
Université de Montréal

Categorical quantum computation

par
Éric Oliver Paquette

Département d’informatique et de recherche opérationelle
Faculté des arts et des sciences

Thèse présentée à la faculté des études supérieures et postdoctorales en vue
de l’obtention du grade de Philosophiæ Doctor (Ph. D.) en informatique

septembre 2008

C© Éric Oliver Paquette, 2008.

Résumé

L’informatique quantique est un sous-domaine de l’informatique qui étudie le calcul fait en utilisant
certaines propriétés de la mécanique quantique telles que l’intrication et le principe de superposition
quantique. Les travaux présentés dans cette thèse s’inscrivent dans un programme de recherche initié
par S. Abramsky et B. Coecke qui vise à établir les fondements du calcul quantique dans le contexte
de la théorie des catégories.

L’axiomatisation catégorique usuelle du calcul quantique utilise la notion de biproduit afin d’exprimer
le fragment classique de la théorie qui comprend, par exemple, le résultat d’une mesure ou le contrôle
classique. En se basant sur les travaux de S. Abramsky et B. Coecke et ceux de P. Selinger pour
l’aspect quantique ainsi que sur les travaux de B. Coecke et de D. Pavlovic pour l’aspect classique,
nous présenterons une sémantique catégorielle complète pour le calcul quantique qui comprend à la
fois le fragment classique et le fragment quantique de la théorie. Pour ce faire, nous introduirons la
notion d’interface classique-quantique qui est suffisamment générale pour traiter de ces deux fragments.
De plus, le fragment classique sera axiomatisé exclusivement à l’aide de la structure tensorielle i.e.,
sans utiliser la notion de biproduit. Une telle approche permet, entre autres, l’utilisation d’un calcul
graphique intuitif et rigoureux comme technique de preuve qui est souvent plus facile à manipuler
que les expressions algébriques usuelles. De surcroît, nous verrons que l’axiomatisation des structures
de bases desquelles sont dérivées la notion de transformation classique permet aussi la définition de
plusieurs familles de transformations classiques telles que les relations, les fonctions, les bijections et
les applications stochastiques et bistochastiques; les trois dernières étant spécialement souhaitables
dans le contexte du calcul quantique. Finalement, nous présenterons quelques protocoles quantiques
et prouverons certains résultats liés à ceux-ci à l’aide du calcul graphique développé pour la sémantique
afin de démontrer le bien-fondé et l’utilité de la présentation.

Mots clés: Calcul quantique. Contrôle classique. Théorie des catégories. Catégories

compactes closes. Catégories †-monoidales. Catégories †-compactes closes. Interfaces

classiques-quantiques.

Abstract

Quantum computation is a sub-discipline of computer science that studies computation performed us-
ing quantum-mechanical phenomena such as entanglement and the principle of quantum superposition.
The work presented in this dissertation is part of a program of research initiated by S. Abramsky and
B. Coecke that aims to establish a categorical foundation for quantum computation.

The usual axiomatisation of quantum computation uses the biproduct structure to express the classical
fragment of the theory that comprises, for instance, the result of a measurement or classical control.
Following the work of S. Abramsky and B. Coecke, that of P. Selinger for the quantum aspect, and
that of B. Coecke and D. Pavlovic for the classical aspect, we will introduce a complete categorical
semantics for quantum computation that includes both the classical and the quantum fragments of
the theory. In order to do so, we will introduce the notion of classical-quantum interface, which is
sufficiently general to include the two fragments of the theory. Moreover, the classical fragment will
be axiomatised exclusively with respect to the tensorial structure, i.e., without using biproducts. In
particular, such an approach enables the use of an intuitive and rigorous graphical calculus as a proof
technique which is often easier to use than the usual algebraic techniques. Moreover, we will see that
the axiomatisation of basis structures from which is derived the notion of classical transformation
also enables the definition of many families of classical transformations such as relations, functions,
bijections, and stochastic and bistochastic transformations; the latter three being especially suitable
in the context of quantum computation. Finally, we will present some quantum protocols and prove
some results concerning these, using a graphical calculus developed for the categorical semantics in
order to illustrates the usefulness and the well-foundedness of the theory .

Key words: Quantum computation. Classical control. Category theory. Compact closed

categories. †-monoidal categories. †-compact categories. Classical-quantum interfaces.

Acknowledgement

Je tiens d’abord à remercier Michel Boyer pour son soutien tout au long de mes études doctorales,
pour ses commentaires, son temps, nos discussions et ses critiques au sujet de mon travail qui m’ont
toujours poussé à faire mieux; Gilles Brassard pour son soutien académique, financier et pour plusieurs
discussions qui m’ont aidé à approfondir ma compréhension de l’informatique quantique.

Beaucoup de résultats présentés dans cette thèse proviennent de mes collaborations avec Bob Coecke,
Dusko Pavlovic, Prakash Panangaden et Simon Perdrix. Je ne peux que souligner le travail exceptionnel
et les contributions de toutes ces personnes.

Merci aussi a Samson Abramsky et Bob Coecke pour m’avoir invité à des sessions de travail à
l’Université d’Oxford et pour croire en mon potentiel.

Je me dois aussi de souligner la patience de tous mes collègues du LITQ pour avoir enduré mes
“absconseries” durant ces quatre années.

Merci à Frédéric Dupuis, Yannick Delbecque et Ross Duncan pour leurs commentaires sur des parties
de cette thèse et à Yan Thériault ainsi qu’à James Vicary pour avoir révisé le texte.

À Caroline

There is no knowledge, no attainment, no realisation...

– Maka hannya haramita shingyo

Contents

Résumé i

Abstract ii

Acknowledgement iii

1 Introduction 1

2 Quantum computing 5
2.1 Hilbert spaces 5
2.1.1 Hilbert spaces 5
2.1.2 Tensor product 8
2.1.3 Basis 9
2.2 Quantum computing 13
2.2.1 States, state spaces and transformations 13
2.2.2 Quantum measurements 15
2.2.3 Mixed states and superoperator 16

3 Category theory 19
3.1 Categories 19
3.2 Quotient category 23
3.3 Functors 24
3.4 Natural transformations 27

4 †-Monoidal categories 30
4.1 Product of categories 31
4.2 Monoidal categories 31
4.3 Strictification of monoidal categories 37
4.4 Traced monoidal categories 38
4.5 Internal monoids and comonoids 39
4.6 Scalars 41
4.7 Graphical calculus for symmetric monoidal categories 43
4.8 †-monoidal categories 46
4.9 Graphical calculus for †-monoidal categories 47

5 Quantum structures 49
5.1 Compact structures 49
5.2 Quantum structures 52
5.3 Graphical calculus for categories of quantum structures 57
5.4 The category CP(Cq) of completely positive maps 60

6 Basis structures and classical maps 68
6.1 †-Frobenius structures 68
6.2 Normal form 74
6.3 The category Cb of basis structures 88
6.4 Mixed normal form 94
6.5 Classical maps 99

vi

7 Classical-quantum interfaces 103
7.1 Classical-quantum interfaces 103
7.2 The category CQI(Cq) of interfaces 107
7.3 Categorical semantics of all data 111
7.3.1 Classical maps 111
7.3.2 Quantum maps 115
7.3.3 Interaction maps 117

8 Protocols 131
8.1 A graphical notation for interfaces 131
8.2 Inverses and square roots of scalars 137
8.2.1 Square-roots of scalars 137
8.2.2 Universal localisation of a †-compact category 137
8.3 Teleportation-enabling measurements 138
8.4 Teleportation 140
8.5 Superdense coding 141
8.6 Teleportation↔ Superdense coding 142
8.7 Mixed state generation 144
8.8 telePOVM 144
8.9 BBM92 ↔ BB84 145

9 Conclusion 148

Bibliography 151

Index 156

1 Introduction

Quantum computation is a sub-discipline of computer science that relies on quantum mechanical
properties such as quantum entanglement and quantum superposition to realise feats that are gener-
ally admitted – and often proven – to be impossible for classical computers. For instance, quantum
pseudotelepathy games [15] or Shor’s integer factorisation algorithm [63], a quantum algorithm which is
exponentially faster than the best classical algorithm known to date, the general number field sieve [60].

As compared to quantum mechanics, the usual mathematical theory of quantum computation is fairly
simple. Indeed, while the mathematical formulation of quantum mechanics relies on linear algebra,
differential equations, harmonic and functional analysis, quantum computation can be understood via
the basic notions of finite-dimensional Hilbert spaces. However, the advent of quantum computation
changed the perspective relative to some concepts prevalent in quantum mechanics. For instance,
as noted by S. Abramsky and B. Coecke in [7], quantum entanglement was reduced to a paradox
by Einstein, Podolsky and Rosen [44] in the thirties. In the sixties, Bell formulated its celebrated
theorem [20] about entanglement. Then, with the advent of quantum computing, it became a feature
as, for instance, in the quantum teleportation [13] and superdense coding [14] protocols. More recently,
it even became an informatic resource [10]. All in all, quantum computation—despite its simple
mathematical formalism—remains a fertile ground to reason about quantum phenomena.

The results of this thesis aren’t described in the language of Hilbert spaces—or even C∗ algebras,
another formalism sometimes used—but in terms of categories. Category theory is, broadly speaking,
a theory of structures and relations between them. Following this, a categorical axiomatisation of
quantum computing brings the most fundamental structures needed for quantum computation to the
forefront and studies how they interact. Such a framework of study brings in new tools for the study
of quantum information such as:

1. Graphical calculus. The categorical axiomatisation used in this thesis enables a rigorous graphical
calculus which is, in the author’s opinion, easier to manipulate than the usual algebraic expressions
or even the 2n × 2n matrices one usually works with in quantum computing. Moreover, such
a graphical calculus can be used as a proof technique, and such graphical proofs are often more
succinct and appealing than the usual algebraic proofs, as they provide a direct visual understanding
of what a formula means in terms of information flow and the manipulations that one performs on
such an expression.

2. Models. A categorical formulation of quantum computation may accommodate a wide range of
models. The study of different models may shed some new light on the nature of quantum data
which often behaves in an non-intuitive manner.

3. Different views on quantum informatics. There are a few, for instance:

Introduction 2

i. The area of quantum programming languages has been a fertile area in the last few years.
Many quantum λ-calculi where introduced [71,74], Selinger’s QPL [66], T. Altenkirch and J.
Grattage’s QML [9] and so on. Such quantum programming languages are often described
within a category-theoretic framework.

ii. Quantum games as introduced by Y. Delbecque in [41], [39] and [40] with P. Panangaden.

iii. Last but certainly not least, the categorical foundations of quantum computation in terms of
†-compact categories, which is the context of this dissertation.

Hence, if we agree that quantum computing is—in particular—about understanding the nature of
quantum information, category theory provides a new angle to such an understanding and is a topic
worth studying.

The new results of this dissertation consist of a re-writing of a (strict) subset of the results found in
the following papers:

1. Bob Coecke, Éric Oliver Paquette and Dusko Pavlovic, Classical and quantum structuralism. To
appear in: Semantic techniques in Quantum Computation. S. Gay and I. Mackie, Eds. Cambridge
University Press.

2. Bob Coecke, Éric O. Paquette and Dusko Pavlovic, Classical and quantum structures. Oxford
University Computing Laboratory Research Report PRG-RR-08-02, 2008.

3. Bob Coecke and Éric Oliver Paquette, POVMs and Naimark’s theorem without sums. Proceedings
of the 4th International Workshop on Quantum Programming Languages (QPL’06). Electronic
Notes in Theoretical Computer Science, Vol 210, pp. 123–137, 2008.

4. Bob Coecke, Éric Oliver Paquette and Simon Perdix, Bases in diagrammatic quantum protocols.

Proceedings of the 24th Conference on the Mathematical Foundation of Programming Semantics
(MFPS XXIV). Electronic Notes in Theoretical Computer Science, Vol. 218, pp. 131–152, 2008.

along with some comments and calculations taken from [35], an introduction to category theory that
the author wrote with B. Coecke. All of these are part of a program initiated by S. Abramsky and
B. Coecke in their seminal paper A categorical semantics of quantum protocols [5], which has become
a very active field since its inception; see for instance, [1, 6, 2, 8, 30, 42] and [69] as well as the many
papers cited throughout this dissertation. Such a program aims to recast the standard axiomatisation
of quantum computing in terms of †-compact categories. Such an axiomatisation is given, broadly
speaking and in the context of FdHilb—the category of finite-dimensional Hilbert spaces—, in terms
of adjoints and maximally entangled states. It has been extended to categories of completely positive
maps by P. Selinger in [68] in order to accommodate the notion of mixed states and superoperators.
A remarkable feature of such an axiomatisation is that it does not rely on the notion of basis when
one restricts oneself to the quantum fragment of the theory. The notion of basis can be abstracted in
the categorical language as a biproduct structure; such an approach was taken in both [5] and [68].

The main contributions of this dissertation are as follows:

• Building upon the work of B. Coecke and D. Pavlovic in [36] where they developed the notion of
classical objects which axiomatises orthonormal bases in FdHilb in pure tensorial terms, we will
define the notion of basis structure on an object in a †-compact category which we call a category

of quantum structures throughout this dissertation. As for classical objects, basis objects are

Introduction 3

defined in pure tensorial terms, i.e., without any reference to biproducts. From this, we will define
the notion of category of basis structures and inspect how the basis structures and the quantum
structures interact therein.

• In such categories, maps built from tensoring and composing the structural morphisms of the
basis structure and identities and whose graphical representation is connected—in a sense to be
defined—admit a normal form. We will give an algorithm of reduction of any such connected map
into normal form. Such a reduction simplifies calculations in a non-trivial manner.

• We will define the notion of classical maps in a category of basis structures and show that the
subcategory of classical maps of a category of basis structures is again a category of basis structures.
In the context of finite-dimensional Hilbert spaces, classical maps are those matrices with entries
in R+ hence the name “classical”. The structural morphisms of basis objects enable us to define
many subclasses of classical maps such as relations, functions, bijections, stochastic and bistochastic
maps.

• We will construct the category of classical-quantum interfaces of a category of quantum structures
and show that this category is again a category of quantum structures. The morphisms of such a
category comprise classical maps, quantum maps (actually, completely positive maps), controlled
quantum maps, projective measurements and positive operator-valued measurements (POVMs).
Moreover, we will see that both the category of completely positive maps and the category of
classical maps embed faithfully in the category of interfaces.

• Finally, throughout this dissertation, we will make extensive use of graphical calculus. As we shall
see in chapter 8 of this dissertation, it can be very handy in describing protocols and, among
other things, proving their correctness. In that sense, it provides a suitable less “static” alternative
to quantum circuits. Indeed, while there are some transformations possible on quantum circuits
(see, for instance, [63] pp. 178–185), the graphical calculus that we will use is a powerful proof
technique whose scope surpasses what one can do with quantum circuits with respect to algebraic
(or operation) manipulations.

Another (albeit minor) result of this dissertation is that it has been written for a target audience
of quantum computer scientists with no prior knowledge of category theory; this had two major
consequences on the way it was written. First, when bringing up a new subject, we will usually
start by discussing the corresponding concept in the category FdHilb of finite dimensional Hilbert
spaces rather than by introducing the concepts in categorical terms first. Since the latter was the
usual approach taken in the papers cited above, it seemed appropriate to proceed the other way
around for the targeted audience. Second, it should be noted that some constructions and definitions
given throughout this dissertation can be seriously shortened using the advanced machinery of category
theory. However, we did not do so in order to keep the discussion at a reasonable level of abstraction;
for instance, all questions related to monads, Eilenberg-Moore algebras, Kleisli categories, adjunctions
and bicategories have been avoided but are discussed in the papers cited above.

The plan of this dissertation is as follows:

Chapter 2 is a brief introduction to Hilbert spaces and quantum computing.

Chapter 3 is a standard introduction to category theory where we define the notions of categories,
functors, quotient categories and natural transformations.

Introduction 4

Chapter 4 is about †-monoidal categories. We will discuss the notion of monoidal category, which is
central to the whole dissertation. Such categories, as mentioned above, are equipped with a product
which is a suitable abstraction of the tensor product of vector spaces. In addition, we will introduce
the notions of traced monoidal categories, internal monoids, internal comonoids and scalars. We will
then introduce the graphical calculus for monoidal categories. Further, we will define the notion of
†-monoidal category which will give us the necessary formalism to describe adjoints and related con-
cepts. Finally, we will extend the graphical calculus for monoidal categories to †-monoidal categories.

Chapter 5 discusses the notion of quantum structures, categories of quantum structures, and how the
latter constitutes a suitable framework for quantum computation. Moreover, we will introduce the
category of completely positive maps of a category of quantum structures; the morphisms of such a
category will allow us to handle mixed states and superoperators.

Chapter 6 is about basis structures and classical maps. First, we will need to define the notion of
basis structure as a complement of a quantum structure. From there, we will inspect how the basis
structures interact with quantum structures. Finally, we will define classical maps and study their
properties.

In chapter 7, we give the main construction of this dissertation: we define the notion of classical-
quantum interfaces and we construct the category of classical-quantum interfaces of a category of
quantum structures; moreover, we show that such a category is again a category of quantum struc-
tures. Such a construction allows us to give a formal semantics for all data comprising both the
quantum and the classical fragment of the theory together with non-trivial interfaces such as con-
trolled operations and measurements. Some important results will be stated and proved such as, for
instance, a classification of the different types of classical maps and a categorical (and purely graphical)
proof of Naimark’s theorem for POVMs.

In chapter 8, we will discuss protocols using the language of a category of classical-quantum interfaces.
Among other things, we will prove correctness of the quantum teleportation protocol and superdense
coding, and relate both quantum teleportation with superdense coding and BB84 with BBM92 (a
protocol akin to Ekert91 [43]) within our framework, which may suggest a new line of investigation
concerning structural resources.

Finally, in chapter 9, we will give some concluding remarks and discuss future work.

2 Quantum computing

This chapter intends to cover briefly the basic notions of quantum computation and Hilbert spaces.
As the results of this dissertation are built upon the standard mathematical presentation of quantum
mechanics, we will only recall the important concepts and results of quantum computation and Hilbert
spaces from a mathematical standpoint. In other words, we won’t give any interpretation as to why
or how quantum mechanical phenomena occur. The intent is not to give a complete introduction but
to recall most of the concepts that will be used in this dissertation.

This chapter consists of two sections. The first one introduces the notions of Hilbert space, of tensor
product of Hilbert spaces and finally, discusses the notion of vector and matrices relative to a chosen
basis. The second section introduces the basic notions of quantum computation and discusses quantum
states, transformations of quantum states, measurements and open systems via mixed states and
superoperators.

2.1 Hilbert spaces

The formalism of quantum computing heavily relies on linear algebra. Thus, we make use of this
section to recall some important concepts and to fix the notation. Moreover, as we will often use the
category of Hilbert spaces and bounded linear operator as an example and since an important part of
the theory we will introduce in the forthcoming chapters is basis-independent, we will introduce most
concepts in the most general way here. The following presentation is standard; for instance, see [61]
where—unless otherwise specified—all the results and definitions from this section are taken.

2.1.1 Hilbert spaces

The goal of this subsection is to rigorously define the notion of Hilbert space; this is the most funda-
mental notion in quantum mechanics and quantum computation, as the state vector which completely
describes the state of a quantum system is but a unit vector in a Hilbert space. All along, we will
work with complex vector spaces, i.e., vector spaces where the field of scalars is C, the complex field.
Hence, when we speak of vector spaces, we mean complex vector spaces. We first define different types
of transformations between complex vector spaces.

[Linear and multilinear map] Given two vector spaces V and W , a linear map is function f :
V →W such that for any v,w ∈ V and z ∈ C, we have

f(v + w) = f(v) + f(w) and f(z · v) = z · f(x).

Quantum computing 6

Hilbert spaces

Given vector spaces V1, · · · , Vn and W , a multilinear map or n-linear map is a function f :
V1 × · · · × Vn →W which is linear in each variable.

A particular instance of bilinear map is a (bilinear) form which is just a bilinear map of type V ×V → C.

[Antilinear map] Given two vector spaces V and W , an antilinear map is a function f : V → W

such that for any v,w ∈ V and z ∈ C, we have

f(v + w) = f(v) + f(w) and f(z · v) = z · f(x)

where z is the complex conjugate of z.

[Inner product and inner product space] A map φ : V × V → C is a sesquilinear form on a
complex vector space V if for all v,w, x, y ∈ V and z1, z2 ∈ C,

1. φ(v + w,x + y) = φ(v, x) + φ(v, y) + φ(w,x) + φ(w, y) and

2. φ(z1 · v, z2 · w) = z1z2φ(v,w).

A sesquilinear form is Hermitian if for all v,w ∈ V ,

φ(v,w) = φ(w, v).

A form φ is positive definite if for all v ∈ V ,

φ(v, v) ≥ 0 and φ(v, v) = 0 implies v = 0.

An inner product on V is a positive-definite Hermitian form 〈−,−〉 : V × V → C and an inner

product space is a vector space that comes equipped with an inner product.

Inner products enable the following notions:

[Orthogonal vectors] Let V an inner product space, then v,w ∈ V are orthogonal if 〈v,w〉 = 0.

[Norm] The norm induced by an inner product 〈−,−〉 is

‖−‖:=
√

〈−,−〉.

Note that ‖v‖ is a positive real number, since 〈−,−〉 is positive definite.

[Bounded linear operator] A linear operator f : V →W between inner product spaces is bounded

if there exists a c > 0 such that for all v ∈ V ,

‖f(v)‖W≤ c ‖v‖V .

We will denote the set of bounded operators of type V → V by L(V) and the set of those of
type V →W by L(V,W).

Now,

[Hilbert space] A Hilbert space H is a complex vector space with a inner product 〈−,−〉 which is
complete under the norm ‖−‖ that is, every Cauchy sequence in H converges in H under ‖−‖.

Quantum computing 7

Hilbert spaces

Example 2.1.1 For any n, the vector space C
n is a Hilbert space when equipped with the dot

product as inner product (see p. 13).

[Adjoint] If it exists, the adjoint of a linear operator f : H → H′ is a linear operator f † : H′ → H
such that for all ψ ∈ H and φ ∈ H′,

〈f †φ,ψ〉H = 〈φ, fψ〉H′ .

Theorem 2.1.2 Let f : H → H′ be a bounded operator, then there exists a unique bounded operator
f † such that for all φ,ψ ∈ H,

〈f †φ,ψ〉 = 〈φ, fψ〉.

Hence, all bounded operators admit a unique adjoint.

Proof: See [61].
�

Theorem 2.1.3 If f and g both admit an adjoint, then

i. (f †)† = f .

ii. (f + g)† = f † + g†.

iii. For any z ∈ C, (z · f)† = z · f †.

iv. Finally, if the composite g ◦ f is defined, (g ◦ f)† = f † ◦ g†.

Proof: See [61].
�

The notion of adjoint enables us to define many concepts crucial in quantum mechanics and quantum
computation.

[Self-adjoint operator] An operator f is self-adjoint if f † = f .

Self-adjoint operators arise in quantum mechanics as physical observables. For instance, angular
momentum, position and spin are all represented by self-adjoint operators on a Hilbert space.

[Positive operator] A self-adjoint operator f is positive if for all x,

〈fx, x〉 = 〈x, fx〉 ≥ 0.

Notation. We will denote that an operator f is positive by f ≥ 0.

[Unitary operator] A unitary operator is a bounded linear operator U : H → H′ such that

U † ◦ U = 1H and U ◦ U † = 1H′

where 1H (resp. 1H′) denotes the identity on H (resp. H′).

Unitary transformations describe the evolution of a particular class of quantum systems.

The following notion will be important when we define the category of finite dimensional Hilbert spaces:

Quantum computing 8

Hilbert spaces

[Conjugate space] The conjugate space of a Hilbert space H is a Hilbert space H∗ with the same
underlying set of vectors as H but where

• The scalar multiplication of z ∈ C with ψ ∈ H∗ is z · ψ taken as in H and

• The inner product 〈φ,ψ〉H∗ is defined as 〈ψ, φ〉H.

Remark 2.1.4 Note that the map

H → H∗ :: φ 7→ φ

is an antilinear isomorphism.

2.1.2 Tensor product

As we will see in section 2.2, if two quantum systems are described by the state vectors φ ∈ H and
ψ ∈ H′, then their compound system is described by the state vector φ⊗ ψ ∈ H⊗H′.

