 A Spatial and Local Approach

Particularly due to advances in microfluidics methods such as organs-on-a-chip

technology, and more recently, high-speed multiple-mode mass-sensing [35], spatial

data is now available. Part E of Figure 1.1 shows an example of a lung-on-a-chip, a

microfluidics device which models basic lung processes and which can be imaged in

vivo [15, 4].

Figure 1.1: Lung-on-a-Chip Design and Device, produced by the Wyss Institute [25]

To emphasize what we mean by local, consider the following example: suppose

one wanted to model the initial step of viral invasion of a cell, that is, a virus outside

of a cell acts as input, and the output of the process is the virus being within the cell.

If you include the whole cell in your input, as in Figure 1.2, then the operation of

virus invasion is no longer local. This is because in a sense the process has to “see”

the entire cell for the reaction to occur. A local, and thus more accurate, version of

viral invasion would take the virus and only a part of the cell membrane as input

(Figure 1.3).
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Figure 1.2: A Non-Local Version of Virus Invasion: note that the entire cell must be
present for the virus to enter

Figure 1.3: A Local Version of Virus Invasion

6



1.2.2 Petri Nets

Petri nets are a useful way to visualise a system’s dynamics, provided that all aspects

of the system behaviour can be specified as processes with particular inputs and

outputs. The formal definition of a Petri net is:

Definition 1.2.1. A Petri net consists of a set S of species and a set T of transitions
(or processes), together with a function

i : S × T → N

describing how many copies of each species are in the input for each transition, and a
function

o : S × T → N

describing how many copies of each species are in the transition’s output.

(Definitions adapted from [11, page 11].)

As an example of a Petri net, we follow John Baez’s example [11] of modelling

the population dynamics of rabbits and wolves. Suppose we have two species, rabbits

(white) and wolves (black) and three processes with associated colors:

(i) asexual rabbit reproduction, that is, one rabbit can reproduce on its own

(Blue)

(ii) rabbit killing by a wolf on its left (Red), and

(iii) rabbit killing by a wolf on its right (Yellow)

For each process we have:

(i) i(rabbits, rabbit reproduction) = 1; o(rabbits, rabbit reproduction) = 2

i(wolves, rabbit reproduction) = 0; o(wolves, rabbit reproduction) = 0

(ii) i(rabbits, left killing) = 1; o(rabbits, left killing) = 0

i(wolves, left killing) = 1; o(wolves, left killing) = 1

(iii) i(rabbits, right killing) = 1; o(rabbits, right killing) = 0

i(wolves, right killing) = 1; o(wolves, right killing) = 1

Figure 1.4 shows an example of a Petri net with these species and processes.
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Figure 1.4: A Petri Net for Rabbit and Wolf Population Dynamics: We begin with a
row of species in the order: wolf, rabbit, wolf, rabbit, wolf. We may interpret the
green background loosely as grass. Taking time to be in the vertical direction, the
first process event to occur is rabbit reproduction. Following this, a rabbit is killed by
a wolf on its right, then another rabbit is killed by a wolf on its left, and finally, the
last rabbit is also killed by a wolf on its left, leaving the system with three wolves
and no possible processes which may be carried out.

1.2.2.1 Stochastic Petri Nets

Petri nets have been used to model stochastic biological processes at least since

the work of Goss and Peccoud in 1998 [21]. For a detailed reference on modelling

stochastic processes with Petri nets, see [40]; in this reference it is noted that a

stochastic Petri net is “simply a convenient mathematical and graphical representa-

tion of a stochastic kinetic process” [40]. Formally, we have:

Definition 1.2.2. A stochastic Petri net is a Petri net together with a function

r : T → (0,∞),

which assigns a rate constant to each transition.

Much work with stochastic Petri nets and biological systems has been done

already. The focus, however, has been on problems in chemical kinetics, on fitting

experimental data, and on processes with inputs/outputs of only one-dimension [27,

page 149]. While Petri nets do allow for a spatial separation of processes and species,

most stochastic Petri net models keep the processes and species type separate but

do not spatially separate the individual species members. In this approach, the

species members are all referred to as “tokens.” Because the tokens reflect only the
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number of species and not the spatial arrangement of the species, any model using

tokens is operating under the assumption that the species members are well-mixed.

We discuss more about the relationship between our modelling approach and the

well-mixed approach in Section 3.1.3.

Petri nets are often used to model concurrent systems, but we are not concerned

with concurrency1 in our model. Because we will be working with semi-strict

categories, only one event can occur at any given time. It would be very unlikely for

two events to occur at the same time in a continuous-time stochastic process anyway.

However, this could be modelled by varying the time values by a precision level at

least one order of magnitude finer than the dominant time scale of the model. Thus,

up to whatever approximation we choose, we can distinguish the time of two events

such that they are separate.

1.2.3 Petri Nets are Presentations of Categories

As stated in [11], “a Petri net is a presentation of a strict symmetric monoidal

category that is freely generated.” We briefly review the meaning of these terms.

Recall that a category C consists of a collection of objects, a collection of mor-

phisms between every two objects (note that the collection may be empty), a

composite for every pair of morphisms which share a common intermediate object,

and an identity morphism for every object, where associativity of morphisms and

composition with the identity hold.

In addition to the above, a monoidal category C has a tensor product functor

⊗ : C ×C → C, a unit object I, an associator natural isomorphism αA,B,C for any

three objects A,B,C; a left unitor natural isomorphism λA for each object A; and a

right unitor natural isomorphism ρA for each object A, where the data of the category

satisfy the triangle and pentagon equations for all objects.

A monoidal category is strict if all isomorphisms αA,B,C , λA and ρA are identities.

A monoidal category is symmetric when it has a braiding, which is a natural isomor-

phism, A⊗B
σA,B−−−→ B ⊗ A satisfying the hexagon equations, and additionally where

this braiding satisfies σB,A ◦ σA,B = idA⊗B for all objects A and B.

Finally, a category is free if it has a finite number of generators: a finite number

of generating objects (species) and a finite number of generating morphisms (pro-

cesses). Taking a tensor product of generating objects gives rise to a new object, and

1Here, as in [27], the definition of concurrency has been restricted to parallel executions of
processes. This notion of concurrency appears to be the standard one when discussing Petri nets in
biological modelling.
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taking a composition of morphisms gives rise to a new morphism. Fitting in with our

Petri net definition, set S will be the set of these species, and set T will be the set of

morphisms, where elements of T take in tensor products of objects as input.

In the next section we discuss how to extend the species and processes (Petri net)

connection with categories to higher dimensional categories in the context of our

higher-dimensional rewriting tool, globular.

1.3 globular

As mentioned earlier, our simulations are carried out in globular, a reasoning engine

which employs a graphical logic grounded in higher category theory. In this section

we introduce the basic notions from higher category theory needed to get a sense of

how globular and our modelling approach rely on higher categories. At some point

in the near future, globular will be accessible on the internet. We emphasize that

higher categories are being used because they allow us to have higher-dimensional

input structures. 3-categories in particular allow us to model processes as sequences

of two-dimensional pictures.

1.3.1 A Graphical Logic

By a graphical logic we mean a system of composing pictures using certain rules.

Processes take pictures as inputs and produce pictures as outputs, and one cannot

compose pictures unless the adjacent boundaries match, that is, strong typing is

enforced. Interactions between pictures only occur for adjacent pictures, thus this

logic captures the local nature of biochemical reactions.