[Tensor product] The tensor product of two vector spaces V1 and V2 is a vector space V1 ⊗ V2

together with a bilinear map

⊗ : V1 × V2 → V1 ⊗ V2 :: (v1, v2) 7→ v1 ⊗ v2

such that for any space W and any bilinear map f : V1 × V2 →W , there is a unique linear map
f̂ satisfying for any pair (v, v′) ∈ V1 × V2,

f(v, v′) = f̂(v ⊗ v′).

In terms of commutative diagram, the defining condition can be expressed as

V1 × V2
⊗ //

f
&&LLLLLLLLLLL

V1 ⊗ V2

f̂
��
W

While this defines the tensor product, it does not proves its existence. The standard construction is
as follows:

• Consider the free vector space F (V × W) generated by V × W i.e., the vector space of linear
combinations of pairs of elements e⊗ f := (f, g) with e ∈ V and f ∈W .

• Define R as the vector space spanned by elements of the form

− (α1e1 + α2e2)⊗ f − α1e1 ⊗ f − α2e2 ⊗ f and

− e⊗ (α1f1 + α2f2)− α1e⊗ f1 − α2e⊗ f2.

The tensor product of V and W is then

V ⊗W := V ×W/R.

The tensor product extends to linear maps as follows:

Quantum computing 9

Hilbert spaces

Proposition 2.1.5 [55] Given linear maps f : V → W and g : V ′ → W ′, there is a unique linear
map f ⊗ g : V ⊗ V ′ →W ⊗W ′ such that for any v ∈ V and v′ ∈ V ′,

(f ⊗ g)(v ⊗ v′) = f(v)⊗ g(v′).

Proof: See [55].
�

Finally,

[Tensor product of Hilbert spaces] Let H1 and H2 be two Hilbert spaces with inner products
〈−,−〉1 and 〈−,−〉2 respectively. The tensor product of H1 and H2 is the vector space H1 ⊗
H2—taken as a tensor product of vector spaces—with inner product 〈−,−〉 defined by linearly
extending

〈φ1 ⊗ φ2, ψ1 ⊗ ψ2〉 := 〈φ1, ψ1〉1〈φ2, ψ2〉2 for all φ1, ψ1 ∈ H1 and φ2, ψ2 ∈ H2

to the whole vector space H1 ⊗H2.

2.1.3 Basis

The notion of basis offers a specification of quantum states by means of a fixed reference relative
to which we work. For instance, in quantum computing, we usually take the so-called standard (or
computational) basis (see below) for fixed reference for the Hilbert space C2. The initial state in which
the computation starts is a vector in that basis and evolution of the system is formulated as a unitary
transformation with respect to that basis.

[Basis] Let H be a Hilbert space. An orthonormal basis for H is a family B := {ei}i of vectors in H
such that

• The elements of B are pairwise orthogonal i.e.: 〈ei, ej〉 = 0 when i 6= j

• Any ei ∈ B satisfies ‖ei ‖= 1.

• The linear span of B is dense in H.

We say that a Hilbert space H is finite-dimensional if it admits a basis B which is finite.

Remark 2.1.6 Whenever H is finite-dimensional, B forms a spanning set for H.

From now on, we will work on finite-dimensional Hilbert spaces. Thus, when we will speak of a Hilbert
space, we implicitly mean a finite-dimensional Hilbert space.

Theorem 2.1.7 Every Hilbert space admits an orthonormal basis.

Proof: See [61].
�

Example 2.1.8 The set of n-tuples of complex numbers

Quantum computing 10

Hilbert spaces

e1 :=

1
0
...
0
0

, e2 :=

0
1
...
0
0

, . . . en :=

0
0
...
0
1

,

defines an orthonormal basis for Cn called the standard basis.

Proposition 2.1.9 Let H and H′ be finite-dimensional Hilbert spaces. Then any linear operator
f : H → H′ is bounded.

Proof: See [61].
�

In particular, this entails that L(H) contains all the linear operators of type H → H when H is
finite-dimensional.

Once we have chosen an orthonormal basis B = {φi}i for H, every vector φ ∈ H can be written as a
unique linear combination of the φi’s i.e.,

φ =
∑

i

z′iφi where z′i := 〈φi, φ〉.

If the basis B contains n elements, the n-tuple

[φ]B :=

z1
z2

...
zn

such that φ =
∑n
i=1 ziφi is the coordinate-vector of φ relative to the basis B. It is not hard to see that

there is a bijection between the vectors of H and the n-tuples of Cn.

Now, given a basis B = {φ1, · · · , φm} and B′ = {ψ1, · · · , ψn} for H and H′ respectively and a linear
operator f : H → H′, then for all i, f(φi) ∈ H′ and hence can be written as a linear combinaison of
the ψi’s:

f(φ1) = z11ψ1 + z21ψ2 + . . . + zn1ψn

f(φ2) = z12ψ1 + z22ψ2 + . . . + zn2ψn
...

...
...

f(φm) = z1mψ1 + z2mψ2 + . . . + znmψn

The table of complex numbers

[f]B
′

B :=

z11 z12 . . . z1m
z21 z22 . . . z2m

...
...

...
...

zn1 zn2 . . . znm

is called the matricial representation of f relative to B and B′. From this, we may denote the entry zij
of a matrix M : Cn → Cm simply by Mij. Again, we see that we have a bijection between the linear
operators f ∈ L(H) and the matrices in Cn×m. Now that we have a matricial representation for linear
operators, we can recast the concepts of the two preceding sections in terms of matrices.

The tensor product of matrices admits a simple form:

Quantum computing 11

Hilbert spaces

[Kronecker product] The Kronecker product M ⊗ N of two matrices M and N is given as first
taking

M ⊗N :=
∑

i,j

(M)ij ·N

abd then removing the parenthesis from the expression. Thus, if M is of dimension n×m and N
of dimension n′ ×m′, M ⊗N can be seen as a block matrix of matrices of dimension nn′×mm′
where the block i, j with 1 ≤ i ≤ n and 1 ≤ j ≤ m is (M)ij ·N .

Example 2.1.10 The Kronecker product
(

a b
c d

)

⊗M =
(

a ·M b ·M
c ·M d ·M

)

thus a matrix of four blocks of dimension equal to the dimension of M .

[Hermitian transpose of a matrix] Let (−)T denote the transposition and (−) pointwise complex
conjugation. The hermitian transpose M † of a complex matrix M is

M † := (M)T = (MT).

The dagger notation for the Hermitian transpose seems to clash with the notation for the adjoint. We
will address this issue below.

Theorem 2.1.11 Let U : H → H be a linear operator, then the following are equivalent:

i. U † = U−1, i.e., U is unitary,

ii. For any φ,ψ ∈ H, 〈Uφ,Uψ〉 = 〈φ,ψ〉.

iii. For any φ ∈ H, ‖Uφ‖=‖φ‖.

Proof: See [61].
�

Thus, as unitary transformations preserve the inner products, it follows that they preserve all the
structures of a Hilbert space. Moreover

Theorem 2.1.12 Given any two orthonormal bases B = {ψ1, ..., ψn} and B′ = {φ1, ..., φn} of a
Hilbert space H, then there exists a unique unitary transformation U : H → H such that φj =
∑

i Uijψi; j = 1, ..., n.

Proof: See [61].
�

Thus, we may think of a unitary transformation as an operator that “rotates” the basis. Following
this, for any fixed basis B for H, the dot product of φ and ψ ∈ H is given by

φ • ψ = [φ]†B [ψ]B

where [φ]†B is the Hermitian transpose of [φ]B . Routine verification shows that the dot product is an
inner product and, moreover, that the adjoint of the matricial representation of an operator is given by
its Hermitian transpose. This inner product is the one commonly used in quantum computation thus,

Quantum computing 12

Hilbert spaces

from now on, we assume that our Hilbert spaces are equipped with the dot product as inner product
which we will denote 〈−,−〉 to align with Dirac notation that we will introduce in the next section.

[Trace] The trace of a square matrix M = (M)ij is defined as the sum of its diagonal elements i.e.,

tr(M) :=
∑

i

(M)ii.

Obviously, the trace is a linear operator. It satisfies the following

Lemma 2.1.13 The trace is cyclic i.e., for any M : C
n → C

m and N : C
m → C

n, we have

Tr(MN) = Tr(NM).

Proof: See [61].
�

In particular, the previous lemma says that for any M and any invertible P ,

Tr(PMP−1) = Tr(P−1PM) = Tr(M).

From this, we see that the trace does not depend upon the choice of basis and we can speak of the
trace of a linear operator f ∈ L(H) i.e., tr(f) = tr([f]B) for any B.

[Partial trace] Let M : C
n ⊗ C

m → C
n ⊗ C

m, then

M = (M)kl,ij 1 ≤ k, i ≤ m, 1 ≤ l, j ≤ n.

The partial trace of M over C
n is defined by

[

TrCn(M)
]

k,i
=
n
∑

j=1

(M)kj,ij.

Again, the partial trace can be defined without references to the basis, i.e., as the unique linear operator

TrH
′

: L(H⊗H′)→ L(H)

such that for all f ∈ L(H) and g ∈ H′,

TrH
′
(f ⊗ g) = Tr(g) · f.

Now, for any m× n matrix M , we have

Tr(M †M) =
∑

ij

‖Mij‖2≥ 0 and Tr(M †M) = 0 implies M = 0.

The assignment

Tr : C
m×n × C

m×n → C :: (A,B) 7→ Tr(A†B)

yields an inner product on the space of complex m × n matrices. More generally, as the trace can
be defined without any reference to the basis, it follows that L(H,H′) is also a Hilbert space when
equipped with the trace as inner product.

The following notions will be needed to define the most general type of operation one can apply on
quantum states.

Quantum computing 13

Quantum computing

[Trace preserving operator] An operatorF : L(H)→ L(H′) is trace-preserving if for any f ∈ L(H),
Tr(f) = Tr(F (f)).

[Completely positive operator] An operator F : L(H)→ L(H′) is completely positive if

i. For any f ∈ L(H) s.t. f ≥ 0, F (f) ≥ 0.

ii. For any H′ and any f ∈ L(H⊗H′) s.t. f ≥ 0, (F ⊗ 1L(H′))(f) ≥ 0.

2.2 Quantum computing

We now bring in the notion of quantum computation, that is, computing using quantum mechanical
phenomena such as superposition and entanglement. As we mentioned in the introduction of this
chapter, the intent is not to give a complete introduction. Most of the definitions and results presented
below are covered in [55] and [63] where the reader is referred for a more detailed introduction to the
subject.

2.2.1 States, state spaces and transformations

In this subsection, we will introduce the concepts needed to describe pure states—a state which can’t be
described as a statistical mixture of other states—evolving in closed quantum systems—systems which
are decoupled from the environment. It is only in the third subsection that we will introduce mixed
states—statistical mixtures of states—and superoperators which are needed to describe evolution in
open quantum systems—quantum systems that interact with a larger environment.

Heuristically, one can think of a classical computer as a device that operates on states built from a
finite number of bits, i.e., the state of a classical computer is an element of B

n := {0, 1}n. Such a set
is finite and has cardinality 2n. In contrast, a quantum computer works with a set of

[Qubits] A qubit is a vector |ψ〉 ∈ C2 (which is Dirac notation for a vector and |ψ〉 reads “ket-ψ”)
i.e.,

|ψ〉 =
∑

i∈B

αi|i〉;
∑

i∈B

|αx|2 = 1.

where {|0〉, |1〉} is an orthonormal basis called the computational basis of the state space C2.
Moreover the coefficients αi are called amplitudes.

Thus, in contrast to classical bits, qubits admit an infinite number of states. Of notable importance
are the states |0〉 and |1〉 i.e., the elements of the computational basis. Indeed, as we shall see later, if
we measure (or observe) a qubit |ψ〉 = α0|0〉 + α1|1〉 in the computational basis, then we will obtain
|i〉 with probability |αi|2. Note that this entails that two states differing by any complex phase eiθ are
indistinguishable, thus are physically the same.

We say that a qubit |ψ〉 = α|0〉 + β|1〉 and different from α|0〉 and β|1〉 is in a superposition of the
states |0〉 and |1〉.
As we have seen, the computational basis on C2 induces an inner product given by the dot product.
Indeed, given a |ψ〉 ∈ C2 its adjoint 〈ψ| := (|ψ〉)† (read “bra-ψ”) is the Hermitian transpose of |ψ〉.
The inner product of |ψ〉 and |φ〉 is then written as

Quantum computing 14

Quantum computing

〈φ|ψ〉 := 〈φ||ψ〉,

the “braket” of φ and ψ. In particular, the states of a qubit are those |ψ〉 ∈ C2 which have norm 1
under this inner product.

Another major difference between classical and quantum computers is the set of transformations they
can apply on their states. While a classical computer operates on states via functions, the trans-
formations on the state of a quantum computer are given by unitary transformations. As such, a
transformation that preserves the norm of a vector: it maps quantum states on quantum states.

Example 2.2.1 The Pauli matrices

σI :=
(

1 0
0 1

)

, σX :=
(

0 1
1 0

)

, σY :=
(

0 −i
i 0

)

and σZ :=
(

1 0
0 −1

)

are all unitary transformations. The CNOT gate

CNOT :=

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

is a unitary transformation.

A compound system of n qubits is a normalised vector of C2n which is usually represented as the n-fold
tensor product of C2 i.e.,

C
2n ≃ (C2)⊗n := C

2 ⊗ . . .⊗ C
2 n times.

On such a space, the computational basis becomes {|i〉 | i ∈ Bn}. Interestingly, it is not true that every
compound system of n qubits can be written as an n-fold tensor product of qubits. Indeed, consider
the Bell state:

|Φ+〉 :=
1√
2

(|00〉+ |11〉) ∈ C
2 ⊗ C

2,

then there exist no |φ〉 and |φ′〉 such that |ψ〉 = |φ〉 ⊗ |φ′〉. A state having this property is said to be
entangled. More generally,

[Entangled state] A quantum state |ψ〉 is entangled if it can’t be written as a tensor product of
states of its components system.

The notion of quantum entanglement is crucial in quantum computing. It implies strong correlations
between qubits (we will clarify this when we speak of quantum measurements). In particular, it
enables quantum teleportation [13], super-dense coding [14], quantum pseudotelepathy games [15],
BBM92 [12], etc. Depending on the number of subsystems, one may speak of bipartite, tripartite or
even n-partite entanglement.

Example 2.2.2 The Bell basis is a basis for C2 ⊗ C2 consisting of four entangled states

|Φ+〉 :=
1√
2

(|00〉+ |11〉), |Φ−〉 :=
1√
2

(|00〉 − |11〉), |Ψ+〉 :=
1√
2

(|01〉+ |10〉)

and |Ψ−〉 :=
1√
2

(|01〉 − |10〉).

Quantum computing 15

Quantum computing

Note that each of these states is equal (up to a phase factor) to (1⊗ σ)|Ψ−〉 where σ is some Pauli
matrix.

2.2.2 Quantum measurements

At the end of a computation, one must measure the state of the system; contrary to what happens
in the deterministic case, a quantum state undergoes a change when measured and the state of the
system immediately after the measurement is determined by the observed value. A first example of
an observable is provided by projector-valued spectra which we now introduce. In chapter 7, we will
consider a generalisation of quantum measurements called Positive Operator Valued Measurement
(POVM) which are described by non-negative self-adjoint operators.

[Projector] A projector P is a self-adjoint idempotent operator.

In particular, the operators |i〉〈i|—the composition of the adjoint of |i〉 and |i〉 itself—are projectors
and are seen to be self-adjoint and idempotent. Every projector defines an orthogonal projection to
some subspace. For instance, consider the projector P := |00〉〈00|+ |01〉〈01|, it projects orthogonally
every vector in C2 ⊗ C2 to the subspace spanned by the vectors |00〉 and |01〉.

Suppose that the state of n qubits is given by

|ψ〉 =
∑

i

αi|i〉.

When a measurement occurs, the probability of finding the system in the state |i〉 is given by the
square of the absolute value of the amplitude αi. Now, any state |ψ〉 ∈ Cn can be written as

|ψ〉 = 1Cn |ψ〉 =

(

∑

i

|i〉〈i|
)

|ψ〉 =
∑

i

〈i|ψ〉|i〉.

Setting αi := 〈i|ψ〉, we have written the state |ψ〉 in the basis {|i〉}i.

[Projector-valued spectrum] A projector-valued spectrum is a set {Pi} consisting of self-adjoint
and mutually orthogonal operators that form a partition of the identity. That is

• For all i, P †i = Pi,

• For all i and j, PiPj = δijPi where δij is the Kronecker delta i.e., δij = 1 when i = j and is
equal to 0 otherwise, and

• ∑

i Pi = 1.

As a particular case, the set {Pi | Pi := |i〉〈i|}i is a projector-valued spectrum. In fact, it is easy to see
that any orthonormal basis {|ψi〉}i gives rise to a projector-valued spectrum {|ψi〉〈ψi|}i.

Example 2.2.3 As we mentioned above, quantum entanglement can be thought of as correlations
between quantum states. Indeed, suppose we measure the leftmost qubit in the Bell state

|Φ+〉 =
1√
2

(|00〉+ |11〉)

using a projector-valued spectrum in the standard basis, i.e., the projectors are respectively P0 :=
|0〉〈0| and P1 := |1〉〈1|. Then, as the second qubit is unaffected by the measurement, we may
measure 0 with probability

Quantum computing 16

Quantum computing

1
2
〈00|(P0 ⊗ I)(P0 ⊗ I)|00〉 =

1
2

and 1 with the same probability. However, the following interesting phenomenon occurs: if we
measure 0, then the state after the measurement is |00〉; otherwise it is |11〉. Thus, both qubits are
now in the same state and this, despite the fact that we did not measure the second qubit.

2.2.3 Mixed states and superoperator

So far, we spoke of the evolution of closed quantum systems, it might occur that a quantum system
leaks information to the environment in an irreversible manner. An extreme case of this is called
quantum decoherence where the system undergoes an irreversible degradation so that it becomes
some basis state with a given classical probability—this in contrast with the probability given by the
amplitudes of a quantum state that we could refer to as “quantum”. Therefore, it makes sense to define
a generalisation of the notion of state described by a probabilistic mixture of quantum states.

[Ensemble of pure states] An ensemble of pure states is a set {(pi, |ψi〉)}i where {pi} is a set of
probabilities with

∑

i pi = 1 and for all i, |ψi〉 is a state vector.

From this, it is possible to give an operator describing such an ensemble. Indeed,

[Density operator] Given an ensemble of pure states {pi, |ψi〉}, the density operator (or density

matrix) ρ associated to {pi, |ψi〉} is

ρ =
∑

i

pi|ψi〉〈ψi|.

We can interpret a density operator as a probabilistic mixture of the states |ψi〉. In that sense, a state
described by a density operator is called a mixed state and a density operator of rank 1, i.e., that can
be written as |ψ〉〈ψ| for some state |ψ〉, is called a pure state.

Proposition 2.2.4 Density operators are positive self-adjoint operators of unit trace.

Proof: See [63].
�

A unitary transformation still gives the evolution of a system described by a density operator; it acts
on a density operator ρ =

∑

i pi|ψi〉〈ψi| as
∑

i

pi|ψi〉〈ψi| U7→
∑

i

piU |ψi〉〈ψi|U †.

If ρ describes a system where we have |ψj〉 with probability pj, then after applying U , the system is
in the state U |ψj〉 with probability pj.

For measurements, a projector valued spectrum P = {Pi} acts on a density operator ρ as

ρ
P7→

∑

i

PiρP
†
i =

∑

i

PiρPi.

Now, unitary transformations and measurements are but two instances of a more general kind of
transformation that one can apply on a mixed state. These transformations, known as superoperators,
consist of all the physically realisable operations one can apply on a mixed state. Formally,

Quantum computing 17

Quantum computing

[Superoperator] A superoperator is a linear map F : L(H) → L(H′) which satisfies the following
two equivalent conditions:

1. F is a trace-preserving completely positive map,

2. there exists a set of matrices {Fi : H → H′}i—the Kraus operators—such that
∑

i F
†
i Fi = 1H

and

F (ρ) :=
∑

i

FiρF
†
i

for all ρ : H → H.

The partial trace is another instance of a superoperator [66]. Suppose that a mixed state is
described by a density operator on H⊗H′, then the restriction of ρ on the subsystem H is given
by

ρH = trH′ρ.

Another instance of a superoperator that we shall see in the forthcoming chapters is quantum
decoherence [78]. As mentioned above, such a phenomenon describes the irreversible transfor-
mation of a quantum state into a state in the basis of the decoherence caused by the interaction
of the quantum state with the environment. Such a process can be thought of as a measurement
where the observer forgets about the outcome. Formally, decoherence acts on a density operator
as follows:

ρ =
∑

i,j

αi,j|i〉〈j| 7→
∑

i

αii|i〉〈i|.

Such an action is described by the following sequence of operations:

1. First, we assign an ancilla to ρ. This ancilla is thought of as the state of the environment.

ρ 7→ ρ⊗ |0〉〈0|.

2. We apply a CNOT to couple ρ with the environment. This is

ρ⊗ |0〉〈0| 7→
∑

i,j

αi,j |ii〉〈jj|.

3. Finally, we trace out the environment, as it is essentially inaccessible in terms of measure-
ments. This gives

∑

k

αkk|k〉〈k|.

Remark 2.2.5 The operation that we use to couple the density operator with the environment
is not a cloning operation. It duplicates only the basis vector. In other words, it can be
thought of as an isometry of the form

∑

i

|ii〉〈i|.

Quantum computing 18

Quantum computing

[Completely mixed state] The completely mixed state on C
n is the density operator ⊥n :=

n−1
∑

i |i〉〈i|.

Remark 2.2.6 The completely mixed state is diagonal in all bases, i.e., for any unitary trans-
formation U , U(⊥)U † = ⊥ hence, it makes sense to speak of the completely mixed state of
L(H) even if H is not equipped with a basis.

[Maximally entangled state] A state |ψ〉 ∈ H ⊗H is maximally entangled if

(1H ⊗ trH)(|ψ〉〈ψ|) = ⊥H.

Indeed, such a definition makes sense; as entanglement stands for strong correlations between
qubits and tracing out a qubit is essentially the same as discarding it, we can infer that given
two maximally entangled qubits, if we trace one of the two, the outcomes on the remaining qubit
are all equally likely. Thus, we obtain the completely mixed state. Such a fact is easily seen to
generalise to qupits i.e., p-level quantum states.

3 Category theory

In this chapter, we introduce the basic notions of category theory: the notions of category,
functors and natural transformations. This introduction is fairly concise; for a more complete
introduction, the reader is referred to [58], the standard reference, or to [35] which the author
wrote with B. Coecke which is intended for physicists.

The definition of a category is quite simple but requires a different standpoint from the one we
may be used to: Indeed, most mathematical concepts are usually defined as a structure on some
set; for instance:

− A group is a set G closed under an associative binary operation

· : G×G→ G

possessing a two-sided identity element for · and where each element is invertible with respect
to ·.

− A vector space V over a field K is a set equipped with two binary operations, addition and
scalar multiplication, and whose elements satisfy the usual axioms.

However, in category theory, the definitions are centred around the notion of transformation of
structures usually called morphisms or arrows. For instance, paralleling the two examples above,
the main defining ingredient of the categories of groups and the category of vector spaces would
respectively be

− Homomorphisms between groups.

− Linear transformations between vector spaces.

From the notion of transformation of structure, it is natural to take an operational standpoint
from which it is quite simple to understand the essence of a category.

3.1 Categories

First, to describe a category C, we need the notion of structure, or operationally speaking,
systems to transform; let us label the collection of such systems by |C| and individual systems
therein by A,B,C, ... which are called objects.
Next, we need the notion of transformation between objects. Let us denote a transformation
f from the object A to the object B by f : A → B. Further, one can apply sequentially the

Category theory 20

Categories

transformations f : A → B and g : B → C yielding the composite transformation g ◦ f :
A → B → C. Also, in each of our two motivating examples, for any object A there is a trivial
transformation, the identity on A denoted as

1A : A→ A.

It acts as an identity on arrows i.e., for f : A→ B and g : C → A, we have

f = f ◦ 1A : A→ B and g = 1A ◦ g : C → A.

We have just introduced the notion of composition via sequentiality and, more subtly, the notion
of types. Indeed, the objects can be used as types for the arrows thus, for instance, an arrow
f : A → B has type A → B. Types prevent silly mistakes: for instance, consider the arrow
g′ : C → D, in this case, the composition g′ ◦ f makes no sense because it means that one is
trying to apply the transformation g′ with inpu—domain—C on the output—codomain—of the
transformation f which is B. These two systems might be of very different nature as the types
mismatch; hence, this composition is not valid. Thus, we require that composition makes sense,
meaning that g ◦ f holds whenever the codomain of f is the same as the domain of g. Thus, a
morphism f is really a triple consisting of f its domain and its codomain.

Also, in a category, we require the composition to be associative: This means that if f : A→ B,
g : B → C and h : C → D, then

(h ◦ g) ◦ f = h ◦ (g ◦ f).

Now, while outlining some expected properties of transformations, we have stated informally the
definition of a category. In formal terms:

[Category] A category C consists of

1. A class |C| of objects.

2. For any A,B ∈ |C|, a set C(A,B) of morphisms from A to B.

3. For any A,B,C ∈ |C| a composition law.

◦ : C(A,B)×C(B,C)→ C(A,C); (f, g) 7→ g ◦ f

satisfying:

i. Identity for the composition: For any A ∈ |C|, there exists a morphism 1A ∈
C(A,A) called the identity morphism for A such that for every f : A → B and
g : C → A,

f = f ◦ 1A : A→ B and g = 1A ◦ g : C → A.

ii. Associativity of the composition: For any f ∈ C(A,B), g ∈ C(B,C) and h ∈
C(B,C),

h ◦ (g ◦ f) = (h ◦ g) ◦ f

Let us now give a few concrete examples of the rather abstract previous definition:

Category theory 21

Categories

Example 3.1.1 The category Set of sets and functions, has

1. For objects, the members of the class |Set| of all sets,

2. Functions as morphisms and

3. The composition law is given by the composition of functions and satisfies all the defining
axioms of a category:

i. For any set X, there is an identity function 1X : X → X.

ii. The composition of function is associative.

Thus, Set is a category.

Example 3.1.2 The category FdVect of finite dimensional vector spaces over C, has

1. For objects, the members of the class |FdVect| of all complex vectors spaces,

2. For morphisms all linear maps between such vector spaces,

3. The composition is just the regular composition of linear maps. Again, we just need to
check that all conditions of definition of a category are satisfied. Indeed, the composition
of two linear maps is again linear. Moreover,

i. There is an identity map 1V for any complex vector space V ∈ |FdVect| satisfying
the obvious properties.

ii. The composition of linear maps is—of course—associative.

Since all requirements of definition of a category are satisfied, FdVect is, indeed, a category.

Example 3.1.3 The category Grp of groups and group homomorphisms, with:

1. |Grp| as the class of all groups,

2. Group homomorphisms between them as morphisms and

3. The composition is given as the regular composition of group homomorphism with identi-
ties given by the identity homomorphisms. The defining axioms of a category are evidently
satisfied.

Example 3.1.4 A single group 〈G, ·, 1〉 can also be seen as a category G. Indeed, it suffices
to consider a category with a single object denoted ∗ and each g ∈ G becomes a morphism
g : ∗ → ∗ in G. The group operation · : G×G→ G becomes the composition ◦ : G×G→G.
By definition, G has a two-sided identity 1 for the operation · which becomes the identity
morphism 1∗ : ∗ → ∗ in G and the group operation is associative, thus making the composition
in G associative. It follows that G is indeed a category.

Example 3.1.5 The category Hilb of Hilbert spaces:

Category theory 22

Categories

1. Its objects are the members of the class |Hilb| of all Hilbert spaces,

2. Bounded linear maps between them as morphisms and

3. The identity is a bounded linear map and the composition is just the regular composition
of linear maps. The defining axiom of a category are again obviously satisfied.

Example 3.1.6 The category MatR with natural numbers as objects and matrices with real
values as morphisms. A morphism of type n→ m therein is simply an m×n real matrix. The
identity for n is given by the n×n identity matrix and composition by matrix multiplication.

We now introduce our second1 main example, the category Rel of sets and relations. As we
assume that the reader is already acquainted with finite dimensional Hilbert spaces, we will use
this category to introduce most notions with detailed calculations.

Recall that a relation R : X → Y between the sets X and Y is a subset of the set of all their
pairs i.e., R ⊆ X×Y . Given element (x, y) of that subset, we say that x ∈ X is related to y ∈ Y
and we denote this as xRy. Typically, we will denote a relation R by its graph:

R := {(x, y) | xRy}.

Example 3.1.7 The category Rel of sets and relations with:

1. Objects, the members of the class |Rel| of sets,

2. As morphisms relations between sets and

3. Given two relations R1 : X → Y and R2 : Y → Z, their composite R2 ◦ R1 ⊆ X × Z is
defined as

R2 ◦R1 := {(x, z) | there exists a y ∈ Y such that xR1y and yR2z]}.

Moreover

i. For any set X ∈ |Rel|, we have an identity relation

1X := {(x, x) | x ∈ X}.

ii. This composition is manifestly associative.

We can already define some morphisms having special properties. For instance, we can define
the notion of isomorphism:

[Isomorphism] Given a category C. Two objects A,B ∈ |C| are isomorphic if there exists
morphisms f ∈ C(A,B) and g ∈ C(B,A) such that g ◦ f = 1A and f ◦ g = 1B. The
morphism f is then called an isomorphism and its inverse g is denoted as f−1.

The singleton {∗} ∈ |Set|—unique up to isomorphism—has an interesting property; given a set
A ∈ |Set|, a function f : A → {∗} must map all the elements of A unto ∗, the unique element

The first being the category FdHilb yet to be introduced!1

Category theory 23

Quotient category

of {∗}. It follows that f is unique or, in other terms, C(A, {∗}) is a singleton for any set A.
Generalising the concept to an arbitrary category, we have

[Terminal object] An object ⊤ ∈ |C| is terminal in C if for any A ∈ |C|, the set C(A,⊤) is
a singleton.

The notion of terminal object enables in its turn the notion of element. Before defining this,
let us note that given a set X ∈ |Set| and some fixed element x ∈ X, a function x : {∗} → X

maps the unique element of {∗} unto a unique element—say x—of X. Hence, if X contains n
elements, there are n functions of type {∗} → X each corresponding to the element to which ∗
is mapped. In more general terms, if a category C has a terminal object ⊤, then a map ⊤ → A

in C is called an element of A. However, one must be careful with this: an object in C is not
necessarily determined by its elements.

We can also introduce the concept dual to the one of terminal object, i.e., the notion of an initial

object. Consider the empty set ∅ ∈ |Set| then, for every set A there is a unique function ∅ → A

whose graph is ∅ = ∅ ×A, the empty function. Generalising, one gets the notion of

[Initial object] An object ⊥ ∈ |C| is initial in C if for any A ∈ |C|, the set C(⊥, A) is a
singleton.

3.2 Quotient category

Given an equivalence relation ∼ on a set X, we can define the set of all equivalence classes of X.
The resulting set, usually denoted X/ ∼ is then called the quotient set of X by ∼. For instance
the set of integers modulo 2 consists of two equivalence classes: the sets of even numbers and of
odd numbers. In category theory, a quotient category is obtained from a category by identifying
morphisms through a congruence relation therein. Such a construction will be used only once in
this dissertation so we will give a swift introduction to the concept.

First we need the notion of congruence relation. This is just an equivalence relation compatible
with some structure; in our case, it needs to be compatible with the categorical structure.

[Congruence relation] Let C be a category. A congruence relation R on C consists of an
equivalence relation RA,B on C(A,B) for any A,B ∈ |C| such that if

• f, f ′ : A→ B are such that fRA,Bf ′ and

• g, g′ : B → C are such that gRB,Cg′,

then g ◦ fRA,Cg′ ◦ f ′.

Having a congruence relation, we may define

[Quotient category] Given a congruence relation R on C, the quotient category C/R is the
category with the same objects as C and whose morphisms are the equivalence classes of
morphisms of C with respect to R i.e., for any A,B ∈ |C|,

C/R(A,B) := C(A,B)/RA,B.

Example 3.2.1 We know that a group G can be seen as a category G with one object. If we
are given a congruence relation R on G, then the congruence is determined by those elements

Category theory 24

Functors

congruent to the identity so that R a normal subgroup of G. Lifting the notion to categories,
the morphisms of the quotient category of G/R are the equivalence classes of the morphisms
which are the equivalence classes of G modulo R.

3.3 Functors

Clearly, a category is itself a mathematical structure. Hence, one may consider transforma-
tions between categories. These transformations, called functors, must preserve identities and
composition which is nothing but the structure of a category.

We will introduce the notion of functors via the example of linear representation; it is, in fact,
more than ‘just’ a functor, but it is good enough for our purposes. A representation of a group
G on a vector space V—say, over C—is a group homomorphism from G to GL(V), the general
linear group on V i.e, the group of all automorphisms of V . That is a map

ρ : G→ GL(V)

such that

ρ(g1 · g2) = ρ(g1) ◦ ρ(g2), for all g1, g2 ∈ G.

The passage from this definition to a category theoretic one is quite smooth using examples 3.1.2
and 3.1.4. Indeed, consider G as the category G and the following morphism of categories
(functor):

Rρ : G→ FdVect.

In order to be consistent with group representations, Rρ must

1. Select an object V ∈ FdVect and map ∗ on V thus defining a mapping

Rρ : |G| → |FdVect|; ∗ 7→ V

between the objects of the two categories.

2. It must also define a group homomorphism G → GL(V) which maps every morphism g ∈
G(∗, ∗) to an invertible linear transformation of V that is, an automorphism of V 2. This
yields a map

Rρ : G(∗, ∗)→ FdVect(Rρ(∗), Rρ(∗)); g 7→ ρ(g)

between the morphisms of the two categories.

Note that since this mapping is a group homomorphism, it must preserve the composition: from
group multiplication in G to composition of linear maps in FdVect. It must also preserve the
identities i.e., 1∗ 7→ 1V . All in all, it preserves the categorical structure.

Having this example in mind, we infer that a functor must consist of two mappings, one on the
objects and the other on the morphisms. Moreover, the latter mapping must preserve both the
identities and the composition. We get:

This is where Rρ isn’t ‘just’ a functor as we said above. Indeed, if it were just a functor, it would have to send the group2

elements to linear maps i.e., not necessarily to invertible ones.

Category theory 25

Functors

[Functor] Let C and D be categories, a functor F : C→ D consists of

1. A mapping

|C| → |D|;A 7→ F (A)

2. For any A,B ∈ |C|, a mapping

C(A,B)→ D(F (A), F (B)); f 7→ F (f)

subject to

i. Preservation of the composition: For any f ∈ C(A,B) and g ∈ C(B,C),

F (g ◦ f) = F (g) ◦ F (f)

ii. Preservation of identities: For any A ∈ |C|,

F (1A) = 1F (A)

Remark 3.3.1 To avoid cluttering the notation, we now drop the parentheses unless they are
necessary. For instance, F (A) and F (f) will be denoted simply as FA and Ff .

Manifestly, the composition of functors is a functor; such a composition is associative and to
each category, one can define an identity functor. Using this, we can define another category:

[Cat] The category Cat has for class of objects all (small3) categories and for morphisms,
functors between them.

Functors enable us to define the notion of isomorphism of categories in an obvious sense i.e., an
isomorphism of categories is a functor F : C→ D for which there is a functor G : D → C such
that

G ◦ F = 1C and F ◦G = 1D

where 1C : C → C and 1D : D → D are identity functors. In such a case, the functor G is a
two-sided inverse for F and is denoted as F−1. Equivalently, one could say that an isomorphism
of categories is a functor F : C → D which is a bijection on both objects and morphisms.
We may also define weaker notions. For instance the two following definitions describe functors
whose morphism assignments are injective and surjective respectively.

[Faithful functor] A functor F : C → D is faithful if for any pair A,B ∈ |C| and any pair
f, f ′ : A→ B, Ff = Ff ′ : FA→ FB implies f = f ′.

[Full functor] A functor F : C→ D is full if for any pair A,B ∈ |C| and any g : FA→ FB,
there exists an f : A→ B such that Ff = g.

[Subcategory] A subcategory D of C is a collection of objects and morphisms of C such that

There are cardinality issues here. Without going into the details, a small category C is a category where both |C| and3

the collection of arrows are sets. We prefer to avoid such issues here; for more details, the reader is referred to [58] pp.

22–24.

Category theory 26

Functors

i. For every morphism f : A→ B in D, both A and B ∈ |D|,

ii. For every A ∈ |D|, 1A is in D and

iii. For every pair of composable morphisms f and g in D, g ◦ f is in D.

The conditions in the previous definition manifestly insure that D is itself a category. The
inclusion functor F : D→ C defined by

• A 7→ FA = A and

• f 7→ Ff = f

is faithful. If in addition F is full, then we say that D is a full subcategory of C.

Before giving another example of functor, we need to introduce yet another concept which is,
simply put, the process of reversing the arrows of a given category C. We start by an example
to illustrate the need of such a process:

Consider the operation of transposition in MatR:

1. It preserves the identities as they are equal to their transpose,

2. It reverses the arrow as if M : m→ n, then MT has type n→ m and

3. It preserves the composition “up to” reversal of the arrows as for any real matrix M : m→ n

and N : n→ p,

(N ◦M)T = MT ◦NT : p→ m.

In fact, this sort of behaviours define a special type of morphism of categories called contravariant

functors, i.e., functors preserving composition up to reversal of the arrows.

To formally define the notion of “reversal of arrows”, we introduce the notion of

[Opposite category] Give a category C, its opposite category Cop has:

1. The same objects as C,

2. The morphisms Cop are in one-to-one correspondence with the morphisms C. In details,
given any f ∈ C(A,B), then we have a corresponding f op ∈ Cop(B,A) which is called
the opposite morphism to f in C.

3. The composition in Cop is defined as the opposite composition defined in C that is, if
g ◦ f is defined in C then:

(g ◦ f)op = f op ◦ gop

is defined in Cop making it a category.

Of course, the operation (−)op is self-inverse—reversing the arrows twice is the same as doing
nothing.

Remark 3.3.2 The process of reversing the arrows is sometimes indicated by the prefix “co”
(e.g.: comonoid) indicating that the defining equations for those structures are the same as

Category theory 27

Natural transformations

the defining equations for the original structure (e.g.: monoid) but with arrows reversed. The
process of reversing arrows is called categorical dualisation [58].

Following this, we can define a contravariant functor as a functor that reverses the arrows and
the order of the composition with respect to its domain category, thus formally defining the
concept that we outlined for real matrices.

[Contravariant functor] A contravariant functor F : C→ D associates

1. To each A ∈ |C| an object FA ∈ |D| and

2. To each f ∈ C(A,B) a morphism Ff ∈ D(FB,FA) such that

i. F (g ◦ f) = Ff ◦ Fg ∈ D(FC,FA) for all f ∈ C(A,B) and g ∈ C(B,C) and

ii. F1A = 1FA for every A ∈ |C|.

As opposed to contravariant functors, ordinary functors are often called covariant functors; in
what follows, we will generally denote contravariant functors C → D as covariant functors of
type

Cop → D.

Example 3.3.3 Another example of contravariant functor is the identity-on-objects functor
“dagger” that maps every bounded linear map on its adjoint. Indeed, it is a functor

† : Hilbop → Hilb

which acts as:

1. An identity-on-objects that is

† : |Hilb|op → |Hilb|;H 7→ H for all H ∈ |Hilb|op

2. To each f ∈ Hilb(H,H′) it associates its adjoint †(f) := f † ∈ Hilb(H′,H). Such an
assignment satisfies:

i. (g ◦ f)† = f † ◦ g† for all f ∈ Hilb(H,H′) and g ∈ Hilb(H′,H′′),

ii. 1†H = 1H for every H ∈ |Hilb|.

3.4 Natural transformations

Before carrying on with natural transformations—and as it will be used extensively here and
after—we introduce the important notion of Commutative diagrams. These diagrams constitute
a convenient visual aid for equations and become powerful tools when they are used in a technique
of proof called diagram chasing that we will use below. Given an equation, say

g ◦ f = h with f : A→ B, g : B → C and h : A→ C

the corresponding commutative diagram is

Category theory 28

Natural transformations

A
f //

h

��?
??

??
??

??
?

??
??

?
??

B

g

��
C

which says that if we compose the arrow f with the arrow g, it is equal to the arrow h; in fact,
the commutation of the diagram is insured by the equality g ◦ f = h in that case. Formally,

[Commutative diagram] A commutative diagram is a diagram of objects and morphisms
such that any directed path consisting of compositions of morphisms between any two
chosen objects of the diagram are equal under composition.

Using this, we can now speak of transformation between functors. These transformations are
called natural transformations. In order to introduce these, let us return to our motivating
example for functors namely: group representations. Given vector spaces V and W , two repre-
sentations

ρ1 : G→ GL(V) and ρ2 : G→ GL(W)

are equivalent if there exists an isomorphism τ : V →W so that for all g ∈ G, τ ◦ρ1(g) = ρ2(g)◦τ .
It turns out that this isomorphism is an example of a natural transformation. Taking the
functorial point of view for the two representations above, we get two functors

Rρ1 : G→ FdVect and Rρ2 : G→ FdVect

where Rρ1 applies ∗ on V and Rρ2 applies ∗ on W and morphisms are transformed in the same
manner as ρ1 and ρ2 dictates. The defining condition for the equivalence condition reduces to
the commutation of the following diagram:

Rρ1(∗) τ∗ //

Rρ1g

��

Rρ2(∗)

Rρ2g

��
Rρ1(∗) τ∗

// Rρ2(∗)

It should be noted that although this natural transformation is also an isomorphism, this may
not be the case in general. Also, note that the domain and the codomain—categories—of both
functors coincide and that the natural transformation is a function τ : Rρ1 ⇒ Rρ2 i.e., it maps
one functor to the other while respecting the composition of morphisms; for this reason, natural
transformations are sometimes called morphisms of functors. The formal definition is as follows:

[Natural transformation] Let F,G : C→ D be functors. A natural transformation τ : F ⇒
G associates to any A ∈ C a morphism

τA : FA→ GA (3.1)

in D, the component of τ at A, such that for any f ∈ C(A,B), the diagram

Category theory 29

Natural transformations

FA
τA //

Ff

��

GA

Gf

��
FB τB

// GB

(3.2)

commutes. Moreover, we say that a natural transformation τ is a natural isomorphism if
its components are isomorphisms.

Example 3.4.1 For every V ∈ FdVect with V ∗ the dual of V , the map

Φ : V → V ∗∗

defined by (Φ(−))(φ) = φ(−) for all linear functional φ ∈ V ∗ is a natural isomorphism
φ : 1 ⇒ (−)∗∗ from the identity functor to the double dual functor. Importantly, note that
this map does not depend on a choice of basis on V .

Example 3.4.2 Along the same line, a non-example: Every finite dimensional vector space is
isomorphic to its dual; however, an isomorphism ψ : V → V ∗ can’t be natural: it relies on
an (arbitrary) choice of basis which means that (3.2) will not be satisfied, in contrast to the
natural transformation φ of the preceding example.

Remark 3.4.3 Although we have used double arrows to describe a natural transformation
τ : F ⇒ G, in what follows we may denote it only as τ : F → G if the context is clear.

4 †-Monoidal categories

The notions presented in the preceding chapter are not rich enough for our context. For instance,
these are not sufficient to express the notion of compound system or the notion of adjoints. The
bulk of this chapter is used to introduce monoidal categories together with the associated notions
that we will use later in this dissertation. The plan is as follows:

First, we will define formally the product of categories in order to introduce the notion of
monoidal categories; that is, a category that comes equipped with a bifunctor that provides
a categorical notion of tensor product. Such a notion is the second most fundamental concept in
our exposition after the notion of category. The notion of monoidal product is broad enough to
axiomatise the tensor product of vector spaces, of modules and other notions of tensor products.

The notion of monoidal category is a fairly complicated one, in the sense that we have to take
in account a few natural isomorphisms and coherence conditions. Fortunately, however, every
monoidal category is equivalent to a strict monoidal category where these natural isomorphisms
are identities. We will give the necessary definitions and state the results that provide us with
this equivalence. This will enables us to work in “strict” monoidal categories in the following
chapter, that is, a monoidal category where most of the coherence conditions hold trivially.

We will then introduce the notion of traced monoidal categories, this is, a monoidal category
that comes with a family of functions acting on the homsets that provide a generalisation of the
standard trace in linear algebra.

Next, we will introduce two internal structures that might exist in a monoidal category i.e., the
notion of internal monoid and the notion of internal comonoid. These two structures will be
used extensively when we will define the notion of basis objects in chapter 6.

The sixth section of this chapter discusses the monoid of scalars in a monoidal category and its
properties; the notion of scalar is essential in our context as it provides us with a quantitative
aspect to our theory. For instance, as we shall see later, the structural witnesses of the quantum
structure aren’t normalised even in FdHilb. Therefore, when we will expose protocols, scalars
will enable us to normalise states in the same way as in conventional quantum computation.

Then, we will introduce the notion of †-monoidal categories. The dagger structure is an involu-
tive, identity-on-objects contravariant functor that coherently preserves the monoidal structure.
The operation that associates to each bounded linear map f ∈ Hilb its adjoint f † is an instance
of dagger structure turning Hilb into a †-monoidal category.

Moreover, we will introduce the graphical calculus we spoke of in the introduction. First, we will
introduce the graphical calculus for monoidal category, then, at the end of the chapter, we will
enrich it with the suitable notions to accommodate †-monoidal categories.

†-Monoidal categories 31

Product of categories

Again, for the first half of the chapter, we follow the standard presentation. For more details,
we refer the reader to [58] or [35].

4.1 Product of categories

Before we actually get to new structures within categories, we need to introduce one at the level
of categories themselves.

[Product of categories] Let C and D be categories. The product of C and D is the category
C×D which consists of

− Objects: Ordered pairs (C,D) with C ∈ |C| and D ∈ |D|

− Morphisms: Ordered pairs (f, g) : (C,D) → (C ′,D′), with f : C → C ′ in C and
g : D → D′ in D. Identities are given by 1(A,B) := (1A, 1B) and the composition of
morphisms is defined pointwise i.e.,

(f ′, g′) ◦ (f, g) := (f ′ ◦ f, g′ ◦ g).

We will also encounter functors of type

F : C×D→ E.

Such functors are called bifunctors i.e., functors in each of their arguments.

4.2 Monoidal categories

In this section, we introduce one of the most basic product structure that a category can have:
the monoidal product. The categorical notion of product, coproduct and biproduct are particular
instances of monoidal products with some extra structure (see [58] and [35]).

In order to introduce the notion of monoidal category, we will again start by working with
an example: the tensor product of Hilbert spaces4. We will argue in broad terms that the
assignments

(H,H′) 7→ H ⊗H′ and (f, g) 7→ f ⊗ g

defines a bifunctor

⊗ : FdHilb × FdHilb→ FdHilb.

Consider the Hilbert spaces Ha and Hb associated to two quantum particles a and b and the
Hilbert space Ha ⊗ Hb which describes the compound system of a and b. Suppose we apply
some unitary transformation Ua : Ha → Ha on the particle a and the unitary transformation
Ub : Hb →Hb on the particle b, then this is the same thing as applying the transformation

Ua ⊗ Ub : Ha ⊗Hb →Ha ⊗Hb

Strictly speaking, we will only speak of the tensor product of vector spaces here but we make the abuse of language to4

stay within our context, the notion of pairing being introduced in the next chapter.

†-Monoidal categories 32

Monoidal categories

on the compound system of the two particles. Now, note that applying Ua first and then Ub
second or vice versa is the same as applying Ua⊗Ub simultaneously; this yield the following well
known identity:

Ua ⊗ Ub = (1Ha ⊗ Ub) ◦ (Ua ⊗ 1Hb) = (Ua ⊗ 1Hb) ◦ (1Ha ⊗ Ub)

showing some “atemporal” features—or bifunctoriality—of the tensor product. Thus, the tensor
product may be seen as some kind of “lateral” composition or, in other words, a way to compose
systems and the operations on them.

There are other things to expect from the tensor product. In the category of finite dimensional
complex Hilbert spaces, the tensor product also has an identity, namely, the complex field.
Indeed, for any Hilbert space H, the following holds:

H ≃ H⊗ C ≃ C⊗H.

which states that C acts both as a left and a right unit for the tensor product of objects. In
other words, for every H, there is a pair of natural isomorphisms

λH : C⊗H ∼→ H and ρH : H⊗ C
∼→H.

Second, the tensor product has to be associative or else we would run into some serious prob-
lems. Categorically, this means that for each triple of objects H1,H2 and H3 there is a natural
isomorphism

α1,2;3 : (H1 ⊗H2)⊗H3
∼→H1 ⊗ (H2 ⊗H3).