1.3.2 Higher Categories

A higher category is a higher-dimensional abstraction of a category. In this language,

a 1-category is a strict category with objects and one kind of morphism, as discussed

above. A 2-category has in addition, a second kind of morphism, so its data consists of

objects, 1-morphisms and 2-morphisms. Analogously, a 3-category will have objects

and three types of morphisms. In general, an n-category will have objects and n

kinds of morphisms. Higher categories allow for more ways to compose morphisms,

for example, in 2-categories, there is both horizontal and vertical composition of

morphisms.

For the 2-category case, the formal details are as follows:
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Definition 1.3.1. A bicategory C (as defined in [24]) consists of a collection of

objects, Ob(C); for every two objects A,B, a category C(A,B), with objects called

1-morphisms f drawn as A
f−→ B, and morphisms µ called 2-morphisms drawn as

f
µ

=⇒ g; for any two composable 2-morphisms in C(A,B) of type f
µ

=⇒ g and g ν
=⇒ h,

an operation called vertical composition given by their composite as morphisms in

C(A,B), denoted f
ν·µ
=⇒ h; for any triple of objects A,B,C, a functor ◦ : C(A,B)×

C(B,C)→ C(A,C) called horizontal composition; for any object A, a 1-morphism

A
idA−−→ A called the identity 1-morphism; for any 1-morphism A

f−→ B, invertible

2-morphisms f ◦ idA
ρf
=⇒ f and idB ◦ f

λf
=⇒ f called the left and right unitors satisfying

a set of naturality conditions for all f
µ

=⇒ g; for any triple of 1-morphisms A
f−→ B,

B
g−→ C, and C h−→ D, an invertible 2-morphism (h ◦ g) ◦ f

αh,g,f
===⇒ h ◦ (g ◦ f) called the

associator, such that for all f
µ

=⇒ f ′, g ν
=⇒ g′ and h σ

=⇒ h′ we have (σ ◦ (ν ◦ µ)) · αh,g,f =

αh′,g′,f ′ · ((σ ◦ ν) ◦ µ). This data must satisfy the triangle and pentagon equations.

By Theorem 8.2 from [24], we have: A monoidal category is the same as a

bicategory with one object.

Additionally we have that:

Definition 1.3.2. A bicategory is strict, or a 2-category, when the 2-morphisms α, λ

and ρ are the identity at every stage.

Thus a 2-category with one object is also a monoidal category. Since the object is

unique, in this situation, it is standard to refer to the 1-morphisms as objects and

the 2-morphisms as morphisms. In this sense our “objects” or “species” are now of a

higher dimension than before.

Higher categories can be freely generated in a similar way as before, by a

finite number of generating objects and a finite number of generating 0-, 1-, . . . ,

n-morphisms.

We now have all the features of the categories of which Petri nets are a presenta-

tion except for the symmetric braiding.

Having a braiding is important for us when we want to model swapping of

positions, and ultimately, the well-mixing of our biochemical systems, so that we

can compare our methods to those of well-mixed models. The braiding allows us

to interchange points, however it is not essential that this braiding be symmetric.

Including a braiding requires us to have a 3-process and to thus be in a 3-category

or an n-category such that n ≥ 3.
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With higher categories we can describe a more realistic picture since we are not

restricted to modelling everything as point masses. With 2-categories for example,

we can model two-dimensional regions as 2-cells.

For our purposes, the basic intuition for how 2-categories work can be used for

n-categories in globular; we omit the formal technicalities.

1.3.3 Graphical Calculus for Higher Categories in globular

In globular, we have several types of “cells.” The relationship between these cells

and the objects and morphisms described above is as follows: 0-cells correspond

to objects, and all higher dimensional cells correspond to the morphisms with the

same number prefix; for example, 2-cells correspond to 2-morphisms. However,

as we mentioned earlier, when a 2-category has only one object or 0-cell, then the

1-morphisms or 1-cells will be referred to as objects.

Figure 1.5 shows examples of 0-cells later used in our rabbit/wolf and membrane

models. In the higher-dimensional cells, these 0-cells will become “background

regions.”

Figure 1.5: 0-cells from globular

Figure 1.6 shows 1-cells from these models. For each n-dimensional cell, the

appropriate (n-1)-dimensional sources and targets need to be made. Since 1-cells

are 1-morphisms, they are created by selecting an input or “source” and an output

or “target,” both of which must be 0-cells. Note that 1-morphisms are identified by

the single dot in the middle of the 1-cell picture.

Figure 1.6: 1-cells from globular
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Figure 1.7 shows 2-cells. Since these are 2-morphisms, the sources and targets

will be 1-morphisms. Note that here the dots of the 1-cells have been raised to

a higher dimension and have thus become lines. The dots now identify the 2-

morphisms.

Figure 1.7: 2-cells from globular

Figure 1.8 shows an example of one of our 3-cells; we refer to this as a 3-process

or 3-morphism. It takes an input of a 2-cell and outputs a 2-cell, that is, it maps

one two-dimensional picture to another. Due to strong typing, the source of the

source picture must match the source of the target picture, and the target of the

source picture must match the target of the target picture. If you placed these two

two-dimensional pictures with one in front of the other, the lines from the 2-cells

would connect to form two-dimensional regions between the pictures.

Figure 1.8: A 3-cell (3-process) from globular

It is possible to create cells of higher dimensions, but for our modelling needs

3-cells and below will suffice.

We implemented a stochastic process, the algorithm for which will be discussed

in Chapter 2, in globular such that for each process of a given model, a rate may

be assigned and used according to our stochastic process algorithm procedure. To

make a simulation in globular, one must create the desired processes and the
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desired initial state, which consists of the various species objects and their spatial

arrangement. After this, one must select the stochastic process option and specify

which n-processes are to be used. For each process, a numerical rate can be specified.

We note that the input of a process needs to be compatible with the processes selected

if a history is to be made. For example, for a situation in which the system state is

a horizontal composition of 1-cells, the identity must be taken before a 2-process

can be applied because the 2-process needs input species to be represented as lines

rather than dots. See Figure 1.9 for an example of how to provide the proper setup

for stochastic modelling with 2-processes. Note that application of 2-processes is the

only case in which we need to perform a special modification step on the input.

Figure 1.9: Setting Up for a Stochastic Process with 1-cell species: After the 1-cells
have been horizontally composed in a line, the identity operation must be taken so
that a 2-cell is generated. This then allows 2-processes, such as the ones identified
by the red rectangles, to be attached to the input diagram, forming a history.

1.3.4 Modelling Technicalities in globular

It should be noted that strong typing occasionally means that a bit of thought

needs to be put into making the before and after pictures of a process since the

boundaries must match up properly. While initially this may make including certain

14



processes in a model a bit difficult, with practice the matching constraint ceases

to be an issue. As a result of the category-based approach, only one “dot” can

occur at a single height. This can make pictures expand vertically much more

rapidly than horizontally when running stochastic processes. Including interchanges

in the stochastic processes can help widen the picture, but not in a deterministic

way. Currently, globular is overly-sensitive to certain setup details, and this makes

matching less than straightforward. For example, Figure 1.10 shows a situation

where one would think that the membrane straightening process from Figure 1.11

could be applied. However, because of the dot on the right-hand side in Figure 1.10,

globular sees the height difference between the two dots on the curved pieces of

membrane as being 2 units tall rather than 1 unit tall. Since the height between said

dots is 1 unit in the process definition in Figure 1.11, the membrane straightening

process cannot occur here. Work is currently being done to relax the notion of

matching in a reasonable way.

Figure 1.10: Matching Prevention due to Height: The dot on the right-hand side
makes the distance between the two curved parts of the membrane equal to 2, rather
than 1, as in the input for the membrane straightening process (Figure 1.11).

Figure 1.11: Membrane Straightening (Forward Arrow) and Buckling (Backward
Arrow)

15



Another consequence of globular’s setup is that when given an input as in Figure

1.12, while only one cell is present and therefore there should only be one way in

which the cell could divide, because of the dot on the right-hand side, globular will

see two different opportunities (as marked) for the mitosis process (Figure 1.13)

to occur. This will result in cell division having a higher rate than intended. A

resolution to this issue is also in progress.

Figure 1.12: A situation in which globular recognizes two ways (marked by the
yellow rectangles) for the mitosis process to occur

Figure 1.13: Representation of Mitosis as a 3-process in globular
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Chapter 2

Stochastic Modelling

2.1 Stochastic Process Algorithm

Our input will be a set of objects with a spatial configuration. In the one-dimensional

case, this will effectively be a row or string of objects which we represent by letters. In

the two-dimensional case, the input will be a two-dimensional picture, a composition

of 2D objects.

2.1.1 Markov Processes

We are simulating the stochasticity by using a continuous time Markov process,

which is a memoryless process, that is, only present events, not past events, will

affect future events. Stated another way, the likelihood of an event occurring now is

the same as it was at an earlier time regardless of what has happened in between

these times. This seems reasonable since physical systems are local in time and

space: since processes only take in a certain input, how that input came to be is

irrelevant to the execution. Additionally, if the past were relevant, the system would

need to store this information; if this does occur in biological systems, then we will

at least begin with the simplifying approximation that the history is not important.

Modelling time as continuous is the most realistic way to include time, and given

that we do not expect major computational power to be needed, the main advantage

of using discrete time is not applicable.

As stated in [40], if X is a random variable, then it is memoryless if:

P (X(t+ dt) = x|{X(t) = x(t)|t ∈ [0, t]})

= P (X(t+ dt) = x|X(t) = x(t)), ∀ t ∈ [0,∞), x ∈ S
More explicitly, if X is a nonnegative random variable, then it will be memoryless if:

P [X > s+ t|X > t] = P [X > s] ∀ s, t ≥ 0
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For each process rate, there is an associated probability distribution, from which we

will sample time values. This probability distribution is an exponential distribution

because that is the only possibility for a continuous probability distribution which is

memoryless [22, page 140]. More specifically, if r is the rate of the process, then

F (x) = re−rx is the probability distribution for that process. The expectation value

for this distribution is 1
r
, which is also the standard deviation. A higher rate will

result in an increased likelihood of a lower time being sampled, that is, events of a

process with a higher rate are more likely to occur sooner than events of a process

with a lower rate. Figure 2.1 illustrates this difference.

Figure 2.1: Comparison of Two Negative Exponential Distributions. Process A has
rate 10/s, while process B has rate 5/s. Note that since process A has a higher rate,
a greater amount of the distribution occurs at low time values.

2.1.2 One-dimensional Model

The simplest possible model will have a one-dimensional input. The model is not

expected to be realistic since data from the other two dimensions is missing, but it

can still provide some useful intuition. Recall the rabbit/wolf system from Chapter 1

in which we have two species, rabbits and wolves (Figure 2.2), and three processes:

rabbit reproduction, rabbit killing by a wolf on the left and rabbit killing by a wolf

on the right (Figure 2.3). Our rabbit and wolf model will be a monoidal 2-category

with one 0-cell, which we will call “grass”, with two 1-cells, the rabbits and wolves,

and three 2-cells, our processes. We will not include a braiding for this model, so no

interchange moves will be allowed by default.
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Figure 2.2: A Rabbit (white) and a Wolf (black) in Our One-Dimensional Model

Figure 2.3: 1D Model Processes: Rabbit Reproduction (blue), Rabbit Killing from
Left (red) and Rabbit Killing from Right (yellow)

This is a “one-dimensional” model because we are treating our species as point

masses, or letters: R for rabbit; W for wolf. Figure 2.4 gives an example of a possible

input for this model.

Figure 2.4: Sample Input for 1D Model: Wolf, Rabbit, Wolf, Rabbit, Wolf

After receiving the input, the next step in the algorithm will be to identify which

of our processes can occur given this initial state, and for each process, where that

process can occur. Note that only adjacent R,W pairs count as valid inputs for rabbit

killing; this is an example of how spatial considerations are taken into account by

the model. Figure 2.5 shows which processes would be identified given the input in

Figure 2.4.

Each process is assigned a rate, and this rate is then fed into the rate parameter

in the negative exponential distribution. For each process instance identified, a time

is sampled from that process’s associated probability distribution. Figure 2.6 shows

an example of how times could be assigned for our rabbit/wolf model.

The event with the lowest time will be the event executed next. Given the

times in Figure 2.6, the least event time is t = 0.15 seconds, corresponding to
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Figure 2.5: Possible Processes for Sample Input, Identified by Process Color

Figure 2.6: Possible Event Times (in Seconds) for Rabbit/Wolf Processes

the reproduction of the right-hand rabbit. This event will therefore be executed

(provided that the input is correctly modified as discussed earlier), yielding the state

in Figure 2.7.

Figure 2.7: System State after First Event

There are two ways in which the algorithm could proceed. The current implemen-

tation in globular uses the straightforward method of repeating the above sequence

of steps, replacing the initial input with the current state. An alternative version,

dubbed the “time conservation” method keeps the time values of all the events which

were unaffected by the previous event. We will discuss the relationship between

these two approaches in section 2.4.3.

We reproduce Figure 1.4 as Figure 2.8 to illustrate a history of the rabbit/wolf

population produced by these dynamics.
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Figure 2.8: A History of Rabbit and Wolf Population Dynamics: We begin with a row
of species in the order: wolf, rabbit, wolf, rabbit, wolf. We may interpret the green
background loosely as grass. Taking time in to be in the vertical direction, the first
process event to occur is rabbit reproduction. Following this, a rabbit is killed by a
wolf on its right, then another rabbit is killed by a wolf on its left, and finally, the
last rabbit is also killed by a wolf on its left, leaving the system with three wolves
and no possible processes which may be carried out.

2.1.3 Steady-states

Some basic intuition about the system can be gleaned even in this simple model. For

example, since wolves are not allowed to reproduce, the number of wolves in this

system will always remain constant. This factor then influences the system to reach

two different steady-states: one in which all the rabbits are eaten by the wolves, and

one in which rabbit reproduction dominates rabbit death so much that there will

be an explosive population of rabbits. In the first case, we would expect the rabbit

killing rate to be higher than the rabbit reproduction rate, while in the second case,

the opposite would probably be true. The more “interesting” behaviour will thus

occur when the reproduction and death rates are similar. In the breeding situation,

the simulation will never stop since rabbits can continue reproducing as long as they

exist. However, in the killing dominated situation, the simulation will stop once no

more processes can be performed on the system, that is, when all the rabbits are

gone.

2.1.4 Stochastic Process Algorithm

For reference, here is a basic outline of the Stochastic Process Algorithm steps:
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(i) Obtain initial state.

(ii) Based on the initial state, identify all possible processes whose inputs are

present in the initial state.

(iii) Assign a time value for each possible process; this time value should be

sampled from the negative exponential distribution with parameter equal to

the rate constant of the process being considered.

(iv) Identify the lowest time value.