Finally, still in the category of finite dimensional Hilbert spaces, the tensor product is symmetric,
which means that for any pair of objects H1 and H2, we have yet another natural isomorphism

σ1,2 : H1 ⊗H2
∼→ H2 ⊗H1.

Before giving a precise definition of a monoidal category, let us recall the set-theoretical notion
of monoid: it is a set M equipped with an associative binary operation · : M ×M →M and an
identity e for that operation. For instance, given an alphabet A = {a, b, c, ...}, define M = A∗ as
the set of all finite words on A, then M together with the concatenation for operation and the
empty string ǫ acting as an identity is a monoid.

Lifting the notion to the level of category, a monoidal category is, broadly speaking, a monoid at
the level of the objects and a sort of “typed” generalisation of a monoid at the level of morphisms.
Formally,

[Monoidal category] A monoidal category 〈C,⊗, I, α, λ, ρ〉 consists of

1. A category C,

2. A bifunctor ⊗ : C×C→ C,

3. An object I ∈ |C| and

4. Three natural isomorphisms:

i. Associativity isomorphism:

†-Monoidal categories 33

Monoidal categories

αA,B;C : A⊗ (B ⊗ C) ∼→ (A⊗B)⊗ C

natural for all A,B and C ∈ |C|, and such that the pentagon

A⊗ (B ⊗ (C ⊗D)) α //

1⊗α
��

(A⊗ B)⊗ (C ⊗D) α // ((A⊗ B)⊗ C)⊗D

A⊗ ((B ⊗ C)⊗D) α
// (A⊗ (B ⊗ C))⊗D

α⊗1

OO

commutes for all A,B,C and D ∈ |C|.
ii. Left unit:

λ : I ⊗A ∼→ A

iii. Right unit:

ρ : A⊗ I ∼→ A

both natural for all A ∈ |C| and such that the triangle

A⊗ (I ⊗B) α //

1⊗λ ((QQQQQQQQQQQQ
(A⊗ I)⊗B

ρ⊗1

��
A⊗B

commutes for all A and B ∈ |C|.
iv. λI = ρI : I ⊗ I → I

Moreover, C is symmetric monoidal if for any pair of object A,B ∈ |C|, there is a natural
isomorphism

σA,B : A⊗B ∼→ B ⊗A

such that for all A,B,C ∈ |C|,

A⊗B
σA,B //

KKKKKKKKK

KKKKKKKKK
B ⊗A

σB,A

��
,

A⊗ I
σA,I //

ρ
$$JJJJJJJJJJ
I ⊗A
λ

��
A⊗B A

and

A⊗ (B ⊗ C) α //

1A⊗σB,C
��

(A⊗B)⊗ C
σ(A⊗B),C // C ⊗ (A⊗ B)

α

��
A⊗ (C ⊗B) α

// (A⊗ C)⊗ B
σA,B⊗1C

// (C ⊗A) ⊗B

commute.

Remark 4.2.1 Note that the defining diagrams of the previous definition spells out how the
various natural isomorphisms relate coherently one with respect to the other.

†-Monoidal categories 34

Monoidal categories

[Strict monoidal category] A monoidal category 〈C,⊗, I, α, λ, ρ〉 is strict if the natural iso-
morphisms α, λ and ρ are identities.

We shall see in the next section that every monoidal category is monoidally equivalent to a strict
monoidal category i.e., for all practical purposes, they are essentially the same.

Example 4.2.2 The category FdVect is symmetric monoidal. Indeed, the natural isomor-
phisms are:

− Associativity:

αV1,V2;V3 : (V1 ⊗ V2)⊗ V3
∼−→ V1 ⊗ (V2 ⊗ V3); (v′ ⊗ v′′)⊗ v′′′ 7→ v′ ⊗ (v′′ ⊗ v′′′),

− Left unit:

λV : C⊗ V ∼−→ V ; z ⊗ v 7→ zv

and it’s inverse is given by

λ−1
V : V ∼−→ C⊗ V ; v 7→ 1⊗ v

− Right unit: is defined analogously to the left unit.

− Symmetry:

σV1,V2 : V1 ⊗ V2
∼−→ V2 ⊗ V1; v′ ⊗ v′′ 7→ v′′ ⊗ v′

The fact that they meet the requirement is obvious from the definitions.

The category FdVect is also a symmetric monoidal category with the direct sum as monoidal
product and the 0 vector space as monoidal unit. For a detailed description of this fact see [35].

We can single out vectors in FdVect: consider a vector space V ∈ |FdVect| and a morphism

ψ : C→ V. (4.1)

This morphism ψ is a linear map with a precise image at 1, say ψ(1) = v. It turns out that this
is the unique morphism that has this image; the reader can easily prove that there can’t be two
such morphisms using linearity. Hence, there is a bijection between the vectors of V and the
linear maps of type C→ V and again, we can define concepts with the use of morphism without
using elements themselves.

Remark 4.2.3 Even if we can single out elements with the tensor unit C ∈ |FdVect|, it is not

a terminal object in that category and that in contrast with what we did in Set to single out
elements.

Example 4.2.4 The category Set is a symmetric monoidal category with both the Cartesian
product and {∗} as unit and the disjoint union with ∅ as unit. For a detailed description of
these particular monoidal products, see [35].

The following example—and most examples concerning Rel that we will give—are taken from [35]
that the author wrote with B. Coecke. These result aren’t new but where part of the folklore so
we felt that it was necessary to expose them.

†-Monoidal categories 35

Monoidal categories

Example 4.2.5 The category Rel has a monoidal product given by ×. Indeed, consider the
relations

R1 : X1−→Y1 and R2 : X2−→Y2,

then,

R1 × R2 := {((x, x′), (y, y′)) | xR1x
′ and yR2y

′}

is a relation of type X1 ×X2 → Y1 × Y2.

Unit: The object {∗} ∈ |Rel| acts as a unit for the monoidal product.

Natural isomorphisms: The three following natural isomorphisms

− Associativity: αX,Y ;Z : (X × Y)× Z → X × (Y × Z) is defined as

αX,Y ;Z := {(((x, y), z), (x, (y, z))) | x ∈ X, y ∈ Y and z ∈ Z}.

− Left identity: λX : {∗} ×X → X is defined as

λX := {((∗, x), x) | x ∈ X}.

− Right identity: ρX : X × {∗} → X is defined as

ρX := {((x, ∗), x) | x ∈ X}.

make

(i) The pentagon

W × (X × (Y × Z)) α //

1×α
��

(W ×X)× (Y × Z) α // ((W ×X)× Y)× Z

W × ((X × Y)× Z) α
// (W × (X × Y))× Z

α×1

OO

commutes. Indeed, for the top part, we have

α ◦ α : W × (X × (Y × Z))→ ((W ×X)× Y)× Z

which is, by definition, a subset of

(W × (X × (Y × Z)))× ((W ×X)× Y)× Z.

Explicitly,

α ◦ α := {((w, (x, (y, z))), (((w′′, x′′), y′′), z′′)) | there exists ((w′, x′), (y′, z′)) such

that ((w, (x, (y, z)))α((w′, x′), (y′, z′)) and ((w′, x′), (y′, z′))α(((w′′, x′′), y′′), z′′)}.

By definition of α, the previous expression is simply

α ◦ α = {((w, (x, (y, z))), (((w,x), y), z)) | w ∈ W,x ∈ X, y ∈ Y and z ∈ Z}.

The bottom path is done analogously, from which both paths are equal to

†-Monoidal categories 36

Monoidal categories

{((w, (x, (y, z))), (((w,x), y), z)) | w ∈W,x ∈ X, y ∈ Y and z ∈ Z}

making the pentagon commute. The remaining diagrams commute using similar calculations.
(ii) The triangle

X × ({∗} × Y) α //

1×λ))RRRRRRRRRRRRRR
(X × {∗})× Y

ρ×1

��
X × Y

commutes as both paths are equal to

{((x, (∗, y)), (x, y)) | x ∈ X and y ∈ Y }.

This turns Rel into a monoidal category.

Symmetry: The natural isomorphism σX,Y : X × Y → Y ×X defined as

σX,Y := {((x, y), (y, x) | x ∈ X and y ∈ Y }

make

(i) The two triangles

X × Y
σX,Y //

KKKKKKKKKK

KKKKKKKKKK
Y ×X

σY,X

��

,

X × {∗}
σ{∗},X //

ρ
&&MMMMMMMMMMM
{∗} ×X

λ

��
X × Y X

commute; both paths of the left triangle are equal to

{((x, y), (x, y)) | x ∈ X and y ∈ Y }

while the paths of the left triangle are equal to

{((x, ∗), x) | x ∈ X}.

(ii) Both the following and its inverse hexagon

X × (Y × Z) α //

1X×σY,Z
��

(X × Y)× Z
σ(X×Y),Z // Z × (X × Y)

α

��
X × (Z × Y) α

// (X × Z)× Y
σX,Y ×1Z

// (Z ×X)× Y

commute as both paths are equal to

{((x, (y, z)), ((z, x), y)) | x ∈ X, y ∈ Y and z ∈ Z}.

This makes Rel a symmetric monoidal category as claimed.

The category Rel is also symmetric monoidal with the disjoint union as monoidal product
and the empty set as monoidal unit. Again, for details see [35].

†-Monoidal categories 37

Strictification of monoidal categories

4.3 Strictification of monoidal categories

The definition of a monoidal category is quite heavy. It will be convenient to avoid working with
the natural isomorphism α, λ and ρ. We will make use of this section to introduce two theorems
stating that, for all practical purposes, we can assume that the category we work in is strict.
Most of the concepts that follow are taken from [58] to which the reader is referred for more
details.

[Equivalence of categories] A functor F : C→ D is an equivalence of categories when there
is a functor G : D→ C and natural isomorphisms G ◦ F ∼→ 1C and F ◦G ∼→ 1D.

Theorem 4.3.1 [58] A functor F : C → D is an equivalence of categories if and only if F is
full, faithful, and each object A ∈ |C| is isomorphic to FA′ for some A′ ∈ |D|.

Proof: See [58].
�

Such a definition is weaker than the notion of an isomorphism of categories but it remains quite
strong. Indeed, in the words of S. MacLane [58], “[equivalence of categories] allows us to compare
categories which are “alike” but of very different “sizes” ”.

Example 4.3.2 [58] The skeleton D of a category C is any full subcategory of C such that
each object A ∈ |C| is isomorphic in C to exactly one object A′ ∈ |D|. The equivalence is
then defined as follows: evidently, since D is a full subcategory of C there is an inclusion
functor F : D → C. Now, for any A ∈ |C|, we choose an isomorphism τA : A → GA where
GA ∈ |D|. From this, there is a unique way to define a functor G : C → D such that
τ : IC → FG is a natural isomorphism with inverse τ−1 : GF → ID. As particular instances:

1. The category FinSet of finite sets and functions is equivalent to the category with objects
all finite ordinals i.e.: 0, 1, 2, · · · , n, · · ·.

2. The category FdVect(C) is equivalent to the category with objects C,C2, · · · ,Cn, · · ·.
This is nothing but the category Mat(C) of matrices with entries in C.

[Monoidal functor] Let 〈C,⊗, I, αC, λC, ρC〉 and 〈D,⊙, J, αD, λD, ρD〉 be monoidal cate-
gories, then a monoidal functor is a functor F : C→ D together with a natural transfor-
mation

φA,B : FA⊙ FB → F (A⊗B)

and a morphism

φ : J → FI

which are such that for every A,B and C ∈ C, the diagrams

(FA⊙ FB)⊙ FC αD //

φA,B⊙1

��

FA⊙ (FB ⊙ FC)

1⊙φB,C
��

F (A⊗ B)⊙ C
φA⊗B,C

��

FA⊙ F (B ⊗ C)

φA,B⊗C
��

F ((A⊗ B)⊗ C)
FαC

// F (A⊗ (B ⊗ C))

†-Monoidal categories 38

Traced monoidal categories

and

FA⊙ J 1⊙φ //

ρD

��

FA⊙ FI
φA,I

��
,

J ⊙ FB
λD

��

φ⊙1 // FI ⊙ FB
φI,B

��
FA F (A⊗ I)

FρC
oo FB F (I ⊗B)

FλC

oo

Moreover, a monoidal functor between symmetric monoidal categories is symmetric if, in
addition, the following diagram

FA⊙ FB
σFA,FB//

φA,B
��

FB ⊙ FA
φB,A

��
F (A⊗B)

FσA,B
// F (B ⊗A)

commutes in D. A monoidal functor is strict if the components of φ−,− and the morphism
φ are identities and it is strong if they are isomorphisms.

Theorem 4.3.3 [58] Every monoidal category C is equivalent, via strong monoidal functors
F : C→ C′ and G : C′ → C, to a strict monoidal category C′.

Proof: See [58].
�

Moreover,

Theorem 4.3.4 [53] Let C and D be monoidally equivalent to the strict categories C′ and D′

as in theorem 4.3.3. Then, every monoidal functor F : C → D induces a strict monoidal
functor F ′ : C′ → D′.

Proof: See [53].
�

Thus, theorem 4.3.3 tells us that any diagram in a category C is equivalent to a diagram in C′

where the components of α, λ and ρ are identities. Moreover, theorem 4.3.4 tells us that any
diagram of monoidal categories and functors can be equivalently replaced by a diagram of strict
monoidal category and strict monoidal functors between them.

Remark 4.3.5 In the strictification C′ of a symmetric monoidal category C, it is only the
components of the natural isomorphism α, λ and ρ of C that becomes identities in C′. The
components of the symmetry σ are not taken as identities in C′.

4.4 Traced monoidal categories

A traced (symmetric) monoidal category is a category equipped with a trace which is a gener-
alisation of the common notion of (partial) trace found in linear algebra. Such a structure was
introduced by A. Joyal, R. Street and D. Verity in [54]. Heuristically, one can think of a trace as
structure which provides a notion of “feedback” (or “loop”) in a symmetric monoidal category
equipped with such structure. We introduce the notion mainly because the type of category we
will work in (in the next chapter and those that follow) admit a trace structure. Formally and
relying on strictification,

†-Monoidal categories 39

Internal monoids and comonoids

[Traced monoidal category] [54] A traced symmetric monoidal category consists of a sym-
metric monoidal category C together with a family of functions, the trace,

TrXA,B : C(A⊗X,B ⊗X)→ C(A,B)

such that

i. Naturality in A: For every f : A⊗X → B ⊗X and g : C → A,

TrXA,B(f) ◦ g = TrXC,B(f ◦ (g ⊗ 1X)).

ii. Naturality in B: For every f : A⊗X → B ⊗X and g : B → C,

g ◦ TrXA,B(f) = TrXC,B((g ⊗ 1X) ◦ f).

iii. Dinaturality in X: For every f : A⊗X → B ⊗ Y and g : Y → X,

TrXA,B((1B ⊗ g) ◦ f) = TrYA,B(f ◦ (1A ⊗ g)).

iv. Vanishing 1: For every f : A⊗ I → B ⊗ I,

TrIA,B(f) = f.

v. Vanishing 2: For every f : A⊗X ⊗ Y → B ⊗X ⊗ Y ,

TrX⊗YA,B (f) = TrXA,B(TrYA⊗X,B⊗X(f)).

vi. Superposing: For every f : A⊗X → B ⊗X and g : C → D,

g ⊗ TrXA,B(f) = TrXC⊗A,D⊗B(g ⊗ f).

vii. Yanking:

TrXX,X(σX,X) = 1X .

The first three points of the definition indicate that the trace can indeed be thought of as a loop
while the remaining points ensure that it behaves coherently with the monoidal structure.

Example 4.4.1 The following examples are taken from [54] to which the reader is referred for
more details:

1. The category FdVect admit a trace which is just the partial trace.

2. The category Rel is traced. Given a relation R : X×U → Y ×U , then TrUX,Y (R) : X → Y

is defined as

{(x, y) | There exists u ∈ U such that (x, u)R(y, u)}.

4.5 Internal monoids and comonoids

We now formally define the notion of internal monoid and internal comonoid in a monoidal
category. Again, the following definitions are taken from [58] to which the reader may refer for
a more complete discussion on the subject.

†-Monoidal categories 40

Internal monoids and comonoids

Let us go back to the notion of monoid defined at the beginning of this chapter; we said that one
of the simplest examples was to start from an alphabet A of symbols and take the set M = A∗ of
words on A together with an associative operation · and a special symbol ǫ acting as an identity
for this operation. Note that M is nothing more than a set, so we can formalise the concept of
monoid as a set M ∈ |Set| together with some extra structure.

Now, suppose M ∈ |Set| in equipped with a function µ : M ×M →M where × is the Cartesian
product and such that

M ×M ×M 1M×µ //

µ×1M
��

M ×M
µ

��
M ×M µ

// M

commutes. The previous diagram precisely states that µ is a binary operation which is associa-
tive.

Next, suppose that, in addition to µ above, there is also a morphism e : {∗} →M such that

M

{∗} ×M
e×1M

//

∼

88qqqqqqqqqqq

M ×M

µ

OO

M × {∗}
1M×e
oo

∼

ffMMMMMMMMMMM

commutes. Since {∗} is the singleton, the previous diagram says that e as picks an element in M
that acts as an identity under the operation µ. We have thus defined the notion of an internal

monoid in Set as 〈M,µ, e〉.

Generally, internal monoids in Set exactly correspond to usual notion of monoids. Now, the
notion of internal monoids in Set taking the Cartesian product as the monoidal product, can be
generalised to arbitrary monoidal categories as follows:

[Internal monoid] Let 〈C,⊗, I〉 be a monoidal category. Then an internal monoid is an object
M ∈ |C| together with a pair of morphisms

M ⊗M µ // M I
eoo

called multiplication and unit respectively, that are such that both

M ⊗M ⊗M1M⊗µ //

µ⊗1M
��

M ⊗M
µ

��
and

M

M ⊗M µ
// M I ⊗M

e⊗1M
//

∼

99rrrrrrrrrrr

M ⊗M

µ

OO

M ⊗ I
1M⊗e
oo

∼

eeLLLLLLLLLLL

commute. In addition, an internal monoid is commutative—or symmetric—when

M ⊗M

µ
&&MMMMMMMMMMM

σM,M // M ⊗M
µ

��
M

Of course, we can also dualise the notion, thus defining internal comonoids as follows:

†-Monoidal categories 41

Scalars

[Internal comonoid] Let 〈C,⊗, I〉 be a monoidal category. Then an internal comonoid an
object C ∈ |C| together with a pair of morphisms

C ⊗ C C
δoo ǫ // I

the comultiplication and the counit, that are such that both

C
δ //

δ
��

C ⊗ C
1C⊗δ

��
and

C

δ
��

∼

%%JJJJJJJJJJ

∼

yytttttttttt

C ⊗ C
δ⊗1C

// C ⊗ C ⊗ C I ⊗ C C ⊗ C
ǫ⊗1C

oo
1C⊗ǫ

// C ⊗ I

commute. Moreover, an internal comonoid is cocommutative when

C
δ //

δ ##GGGGGGGGG C ⊗ C
σM,M

��
C

4.6 Scalars

In any category C, the set of endomorphism C(A,A) of an object A is a monoid where the
composition acts as monoid multiplication and 1A : A → A as identity. In this section, we will
be interested in the monoid C(I, I) of a monoidal category C. In many cases, such a monoid
carries some explicit quantitative content.

Example 4.6.1 In the category FdVect, the set FdVect(C,C) is isomorphic to C, the base
field.

In Rel, there are exactly two relations of type {∗} → {∗} that is, the identity and the empty
relation. Thus the elements of Rel(∗, ∗) can be thought of as truth values.

In the light of the previous examples, we will call C(I, I) the monoid of scalars of C.

We have the following remarkable result:

Proposition 4.6.2 [57] Let C be a monoidal category, then the monoid of scalars is commu-
tative.

Proof: The proof is given by the following commutative diagram:

I
≃ // I ⊗ I I ⊗ I I ⊗ I ≃ // I

I

t

OO

≃ // I ⊗ I

1I⊗t

OO

I ⊗ I

s⊗1I

OO

≃ // I

s

OO

I ≃
//

s

OO

I ⊗ I

s⊗1I

OO

I ⊗ I

s⊗t

OO

I ⊗ I ≃
//

1I⊗t

OO

I

t

OO

(4.2)

†-Monoidal categories 42

Scalars

Equality of the two outer composites from the lower-left corner to the upper-right corner boils
down to equality between:

i. The outer left/upper path which consists of t◦s and the composite of an isomorphism I ≃ I⊗I
with its inverse so that t ◦ s.

ii. Analogously , the outer lower/right path yields s ◦ t.

Equalities between these two paths is obtained via

• Bifunctoriality of ⊗ which gives the commutation of the middle two rectangles and

• Naturality of the left- and right-unit isomorphisms gives the commutation of the four smaller
squares,

as required.
�

Remark 4.6.3 The category at stake in the previous proposition is not necessarily symmetric.
Therefore, since the monoidal structure is one of the most fundamental structures in our
theory, the preceding result entails that models with non-commutative monoid of scalars
can’t be expressed within the theory. For instance, quaternionic quantum mechanics would
not make sense in our context.

The right half of (4.2) is

s ◦ t := I
≃ // I ⊗ I s⊗t // I ⊗ I ≃ // I

which defines the multiplication of scalars.

We can also define what it means to multiply a morphism by a scalar. In FdVect(K), any scalar
z : C→ C gives rise to a natural transformation zV : V → V as the composite

V
λ−1
V−→ C⊗ V z⊗1V−→ C⊗ V λV−→ V.

This observation generalises to an arbitrary monoidal category. Indeed, we can define the scalar

multiples of a morphism f : A→ B as

s · f := A
≃ // I ⊗A s⊗f // I ⊗ B ≃ // B.

Lemma 4.6.4 We have

(s · f) ◦ (t · g) = (s ◦ t) · (f ◦ g) and (s · f)⊗ (t · g) = (s ◦ t) · (f ⊗ g).

Proof: We will prove only the first equation as the proofs by diagram chase for these equations
are fairly complicated for the insight they bring. The equation

(s ◦ t) · (f ◦ g) = (t · f) ◦ (s · g)

for f : A→ B and g : B → C is proven by commutation of:

†-Monoidal categories 43

Graphical calculus for symmetric monoidal categories

I ⊗B λB //
ρ−1
I
⊗1B

((QQQQQQQQQQQ
B

λ−1
B // I ⊗B

t⊗g

((QQQQQQQQQQQ

A ≃ I ⊗A

s⊗f
66nnnnnnnnnnn

ρI⊗1A ''PPPPPPPPPPP
(I ⊗ I)⊗ B

λI⊗1B
66mmmmmmmmmmm

(1I⊗t)⊗g

((PPPPPPPPPP
I ⊗ C ≃ C

(I ⊗ I)⊗ A

(s⊗1I)⊗f
66nnnnnnnnnn

(s⊗t)⊗(g◦f)
// (I ⊗ I)⊗ C

λI⊗1C

66nnnnnnnnnnn

The diamond on the left commutes by naturality of ρI . The top triangle commutes because both
paths are equal to 1I⊗B as λI = ρI . The bottom triangle commute by (4.2) and bifunctoriality
of the tensor product. Finally, the right diamond commutes by naturality of λI .

�

4.7 Graphical calculus for symmetric monoidal categories

We now introduce a useful graphical calculus for monoidal categories. Not only will such a
calculus give us a neat way to figure what a formula means in operational terms, but it also will
provide us with an elegant proof technique which is less tedious to read than diagram chasing.
Diagrammatic proofs are often more illuminating than the algebraic proofs, as they subsume the
notion of information flow implicit in the formalism and make it (visually) explicit.

Such a graphical calculus can be traced back to the tensor diagram notation of Penrose for
multilinear functions [65]. In the context of category theory, a graphical calculus has been
introduced for symmetric monoidal categories by Joyal and Street in [52].

The basic building blocks of the graphical calculus for a symmetric monoidal category C are
given as follows:

• The identity on I ∈ |C| is represented by the empty picture.

• The identity on A ∈ |C| different from I is represented by

A

• A morphism f : A→ B is depicted as

f

A

B

The trapezoid form for the boxes introduces an asymmetry that will be handy to distinguish
f from its transposed, conjugate and adjoint as we shall see later. As an exception to this
notation, a scalar s : I → I is depicted as

s

†-Monoidal categories 44

Graphical calculus for symmetric monoidal categories

• The composition of morphisms f : A→ B and g : B → C is given by stacking the graphical
representation of g above the one of f and connecting the arrows labeled by B, i.e.,

f

A

B

g

C

• The tensor product of morphisms f : A→ B and g : C → D is given by aligning the graphical
representation of and f and g side by side in the f ⊗ g order, i.e.,

f

A

B

C

g

D

Bifunctoriality of the tensor product, i.e.,

f ⊗ g = (f ⊗ 1D) ◦ (1A ⊗ g) = (1B ⊗ g) ◦ (f ⊗ 1C)

becomes

f

A

B

C

g

D

f

A

B

C

g

D

f
A

B

C

g
D

= =

which says that, in general, we can “slide” boxes along their wires.