(v) Execute the event with the lowest time value. If there are multiple events with

the same least time value, pick one at random.

(vi) Repeat (i)-(v) on the new state of the system

Time-Conservation Version:

(i) Execute steps (i)-(v) as above.

(ii) Save all time values for process events which are still valid in the new system

state; this should be all processes whose input instances did not include any of

the instances in the input just consumed in the executed process. Repeat steps

(i)-(v) on the new state, only sampling for time values for process instances

which do not yet have a time assignment.

2.2 Models of Membrane Processes

Higher categories allow you to describe different regions of space, so we can use

them to describe simple processes involving membranes, like the processes in [16],

which we model below. Some of these processes have also been implemented

in the P-systems modelling framework [6, chapter 14]. Membranes play a vital

functional role in cellular dynamics: the efficient production of ATP, the molecular

form of energy, in the mitochondria would not occur without its double-membrane

structure; quick transport of important molecules from one part of the cell to another

would not be possible without transport by vesicles, which are membrane-bound

compartments for holding small molecular cargo; and many proteins are modified

through a membrane-mediated process in the Golgi apparatus outside the nucleus.

In addition, by definition all organelles in the cell are membrane-bound: for a basic

schematic refer to Figure 2.9.
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Figure 2.9: An Animal Cell [1]

As a brief terminology note: “cytosol” is the fluid within the cell, and the “ex-

tracellular fluid” is the fluid outside of a cell. We color the cytosol blue, and the

extracellular fluid red in our cell process diagrams.

One simple cell process is mitosis, or cell division, referred to as “mito” in

[16]. We will put all process names assigned in [16] in double quotes when first

introducing them. See Figure 2.10 for confocal fluorescence microscopy images of

input and output to a mitosis event. Figure 2.11 shows our representation of mitosis.

Figure 2.10: Mitosis, images from [2]
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Figure 2.11: Representation of Mitosis as a 3-process in globular

Figure 2.12 shows our representation of the reverse process, mating, or “mate.”

Henceforth we shall use double-headed arrows to indicate a process and its reverse

in the same image.

Figure 2.12: Representation of Mating as a 3-process in globular

Figure 2.13 shows our representation of cell generation (“froth”) and its reverse

process, apoptosis, that is, cell death (“fizz”).

Figure 2.13: Representation of Cell Generation/Cell Death as a 3-process in globular
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Figure 2.14 shows our representation of pinocytosis, often called ‘cell drinking’

(“pino”), and the reverse process, exocytosis of fluid.

Figure 2.14: Representation of Pino/Fluid Exocytosis as a 3-process in globular

We note that as a consequence of the local nature of our graphical logic, we

need a second pair of processes so that pino/fluid exo can occur on the right-hand

edge of a cell (recall that a cell’s interior is blue in our representation). Figure 2.15

shows this alternate pino/fluid exo pair of processes. We did not need to double

up on processes before due to the symmetry of the input and output images. To be

completely thorough in our process definitions for two-dimensional inputs/outputs,

processes should consist of left-hand, right-hand, top-down and bottom-up versions.

For some processes this will not require four separately defined 3-processes. In three

dimensions, there would need to be six separate specifications, again not necessarily

all unique.

Figure 2.15: Right Side Pino/Fluid Exocytosis Representation as a 3-process in
globular

Similar to pinocytosis is the process endocytosis (“endo”). Its reverse process is

exocytosis (“exo”); in general the term exocytosis on its own refers to the reverse

of endocytosis, rather than pinocytosis. While we only show one representation of
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endo/exo (Figure 2.16), there are again two versions as with pino/fluid exo. Note

that for simplicity we represent what could be many particles as a single particle.

Figure 2.16: Representation of One Form of Endo/Exo as a 3-process in globular

One other variant for the input of materials into a cell is phagocytosis (Figure

2.17) or ‘cell eating’ (“phago”); it does not have an exact reverse like the other

processes do.

Figure 2.17: Representation of Phago as a 3-process in globular

The “drip” process (Figure 2.18) also has no reverse process.

Figure 2.18: Representation of Drip as a 3-process in globular
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Finally, we have the “bud” process (Figure 2.19), which has no direct reverse

process.

Figure 2.19: Representation of Bud as a 3-process in globular

2.2.1 Virus Model

Cardelli uses these basic membrane operations to model the invasion of a cell by the

Semliki Forest virus. A diagram of the viral invasion and reproduction process can

be seen in Figure 2.20.

In order to create a similar, but somewhat coarser, virus picture, we need to

create a few more processes: fizz and froth of extracellular fluid (Figure 2.21), fusion

and splitting of membrane-bound extracellular fluid (Figure 2.22), and membrane

buckling and straightening from extracellular fluid to the cytosol (Figure 2.23) and

vice versa (Figure 2.24).

Figure 2.25 shows the virus invasion process. The Semliki Forest virus first

enters the cell through phagocytosis. The virus invasion process is an instance of

membrane splitting (Figure 2.22): phagocytosis is technically the sequence of steps

of membrane splitting followed by the process we call phago (Figure 2.17).

We note again that all processes should include variants to account for all the

directions in which the process might occur. In Figure 2.26, we explicitly show how

an interchange process could occur.

In Figure 2.27, we a version of membrane straightening adapted for the virus

situation.

Three other processes specially made for this model are virus replication (Figure

2.28), virus migration (Figure 2.29), and virus exit (Figure 2.30).
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Figure 2.20: Viral Infection and Reproduction [8, page 279]

Figure 2.21: Fizz and Froth of Extracellular Fluid as a 3-process in globular
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Figure 2.22: Fusion and Splitting of Membrane-Bound Extracellular Fluid as a
3-process in globular

Figure 2.23: Membrane Buckling and Straightening from Extracellular Fluid to
Cytosol as a 3-process in globular

Figure 2.24: Membrane Buckling and Straightening from Cytosol to Extracellular
Fluid as a 3-process in globular
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Figure 2.25: Virus Invasion as a 3-process in globular

Figure 2.26: Interchange as a 3-process in globular

Figure 2.27: Membrane Straightening as a 3-process in globular
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Figure 2.28: Virus Replication as a 3-process in globular

Figure 2.29: Virus Migration as a 3-process in globular
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Figure 2.30: Virus Exit as a 3-process in globular

Figure 2.31 gives an example of the output from a stochastic simulation with the

above 3-processes.

Figure 2.31: Input and Output of a Stochastic Virus Model in globular
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2.3 Rate Conversion for Stochastic Modelling

It is important to note that the rate constants used in stochastic simulations should

be for numbers of molecules, rather than concentration rates [40]. For zeroth-order

reactions, that is reactions with no input, the stochastic rate constant c is defined as:

c = nAV k

where nA is Avogadro’s number: nA ≈ 6.023× 1023, V is the volume of the system

(for example, the volume of a cell), and k is the rate constant obtained from species

concentration data. For first-order reactions (1 reactant), c = k. For second-order

reactions (2 reactants) in which the reactants are of different species type,

c =
k

nAV

While for second-order reactions with reactants of the same type,

c =
2k

nAV

These conversions are based on deterministic rate laws rather than stochastic chemi-

cal kinetics, so they will still be valid even if we use a different underlying chemical

kinetics framework, as we do in the next chapter.

2.4 Algorithm Comparisons

2.4.1 Steps of the Gillespie Algorithm

For the sake of a full comparison, here we provide the Gillespie Algorithm written in

terms of the hazard functions (reproduced from [40, page 183]), where a hazard

function is the overall rate at which a particular process occurs:

(i) Initialise the system at t = 0 with rate constants c1, c2, . . . , cv and initial

numbers of molecules for each species, x1, x2, . . . , xu.

(ii) For each i = 1, 2, . . . , v, calculate hi(x, ci) based on the current state, x.

(iii) Calculate h0(x, c) ≡
∑v

i=1 hi(x, ci), the combined reaction hazard.

(iv) Simulate time to next event, t′, as an Exp(h0(x, c)) random quantity.

(v) Put t := t+ t′.
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(vi) Simulate the reaction index, j, as a discrete random quantity with probabilities

hi(x, ci)/h0(x, c), i = 1, 2, . . . , v.

(vii) Update x according to reaction j. That is, put x := x + S(j), where S(j)

denotes the jth column of the stoichiometry matrix S. [The stoichiometry

matrix consists of the net change in species numbers after the reactions have

occurred.]

(viii) Output x and t.

(ix) If t < Tmax, return to step 2.

The well-mixed assumption was originally made when spatial data was not

readily available and for the sake of keeping the computations less demanding. We

know that this is not realistic, but models can provide insight without being fully

realistic in their assumptions, and given the widespread use of Gillespie’s algorithm,

clearly this is such a case.

2.4.2 Gillespie and Stochastic Process Algorithms Comparisons

There are two key differences between our stochastic process algorithm and Gille-

spie’s algorithm (and its variants). The first is that our algorithm recognizes and

keeps track of spatial data. The second is that while both algorithms employ exponen-

tial distributions to supply their stochastic values, Gillespie’s algorithm simulates all

reactions in the system until the random time value is reached, while our algorithm

assigns time values to all reactions and chooses to execute a single event at each

step of the algorithm. While some variants of Gillespie’s algorithm, such as the τ

leaping method decrease the number of reaction events simulated by “leaping” from

one time value to the next, this is still computationally demanding [12].

A more in depth look at the physical implications for this difference in whether

time or reaction events act as the stochastic events in a simulation should be explored.

While for Gillespie’s algorithm the simulation of reaction events is the demanding

step, for the stochastic process algorithm, the most demanding step is the finding

of potential matches for the various processes. This step scales according to the

dimension of the diagram, with one-dimensional diagrams having a linear run-time;

two-dimensional diagrams, quadratic, and n-dimensional diagrams having an nn

running time. All of the other basic methods in globular are linear in diagram size.

For example, finding the potential interchanger processes in a 2-diagram consists
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of going through all the height values in the diagram and finding the unique dot at

each height.

2.4.3 Stochastic Process Algorithm with Time Conservation

To be completely rigorous, we will need to find an equivalence between the entire

stochastic process algorithm and the entire stochastic with time conservation al-

gorithm. Here we sketch the underlying hypothesis for why these two algorithms

would be equivalent.

The way we are assigning times and conserving times which are not used to

execute the next event can be shown to be equivalent, within a certain approximation,

to assigning an entirely new set of times at each step.

For each iteration of the algorithm, we assign a set of times, which is then ordered

into a sequence in which the lowest element is picked as the event to execute. In the

case of two events having the same time, only one of these events will be executed:

the one whose time corresponds to the first element in the position-event-time list.

Suppose that we have m events at a certain iteration n of the algorithm. Let L be

the list of tuples (position, event, time) for this iteration. For the time conservation

approach, we note that after the earliest time event occurs, we will be left with m− 1

tuples, but not all of these tuples will necessarily be relevant for the new state at

the n + 1th iteration. Let L−1 denote the set of tuples excluding the tuple of the

event which will be executed at the nth step. Let Lr denote the set of tuples of

events which are still relevant at the n+ 1th iteration. Let α denote the triple which

contains the lowest time value in Lr (which may even be equal to the executed

event’s time value)–we choose this event for no specific reason other than that it can

always be identified, so long as Lr is not an empty list, in which case the issue under

consideration would not occur in the first place.

For the new time assignments approach, let L′ be the set of tuples for the n+ 1th

iteration, and let α′ be the triple whose event and position values are equal to α’s.

Now, because α and α′ have the same event, both of their time values will be

chosen from the same probability distribution, so the mean value for both α and α′

is 1
r
, with r being the rate for the process of which the event is an instance. That is,

on average the two values are the same: we are sampling from the same distribution

both times, thus we are going to get similar values, so whether we use a value picked

earlier rather than later is of no consequence.
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Given that the efficiency of not sampling distributions a second time comes at a

memory usage cost, it is not yet clear whether the time conservation algorithm is

more efficient overall.
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Chapter 3

Chemical Kinetics and Other Model
Comparisons

We first present the chemical kinetics most widely used to model biochemical pro-

cesses. Through a series of illustrative examples, we show how this approach varies

in predictions from what we call “the spatial lattice model.” We define this model

explicitly in terms of appropriate “hazard functions.” After presenting this approach,

we present an interpretation of how in the limit of fast interchanging, that is, the

fast permuting of positions, the well-mixed approach is equivalent to what we call

“the well-mixed-compatible model.” While our two spatial models do not agree with

each other, because they both rest on valid assumptions, they each promise to offer

different useful insights.

3.1 The Well-Mixed Chemical Kinetics Model

Gillespie’s stochastic kinetics model has become the “theoretical ground for most

of the stochastic modelling research conducted today in the systems biology do-

main” [27, page 123]. The Gillespie algorithm is the standard stochastic simulation

procedure used to model the evolution of a biochemical system. It is theoretically

grounded by the Chemical Master Equation (CME), a chemical kinetics model with

rates, usually referred to as “hazard functions,” whose definitions (from [40, pages

180-181] and included below) are based on combinatorics arguments. Most other

simulation methods are based on the same stochastic kinetics theory on which

Gillespie’s method is based [40, page 221].
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3.1.1 Assumptions of the CME approach

We state the assumptions of the standard chemical kinetics model, as relayed in

[27]:

Assumption 3.1.1. The chemical system is under thermal equilibrium conditions.

Assumption 3.1.2. The chemical system is such that, at any time t, the concentration
of each species is homogeneous in the reaction vessel (i.e., does not depend on space).

Assumption 3.1.3. In a bimolecular reaction, the time to the occurrence of the reaction
is largely determined by the time to the reactive collision, whereas the time necessary
for the chemical transformation of the colliding species into the reaction products is
negligible.

3.1.2 Hazard Functions for the CME Approach

An nth-order reaction is a reaction whose input consists of n reactants. There are

three types of reactions which are relevant for us to consider: zeroth-, first- and

second-order reactions. We will make the standard assumption that a reaction with

three input species will only occur as a sequence of first-order and second-order

reactions [40, page 182],[27, page 125]. Zeroth-order reactions do not occur in

nature, but they can be useful for models in which there is an influx of some species.

We will often refer to zeroth-order reactions as “creation/generation processes,” as

in Figure 2.13.

The Chemical Master Equation (CME) describes how many ways a particular

process can happen, given the process rate and the numbers of input species. The

basic idea is that if given a process and m ways to start it, then there are m ways for

the process to happen. If the rate constant of the process is r, then since there are

m ways for the process to happen, it is m times as likely to happen as it was with

one way, so the total reaction rate for the process is m · r. This CME approach is

not intended to be spatial in nature, and so it does not take dimensional data into

account.