• The symmetry σAB : A⊗ B → B ⊗A is represented as

A

A

B

B

Naturality of the symmetry is

A⊗ C
σA,C //

f⊗g
��

C ⊗A
g⊗f

��
B ⊗D σB,D

// D ⊗B

which is depicted as

f

A

B

C

g

D

g

C

f

A

BD

=

Hence, even in the presence of a symmetry, we can still slide the boxes along the wires.

Example 4.7.1 Commutation of the (strictified version of) diagram (4.2) is depicted as

†-Monoidal categories 45

Graphical calculus for symmetric monoidal categories

s

t
=

s

t
=s t

In fact, as scalars aren’t linked to any wires, the coherence condition for symmetric monoidal
categories indicates that they may move freely in the picture.

Example 4.7.2 Suppose that one wants to show that in C,

(σB′,C′ ⊗ f) ◦ (g ⊗ σA,C′) ◦ (σA,B ⊗ h)

= (h⊗ σA′,B′) ◦ (σA′,C ⊗ 1B′) ◦ (1A′ ⊗ σB′,C) ◦ (f ⊗ g ⊗ 1C)

holds. Then, the proof by diagram chase and without bracketing—which the reader may
skip—is

A⊗ B ⊗ C

1A⊗g⊗1C

��

σA,B⊗1C
WWWWWWWWWWWW

++WWWWWWWWWWWW

1A⊗B⊗h // A⊗ B ⊗ C ′
σA,B⊗1C′ // B ⊗A⊗ C ′

g⊗1A⊗C′

��

B ⊗ A⊗ C

1B⊗A⊗hooooooo

77oooooo

g⊗1A⊗C

��
A⊗B′ ⊗ C

σA,B′⊗1C //

f⊗1B′⊗C

��

B′ ⊗A⊗ C
1B′⊗A⊗h//

1B′⊗σA,C

��

1B′⊗f⊗1C
oooooo

wwoooooo

B′ ⊗A⊗ C ′

1B′⊗σA,C′

��
A′ ⊗ B′ ⊗ C

σA′,B′⊗1C//

1A′⊗σB′,C

��

B′ ⊗A′ ⊗ C
σB′ ,A⊗C

oo
oo

oo
o

wwooo
oo

oo
1B′⊗σA′,C

OOOOOO

''OOOOOO

B′ ⊗ C ⊗ A
1B′⊗h⊗1A//

1B′⊗C⊗f

��

B′ ⊗ C ′ ⊗ A

1B′⊗C′⊗f

��
A′ ⊗ C ⊗B′

σA′,C⊗1B′

��

B′ ⊗ C ⊗A′

σB′,C⊗A′
gggggggggggg

ssgggggggggggg

1B′⊗h⊗1A′//

σB′,C⊗1A′

��

B′ ⊗ C ′ ⊗A′

σB′,C′⊗1A′

��
C ⊗ A′ ⊗B′

1C⊗σA′,B′
// C ⊗B′ ⊗A′

h⊗1B′⊗A′
// C ′ ⊗B′ ⊗A′

On the other hand, the proof using the graphical calculus is

A B C

A′B′C ′

A B C

A′B′C ′

=

f gh

f

g

h

meaning to slide the boxes first and then rearrange the wires i.e.,

†-Monoidal categories 46

†-monoidal categories

=

A′ B′ C A′ B′ C

where we use naturality of the symmetry σA′,B′⊗C to slide down the symmetry σB′,C which
is in the dotted box in the above depiction.

Obviously, there is more than one way to proceed; we could have rearranged the wires first,
then slid the boxes. We could also have proceeded using the naturality of σA′⊗B′,C i.e.,

=

A′ B′ C A′ B′ C

However, the only thing we are interested in is whether or not there exists a way to transform
the initial picture into the final picture.

Now, one may doubt that a “graph isomorphism”5 between two pictures always corresponds to
an equation in the language of symmetric monoidal categories. The assurance that we have such
a fact is given by the following result that we cite from [68] to ensure that the terminology is
coherent with the other results that we will give for graphical calculi.

Theorem 4.7.3 A well-typed equation between morphisms in the language of symmetric monoidal
categories follows from the axioms of symmetric monoidal categories if and only if it holds,
up to graph isomorphism, in the graphical language.

Proof: See [52].
�

4.8 †-monoidal categories

We now introduce the notion of “dagger” structure [5]; concretely, such a structure gives a
suitable abstraction of the notion of adjoint thus enabling the many notions defined with it.

[†-monoidal category] [68] A †-(symmetric) monoidal category is a symmetric monoidal
category C equipped with an involutive, identity-on-objects, contravariant endofunctor
† : C→ C such that, denoting †(f) := f †,

i. For all f : A→ B and g : C → D, (f ⊗ g)† = f † ⊗ g†,

ii. α†A,B;C = α−1
A,B;C

iii. λ†A = λ−1
A ,

Correspondence between two pictures is called graph isomorphism in the papers where this calculus was introduced. We5

keep the same terminology here and refer to the cited papers for a precise definition of graph and graph isomorphism in

this context.

†-Monoidal categories 47

Graphical calculus for †-monoidal categories

iv. ρ†A = ρ−1
A and

v. σ†A,B = σ−1
A,B.

Given a morphism f : A→ B in C, f † : B → A is called the adjoint of f .

[Self-adjoint and unitary morphism] Let C be a †-monoidal category. Then a morphism
f : A→ B is:

1. Self-adjoint if f = f †,

2. Unitary if f † = f−1.

Example 4.8.1 The category Hilb of Hilbert spaces and bounded linear maps is †-monoidal.
The dagger takes any bounded linear map f to its adjoint f †.

Example 4.8.2 [5] In Rel, we have an obvious candidate for the functor

† : Relop → Rel.

Indeed, given a relation R : X → Y , the converse relation Rc : Y → X is defined as

R∪ := {(y, x) | xRy}.

From this, we can define the functor † whose action on objects is trivial and on morphisms
is described as taking the converse relation i.e., R† = R∪.

[35] Rel is †-monoidal:

(i) (R ⊗ S)† = R† × S†. From the definition of the monoidal product of two relations
R1 := {(x, y) | xRy} and R2 := {(x′, y′) | xRy′}, we have that

(R1 ×R2)† = {((y, y′), (x, x′)) | xR1y and x′R2y
′} = R†1 ×R†2

(ii) The fact that α† = α−1, λ† = λ−1, ρ† = ρ−1 and σ† = σ−1 is trivial as the inverse of all
these morphism is the relational converse.

4.9 Graphical calculus for †-monoidal categories

We may now enrich the graphical calculus for symmetric monoidal categories to †-monoidal
categories. Such an enrichment was provided by P. Selinger in [68].

• Given a morphism f : A→ B its adjoint f † : B → A depicts as

f f †:=

AA

BB

which is to reflect along the horizontal axis the depiction of f in the graphical language for
symmetric monoidal categories while keeping the orientation of the wires from bottom to top.

Example 4.9.1 If k = (σB′,C′ ⊗ f) ◦ (g ⊗ σA,C′) ◦ (σA,B ⊗ h) that is

†-Monoidal categories 48

Graphical calculus for †-monoidal categories

A B C

A′B′C ′

h

f

g

Then, the depiction of its adjoint k† = (σ†A,B ⊗ h†) ◦ (g† ⊗ σ†A,C′) ◦ (σ†B′,C′ ⊗ f †) is

h

f

g

A B C

A′B′C ′

An analogous result to the one for symmetric monoidal categories holds here:

Theorem 4.9.2 [68] A well-typed equation between morphisms in the language of †-symmetric
monoidal categories follows from the axioms of †-symmetric monoidal categories if and only
if it holds, up to graph isomorphism, in the graphical language.

Proof: See [68].
�

5 Quantum structures

In this chapter, we introduce the quantum fragment of our theory via the notion of quantum

structure in a †-monoidal category. From this, we will define the

1. Category of quantum structures Cq of a †-monoidal category C which is a suitable categorical
context to work with pure states and unitary transformations. And

2. The category of completely positive maps CP(Cq) of a category of quantum structures Cq
which constitute a suitable categorical framework to work with mixed states and superoper-
ators.

Importantly, a category of quantum structures is a †-compact6 category as introduced in [5].
We use the terminology quantum structures to stress the distinction between these categories
and the category Cc of classical maps that we introduce in chapter 6. Nonetheless, it should be
understood that in the papers we cite, such a category might bear another name.

The approach of defining such a category by speaking of structures at the level of objects was the
one taken in [32] which the author wrote with B. Coecke and D. Pavlovic. The presentation we
give in this chapter contrasts with the one given there, since our definition of quantum structure
does not require the objects to be self-dual and in that sense, is more general.

On the other hand, the category CP(Cq) will be constructed from Cq in the same way that
CPM(C) is constructed from a †-compact category C in Peter Selinger’s paper [68] to which
we refer the reader for more details. Aside from the general form of the discussion, the only
discrepancies between the paper cited and our presentation are purely notational.

For the remainder of this dissertation, we assume that we work in a †-monoidal category C which
is taken to be strict by convenience, i.e., to avoid unnecessary complications in the presentation.

5.1 Compact structures

Compact categories provides a framework to handle duals such as, for instance, the dual space
of a vector space. The bulk of this section is taken from [57] to which the reader is referred for
more details.

We first define the notion of compact structure at the level of objects:

Or strongly compact closed [5] or †-compact closed [68] depending on which fragment of the literature we refer to.6

Quantum structures 50

Compact structures

[Compact structure] Let C be a symmetric monoidal category. A compact structure on an
A ∈ |C| is a quadruple

〈A,A′, ηA : I → A′ ⊗A, ǫA : A⊗ A′ → I〉

where A′ ∈ |C| is called a dual of A and such that the following diagrams commute

A

1A⊗ηA
��

1A

((QQQQQQQQQQQQQQQQQ A′
ηA⊗1A′ //

1A′
((RRRRRRRRRRRRRRRRR A′ ⊗A⊗A′

1A′⊗ǫA
��

A⊗A′ ⊗A
ǫA⊗1A′

// A A′

(5.1)

Finally, a compact structure is self-dual whenever A = A′.

Example 5.1.1 A compact structure on a V ∈ |FdVect| is given by

ηV : C→ V ∗ ⊗ V :: 1 7→
n
∑

i=1

fi ⊗ ei (5.2)

where n = Dim(V), {ei}ni=1 a basis of V and fi ∈ V ∗ is the linear functional such that for all
i, j, fj(ei) = δi,j. Now, with the same notation,

ǫV : V ⊗ V ∗ → C :: ei ⊗ fj 7→ fj(ei).

Lemma 5.1.2 [Dual of a morphism] Let C be symmetric monoidal category. If A is
equipped with a compact structure 〈A,A′, ηA, ǫA〉 and B is equipped with 〈B,B′, ηB , ǫB〉
then, for any f ∈ C(A,B) there exists a unique g ∈ C(B′, A′) defined as

B′

g

��

ηA⊗1B′ // A′ ⊗ A⊗B′

1A′⊗f⊗1B′

��
A′ A′ ⊗B ⊗ B′

1B⊗ǫB
oo

The morphism g is called the dual of f .

Proof: See [57].
�

Lemma 5.1.3 [57] Let C be a monoidal category. The dual of an A ∈ |C| is unique up to a
unique isomorphism compatible with the compact structure, i.e., if A admits two compact
structures 〈A,A′, ǫA, ηA〉 and 〈A,A′′, ǫ′A, η′A〉, there is a unique isomorphism φ : A′ → A′′ such
that both

A′ ⊗ A φ⊗1A // A′′ ⊗A
and

A⊗ A′ 1A⊗φ //

ǫA
##FF

FF
FF

FF
F

A⊗A′′

ǫ′
A{{ww

www
www

w

I

ηA

ccFFFFFFFFF η′
A

;;wwwwwwwww
I

commute. Further, such an isomorphism is natural. Indeed, if f : A→ B has duals g : B′ →
A′ and g′ : B′′ → A′′ in the sense of lemma 5.1.2, then

Quantum structures 51

Compact structures

B′

g

��

φ // B′′

g′

��
A′

φ′
// A′′

commutes.

Proof: See [18].
�

[Compact category] A compact category—or compact closed category—C is a monoidal
category where each A ∈ |C| comes with a compact structure 〈A,A∗, ηA, ǫA〉.

Proposition 5.1.4 The operation (−)∗ taking A to its dual A∗ and f : A → B to its dual
f∗ : B∗ → A∗ as in lemma 5.1.2 defines a contravariant functor.

Proof: See [57].
�

Lemma 5.1.5 Let C be a compact closed category. Then

i. The tensor unit I is self-dual,

ii. A is a dual of A∗ and

iii. B∗ ⊗ A∗ is a dual of A⊗B.

Proof: See [57].
�

From the previous lemma and since by lemma 5.1.3 duals are unique up to a natural isomorphism
compatible with the compact structure, we have:

i. I∗ ≃ I,

ii. A∗∗ ≃ A and

iii. (A⊗B)∗ ≃ B∗ ⊗A∗.

[Strict compact closed category] A compact closed category C is strict if, in addition to
being a strict monoidal category, we have

i. I = I∗,

ii. A = A∗∗ and

iii. (A⊗ B)∗ = B∗ ⊗A∗.

Theorem 5.1.6 [57] Any compact closed category C is equivalent to a strict compact closed
category C′.

Proof: See [57].

Quantum structures 52

Quantum structures

�

5.2 Quantum structures

The notion of category of quantum structures enables the axiomatisation of a large fragment
of quantum mechanics in terms of adjoints and bipartite entanglement. As we shall see in the
concluding remarks of this section, the formalism of such categories enables an abstraction of
Dirac notation, of unitary and self-adjoint operators among other things. Most of the material
of this section is derived from [5] and [68].

[Quantum structure] A quantum structure

〈A, ǫA : A⊗A′ → I〉 (5.3)

is a compact structure 〈A,A′, ηA, ǫA〉 such that

I
ǫ†
A //

ηA ""EE
EE

EE
EE

E A⊗A′
σA,A′

��
A′ ⊗A

(5.4)

We call ηA the unit (of the quantum structure) and ǫA the counit. Finally, we will make
an abuse of terminology saying that the support A of a quantum structure 〈A, ǫA〉 is a
quantum object.

Taking in account the constraint of equation (5.4), compactness (eq. (5.2)) of the quantum
structure depicts in the graphical language of †-monoidal categories as

=

A

=

AA′

A′

and

ǫA

ǫA

A

A′

ǫA

ǫA

A′

A

Now, we have an analogue of lemma 5.1.3 for quantum structures:

Lemma 5.2.1 The dual of a quantum object is unique up to a unique unitary isomorphism
compatible with the quantum structure, i.e., if A ∈ |C| admits two quantum structures,
〈A, ǫA〉 with dual A′ and 〈A, ǫ′A〉 with dual A′′, then there exists a unique unitary transfor-
mation u : A′ → A′′ such that

A⊗ A′

ǫA
##FF

FF
FF

FF
F

1A⊗u // A⊗A′′

ǫ′
A{{ww

ww
www

ww

I

(5.5)

The proof of this lemma is postponed to the next chapter as it is included in the proof of theo-
rem 6.3.3.

[Category of quantum structures] A category of of quantum structures Cq is a †-monoidal
category C where every object A comes with a specified quantum structure 〈A, ǫA〉 and
where A relates to its dual A′ via ǫA′ = ǫA ◦ σA,A′ .

Quantum structures 53

Quantum structures

Remark 5.2.2 The constraint ǫA′ = ǫA ◦ σA,A′ entails that the double dual of A is A.

Proposition 5.2.3 The quantum structures in Cq induces two functors

(−)∗ : Copq → Cq and (−)∗ : Cq → Cq (5.6)

whose actions on objects are A 7→ A′ where A′ is the dual of A in Cq. For morphisms, given
an f : A→ B where A has dual A′ and B has dual B′ then, their actions on f are respectively
given by

A′

f

B′
B′

A′

f∗ :=

ǫA

ǫB

and

A′

f

B′B′

A′

f∗ :=

ǫB

ǫA B′

f

A′

ǫA

ǫA

=

i.e., (−)∗ := (−)†∗ = (−)∗†.

Proof: The fact that (−)∗ is a functor is almost trivial using the graphical calculus. Indeed, for
any A ∈ |Cq|, (1A)∗ = 1(A)∗ = 1A′ as

A′

A′

ǫA

ǫA

1A =

A′

For the composition, let f : A→ B and g : B → C then (g ◦ f)∗ is given by

f

ǫA

ǫC

g
=

f

ǫA

ǫB

g

ǫB

ǫC

=

g∗

f∗

where the second expression is obtained from the first using the dual compactness equation on
B and we get from the second to the third simply by definition of (−)∗.

One gets functoriality of (−)∗ in in an analogous manner using the definition of (−)∗.
�

Quantum structures 54

Quantum structures

Terminology. We say that f∗ is the transpose of f and f∗ its conjugate. Moreover, in light of
the previous proposition, we will denote the chosen dual of A in Cq as A∗.

Remark 5.2.4 The previous result says that, indeed, the category Cq is a †-compact category
as was defined in [5].

Moreover, taken that a category of quantum structures is also a compact closed category, i.e., a
monoidal category where each object comes with a compact structure, we have:

Lemma 5.2.5 [Canonical trace] Every category of quantum structures admits a trace—in
the sense of the definition given in section 4.4. Given an f : A⊗ C → B ⊗ C, the canonical

trace of f is given by

TrCA,B(f) := (1B ⊗ ǫC) ◦ (f ⊗ C∗) ◦ (A⊗ ηC∗) : A→ B

Proof: Since a category of quantum structures is an instance of compact closed category, the
proof can be found in [54].

�

Example 5.2.6 The full subcategory FdHilb of Hilb of finite-dimensional Hilbert spaces and
(bounded) linear maps is a category of quantum structures when

• The dual H∗ of an H ∈ |FdHilb| is the conjugate space.

• The counit of the quantum structure is given as

ǫH : C→ H⊗H∗ :: φ⊗ ψ 7→ φ† ◦ ψ = 〈φ,ψ〉.

It is easy to see that the constraint equation given in (5.3) is satisfied.

In FdHilb, the dagger corresponds to “taking the adjoint”, the upper-star functor can be
thought of as transposition and finally, the lower-star functor can be thought of as complex
conjugation thus the name of f∗ and f∗. Indeed, for the lower-star functor, its action on
objects is given byH 7→ H∗ whereH∗ is the conjugate space while its action on an f : H → H′
is f 7→ (f)∗ = f : H∗ → H′∗; indeed, by definition of the scalar product in the conjugate
space, this ensures that (f∗)∗ = (f∗)∗ = f †.

Remark 5.2.7 From this example, we can see that in a category of quantum structure, we
have a notion of inner product given through the counit and the †-structure. This underlines
a fundamental difference between compact categories and categories of quantum structures
which is crucial for our purposes.

Remark 5.2.8 The counit ǫH and the unit ηH are basis independent. For instance, the unit
is the image of 1H under the natural isomorphism

FdHilb(H,H) ≃ FdHilb(C,H∗ ⊗H).

Remark 5.2.9 The reader may wonder why we didn’t define the notion of quantum structures
for the whole category Hilb. First, such a definition is irrelevant in the context of quantum
computation albeit a very interesting question in general. Second, this is a very subtle issue.
For results in that direction, we refer the reader to [3].

Quantum structures 55

Quantum structures

Example 5.2.10 [5,35] We will specify the notion of quantum structure in Rel. Since we de-
fined Rel as a “non-strict” symmetric monoidal category, we will give the non-strict definition
of compact and quantum structure so that we can proceed with this non-strict case.

Take X∗ = X for any X ∈ |Rel| making the objects self dual. Define

• The counit of any X ∈ |Rel| as:

ǫX : X ⊗X → {∗} := {((x, x), ∗) | x ∈ X}

• and the unit as the converse relation of ǫX i.e.:

ηX : {∗} → X ⊗X := {(∗, (x, x)) | x ∈ X}

We show that these morphisms make

X

1X

��

ρX // X ⊗ {∗} 1X⊗ηX // X ⊗ (X ⊗X)

α

��
X {∗} ⊗X

λ−1
X

oo (X ⊗X)⊗X
ǫX⊗1X
oo

—the non-strict analogue of the diagram given in (5.2)—and its dual both commute:

a) The composite

(1X ⊗ ηX) ◦ ρX : X → X ⊗ (X ⊗X)

is the set of tuples {(x, (x′, (x′′, x′′′)))} ⊆ X ⊗ (X ⊗ (X ⊗ X)) such that there exists an
(x′′′′, ∗) ∈ X ⊗ {∗} with xρX(x′′′′, ∗) and (x′′′′, ∗)1X ⊗ ηX(x′, (x′′, x′′′)). By definition of ρ,
1X and the product of relations, this entails that x, x′′′′ and x′ are all equal. Moreover, by
definition of ηX and the product of relation, we have that x′′ and x′′′ are equal. Thus,

(1X ⊗ ηX) ◦ ρX := {(x, (x, (x′, x′)) | x, x′ ∈ X}.

b) We compute the composite

α ◦ ((1X ⊗ ηX) ◦ ρ) : X → (X ⊗X)⊗X.

By definition of α, it is directly seen that

α ◦ ((1X ⊗ ηX) ◦ ρ) := {(x, ((x, x′), x′) | x, x′ ∈ X}

c) Again, the composite

(ǫX ⊗ 1X) ◦ (α ◦ (1X ⊗ ηX) ◦ ρ) : X → {∗} ⊗X

is a set of tuples {(x, (∗, x′))} ⊆ X ⊗ ({∗} ⊗ X) such that there exists an ((x′′, x′′′), xiv) ∈
(X ⊗X)⊗X with x(α ◦ (1X ⊗ ηX) ◦ ρ)((x′′, x′′′), x′′′′) and ((x′′, x′′′), x′′′′)(ǫX ⊗ 1X)(∗, x′). By
the computation in b), x = x′′ and x′′′ = x′′′′. By definition of ǫX , 1X and the product of
relations, x′′ = x′′′ and x′′′′ = x′. All this together yields x = x′′ = x′′′ = x′′′′ = x′ and hence,

(ǫX ⊗ 1X) ◦ (α ◦ (1X ⊗ ηX) ◦ ρ) := {(x, (∗, x)) | x ∈ X}.

Quantum structures 56

Quantum structures

d) The last step is trivial. Composing the previous composite with λ−1
X yields a morphism of

type X → X defined as

λ−1
X ◦ (ǫX ⊗ 1X) ◦ α ◦ (1X ⊗ ηX) ◦ ρ := {(x, x) | x ∈ X}

which is nothing but the relation 1X as required. Commutation of the dual diagram is done
analogously.

These compact structures are quantum structures:

We have to check that for any X,

{∗}
ǫ†
X //

ηX ##HH
HH

HH
HH

H
X ⊗X

σX,X

��
X ⊗X

commute. If ǫX := {((x, x), ∗) | x ∈ X} then ǫ†X := {(∗, (x, x)) | x ∈ X} and σ ◦ ǫ†X = ǫ†X
which is equal to ηX as required.

Upper- and Lower-star functors: Now, recall that for a relation R : X → Y , R† is the converse
relation of R. Now, R∗ = R†; indeed, given a relation R : X → Y , then

R∗ = (1X ⊗ ǫY) ◦ (1X ⊗ R⊗ 1Y) ◦ (ηX ⊗ 1Y) = R†

follows by routine calculations. This makes the functor

(−)∗ = (−)∗† = (−)†∗ : Rel→ Rel

an identity.

Remark 5.2.11 Both Rel and FdHilb are categories of quantum structures thus, we have
A∗∗ = A for any object in these categories. However, they are not strict: for instance,
(A ⊗ B)∗ 6= B∗ ⊗ A∗. However, since every category of quantum structures is equivalent to
a strict category of quantum structures by theorem 5.1.6 we shall assume that categories of
quantum structure are strict in what follows.

As was noted in [5], categories of quantum structures come with an abstract version of the inner
product and Dirac notation:

Indeed, in Cq the notion of inner product is given by

〈f |g〉 := f † ◦ g.

for f, g : I → A. From there we can show many known identities which remain true in the
general case. For instance, let ψ : I → A, φ : I → B and f : B → A, then

〈f † ◦ ψ|φ〉 = (f † ◦ ψ)† ◦ φ
= ψ† ◦ f ◦ φ
= 〈ψ|f ◦ φ〉.