For zeroth-order reactions

Ri : ∅ ci−→ X

where ci is the reaction rate, the hazard function is defined to be

hi(x, ci) = ci
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This is because there are no input species to increase the likelihood of the process oc-

curring. Later, it will be seen in the globular simulations that a “0-cell” corresponds

to the ∅ of a zeroth-order reaction. Let xi denote the number of instances of species

Xi. Then for first-order reactions

Ri : Xj
ci−→?

the hazard function is:

hi(x, ci) = cixj

For second-order reactions

Ri : Xj +Xk
ci−→?

the hazard function is:

hi(x, ci) = cixjxk

For the special case of dimerisation, that is when two molecules of the same type

combine to form one molecule, called a dimer, we have:

Ri : 2Xj
ci−→ ?

the hazard function is:

hi(x, ci) = ci
xj(xj − 1)

2

3.1.3 Spatial Limitations of the CME Approach

For zeroth-order and first-order reactions (also referred to as “equations”), the

hazard functions are also valid in a spatial model. However, second-order equations

necessarily rely on the distance between reactants, and this fact causes a discrepancy

between the CME approach and our spatial approach. In subsection 3.1.4, we define

a new hazard function for second-order reactions in our spatial model. In this section

however, we motivate the creation of this new hazard function by looking at several

cases and discussing the associated physical interpretations. We will take all rate

constants to have units of s−1.

Example 3.1.1. Consider a system with the following two reactions:

α : A→ Z and β : AB → W

Reactions α and β are assigned the same rate constant value, which for simplicity’s sake,
we will take to be 1. In our system, substance A occurs in abundance compared to B:
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for the sake of illustration, let us assume that there are 1000 times as many molecules
of A as there are of molecules of B, and let us take the number of molecules of B to be
1. From subsection 3.1.2, we know that the overall rate for reaction α is:

hα(x, cα) = cαxA,

where cα is the rate constant and xA is the number of molecules of A. And similarly,
the overall rate for reaction β is:

hβ(x, cβ) = cβxAxB,

where cβ is the rate constant, xA is as before, and xB is the number of molecules of
B. For reaction α, hα(x, 1) = 1 ∗ 1000 or 1000/s, but note that reaction β’s hazard
function, hβ(x, 1) = 1 ∗ 1000 ∗ 1 or 1000/s has the same value of 1000/s.

Now consider the case where spatial data does matter. Following our one-dimensional
procedure, let us take the input for our system to be a string of letters, where each
instance of A is called A and similarly for B. We expect a string of length 1001, where
a certain position b in the string is the location of B. For example “A− . . .− A− A−
A − B − A − A − A − A − A − A − A − . . . − A” is such an input; we place dashes
between the letters to emphasise that being adjacent to a letter does not imply that a
reaction will necessarily happen. For this input, there are two ways for reaction β to
occur since ‘B’ has an ‘A’ on either side of it (‘AB’ or ‘BA’ can act as input for β), and
we assume that the reaction is indifferent to the order of the letters. Thus the overall
rate with which reaction β will occur is 1 ∗ 2 = 2 or 1 in the case that B is on either
end of the string, and the overall rate with which reaction α will occur is 1 ∗ 1000 or
1000/s. As we claimed, the overall likelihood with which the first-order equation (α)
occurs is equal in both the spatial and well-mixed models. For the second-order reaction
(β), however, we see that the well-mixed case predicts a likelihood which is at least 500
times greater than the spatial case’s.

Even if we tried to induce well-mixed conditions in the spatial model by swapping
positions of adjacent letters with some separate rate, the one-dimensional constraint,
coupled with the adjacent positions requirement, forces the spatial model form of
reaction β to always have maximum overall rate of 2/s.

The one-dimensional case is an oversimplification of a biological system. We can see
that in this case, the concept of being well-mixed cannot be properly portrayed because
the one-dimensional constraint restricts all possible interactions to only be adjacent
interactions. Therefore in this case, the well-mixed model does not make physical sense,
but this is in part expected because a string of letters can never have the properties
expected of a well-mixed higher dimensional system.
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Example 3.1.2. Consider the same reactions and initial conditions as above where we
are now in a two-dimensional setting. We ignore the first-order reaction since we know
it will always agree with the spatial model. Since the well-mixed model does not take
dimensions into account, its overall rates are the same as above. For the spatial model,
now our input is an array, or lattice, of letters. We shall consider valid adjacencies to
be those directly above, below, to the right or to the left of B. There are three different
configurations of A’s which could be around B:

(i) If B is in a corner of the lattice, then it will have two A’s which are close enough
to it to count as neighbours.

(ii) If B is on an edge of the lattice but not a corner, then it will have three adjacent
A’s.

(iii) If B is in the interior of the lattice, it will have four adjacent A’s, the maximum
number of neighbours.

Despite the different configurations, clearly in the majority of cases, B will have four
neighbours. In this case, the likelihood of reaction β is 1 ∗ 4 or 4/s. This is still
significantly smaller than the well-mixed rate of 1000/s and cannot be resolved by
interchanging letters quickly.

Example 3.1.3. Now take the same system in three dimensions. Again, the well-mixed
likelihoods are the same. For the spatial model input we will have a three-dimensional
lattice, so in the majority of cases, B will be surrounded by 6 neighbours, resulting in a
rate of 6/s, again still significantly lower than the well-mixed rate.

Considering the physical implications of these two models, the well-mixed model
is stating that the rarity of a reactant does not affect the overall rate of a reaction,
whereas the spatial model states that it does.

Given the many transport mechanisms a cell has in place for delivering special
molecules to the right parts of the cell, the spatial model intuition appears to correlate
with biological systems better than the well-mixed model does.

Example 3.1.4. We provide one final example of a more complex system. Here there
are two reactions γ : AA→ Y , and β : AB → W , as before. Reactions γ and β have
the same rate constant, which we will again set to be 1. There are 1000 molecules of
A and 2 molecules of B. Note that γ is a dimerisation type reaction. Since the three-
dimensional setting produced the closest comparison with the last system, let us stay in
three dimensions. The well-mixed model will predict a rate of 1 ∗ 1000 ∗ (1000− 1)/2 or
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roughly 500,000 molecules of Y per second for reaction γ, and for reaction β, it will
predict a rate of 2000 molecules of W per second. In the spatial model, the rate of β
will be the sum of each rate for the B molecules. Since it is most likely that both B

molecules will have 6 neighbours, let us take each of their rates to be 6/s, so overall,
the rate of β is 12/s. The reaction of γ will be equal to the sum of all the possible
adjacent A, A pairs; this will be roughly equal to the difference between the number of
possible adjacent pairs and the number of A, B pairs. The three-dimensional lattice we
are looking at is roughly a cube with side length 10. The four corners of this lattice
will each have 3 adjacent points, the other edge points will have 4 neighbours, and all
interior points will have 6 neighbours. The total number of distinct adjacent pairs in a
three-dimensional square lattice of side length 10 is:

(number of adjacent pairs per horizontal row) · (number of horizontal rows)

+ (number of adjacent pairs per vertical row) · (number of vertical rows)

+ (number of points in a layer of the lattice cube)· (number of layers in the lattice cube)

= 9 · 10 + 9 · 10 + 100 · 9 = 1080

If we assume that the two instances of B will be far apart but both in the interior of
the cube, then we will need to subtract 6 ∗ 2 = 12 pairs from the 1080 total adjacent
pairs. Therefore the overall reaction rate for γ is roughly 1070 molecules of Y/s, which
is still several orders of magnitude less than the rate for the well-mixed model. It does
not matter how many interchanges we perform, because when an event happens you
will necessarily be in a single configuration of the system, which means that the spatial
model will hold. The well-mixed model will always over-count the number of possible
reactions.