Also, we can show that unitary transformations preserve the inner product. Indeed, let ψ, φ :
I → A and U : A→ A be unitary, then

Quantum structures 57

Graphical calculus for categories of quantum structures

〈U ◦ ψ|U ◦ φ〉 = 〈U † ◦ U ◦ ψ|φ〉
= 〈ψ|φ〉.

It remains to generalise Dirac notation by defining

〈ψ|f |φ〉 := 〈f † ◦ ψ|φ〉 = 〈ψ|f ◦ φ〉.

Thus, many notions we defined in chapter 2 are recovered in categories of quantum structures.

Example 5.2.12 We can define an abstract ket in Rel as a relation |ψ〉 : {∗} → X; the type
of such a ket is similar to the kets in FdHilb as it has for domain the tensor unit and any
object for codomain. A |ψ〉 in Rel is a set of tuples of the form {(∗, x) | ∗ψ x}. An abstract
bra is defined as the adjoint of some ket, i.e., a set of tuples of the form 〈ψ| := {(x, ∗) | ∗ψ x}.
We can also form an abstract inner product therein: for ψ, φ : {∗} → X,

〈φ|ψ〉 = 1 if |φ〉 ∩ |ψ〉 6= ∅ and 〈φ|ψ〉 = 0 if |ψ〉 ∩ |φ〉 = ∅

where 0 and 1 are the two scalars in Rel(I, I)—see example 4.6.1.

In conclusion, a category of quantum structures is sufficiently rich to abstract the following
concepts [5]:

• Pure states as morphisms of type ψ : I → A.

• Pure costates as adjoints of pure states i.e., ψ† : A→ I.

• The notion of an inner product via the composition of states and costates: φ† ◦ ψ := 〈φ|ψ〉.
From this, a state is normalised if ψ† ◦ ψ = 1I .

• Via the first three and the dagger, the notion of adjoints:

〈φ|f ◦ ψ〉 = φ† ◦ (f ◦ φ) = (φ† ◦ f) ◦ φ = (f † ◦ φ)† ◦ ψ = 〈f † ◦ φ|ψ〉

• The notion of unitary maps as morphisms such that U † = U−1.

• The notion of bipartite entanglement via the coparings of the quantum structure, i.e., ηA :
I → A∗ ⊗ A.

• The notion of observable as self-adjoint morphisms, i.e., f = f †.

5.3 Graphical calculus for categories of quantum structures

We now enrich the graphical calculus for †-monoidal categories to categories of quantum struc-
ture. Technically speaking, we should perhaps give the graphical calculus for compact categories
first and the graphical calculus for categories of quantum structures after since the latter is built
upon the former. However, since we won’t use the graphical calculus for compact categories, we
will give both at once.

The graphical calculus for monoidal categories has been extended to compact categories by
Joyal and Street in [52] and the graphical calculus for categories of quantum structures has been
formalised by P. Selinger in [68]. In order to be able to depict an expression from the language of

Quantum structures 58

Graphical calculus for categories of quantum structures

categories of quantum structures in the graphical language, we must add the following building
blocks:

• The identity of the dual A∗ of A is represented as:

A∗

:=

A

• Given an object A, the unit ηA : I → A∗ ⊗A and the counit ǫA : A⊗A∗ → I of the compact
structure are represented respectively as

and AA

The defining equations of the compact structure then depict as

= =

A A A A

hence, we can straighten the wires.

• For any A ∈ |C|, the adjoints of the units and counits of the compact structure i.e., η†A :

A∗ ⊗A→ I and ǫ†A : I → A⊗A∗ depict as

and AA

respectively. The constraint equation σA,A∗ ◦ ǫ†A = ηA on the unit of a quantum structure
depicts as

=
A

A

• Given a morphism f : A→ B, its transpose f∗ : B∗ → A∗ depicts as

f∗

B

A

f

B

A

:=

Recall that an arrow with downward orientation is the identity on the dual object. Now, the
reason for this orientation with respect to the sharp side of the trapezoid is best understood
via

=

B

f

A

f

BAB

f

A

=

where for the first equality one just uses the compactness relations and yanks the wire, while
the second equality is obtained from the leftmost expression via the definition of f∗. Thus,
the orientation is taken from the idea that while sliding the box along the wires, we get

Quantum structures 59

Graphical calculus for categories of quantum structures

f

BAB

f

A

=

The graphical notation is then just an extension of the fact that we can slide boxes along
wires. The orientation of the trapezoid keeps track of whether we have f or f∗. From this,
we also see that the graphical representation of f∗ is a rotation by 180◦ of the graphical
representation for f .

• Finally, given an f as above, its conjugate f∗ : A∗ → B∗ depicts as

f f∗

B

A

:=

B

A

Again, such an orientation for the trapezoid is taken from the definition (−)∗ := (−)†∗ using
an analogue argument as for the transpose.

Remark 5.3.1 Thus, all in all, given an f : A→ B in C, the graphical representations for f∗,
f∗ and f † are given [5,4,50] and [68]:

A

B

f

A

B

f

B

A

f

f

B

A

f †

B

A

f∗

B

A

f∗

B

A

:=

:==:

which captures the equation (−)∗∗ = (−)† and other variations.

Example 5.3.2 The canonical trace (c.f. lemma 5.2.5) of an f : A⊗ C → B ⊗ C depicts as

A

B

Cf

Finally, these additions still provide a graphical calculus coherent with the language of categories
of quantum structures:

Theorem 5.3.3 [68] A well-typed equation between morphisms in the language of categories
of quantum structures follows from the axioms of the categories of quantum structures if and
only if it holds up to graph isomorphism in the graphical language.

Quantum structures 60

The category CP(Cq) of completely positive maps

Proof: See [68].
�

Graphical notations

We now introduce a few more graphical notations that will be used later:

A state or an abstract ket is a morphism ψ : I → A and is depicted as

ψψψ

A

A co-state or abstract bra is a morphism φ : A→ I which depicts as

φφφ

A

Moreover, one can compose a state with a co-state and obtain a scalar—a morphism I → I—as

ψ

φ
ψφψφ

Thus, not only can we abstract Dirac notation in a category of quantum structures, but our
representation of states within the graphical calculus for monoidal categories also allows such an
abstraction in a clear visual way. Of course, in adopting this notation, we lose the asymmetrical
notation introduced for general morphisms. However, the transpose or the conjugate of a given
state can still be identified via the orientation of the wires along with the identification ψ∗ or ψ∗

in the triangles. We will do analogously for scalars.

Remark 5.3.4 In the following sections and chapters, there might be some places where it
would be odd to orient the boxes for reasons that will be obvious then. In such cases, we
may use a rectangular box to depict f : A→ B as in

A

B

f

5.4 The category CP(Cq) of completely positive maps

The purpose of this section is to introduce the category of completely positive maps of a category
of quantum structures as given in [68]. As superoperators are completely positive applications
with some normalisation condition, a category of completely positive maps provides us with
the right context to handle not only these but also density matrices that will be described as
morphisms of type I → A. All categorical definitions and results from this section are taken
from [68] with perhaps minor modifications; the reader is referred there for proofs and a complete
introduction to the subject.

As a starting point, we know that a mixed state in FdHilb is a self-adjoint—or positive—
operator ρ : H → H of unit trace. Let us relax the normalisation condition, then—according to
the spectral theorem [61]—a positive operator is an operator for which there exists a basis where
the operator is diagonal with only non-negative entries i.e.:

Quantum structures 61

The category CP(Cq) of completely positive maps

ρ = U † ◦ Λ ◦ U

where Λ is a diagonal matrix with non-negative entries and U is a unitary transformations. We
can take the square root of Λ and obtain

ρ = U † ◦ Λ1/2 ◦ Λ1/2 ◦ U
= (Λ1/2 ◦ U)† ◦ (Λ1/2 ◦ U)

= g† ◦ g.
Now, lifting this notion to a category of quantum structures we get

[Positive morphism] A morphism f : A → A in Cq is positive if it factors as a composition
of the form g† ◦ g for some g : A→ B. That is:

B

A

=
g

g

AA

A

f

We have the following

Lemma 5.4.1 Let f : A→ A and g : B → B be positive in Cq, then

a. For any h : C → A, h† ◦ f ◦ h is positive,

b. For any A ∈ C, 1A is positive,

c. The tensor product f ⊗ g is positive,

d. f † = f and

e. The morphism f∗ : A∗ → A∗ is positive.

Proof: See [68].
�

In quantum computing, a superoperator F is usually given in its Kraus decomposition with
components in {Ai}i. When composing such an operator with a density operator, we obtain a
composite of the form

∑

iA
†
iρAi. This is a correct point of view but, for our purpose, instead

of seeing density operators as maps of type H → H—which is the point of view taken when
working with Kraus operators—, we will see them as maps of type C → L(H). Adopting such
a type system, superoperators becomes maps of type F : L(H) → L(H′) so that the composite
F ◦ ρ makes sense. Such a change of point of view is given by the following operation in Cq:

Given a positive f : A→ A and considering the composite (f ⊗ 1A) ◦ ηA, we have

B

A

=

g

g

AA A

f

B

A

= g

A

g

Quantum structures 62

The category CP(Cq) of completely positive maps

This indeed recasts the positive morphism f as a map of type I → A⊗A∗ in Cq. From where,

[Positive element] A positive element7 in Cq is morphism ρ : I → A ⊗ A∗ for which there
exists a B ∈ |Cq| and an h : B → A such that

ρ = (h⊗ h∗) ◦ ηB

that is, graphically,

B

A

h

A

h

Of course, the given depiction of a positive element is obtained from the one before the definition
setting h = g†.

As we relaxed the normalisation condition for density operators, we also do so for superoperators.
That is, a superoperator is a completely positive operator normalised in such a way that it applies
density operators to density operators (see chapter 2). Relaxing the normalisation condition
means that we will categorify only the notion of complete positivity. Recall that a linear map
F : L(H)→ L(H′) is completely positive if

1. F (f) is positive for all f ≥ 0 and

2. [F ⊗ 1L(H)](f) is positive for all H and f ≥ 0.

The two notions are recast in Cq as the notion of

[Completely positive map] A morphism f : A⊗A∗ → B ⊗B∗ in Cq is completely positive

if for all C ∈ |Cq| and all positive elements

I ≃ I ⊗ I∗ → C ⊗A⊗A∗ ⊗ C∗,

the composite

D

AA

f

BB CC

is positive.

A characterisation of completely positive maps in linear algebra is given by

Theorem 5.4.2 [Choi’s theorem] [21] The linear map f : Cn×n → Cm×m is completely
positive if and only if the matrix (f(Eij))ij : C→ Cnm×nm is positive. There, Eij is a n× n
matrix with zero’s everywhere except at the entry ij where it is 1.

In [68], such a morphism is called a positive matrix.7

Quantum structures 63

The category CP(Cq) of completely positive maps

Proof: See [21].
�

An abstract analogue of this theorem is

Theorem 5.4.3 A morphism f : A⊗A∗ → B ⊗B∗ in Cq is completely positive if and only if

AA BB

f

is a positive element.

Proof: See [68].
�

Using this result in conjunction with the definition of completely positive maps, one can show
using the graphical calculus the following result:

Corollary 5.4.4 The following are equivalent:

a. The morphism f : A⊗A∗ → B ⊗ B∗ is completely positive.

b. The morphism

f

A B

A B

is positive.

c. There exists an object C and a morphism g : A→ B ⊗ C such that

f = g

A A

B BC

g

d. There exists an object C and a morphism h : C ⊗A→ B such that

f = h

A A

B B

C

h

Proof: See [68].
�

We also have the following

Lemma 5.4.5

Quantum structures 64

The category CP(Cq) of completely positive maps

1. For any A ∈ |Cq|, the identity map 1A⊗A∗ is completely positive.

2. The composition of completely positive maps is completely positive.

3. If f : A⊗A∗ → B ⊗B∗ and g : C ⊗ C∗ → D ⊗D∗ are completely positive then
D DB

g

B

C CA A

f

is completely positive.

4. For any f ∈ C, f ⊗ f∗ is completely positive.

Proof: See [68].
�

This lemma tells us, in particular, that the collection of completely positive maps satisfies the
axioms of a category. Following this,

[CP(Cq) construction] Given a category of quantum structures Cq, define a new category
CP(Cq) whose objects are the same as the objects of Cq. A morphism f : A → B in
CP(Cq) is a completely positive map f : A ⊗ A∗ → B ⊗ B∗ in Cq. Composition of
morphism is as in Cq.

Lemma 5.4.6 The mapping F : Cq → CP(Cq) given by F (A) = A and F (f) = f ⊗ f∗ is
functorial.

Proof: That it preserves the identity is evident. That it preserves composition is given by
bifunctoriality of the tensor in Cq and functoriality of (−)∗. Indeed, since F (g◦f) is (g◦f)⊗(g◦f)∗
in Cq, we get

(g ◦ f)⊗ (g ◦ f)∗ = (g ◦ f)⊗ (g∗ ◦ f∗) = (g ⊗ g∗) ◦ (f ⊗ f∗)

which is F (g) ◦ F (f). Hence we conclude that F is indeed a functor.
�

Theorem 5.4.7 The category CP(Cq) is again a category of quantum structures. The tensor
product on objects is inherited from Cq, on morphisms it is given by lemma 5.4.5-3. The
natural isomorphism σCP(Cq), the units and counits of the quantum structures are given by
their respective images under F . If f : A⊗A∗ → B⊗B∗ is in CP(Cq), then f † in CP(Cq) is
given by f † : B⊗B∗ → A⊗A∗ in Cq. The functor F : Cq → CP(Cq) preserves the quantum
structures.

Proof: See [68].
�

Now, a few remarks are required. First, for any A ∈ |CP(Cq)|, the map trA : A→ I correspond-
ing to the completely positive map ǫA in Cq

Quantum structures 65

The category CP(Cq) of completely positive maps

A A

is, of course, no longer the counit of the quantum structure on A. In fact, it can be thought of as
a (perhaps partial) trace over positive elements. Indeed, start with a positive map f : A⊗B →
A⊗B in Cq. Then, its partial trace (via the canonical trace) over B is given by

A

A

Bf

Applying the construction we gave for positive elements yields
A

f

A
B

=
g

A A

C

g

B

from which it is seen that the trace of a morphism in Cq becomes the morphism trB in CP(Cq)
and this, because of the particular form of the morphism of CP(Cq) as morphisms in Cq. It is a
remarkable fact that the trace is no longer an operation on homsets but rather a morphism within
the category CPq(C). In that sense, one could say that the CP(Cq) construction “internalises”
the trace8.

Next, for any A ∈ |CQq(C)|, the element mA : I → A corresponding to the completely positive
map ηA in Cq i.e.,

AA

can be thought of as an unnormalised form of completely mixed state. Indeed, reversing the
construction we gave for positive elements, i.e.,

A

=

A

yields the identity which, in CP(FdHilb), is the completely mixed state up to a normalisation
factor. Interestingly enough, we have seen in chapter 2 that a maximally entangled state is a
bipartite entangled state ψ : C → H⊗H such that its partial trace over either of the two H in
its codomain is the completely mixed state. Interpreting ηA : I → A∗ ⊗ A as an unnormalised
Bell state—an instance of maximally entangled state—its partial trace over A yields

Some unsuccessful attempts have been made by Yannick Delbecque, Prakash Panangaden and myself to give a proper8

axiomatisation of the notion of internal trace as originally suggested by Y. Delbecque. The main problem is that the

dinaturality of the usual trace seems to have no common analogue in the context of internal traces. Thus, the attempted

axiomatisations are simply too degenerate to give any conclusive results. This remains an interesting open question.

Quantum structures 66

The category CP(Cq) of completely positive maps

A

=

A A AA

which is mA, our unnormalised maximally mixed state.

Remark 5.4.8 The reader may have noticed that when depicting a morphism of CP(Cq), we
do so with respect to the completely positive map in Cq. From now on and without further
remark we will always do so and that in CP(Cq) as well as in other categories that we will
define in the following chapters. Since we always work “relative to” a category of quantum
structures, such a depiction will always make sense.

In conclusion, CP(Cq) is rich enough to abstract the following concepts:

• Since CP(Cq) is a category of quantum structures, we recover the concepts of pure states and
costates, bipartite entangled states and unitary transformation in CP(Cq) as their respective
images under the functor F : C → CP(Cq). As an example, a pure state ψ : I → A in
CP(Cq) is a completely positive map ψ ⊗ ψ∗ : I ⊗ I∗ → A⊗ A∗ in Cq mutans mutandis for
pure costates, bipartite entangled states and unitary transformations.

• If ρ is a positive element, then tr ◦ ρ is a categorical analogue of the trace norm.

• Mixed states are normalised elements of type I → A,

• Superoperators are normalised completely positive maps f : A→ B.

Normalisation conditions are now depicted with respect to the trace. Indeed, a positive element
ρ : I → A is normalised if

B

A

h h =trA ◦ ρ =

that is, if it is equal to the empty picture, the identity 1I .

A completely positive map f : A→ B is normalised and hence, a superoperator, if

A

C

h h =

B

A
A A

trB ◦ f =

which is an abstract analogue of the normalisation condition contained in the Kraus decom-
position of a superoperator. Note that in what follows, we will not assume that everything is
normalised. As we work mainly at the level of the structures, such an assumption would be too
restrictive for our purposes.

Quantum structures 67

The category CP(Cq) of completely positive maps

Remark 5.4.9 We introduced many different notations for completely positive maps. Unless
otherwise specified, a completely positive map will be depicted as

A A

B BC

and a positive element of CP(Cq) as

AA

6 Basis structures and classical maps

In the last chapter, we introduced the quantum fragment of our theory. Although it can stand
alone, it will be handy to introduce the notion of classical data in order to speak of measurements
and controlled operations. Before we can do so, we need to introduce an abstract analogue of the
basis. Indeed, as we shall see in the last section of this chapter, the notion of classical morphism
in FdHilb coincides with matrices with entries in the involutive semiring R+. Of course, to
isolate such morphisms one needs first to equip objects with a basis so that the very notion of
classical morphism makes sense. Thus, the purpose of this chapter is to introduce the concept
of basis structure and of classical morphisms. To do so, building upon the work of B. Coecke
and D. Pavlovic in [36] we will equip some objects of Cq with a †-Frobenius structure. Such
structures are, in FdHilb, in one-to-one correspondence with orthonormal bases as was shown
by Coecke, Pavlovic and J. Vicary in [38]. Further, we will define the notion of basis structure,
whose specification corresponds in FdHilb to a choice of basis. Such a basis structure consists
of the initial quantum structure of an object in addition to a †-Frobenius structure which makes
the object self-dual; thus, the object now come with two perhaps distinct duals, one of which is
the object itself. Duals being unique up to a unique unitary transformation, we will make this
unitary transformation between the object and its dual explicit. We will then restrict ourselves
to the category of basis structure where each object now comes with these two structures and
study its properties. Finally, we will define the notion of classical map, inspect the properties
of such morphisms and define a category of classical maps which defines the classical fragment
of the theory. These results are taken from [34] which the author wrote with B. Coecke and
S. Perdrix.

In addition, sections 2 and 4 of this chapter states two important results of reduction in normal
form for a particular type of morphism involving the structural witnesses of the †-Frobenius and
the basis structures.

6.1 †-Frobenius structures

Discussion aside, most of the results given in this section are taken from [36] with appropriate
changes to fit our context. Other works will be cited as needed.

Quantum information is subject to two important theorems, that is: the no-cloning [77] and
the no-deleting [64] theorems, in contrast with classical information which can generally be
duplicated and deleted. Consider the following two cases where we have an interface between
classical and quantum data:

Basis structures and classical maps 69

†-Frobenius structures

1. A quantum state is measured with an apparatus: the state undergoes a change, but also, the
apparatus indicates the result of the measurement. Hence, the type of a quantum measure-
ment is

Initial quantum state → Final quantum state ⊗ Classical output.

where the classical output is correlated with the final quantum state.

2. A set of transformations {Ui} can be applied to a quantum state: The type of such an
operation is

Initial quantum state ⊗ Choice of transformation → Final quantum state.

In fact, these two operations—when taken in FdHilb and once we have chosen an orthonormal
basis {|i〉} for the measurement—can be written as

|ψ〉 =
∑

i

〈i|ψ〉|i〉 7→
∑

i

〈i|ψ〉|i〉 ⊗ |i〉c and |ψ〉 ⊗ |i〉c 7→ Ui|ψ〉

respectively. There, we used the subscript c to denote classical data.

Remark 6.1.1 The operation on the left is not quite a measurement, as the system is still in
coherent superposition, but it illustrates enough for our actual purpose, that is:

In the context of Hilbert spaces, we will consider basis vectors as classical data.

Following this, it is possible to define operators in FdHilb that will take care both of copying
and deleting of classical states. Indeed, let {|i〉}i be the canonical basis for Cn ∈ |FdHilb|.
Then,

1. Any |φ〉 ∈ {|i〉}i is duplicated by the isometry

δCn :=
∑

i

|ii〉〈i| : C
n → C

n ⊗ C
n.

It is important to stress that such an isometry does not duplicate all |ψ〉 ∈ C
n thus, it is not

a cloning machine.

2. Any |φ〉 ∈ {|i〉}i is deleted by the operator

µCn :=
∑

i

〈i| : C
n → C.

Again, such an operator is not a deleting machine.

Remark 6.1.2 For the remainder of the discussion, we will drop the subscript C
n for δ and µ

in order to lighten the notation.

These two morphisms together satisfy the operational properties we would expect from them,
that is:

a. If we duplicate some data and erase either one of the two outputs, it is the same as doing
nothing. This is:

Basis structures and classical maps 70

†-Frobenius structures

(µ⊗ 1) ◦ δ = (1⊗ µ) ◦ δ =
∑

i

|i〉〈i| = 1.

b. If we duplicate some data, then duplicating either of the two outputs is the same. This is:

(1⊗ δ) ◦ δ = (δ ⊗ 1) ◦ δ =
∑

i

|iii〉〈i|.

c. If we duplicate some data, then swap the outputs, it is the same as just duplicating the data.
This is:

σ ◦ δ =

∑

i,j

|ji〉〈ij|

 ◦
(

∑

k

|kk〉〈k|
)

=
∑

i

|ii〉〈i|.

Such equations precisely state that 〈Cn, δ, µ〉 is an internal cocommutative comonoid in the
category FdHilb. Since this category comes equipped with a dagger, not only δ† and µ† are
defined but the triple 〈Cn, δ†, µ†〉 is an internal commutative monoid, the defining equations of
the later being dual to those of the former. The defining morphisms of this monoid can be
interpreted as follows:

1. δ† stands for comparing as

(|i〉 ⊗ |i′〉) ◦ δ† =
{|i〉 if i = i′

0 if i 6= i′

where 0 is the zero vector of Cn.

2. µ† is an unnormalised generalisation of the vector |+〉 to arbitrary dimensions, hence, some
quantum analogue of a completely random state.

Finally, the morphisms δ and δ† together satisfies the following two equations:

1. δ has for left-inverse δ† i.e.:

δ† ◦ δ = 1

2. They satisfy the Frobenius condition that is

(δ† ⊗ 1) ◦ (1⊗ δ) = (1⊗ δ†) ◦ (δ ⊗ 1) = δ ◦ δ† =
∑

i

|ii〉〈ii|.

These two conditions together with the defining equations of the monoid and the comonoid say
that the quintuple

〈Cn, δ, δ†, µ, µ†〉

is a †-Frobenius structure in FdHilb, a concept that we will formally define below. The justifi-
cation for such a structure is given by the following

Theorem 6.1.3 [38] There is a one-to-one correspondence between †-Frobenius structures and
orthonormal bases in FdHilb which is established by the equations

δH : H → H⊗H; |i〉 7→ |ii〉 and µH : H → C; |i〉 7→ 1.

Basis structures and classical maps 71

†-Frobenius structures

From which we see that †-Frobenius structures truly axiomatise the notion of orthonormal
basis.