Unsurprisingly, if the well-mixed model over-estimates the reaction likelihoods,

then a model like this spatial lattice model on the opposite extreme would be likely

to under-estimate the reaction likelihoods, as seen above.

3.1.4 The Spatial Lattice Model for Stochastic Kinetics

For a reaction with a single input, the position of ai, a molecule of type A, was

irrelevant to the hazard function for the associated reaction. However, when two

reactants A and B are involved in a reaction β, the spatial relation between instances

ai and bi affects the likelihood of the reaction. For example, if ai and bi are close
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to each other, then the likelihood of a collision occurring in the future seems much

higher than the likelihood if they were far apart. In the first case, this pair would

contribute positively to β’s hazard function, while in the second case, the pair should

not be counted with the same weight as the close-to-each-other pair, and if the

distance is large enough, the pair should perhaps not be counted at all, as the odds

of reaction β happening as a result of this pair colliding are so low that it can be

assumed that the reaction never happens.

While one could: calculate the distance between every pair of molecules, establish

a threshold value for when pairs could interact, and then for each state derive a new

set of overall reaction rates for each reaction, it is simplest to first follow a model at

the other extreme from the well-mixed model, that is to count the contributions of

only the adjacent molecules to a particular likelihood. This spatial model will not

be able to account for molecular density when such density is greater than that of a

square lattice model.

Zero-order and first-order reactions will have the same form as in the well-mixed

model since spatial and dimensional considerations are not relevant in these cases.

The general form for the hazard function for second-order reactions with different

reactants is then:

hi(x, ci) =
xr∑
i=1

ci · 1 · xadj

where xr is the number of molecules of the rarer substance, and xadj is the number

of adjacent molecules of the second reactant type, which will vary with each instance

of the rarer substance. This adjacency parameter will also be influenced by the

dimension of the model, with the maximum adjacency level for one-dimensional

cases being 2, that for two-dimensional cases being 4, and that for three-dimensional

cases being 6.

The general form for the hazard function for second-order dimerisation reactions

is:

hi(x, ci) =
xr∑
i=1

ci · 1 · xadj

where xr is the number of molecules of substance XR, and xadj is the number

of molecules of type r which are above or to the right of this lattice point. The

directionality with which we check for adjacent pairs will prevent over-counting of

dimerisation pairs.

43



3.2 The Well-Mixed-Compatible Model

In this approach, rather than considering a lattice structure to account for spatial

data, we instead focus on the following observation: in the well-mixed model,

reactants have to first find each other, and then the reaction has a certain likelihood

of occurring, whereas in the spatial setup, the reactants have already found each

other: whether the reaction occurs or not is entirely dependent on the relevant rate

constant for the reaction.

We need to be careful when discussing the various rate terms: a rate constant is an

experimentally derived quantity which gives the rate at which product molecules will

be produced when the proper reactants are available. The overall rate or likelihood

or “hazard” of a reaction is the total rate at which a certain type of reaction will

occur; this quantity depends on the number of possible instances of the reaction

which can occur and also on the rate constant for the reaction.

Since the rate constant value is likely to come from a well-mixed type experi-

mental setup, the rate constant is probably not accurate for a spatial model. We

would expect the rate constant to be lower for the well-mixed model due to the

delays caused by one reactant having to first encounter the other reactant before the

reaction can potentially take place. The guiding principle is thus to scale the hazard

function appropriately in the fast swapping situation in order to obtain the same

values that the CME approach gives.

Again because spatial considerations do not affect zero-order and first-order

reactions, we will only compare second-order reaction predictions. We take the same

examples used before (reproduced below) and note the differences with this model.

Example 3.2.1. (Compare with example 3.1.1.) Consider a system with the following
two reactions:

α : A→ Z and β : AB → W

Reactions α and β are assigned the same rate constant value, which for simplicity’s sake,
we will take to be 1. In our system, substance A occurs in abundance compared to B:
for the sake of illustration, let us assume that there are 1000 times as many molecules
of A as there are of molecules of B, and let us take the number of molecules of B to be
1. From subsection 3.1.2, we know that the overall rate for reaction α is:

hα(x, cα) = cαxA,
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where cα is the rate constant and xA is the number of molecules of A. And similarly,
the overall rate for reaction β is:

hβ(x, cβ) = cβxAxB,

where cβ is the rate constant, xA is as before, and xB is the number of molecules ofB. For
reaction α, hα(x, 1) = 1 ∗ 1000 or 1000/s, but note that reaction β’s hazard, hβ(x, 1) =

1 ∗ 1000 ∗ 1 or 1000/s has the same value of 1000/s. However, consider the case where
spatial data does matter. Following our one-dimensional procedure, let us take the input
for our system to be a string of letters, where each instance of A is called A and similarly
for B. We expect a string of length 1001, where a certain position b in the string is the
location of B. For example “A−. . .−A−A−A−B−A−A−A−A−A−A−A−. . .−A”
is such an input; we place dashes between the letters to emphasise that being adjacent
to a letter does not imply that a reaction will necessarily happen.

The second-order reaction likelihood will be 1*2 or 2/s since there are only at
maximum two correct input instances for β. Having a much lower value for the spatial
model agrees with our intuition that the rate constant for the spatial model should be
higher than the rate constant for the well-mixed model: if the rate constant for the
spatial case could be calculated, it would be a larger number than 1, which could help
to decrease the discrepancy between the well-mixed and spatial likelihoods.

If however, fast swapping was to occur in the spatial situation, effectively simulating
the well-mixed conditions, then the rate constant would be appropriate. If we interpret
the fast swapping to allow for an adjacent pair of A,B at each location in the string
as a possible reaction event, then since there are 1000 such placements, the overall
reaction rate for β is 1*1000, matching the well-mixed prediction.

Example 3.2.2. (Compare with example 3.1.2.) Consider the same reactions and
initial conditions as above where we are now in a two-dimensional setting. Since the
well-mixed model does not take dimensions into account, its overall rates are the same
as above. For the spatial model, now our input is an array or lattice of letters. We focus
on the well-mixed case, since the non-well-mixed case will be as with the spatial lattice
model. Since we have roughly 1000 molecules, let us think of the lattice as being a 10
x 100 grid. If we count up all the possible arrangements in which A,B could be an
adjacent pair, for the first row, our answer is 99. Since there are 10 rows, we know that
at least 99 × 10 = 990 possible arrangements are available. These calculations have
excluded the vertical pairings, so we multiple 9 × 100 = 900. Overall, we thus have
990 + 900, or roughly 2000 possible pairings. Now the overall rate for the spatial model
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will be 1*2000, which is double that of the well-mixed model. However, if we add to the
definition of the overall rate a constant factor of 1 over the dimension of the system,
then we recover the well-mixed rate of 1000/s.

Example 3.2.3. (Compare with example 3.1.3.) Now take the same system in three
dimensions. Again, the well-mixed likelihoods are the same. For the spatial model
input in the well-mixed case, we will again determine the rate by counting the possible
pairings. This time we visualize a lattice cube of side length 10. By the same method
as used in the two dimensional case, we know that each layer of the lattice will have
90 + 90 = 180 pairings, and that since we have 10 such layers, there will be at least
1800 pairings. We must consider both the horizontal and vertical layers however, so this
leads to 2× 1800 = 3600 pairings. Again, if we merely plug this number into the rate
constant times number of pairings formula, we will end up with a much larger rate than
predicted by the well-mixed model. However, if we again try dividing by the dimension
of the system, we obtain 1200/s as our rate, which is fairly close to recovering the
1000/s value.

Example 3.2.4. (Compare with example 3.1.4.) We provide one final example of a
more complex system. Here there are two reactions γ : AA→ Y and β : AB → W from
above, γ and β have the same rate constant, which we will again set to be 1. There are
1000 molecules of A and 2 molecules of B. Note that γ is a dimerisation type reaction.
Let us stay in three dimensions. The well-mixed model will predict a rate of roughly
500,000 molecules of Y per second for reaction γ, and for reaction β, it will predict a
rate of 2000 molecules of W per second. In the spatial model, we still expect to obtain
low values in the non-well-mixed case due to the rate constant being lower problem. In
the fast swapping limit, for β we have roughly the same 1000 molecule lattice cube as
in the previous example, so there are roughly 3600 pairings, per B molecule, and thus
7200 pairings, which when divided by the dimension, yields a rate of roughly 2000 W
molecules per second as desired. For γ, since we are counting the number of pairings
of 1000 molecules of A, we will end up with exactly the same result as the well-mixed
model due to the n(n− 1)/2 hazard function formula.

Based on the conclusions above, since the dimerisation case was equivalent, we

define one new hazard function for this model when compared with the CME model.

For second-order reactions with different reactants, we have:

hi(x, ci) =
ci
D
· nadj

where D is the dimension of the system, and nadj is the number of possible adjacent

pairings.
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3.2.1 Flexibility of the Well-Mixed-Compatible Model

Since diffusion dominates in the well-mixed case, if a reaction event happens, then

it is unlikely that the same event can occur in the near future because diffusion

will occur in between events. This provides a reasonable model of, for example, an

enzyme reaction in which the enzyme requires ATP. After the reaction has taken

place, the enzyme will be left with ADP because the phosphate group was released

as energy in the reaction. This means that the enzyme will be inactive until it is

replenished with the missing phosphate group which makes it active. Because the

enzyme is not immediately ready for a second reaction, there is a necessary delay

time, just as diffusion produces a necessary delay time between reaction events.

Not every biochemical reaction has the ATP setup, however. Our modelling setup

(the non-interchanging version) allows for reaction types which do not require a

delay time in between. Diffusion also seems less likely to dominate in the way it

does with gas particles in a vacuum (Gillespie model’s physical basis [19, page 407])

when you have such particles, or even more complex molecules, in a soup of other

molecules (cytosol).

If delays between reactions were desirable, then the rate at which interchanges

occur could be increased so that more mixing/diffusion events occur before reaction

events. Thus our model has greater flexibility in modelling various biochemical

situations than the CME approach.

3.2.2 Well-Mixing in Globular

We simulate a well-mixed situation by applying a series of interchange moves or

swaps. These are localized permutations.

The default setup in globular is that once interchanges are possible, that is when

3-processes are available, a set of the various dots which can be interchanged is

identified. The process list is updated to include each possible interchange event,

and the time distribution for each interchange event is based on the change in

height, interpreted here as “tension.” Specifically, the rate for an interchange event

is e−∆τ/T , where ∆τ is the height difference between the two dots, and T is the

temperature of the system. After the rate has been calculated, it is passed into

the negative exponential distribution, from which, as with all processes, times are

sampled. Figure 3.1 shows an example of an interchange event.

Because it is often the case that 3-process inputs include at least one dot, the

number of possible interchanges in a given diagram composed of 2-cells is likely to
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Figure 3.1: An Example of an Interchange Operation: here the height of the cup-
shaped part of the membrane was interchanged with the height of the particle in the
cytosol so that at the end of the process the particle is lower than the cup-shaped
portion of the membrane.

be higher than the number of possible occurrences of inputs for any other process

in the diagram. To this end, some sort of normalization factor should be included

in the calculation of the rate for interchanges. Another update to the stochastic

process algorithm in globular for biochemical processes would be dividing the rate

of processes whose inputs are 0-cells by the number of (corresponding) 0-cells in

the given state. This is because reactions with 0-cells are equivalent to zeroth-order

reactions in the sense that their input is just a segment of the “background” for

the diagram: a 0-cell would certainly not be referred to as an object in a monoidal

2-category or in any category in which the effective objects are 1-morphisms. If

0-cells are thus not counted among the other species in the model, they can be

considered to be equivalent to nothing.

3.2.3 Connection to Deterministic Modelling

As an aside, the CME is equivalent to the rate equation for systems in chemical

equilibrium [9, 11]; this provides a link between our stochastic modelling approach

and the deterministic approach of the rate equation. (The rate equation model

treats species in terms of continuous concentrations rather than discrete species

numbers.) Therefore, our well-mixed-compatible spatial kinetics model seems to

be the most general kinetics model in the sense that it can describe a range of

behaviours, including the CME kinetics in the fast-swapping limit, which in turn

describes deterministic kinetics at chemical equilibrium.
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Chapter 4

Conclusions

4.1 Summary

From the discussions in these chapters, it should be clear that using higher categories

to stochastically model biological processes is still very much in its infancy, but

at the same time shows great promise. The graphical logic of higher categories,

as implemented in globular, can capture the local nature of biological processes.

Additionally, the ability to model in different dimensions without changing the

underlying framework provides a rare type of robust and desirable flexibility. While

it remains to determine the exact chemical kinetics model underlying the stochastic

process algorithm, this suggests that there may be a need for a new basic physical

model to describe biological processes in spatial detail.

4.2 Proposed Extensions of the Model

Up to this point, we have discussed how our model differs in its underlying stochastic

kinetics from the standard approach in terms of spatial considerations (Assumption

3.1.2). However, Assumption 3.1.1 is also not realistic for biological systems. A

system is in thermal equilibrium if the temperature within the system is uniform

in space and time. It has been noted in [30, page 23] and [34, page 341] that

cell death occurs under thermal equilibrium conditions and moreover that “cellular

processes in general are far from thermal equilibrium” [30, page 23].

Dropping the thermal equilibrium assumption means that each species in a

process would need to be assigned a specific temperature. Given that experimental

techniques can now account for spatial distinctions, it does not seem improbable

that localized temperature data could be obtained in the near future, if such data

has yet to be obtained. Since reaction rate constants are temperature dependent,
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including thermal data will affect the hazard function, which will in turn influence

the exponential distribution from which event times are sampled. Thermal data

could be represented in globular as an overlay of temperatures on the input species.

We also note that the interchange rate would need to be adjusted to include a change

in temperature between the two nodes, rather than a single equilibrium temperature.

4.3 Future Work

4.3.1 Theory

It would be nice to derive a single general hazard function which could account

for all four cases for our spatial kinetics. The question of density of molecules and

whether the most accurate spatial model would account for more adjacent molecule

possibilities should be addressed.

4.3.2 Applications

Other biological systems that seem particularly accessible to modelling given the

work that we have already done in globular include cell polarization in yeast cell

mating [29], since the mechanisms involved are primarily membrane deformations,

and finding a steady-state in cell division process dynamics to better understand

cancer growth.

Once three-dimensional inputs are implementable in globular, torsion reducing

operations of topoisomerases on DNA [18] and other topological surgery processes

[10], [28] could be modelled.

It would be nice to add a feature to globular that immediately generated all the

forms a single process, for example, if a vesicle entered a cell from the left, then

globular would have a one-click feature for adding the cases in which a vesicle

entered from the right, and above and below the cell (for the two-dimensional case).
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