Proof: See [38].
�

[†-Frobenius structure] A †-Frobenius structure in Cq is a †-Frobenius structure i.e., a
quintuple

〈X, δX : X → X ⊗X,mX : X ⊗X → X,µX : X → I, uX : I → X〉 (6.1)

such that

1. mX = δ†X ,

2. uX = µ†X ,

3. 〈X, δX , µX〉 is an internal cocommutative comonoid,

4. 〈X, δ†X , µ
†
X〉 is an internal commutative monoid,

5. The following diagram defining the Frobenius condition commute:

X ⊗X δX⊗1X //

1X⊗δX

��

δ†
X

%%LLLLLLLLLLL
X ⊗X ⊗X

1X⊗δ
†
X

��

X
δ

%%LLLLLLLLLLL

X ⊗X ⊗X
δ†
X
⊗1X

// X ⊗X

(6.2)

6. Finally, the †-Frobenius object is special9 that is

δ†X ◦ δX = 1X . (6.3)

Remark 6.1.4 The previous definition could be reduced in length by saying that a †-
Frobenius structure is a comonoid 〈X, δX , µX〉 such that it admits a special Frobenius
structure in an obvious way. However, as the notion of Frobenius structure has not
been defined elsewhere in this dissertation, we gave this definition so that the notion is
at least implicitly defined.

In the graphical language for †-compact categories the notions of the previous definition
depict as follows:

− The comultiplication δX and the counit µX are depicted as

and

XX

XX

µX

X

:= δX

X

XX

:=

Sometimes called separable9

Basis structures and classical maps 72

†-Frobenius structures

respectively.

− Using these notations, the Frobenius condition depicts as

=

X X

XX

XX

XX

XX

X X

=

− Speciality as

=

X

X

X

Since a †-Frobenius structure consists of a monoid and a comonoid, identities defining those can
also be translated within the graphical calculus. Coassociativity and counit conditions for the
comonoid are depicted respectively as

=

X

X

XX

X X X X XX

X

= =

X

X

Cocommutativity depicts as

=

X

X X

X

X X

We will not depict the multiplication, the unit, the associativity and the commutativity for the
monoid as they are given by “daggering” the preceding pictures i.e., taking the them upside-down
while keeping the orientation of the wires.

Proposition 6.1.5 Every †-Frobenius structure 〈X, δX , µX〉 on X ∈ |Cq| induces a quantum
structure

〈X, νX〉 where νX := µX ◦ δ†X : X ⊗X → I.

Proof: We have

=

X

X

X

X

=

X

X

XX

X

= =

Thus, 〈X,X, νX , ν†X〉 is a compact structure on X. Moreover, by symmetry of the comultiplica-
tion, σX,X ◦ ν†X = ν†X so that 〈X, νX〉 is a quantum structure for X.

�

Remark 6.1.6 Note that X is self-dual relative to this quantum structure.

Basis structures and classical maps 73

†-Frobenius structures

Remark 6.1.7 Since we are working in Cq, the previous proposition concretely says that if
an X ∈ |Cq| is equipped with a †-Frobenius structure, then there are two (perhaps distinct)
quantum structures on X, that is, the one with which X is equipped because it is an object of
Cq and the other one induced by the †-Frobenius structure. We will study what this entails
in section 6.3 below.

Proposition 6.1.8 If X and Y ∈ |Cq| are equipped with a †-Frobenius structure, then so is
X ⊗ Y with

δX⊗Y := (1X ⊗ σX,Y ⊗ 1Y) ◦ (δX ⊗ δY) and µX⊗Y := µX ⊗ µY

which depict respectively as

X
X

X X YY

Y
Y

and

Moreover, the †-Frobenius structure on X ⊗ Y induces a quantum structure

〈X ⊗ Y, νX⊗Y 〉 where νX := µX⊗Y ◦ δ†X⊗Y (6.4)

which depicts as

X X YY

Proof: That δX⊗Y and µX⊗Y define a cocommutative comonoid is immediate using the graphical
calculus. That δX⊗Y and δ†X⊗Y satisfy the Frobenius condition is given by

X Y

X Y

X Y

X Y XX Y

=

X Y

X Y

X Y

X Y Y

XX Y Y

=

and the other equality proceeds analogously. Speciality is shown by

X Y

X Y

X Y

X Y

=

X Y

=

Thus, 〈X ⊗ Y, δX⊗Y , µX⊗Y 〉 is a †-Frobenius structure.

Basis structures and classical maps 74

Normal form

To see that νX⊗Y defines a quantum structure, we first show that νX⊗Y together with ν†X⊗Y
define a compact structure. This is

X Y

X Y

=

X Y

X Y

=

X Y

To see that this compact structure is a quantum structure, we have to verify the constraint
equation σX⊗Y,X⊗Y ◦ ν†X⊗Y = νX⊗Y . This is the case as

X Y

= =

X Y
X Y X Y

X Y X Y

where we obtained the first equality by cancelling the symmetry and the second using the fact
that the comultiplication is cocommutative.

�

6.2 Normal form

We now provide a normal form result for expressions involving the structural witnesses of the
†-Frobenius structure. Such a result is “new” and was published in [31]. The quotation mark
around new indicates that we didn’t know when we discovered this that an analogue result
existed in the context of topological quantum field theories, where Frobenius algebras arise in
the 2 dimensional case. It was J. Kock that pointed out this fact by referring us to his book [56].
However, there are enough discrepancies between our presentation and the one given in the cited
book to present it here in details. Among these, a formal definition of connectedness, the fact
that †-Frobenius structures are special and the details of the proof albeit there [56]—perhaps
unsurprisingly—the idea of the proof remains the same.

Remark 6.2.1 As †-Frobenius structures on X entail that X is self-dual relative to the quan-
tum structure induced by the †-Frobenius structure and since, the depictions do not take into
account X∗, the non-trivial dual of X relative to its quantum structure in Cq, we will drop
the arrows from our graphical notation in what follows. Moreover, if our graphical depictions
involve only one type, we will not label the wires since there are no risks of confusion.

[Classical network] A classical network in Cq is a morphism obtained by composing terms
obtained by tensoring of δ’s, µ’s (and hence also of ν’s) symmetries, identities and their
adjoints.

Let us introduce the following notations for δ and µ respectively:

Basis structures and classical maps 75

Normal form

Consider the graphical representation of a classical network f , then by using the notation above,
dismissing the gray box and adding black dots to each input and each output, we obtain an
undirected graph, the underlying graph of f . As an example, consider

Classical network Underlying graph

Clearly, this consists of two connected components. We will build on this intuition to define the
notion of

[Connectedness] Let X be a classical object, X⊗k denote the k-fold monoidal product of X
and X⊗0 := I, the monoidal unit. A classical network is connected if it is equal to a
classical network constructed from the following recursive definition:

[Basic clauses] The morphisms

(A1) 1X : X → X, (A2) δX : X → X ⊗X, (A3) δ†X : X ⊗X → X,

(A4) µX : X → I and (A5) µ†X : I → X

are connected classical networks.

[Inductive clauses] If f : X⊗m → X⊗n and f ′ : X⊗m
′ → X⊗n

′
are connected classical

networks, S : X⊗m+m′ → X⊗m+m′ and S′ : X⊗n+n′ → X⊗n+n′ are morphisms obtained
by composing and tensoring identities and symmetries then

(B1) (f ⊗ f ′) ◦ S ◦ (1X⊗i ⊗ δX ⊗ 1X⊗j)

is connected if

1. i and j are any values such that i+ j + 2 = m+m′ and

2. δX composes with both f and f ′; that is, if σ(m+m′)
n,n+1 denotes the symmetry applied to

the n-th and n+ 1-th then, as a particular case,

(f ⊗ f ′) ◦ S ◦ (δX ⊗ 1X⊗(m+m′−2))

is connected if σ(m+m′)
m,m+1 ◦S ◦σ

(m+m′)
1,2 = S. This, in fact, connects the first wire to either

m or m + 1 and the second wire to either m or m + 1 depending which is connected
with the first. In the general case described by the clause (B1) we just need to replace
σm+m′

1,2 by σm+m′

i,i+1 and f by (f ◦T) and f ′ by (f ′◦T ′) for some appropriate permutations
T and T ′ so that we connect with the right inputs via an analogue argument.

Also,

Basis structures and classical maps 76

Normal form

(B2) (1X⊗i′ ⊗ δ
†
X ⊗ 1X⊗j′) ◦ S′ ◦ (f ⊗ f ′).

is connected if

1. i′ and j′ are any values such that i′ + j′ + 2 = n+ n′ and

2. Both f and f ′ composes with δ†X ; an analogous argument as for (B1) applies.

It remains to handle the cases of a well-defined composition of a connected f with a
structural morphism from the †-Frobenius structure. In details, if a classical network

f : X⊗m → X⊗n

is connected then so are

(C1) f ◦ (1X⊗i ⊗ δX ⊗ 1X⊗j), (C2) (1X⊗i′ ⊗ δX ⊗ 1X⊗j′) ◦ f,
(C3) f ◦ (1X⊗i′′ ⊗ δ

†
X ⊗ 1X⊗j′′), (C4) (1X⊗i′′′ ⊗ δ

†
X ⊗ 1X⊗j′′′) ◦ f,

(C5) f ◦ (1X⊗i ⊗ σX,X ⊗ 1X⊗j), (C6) (1X⊗i′′′ ⊗ σX,X ⊗ 1X⊗j′′′) ◦ f.
(C7) f ◦ (1X⊗k ⊗ µ†X ⊗ 1X⊗k), and (C8) (1X⊗k′ ⊗ µX ⊗ 1X⊗l′) ◦ f,

For any values of i, j, i′, j′, i′′, j′′, i′′′, j′′′. k, l, k′ and l′—depending on the clause—such
that

i+ j + 2 = m, i′ + j′ + 1 = n, i′′ + j′′ + 1 = m, i′′′ + j′′′ + 2 = n,

k + l + 1 = m or k′ + l′ + 1 = n.

[Extremal clause] Nothing else is a connected classical network.

Moreover, a classical network is totally disconnected if it is equal to

s1 ⊗ s2 ⊗ . . . ⊗ si ⊗ . . .⊗ sn for n ≥ 2 and for all i si ∈ {νX , ν†X , σX,X , 1X}

where n ≥ 2. Finally, a classical network which is neither connected nor totally discon-
nected is disconnected.

Remark 6.2.2 We did not include νX and ν†X into our definition of connectedness; as these

factor as composites µX ◦ δ†X and δX ◦ µ†X respectively, such an addition would have been
redundant.

[Normal form] Let δ0 := µ†X , δ1 := 1X and for n ≥ 2,

δn := (δX ⊗ 1X⊗n−2) ◦ (δX ⊗ 1X⊗n−3) ◦ ... ◦ (δX ⊗ 1X) ◦ δX . (6.5)

A connected classical network f : X⊗m → X⊗n is in normal form if

f = δn ◦ δ†m : X⊗m → X⊗n. (6.6)

Lemma 6.2.3 A non-empty connected classical network f containing only δ’s and identities
can be brought in normal form.

Proof: By induction on the number of δ’s, we find:

Case i = 0:

Basis structures and classical maps 77

Normal form

In this case, by connectedness, f consists only of an identity which is in normal form.

Case i = n is assumed to be true.

Case i = n+ 1:

As f consists only of δ’s and identities, using bifunctoriality of the tensor product, we have

f = (1X⊗p ⊗ δX ⊗ 1X⊗q) ◦ f ′

with p + q + 1 = i—indeed, this is of the form given by clause (C2). Now, by the induction
hypothesis, f ′ can be brought into normal form. It remains to get the δX we factored out to be
the leftmost term in the tensor product. We can always do so by using coassociativity of the
†-Frobenius structure thus obtaining a normal form.

�

Lemma 6.2.4 Any non-empty classical network f consisting only of δ’s, symmetries and iden-
tities factors as S ◦D where S is a classical network containing only symmetries and identities
while D contains only δ’s and identities.

Proof: Let s denote a tensor product of a single symmetry and identities and d a tensor product
of a single δ with identities. We first show that given s1 and d1,

d1 ◦ s1 = s2 ◦ d2.

This says that it is always possible to bring the term containing the symmetry after the term
containing the δ in the compositional order. By cases, we have:

......=

and the analogue when the symmetry is placed at the right of δ or

...... =

and the analogue when the symmetry is placed at the “right” of δ. As this exhausts all the cases,
this proves our claim. The general result is true by extension on the size of f .

�

Lemma 6.2.5 Any non-empty classical network f containing only δ†’s, symmetries and iden-
tities factors as D ◦S where D is a classical network containing only δ†’s and identities while
S is a classical network containing only symmetries and identities.

Proof: The result is true by dualising the proof of lemma 6.2.4.
�

Proposition 6.2.6 Any non-empty connected classical network f consisting only of δ’s, sym-
metries and identities can be brought into normal form.

Basis structures and classical maps 78

Normal form

Proof: First, apply lemma 6.2.4 so that f = S ◦D. Then, note that D satisfies the conditions
of lemma 6.2.3 and hence can be brought into normal form that we denote D′. Now, as S is
completely disconnected and it composes with D′, every symmetry therein must compose with
a set of δ’s in D′ and hence, up to a rearrangement of the δ’s using coassociativity, it can be
cancelled by cocommutativity. It remains to rearrange the terms so that we recover D′ using
coassociativity again.

�

Proposition 6.2.7 Any non-empty connected classical network f consisting only of δ†’s, sym-
metries and identities can be brought into normal form.

Proof: Again, the result is true by dualising the proof of proposition 6.2.6.
�

Theorem 6.2.8 [Normalisation of classical networks] Every connected classical network

f : X⊗m → X⊗n

admits a normal form.

Before giving the proof, we will explain our strategy by giving an example of reduction in normal
form. Consider the following connected classical network:

– Use bifunctoriality of the monoidal product to move all µ’s and µ†’s to the extremities of the
network:

Basis structures and classical maps 79

Normal form

– The last step ensures that the expression in the middle consists only of δ’s and δ†’s and
symmetries. The strategy is now to bring all the δ’s after the δ†’s using properties of the sym-
metric monoidal structure and of the †-Frobenius structure. In our case, the middle expression
becomes:

– Finally, we bring back the µ and µ† and use the monoid and comonoid identities to obtain

=

where the identity is the normal form.

Proof of theorem 6.2.8: The steps of normalisations are:

Basis structures and classical maps 80

Normal form

1. Take every instance of νX and ν†X and set them equal to µX ◦ δ†X and δX ◦ µ†X respectively.
The process will eventually stop. Indeed, since f is finite, there are only a finite number of
νX and ν†X . Let us denote the final expression from this step as f1.

2. Using bifunctoriality of the tensor product, and naturality of the symmetry, factor out every

µX and µ†X so that

f1 = M ◦ f2 ◦M ′

where M is a tensor product of 1X and µX ’s, M ′ is a tensor product of identities and µ†X ’s and
f2 is a classical network consisting only of δX ’s, δ†X ’s, symmetries and identities. Again, since
there are only a finite number of µX ’s and µ†X ’s as f is finite, the procedure must eventually
halt.

3. Rewrite f2 using bifunctoriality of the tensor as f ′2, a composition of terms of the form

1X⊗i ◦ s ◦ 1X⊗j ,

where s ∈ {δX , δ†X , σX,X}. We now “push” the δX ’s after the δ†X ’s. As each term of the
composition contains exactly one term different from the identity, this enables us to consider
a set of identities involving the terms containing δ†X and those appearing after in the composite
f ′2. We read f ′2 from right to left until we meet a term containing a δX , say the k-th term
which we denote tk. If the composition has k terms, then we are done and we proceed to the
next step. Otherwise, we get into one the following subcases:

Simple cases:

Consider tk+1 ◦ tk then either

a. It is of the form

... ...
tk+1

tk

Meaning that the nontrivial term in tk+1 does not compose with δX , then, using bifunc-
toriality of the tensor product, apply

tk+1 ◦ tk = tk ◦ tk+1

b. Of the form

... ...
tk+1

tk

then apply speciality so that

δ†X ◦ δX = 1X

Basis structures and classical maps 81

Normal form

c. Of the form

... ...
tk+1

tk

in which case we apply cocommutativity of δX to cancel out σX,X .

d. Or either of the forms

... ...
tk+1

tk

or

... ...
tk+1

tk

In either case we apply the Frobenius identity so that δX is brought in front of δ†X .

If tk+1 ◦ tk was of none of the preceding form, it must interact with σX,X ’s in which we fall
in one of the following

Non-simple cases:

Such cases involve considering composites in f ′2 of the form tk+p ◦ tk+(p−1) ◦ · · · ◦ tk where tk
has a δX as non-trivial term, tk+p has a δ†X and the terms from tk+1 up to tk+(p−1) have a
σX,X as non-trivial term. We depict such a composite as

...

... ...

......

...

tk

tk+p

...S

where S is a composite of tensor products of identities and symmetries.

Now, for some j ≥ k, the composite Tj,k := tj ◦ tj−1 ◦ · · · ◦ tk is represented without loss of
generality as

... ...

...

...

Indeed, if the term tk+1 has a symmetry on the left of δX , then there are no wires crossing
the right leg of δX and j = k. From this, the composite tj+1 ◦ Tj,k is then

Basis structures and classical maps 82

Normal form

a. Of the form

...
Tj, k

tj+1

...

...

...
...

in which case we use bifunctoriality of the tensor product to get

.........
...

...

b. Of the form

... Tj, k

tj+1

...

...

...

we then cancel out the symmetries to get

......

...

...

c. Of the form

... ...

...

tj+1

Tk,j

...

... ...

in which case we apply naturality of the symmetry in order to get

... ...

... ...

...
...

d. Of the form

Basis structures and classical maps 83

Normal form

... ...

...

tj+1

Tk,j

...

in which case we again apply naturality of the symmetry to get

... ...

...

...

e. Of the form

... ...

...

tj+1

Tk,j

...

in which case we use

... ...

...

...

=
... ...

...

...

=

f. Or of the form

... ...

Tj,k
tj+1

...

...

...

in which case we use bifunctoriality to get

...
...

...

This step is repeated until we exhaust all the terms up to tk+p in the original expression.
Then, let us denote the composite of the terms from δX up to δ†X but excluding the latter as
T and the term containing δ†X as tk′ .

The composite tk′ ◦ T has now one of the following forms:

Basis structures and classical maps 84

Normal form

A. If the preceding transformations didn’t leave any symmetries crossing the right leg of δX ,
we then fall back to a simple case and apply the corresponding identity.

B. Of the form

... T

tk′

...

...

...
...

from which we get, via bifunctoriality,

......

...

...
...

C. Of either of the forms

...
T

tk′

...

...

...

or

...
T

tk′

...

...

...

From there if we meet the first case, we cancel out the symmetry below δ†X , which enables
us to consider the second case for both so that, via a graph isomorphism analogous to the
one in case e. above, we can use the Frobenius identity to get

......
...

D. Of the form

...
T

tk′

...

... ...

......

from which naturality of the symmetry yields

Basis structures and classical maps 85

Normal form

......

... ...

......

E. Of the form

...
T

tk′

...

...

...

from which we use general properties of the symmetry to get to

......

...

...

then, we use co-commutativity of δ†X to get

......

...

...

and finally, the Frobenius identity yields

......

...

...

F. Of the form

...
T

tk′

...

...

...

in which case we apply Frobenius identity to get

Basis structures and classical maps 86

Normal form

...
...

...

...

G. Or of the form

... T

tk′

...

...

...
...

from which we get

......

...

...
...

using bifunctoriality.
In each of these cases—aside those where we used speciality—, we brought δX after δ†X .

Following this, we begin this step anew until all δX ’s come after the δ†X ’s.

Convergence of this step is ensured by the fact that we only have a finite number of δX ’s and
δ†X ’s. Denote the final expression obtained from this step by f3.

4. Now, since all occurrences of δ†X ’s occur before the occurrences of δX ’s, we may factor f3 as

f ′′ ◦ f ′ : X⊗m → X⊗j → X⊗n

where f ′ contains all the δ†X ’s while f ′′ contains all the δX ’s.

We now shall argue that j = 1 and this will enable us to apply proposition 6.2.6 and propo-
sition 6.2.7 to obtain a normal form. First, j can’t be 0 since f3 is connected. So, suppose
that j > 1. We will show that such an assumption entails f ′′ ◦ f ′ is disconnected. To do so,
we first show that f ′ is disconnected:

The composite f ′ can be factored as a composite of terms

1X⊗k ⊗ s⊗ 1X⊗l where s ∈ {δ†X , σX,X} (6.7)

for appropriate values of k and l. Now, the number of connected components in the first term
of the composition term is at least k + l + 1 ≥ j > 1, such a term is a disconnected classical
network independently of whether s is a δ†X or a symmetry. If there are no more terms, we
are done. If not, there are two cases:

− The term that follows contains a symmetry, then the composite is still disconnected.

− The following term contains a δ†X and this reduces the number of disconnected components
by 1. Now, k+l indicates the number of connected components in the term containing the

Basis structures and classical maps 87

Normal form

δ†X which is again at least j so that the number of connected components is k+ l ≥ j > 1
and the composite is again disconnected.

By induction, it follows that f ′ is disconnected.

Now, for the composite f ′′ ◦ f ′ note that when composing f ′ with a term of f ′′ containing
either a δX or a symmetry again leaves a disconnected classical network. Indeed, to connect
the components of f ′ one would need the clause of connectedness (B2) but this can’t happen
as f ′ contains no δ†X . Thus, by induction, f ′′ ◦ f ′ is disconnected. As this can’t happen—by
assumption f3 is connected—, j = 1 as claimed.

Following this, from f3 we can apply proposition 6.2.6 and proposition 6.2.7 to obtain a
normal form f4. This step converges again by finiteness of f .

5. Finally, it just remains to bring in the µX and µ†X which we evacuated in step 2 and cancelling

them against δX and δ†X respectively using the comonoid and monoid identities. The resulting
expression is still in normal form and is equal to f as required. Again, this step must
eventually terminate.

�

A classical network in normal form is completely determined by its number of inputs and outputs.
For instance, the pair of input-output (0, 1) defines µ†, the pair (1, 2) defines δ, the pair (2, 2)
defines δ ◦ δ† etc. Thus, when looking at a connected classical network, the only thing that we
have to take care of is the number of inputs and outputs and then, we can write the corresponding
normal form. Using this idea, we introduce the following unambiguous “spider” notation for a
normal form δn ◦ δ†m:

· · ·

· · ·

where the spider has m inputs and n outputs if they are not both equal to 1. In this particular
case, the normal form is just an identity which we depict as a wire without dot as usual. A way
to interpret such a reduction in normal form using the spider notation is to consider the usual
normal form and then, we “contract” the dots from each components of the normal form into
one while cancelling all the symmetries in between.

From now on, we will drop the trapezoids and triangle and depict δX , δ†X , µX and µ†X as their
corresponding spiders, that is

and,,

respectively.

Incidentally, this notation gives us a better way to handle the properties of classical objects in
the graphical calculus. Indeed, the comonoid and monoid identities now appear as

= = and = =

respectively. The counit νX of the quantum structure induced by the †-Frobenius structure
together with its adjoint are depicted as

Basis structures and classical maps 88

The category Cb of basis structures

and

respectively. The Frobenius identities appear as

= =

It is easy to see that this lemma induces a rewriting scheme for the “classical component of more
general expressions”, i.e., the part only involving classical object structure, simply by normalising
all (maximal) classical networks it comprises while considering the “boundary” of the classical
component as its inputs and outputs.

Remark 6.2.9 Perhaps there is a more elegant proof than the one we gave, for instance via
rewriting or structural induction. Whether such a proof already exists for Frobenius algebras
isn’t known to the author, and it remains an interesting open question for future work.

6.3 The category Cb of basis structures

In this section, we introduce the notion of category of basis structures. Given an object H in
FdHilb, its specified dual related to the quantum structure is the conjugate space H∗. However,
nothing prevents us from choosing a basis for H that is via theorem 6.1.3, to equip H with a
†-Frobenius structure. Having done so, the object H comes with two quantum structures:

• The first coming from the quantum structure of FdHilb with dual H∗ while

• The second is the one induced by the †-Frobenius structure which is self-dual.

As we have seen in lemma 5.2.1, these two duals are isomorphic via a unique unitary transforma-
tion dX : H → H∗. But here, the second quantum structure is induced by a †-Frobenius object
and this entails that dX—the dualiser of H—is a bijection.

The goal of this section is to introduce the notion of basis object which consists of an object of
Cq equipped with a †-Frobenius structure. Then to make the dualiser explicit. To introduce
the notion of a category of basis structures as a full subcategory of Cq where each object comes
equipped with a basis structure. Finally, to study how the two quantum structures existing
within such a category interact.

Such a construction is new and was first introduced in [34] which the author wrote with B. Coecke
and S. Perdrix. There are, however, many discrepancies between that paper and what we present
here. Among these, we stress the fact that the †-Frobenius structure of the basis structure is
complementary to the quantum structure of the object of Cq. This induces many changes in
the statements of the results which are, sometimes, less general than what’s presented in [34]
but these are better suited for our needs. Finally, we make explicit the fact that the set of
all dualisers in a category of basis structures defines a natural transformation between the two
lower- and upper-star present functors present in a category of basis structures; such a result
was not in the cited paper.

[Base structure] A basis structure on an X ∈ |Cq| is a quadruple

Basis structures and classical maps 89

The category Cb of basis structures

〈X, δX , µX , ǫX〉

where 〈X, δX , µX〉 is a †-Frobenius structure and 〈X, ǫX〉 is the quantum structure of X
in Cq. Again, we will make the usual abuse of terminology saying that the support X of
a basis structure 〈X, δX , µX , ǫX〉 is a basis object.

Lemma 6.3.1 If X in Cq is equipped with a †-Frobenius structure, then so is X∗ with

〈X∗, (δX)∗, (µX)∗〉

.

Proof: As (−)∗ is a functor such that for all f and g, (f ⊗ g)∗ = g∗ ⊗ f∗ (by our assumption on
the strictness of Cq), the result trivially holds. As an example, we show one of the two equations
of the Frobenius condition on X∗:

((δX)†∗ ⊗ 1X∗) ◦ (1X∗ ⊗ (δX)∗) = ((δ†X)∗ ⊗ (1X)∗) ◦ ((1X)∗ ⊗ (δX)∗)

= (1X ⊗ δ†X)∗ ◦ (δX ⊗ 1X)∗

= ((1X ⊗ δ†X) ◦ (δX ⊗ 1X))∗

= (δX ◦ δ†X)∗

= (δX)∗ ◦ (δ†X)∗

= (δX)∗ ◦ (δX)†∗.

�

In order to prove the next result, we need the notion of

[Bijection] Let X,Y ∈ |Cq| be equipped with †-Frobenius structures. Then f : X → Y is a
bijection if it is a unitary comonoid homomorphism. That is, in addition to being unitary,
it is such that

=

ff

X

Y Y

X

Y Y

f
and

X

Y

f =

X

Remark 6.3.2 In FdHilb the previous notion coincides with the usual notion of bijection.
Indeed, if f : X → Y commutes with both δ and ǫ, then it must be a matrix of 0’s and 1’s.
If in addition it is unitary, then it must be a bijection on the basis.

Theorem 6.3.3 [Dualiser] If X ∈ |Cq| is equipped with a basis structure

〈X, δX , µX , ǫX〉,

then there exists a unique bijection

dX : X → X∗,

the dualiser of X, such that the counit of the quantum structure factors as

Basis structures and classical maps 90

The category Cb of basis structures

X ⊗X∗

ǫX
##HHHHHHHHH

1X⊗d
†
X // X ⊗X

δX◦µ
†
X{{xx

xx
xx

xx
x

I

Proof: We first show that there exists a unique unitary dX making the diagram commute. Let

dX := (µX ⊗ 1X∗) ◦ (δ†X ⊗ 1X∗) ◦ (1X ⊗ ǫ†X) (6.8)

that is

XX

X

dA :=

X

Then we have

X X

=
X

making the diagram (5.5) commute. To show that this is a unitary transformation, observe that
d†X ◦ dX = 1X as

X

X

=

X

X

=

X

=

X

dX

X

dX

using simple isomorphisms of graph. For dX ◦ d†X = 1X∗ ,

=

X

=

X

X

X

X

=

X

dX

dX

X

where the second equality is obtained by “sliding” νX and ν†X along ǫ†X and ǫX in the obvious
way.

Basis structures and classical maps 91

The category Cb of basis structures

To show that dX is unique, we suppose that there are two such unitaries dX and d′X making (5.2.1)
commute. Then,

X
X

X

= =

X

B

dX

X

X

= =

X

X
d′X

dX

d′X

d′X

dX

So we must have d
′

X ◦d
†
X = 1X∗ . Since dX is unitary, it follows that d′X = dX , thus, dX is unique.

It remains to show that it is a bijection. To show that it commutes with δX , consider

=
dX

X

dX

X

X

X X

X

=

X X

X

The second equality is obtained by applying the normalisation theorem to the classical network
within the dotted shape. Then we apply associativity to swap the two δ†X ’s; this yields

=

X

=

X X

X X

X

=
dX

X X

X

There, the second equality is obtained by sliding δ†X along ǫ†X⊗X . To show that it commutes
with µX is given by

=

X X

=
X

Thus, dX is a bijection.
�

From this,

[Category of basis structures] A category of basis structures Cb of a category of quantum
structures Cq is any full subcategory of Cq such that every object X ∈ Cb comes with
basis structure

〈X, δX , µX , ǫX〉

and where

1. For any X ∈ |Cb|, d†X = dX∗ ,

2. For any X,Y ∈ |Cb|, we have

δX⊗Y = (1X⊗σX,Y ⊗1Y)◦(δX⊗δY) µX⊗Y = µX⊗µY and dX⊗Y = (dX⊗dY)◦σX,Y

Basis structures and classical maps 92

The category Cb of basis structures

that is, graphically:
X

X Y

Y

dY dX
=

X ⊗ Y

dX⊗Y

X ⊗ Y X Y X YX ⊗ Y

=and
,

X ⊗ Y

=,

The constraint on the dualiser simply states that the choice of basis should be coherent with
respect to both the basis structures of X and X∗. In details: the first condition on the dualisers
insures that the basis structures on X and its dual X∗ are properly connected one with respect to
the other. The second one insures that that the dualiser behaves well when factoring the counit
of a compound object in the sense that it preserves the strictness of the quantum structures, i.e.,
we have:

X ⊗ Y
X ⊗ Y

=

X Y

=

X Y

=

Example 6.3.4 In the category FdHilb if X is equipped with a basis structure 〈X, δX , µX , ǫX〉
with induced basis {|φi〉}, then the conjugate space X∗ has the same basis. The dualiser is
the unitary transformation

dX =
∑

i

|φi〉〈φi| : X → X∗.

Proposition 6.3.5 Let Cb be a category of basis structures. The quantum structures induced
by the †-Frobenius structures of the basis structures induce two identity-on-object functors

(−)× : Copb → Cb and (−)× : Cb → Cb

whose actions on an f : X → Y are given by

:=f×
X

Y

f

Y

X

and

:=f×

Y

X

f

X

Y

respectively.

Proof: The proof is analogous—simpler in fact—to the proof of proposition 5.2.3.
�

Basis structures and classical maps 93

The category Cb of basis structures

The previous proposition thus tells us that, in a category of basis structures, not only does each
object come with two possibly distinct quantum structures, but also that if these two quantum
structures are indeed distinct, they induces two distinct upper- and lower-star functors both
factoring the dagger. The natural question now is: How do these two pairs of functors relate?
Manifestly, the collection of all dualisers does not define a natural transformation from the
identity functor to either (−)∗ or (−)∗. However, we have:

Proposition 6.3.6 Let Cb be a category of basis structures. The collection of all dualisers

{dX : X → X∗ | X ∈ |Cb|}

defines two natural isomorphisms

d• : (−)× → (−)∗ and d• : (−)× → (−)∗

Proof: Since all the required equations are shown in an analogous manner, we will only show
that given an f : X → Y , then

X

f×
��

dX // X∗

f∗
��

Y
dY

// Y ∗

commutes. Indeed, the composite dY ◦ f× is

dY

f×

X

Y

Y

= f †

Y

dY

Y

X

=

Y

dY
Y

X

f †

=

Y

dX
X

X

f∗

=

Y

X

X

f∗

dX

X

=

Y

f∗

dX

X

X

There, the first equality is taken from the definition of f×. The second equality by using the
cocommutativity of the comultiplication and sliding the dualiser down. The third equality is
obtained by sliding f † along ηX which is factorised in the picture. The fourth equality is obtained
by sliding the dualiser up. The final equality by compactness of the †-Frobenius structure. Thus,
we indeed obtain

Basis structures and classical maps 94

Mixed normal form

dY ◦ f× = f∗ ◦ dX

As required. Finally, that the components are (unitary) isomorphisms is already guaranteed
by theorem 6.3.3.

�

6.4 Mixed normal form

The main result concerning the mixed normal form is new and was first stated in [34]. We give
here for the first time a formal definition of connectedness and a complete proof based on the
reduction of classical networks into normal form given in section 2 of this chapter.

We now generalise the normal form to objects in Cb; that is, we add dual objects and dualisers
to connectedness and the normal form theorem.

[Mixed network] A mixed network in Cb is a composition of terms obtained by tensoring of
d’s, δ’s, µ’s (and hence also of ǫ’s and ν’s) symmetries, identities and their adjoints.

[Mixed connectedness] Let X n := X1 ⊗ X2 ⊗ · · · ⊗ Xn where for all i, Xi ∈ {X,X∗} and
X 0 := I. Let X be an object equipped with a basis structure. A mixed network is
connected if it is equal to a classical network constructed from the following definition:

[Basic clauses] These consist of the basic clause of connectedness (A1) − (A7) for the
structural morphisms of the †-Frobenius structure on X and their analogue (A1∗)− (A7∗)
for the structural morphisms of the †-Frobenius structure on X∗ with, in addition the
clauses

(A9) dX : X → X∗, and (A10) d†X : X∗ → X

are connected mixed networks.

[Inductive clauses] Let

F : X n → Xm and F ′ : Xm′ → Xn
′
,

be connected mixed networks and

S : Xm+m′ → Xm+m′ and S ′ : X n+n′ → X n+n′

be composites of terms obtained by tensoring identities 1X and 1X∗ and symmetries σX,X ,
σX,X∗ its adjoint and σX∗,X∗ . Now, with F instead of f , F ′ instead of f ′, S instead of S
and S ′ instead of S′, the inductive clauses consists of:

• The clauses of connectedness (B1)−(B2) and (C1)−(C8) for the structural morphisms
of the †-Frobenius structure on X and that, whenever the composite of a given clause
is defined10.

• The analogue clauses (B1∗)− (B2∗) and (C1∗)− (C8∗) for the structural morphisms of
the †-Frobenius structure on X∗ whenever the composite of a given clause is defined.

In addition, if F : X n → Xm is a connected mixed network, then so are

As we have two types in a mixed network: X and X∗.10

Basis structures and classical maps 95

Mixed normal form

(C9) (1X i ⊗ dX ⊗ 1X j) ◦ F , (C10) (1X i ⊗ d†X ⊗ 1X j) ◦ F ,
(C11) F ◦ (1X i′ ⊗ dX ⊗ 1X j′) and (C12) F ◦ (1X i′ ⊗ d

†
X ⊗ 1X j′)

with all possible values of i and j with i + j + 1 = n and possible values of i′ and j′ with
i′ + j′ + 1 = m again, whenever such a composite is defined.

[Extremal clause] Nothing else is a connected mixed network.

The generalisation of disconnectedness, and complete disconnectedness should be clear.

[Mixed normal form] A connected mixed network f : X n → Xm is in normal form if

f = D ◦ δn ◦ δ†m ◦D′ : X n → Xm

where D is a tensor product of dX ’s and 1X ’s, and D′ a tensor product of d†X ’s and 1X ’s.

Theorem 6.4.1 Every connected mixed network

f : X n → Xm

admits a normal form.

Proof: The strategy for proving this theorem is analogous to that of the normal form theorem
for classical network but we must take the presence of dualisers into account. The argument
of convergence is the same as for each of the corresponding step in theorem 6.2.8 so we do not
repeat it here.

1. Perform the same steps as in step 1 of the proof of theorem 6.2.8. In addition, take all in-
stances of ηX and ǫX , and factor them in accordance to the form guaranteed by theorem 6.3.3
that is,

ηX = (dX ⊗ 1X) ◦ δX ◦ µ†X and ǫX = µX ◦ δ†X ◦ (1X ⊗ d†X).

We do the same mutatis mutandis for ηX∗ and ǫX∗ and their adjoints. Denote the final
expression from this step as f1.

2. The principle of this step is the same as in step 2 of the proof of theorem 6.2.8. We use
bifunctoriality of the tensor product to factor f1 as

f1 = E ◦ f2 ◦ E ′

where E is a tensor product of 1X ’s, 1X∗ ’s, µX ’s and µX∗ and E ′ is a tensor product of 1X ’s,
1X∗ , µ

†
X ’s and µ†X∗ . As E and E ′ are completely disconnected, then f2 is a connected mixed

network consisting of symmetries, δ’s, δ†’s and identities.

3. We now “push” the δ’s after their adjoints in the composition. Again, using bifunctoriality
of the tensor product we rewrite f2 as f ′2, a composite of terms of the form

1X i ◦ s ◦ 1X j

where s ∈ {δX , δ†X , δX∗ , δ
†
X∗ , σX,X , σX∗,X , σ

†
X∗,X , σX∗,X∗}. In addition to the simple cases

already treated in theorem 6.2.8 and the corresponding simple cases for those involving the
comultiplication and multiplication of X∗ as well as the extra symmetries, we might encounter

Basis structures and classical maps 96

Mixed normal form

new simple cases involving the dualiser. We will give only the cases with δX , those with δX∗
should be obvious from them.

A. The cases

dX dX
or tk+1

tk

tk+1

tk

In either cases, we consider the composite of the dualiser and the comultiplication all at
once and handle it as if it were a δ.

B. If the term we “push” forward has the form given in A. and another dualiser composes
with the composite then there are two cases:

i. Either the dualiser composes with the dualiser already present in the composite. In
such a case, the dualisers cancel out.

ii. The dualiser composes with δ but not with the dualiser already present. In that case,
we then use the fact that dX is a bijection to get (dX ⊗ dX) ◦ δX = δX∗ ◦ dX .

C. The case

dX

tk+1

tk

from where using the fact that dX is a bijection and the Frobenius identity on X we
obtain

dX

dX

......

To this, we add the analogous case when the initial expression is dagger’ed (the final
expression is self-adjoint).

D. The case

dX
......

tk+1

tk

Basis structures and classical maps 97

Mixed normal form

from where using the same fact and identity as in the previous case we obtain

dX

dX

......

and again, the analogous case when the initial expression in dagger’ed.
The generalisation of the non-simple case should be obvious from the simple cases we intro-
duced; if dX , d†X doesn’t compose with δX or δX∗ (depending on the case), we just ignore
them. Dualisers will be dealt with in the next step.

Following this, we begin this step anew until all δ’s come after the δ†’s. Denote the final
expression obtained from this step as f3

4. Again, we obtain an expression which factors as

X n → X◦ → Xm.

However, the difference here when compared to theorem 6.2.8, the object X◦ is either X or
X∗. From here, we use the fact that dX and d†X are bijections, the naturality of the symmetry,
and bifunctoriality of the tensor product in order to take

E ◦ f3 ◦ E ′

to the composite

E ′′ ◦ f4 ◦ E ′′′.

From there, E ′′ is then a tensor product of 1X ’s, 1X∗ ’s, dX ’s, d†X ’s, µX ’s and µX∗ , and E ′′′ is a
tensor product of 1X ’s, 1X∗ , dX , d†X , µ†X ’s and µ†X∗ . What remains in f4 are δ’s and symme-
tries together with their adjoints but because of connectedness these symmetries and δ’s are
those coming from the †-Frobenius structure on X◦. So we may now apply proposition 6.2.6
and proposition 6.2.7 to reduce f4 to normal form.

5. It just remains to cancel out the ǫ’s and their adjoints against the δ’s and their adjoints. Both
are, by connectedness, from the †-Frobenius structure on X◦. Denote the resulting normal
form excluding the dX and d†X remaining on the extremities as f5.

6. Finally, if X◦ = X, we are done. Otherwise, if X◦ = X∗ it suffices to take a d†X and as it is
a bijection, we can take it from from one side of f5 to the other side of f5 thus changing the
type of f5 all along from which we obtain a normal form. If there are none available, we can
use the identity 1X∗ = dX ◦ d†X to produce one and take it from the right of f5 to the left of
f5 so that we obtain a normal form.

�

Let us introduce the following notation

Basis structures and classical maps 98

Mixed normal form

dX:=

Since d†X = dX∗, we do not lose any information in doing so. Indeed, they can be identified
by the direction of the arrows. Now, from the previous theorem, we can represent the obtained
normal form as a “decorated” spider, i.e.:

...

...

where in the dotted boxes there is either an identity or a dualiser while the small diamonds
indicate the possible presence of an arrow depending on what is inside the dotted box on that
wire. Now, using the dot notation for the dualiser and in the same spirit of “contracting the
dots” as we had for the first spider form, we can unambiguously represent a mixed normal form
as

...

...

where again, in the small white diamonds are the corresponding arrows depending whether the
wire has type X or X∗.

Example 6.4.2 The result of the case A of the step 3 of the theorem 6.4.1 is represented in
spider form as

Now, using the mixed spider notation, we don’t have to depict the dot in the following cases:

= ==

= = =

On the other hand, we must depict it in the following:

Basis structures and classical maps 99

Classical maps

Finally, we have:

Lemma 6.4.3 For any object X ∈ |Cb|, a category of basis structures, we have

(d†X ⊗ 1X) ◦ ǫ†X∗ = δX ◦ γ†A = (1X ⊗ d†X) ◦ ǫ†X

that is,

= =

Proof: That the leftmost expression is equal to the rightmost one holds for any f in a category of
quantum structures. That both expressions are equal to the one in the middle holds by definition
of the dualisers.

�

6.5 Classical maps

We now introduce the notion of classical map. In FdHilb, such a map is a matrix with real
positive entries. Such a notion of classicality makes sense as matrices with entries in R+ include,
among others, basis vectors from the computational basis, bijections and stochastic vectors which
are the outputs of measurements in quantum computing.

We first show that within our language, it is possible to characterise that a matrix in FdHilbb
contains only non-negative real entries. Indeed, let f : H → H′ be a morphism in FdHilbb where
H and H′ are equipped with basis structures 〈H, δH, µH, ǫH〉 and 〈H′, δH′ , µH′ , ǫH′〉 respectively.
Consider the composite map

(1H ⊗ δ†H′) ◦ (1H ⊗ f ⊗ 1H′) ◦ (δH ⊗ 1H′).

It is an easy calculation to see that if f =
∑

αij
|j〉〈i| as a matrix relative to the basis induced by

the basis structures, the morphism above is
∑

ij αij |ij〉〈ij|, and thus, a matrix of zeros except
on the main diagonal which contains the columns of the original matrix f . In that sense, the
operation unfolds f . Now, the unfolding of f is positive if f as a matrix had only non-negative
entries in the beginning. Thus, we have used:

1. The basis structures via δH and δ†H′ and

2. The notion of positivity.

Remark 6.5.1 Above, when writing f as a matrix, we said “as a matrix relative to the basis
induced by the basis structures”. In the following, we won’t specify that it is relative to such
or such basis structure but it should be understood that it is implicit.

The concepts of basis structure and positivity are already formalised within our categorical
language. Abstracting this we get

Basis structures and classical maps 100

Classical maps

[Unfolding of a morphism] The unfolding of a morphism f : X → Y in Cb is given by

(1X ⊗ δ†Y) ◦ (1X ⊗ f ⊗ 1Y) ◦ (δX ⊗ 1Y).

which is depicted as

f

Y

YX

X

From which,

[Classical morphism] A morphism in Cb is a classical morphism if its unfolding is positive.

Following our discussion at the beginning of this section, this notion abstracts the notion of
real-positive matrices in FdHilb. We have

Lemma 6.5.2 A morphism f : X → Y is classical if and only if

f

XX

Y Y

is completely positive.

Proof: The unfolding of f is positive if and only if

f

Y

X Y

X

is positive. Indeed, if Unf(f) is positive then, by lemma 5.4.1-a, (dX ⊗ 1Y) ◦Unf(f) ◦ (dX ⊗ 1Y)†

is also positive. The converse is also true since dX ⊗ 1Y is unitary. From there, applying corol-
lary 5.4.4, and the mixed normal form theorem,

Basis structures and classical maps 101

Classical maps

f=

XX

Y Y

f

Y

X

Y

X

is completely positive.
�

Remark 6.5.3 The previous result indicates that the classical morphisms are those f : X → Y

of Cb such that

g gf = f = h

where h is completely positive.

Lemma 6.5.4 In Cb,

i. For any X ∈ |Cb|, 1X is a classical map.

ii. The composite of classical maps is a classical map.

The proof is postponed to section 7.2

[The category Cc] Given a category of basis structures Cb, the category Cc of classical maps

has for objects the same as Cb and for morphisms the classical maps in Cb.

Theorem 6.5.5 The category Cc is again a category of basis structures. The †-monoidal
structure and the basis structures in Cc are inherited from those of Cb.

The proof of this theorem is also postponed to section 7.2.

Continuing our analogy with FdHilb, classical morphisms therein matrix with real non-negative
entries and hence, invariant under complex conjugation. It turns out that an abstract version of
this fact is also true:

Proposition 6.5.6 If f : X → Y is in Cc, then f× = f .

Proof: Suppose f is classical, then by definition Unf(f) is positive and thus, Unf(f) = Unf(f)†.
Therefore,

Basis structures and classical maps 102

Classical maps

f

Y

YX

X

f

Y

YX

X

=

is positive if and only if

f

YY

X X

=
f

Y

X

Y

X

is completely positive—c.f. lemma 6.5.2. Now, the left-hand-side of the equality is equal to

f

XX

Y Y

while the right-hand side is equal to

f

YY

X X

f

YY

X X

= f×

XX

Y Y

=

with a simple application of the generalised normal form theorem and using the fact that arrows
with top to bottom orientation carry a dualiser. Thus, we have

F (f×) = F (f) where F (−) := (1⊗ dX) ◦ δX ◦ − ◦ δ†X ◦ (1⊗ d†X).

Now, F has a left inverse as (1⊗ dX) is unitary and δX is an isometry. From this, F is injective
so f× = f .

�

Section 7.3.1 of the next chapter will discuss the class of morphisms we find in Cc such as
stochastic maps, partial maps and others.

7 Classical-quantum interfaces

This chapter is the crux of this dissertation. We now take the classical and the quantum frag-
ments of our theory, given respectively by the category of classical maps and the category of
completely positive maps, and unify them into a single categorical framework. To do so, we will
first define the notion of classical-quantum interfaces that encompass both classical and quan-
tum maps. Then we will construct a category of interfaces that turns out to be a category of
quantum structures. We will explain how the classical and the quantum fragment of the theory
embed within this new category. Finally, we will provide a complete categorical semantics of all
interfaces which contains, for instance, the various class of classical morphisms, states, unitary
transformation, controlled-maps, measurements and POVMs.

The results presented here are new and are derived from [33] and [32] that the author wrote with
B. Coecke and D. Pavlovic. In contrast to the first paper, we provide here a completely different
construction for the category of classical-quantum interfaces which is direct, contrary to what
has been done there. The second paper relies on higher-level category theory and, as mentioned
in the introduction, we have put substantial efforts throughout this thesis to try to keep the
discussion at a reasonable level of abstraction so that it remains (hopefully) intuitive. The major
discrepancies between what’s published in [32] and the presentation that follows reflect this.

From now on, we assume that we have a fixed category of basis structures Cb, a full subcategory
of Cq. When we refer to a basis object X ∈ |Cq|, we mean an object equipped with a classical
structure; such objects are denoted X,Y,Z,W, When we refer to a quantum object, we mean
any object of Cq which we denote as A,B,C,D,

7.1 Classical-quantum interfaces

We will now define the notion of classical-quantum interfaces in Cq. As the name indicates,
these interfaces are morphisms of Cq which define the interactions between the classical and the
quantum fragment of the theory. We will take the completely positive maps as the quantum
fragment, while the classical fragment is given by classical maps. Following this, instances of
classical-quantum interfaces consist of all classical maps, all quantum maps and all non-trivial
interfaces such as, for instance, controlled-maps and measurements. The general type of a
classical-quantum interface as a morphism of Cq is

f

A AX

B BY

Classical-quantum interfaces 104

Classical-quantum interfaces

where X and Y are basis objects and A and B quantum objects. The wires labeled by X and Y
are understood as carriers of classical data, that is in FdHilb, non-negative real data. On the
other hand, the wires labeled by A and B are carriers of quantum data. As special instances
of interface, a positive element, a measurement and a controlled set of unitaries have respective
types

ρ

B B

M

A A

B BY

and UX

A AX

B B

As we take quantum maps to be the morphisms of CP(Cq) i.e., completely positive maps in Cq
and that morphisms of Cc admit a factorisation including a completely positive map (c.f. re-
mark 6.5.3), it makes sense to think that interfaces will admit a representation which is closely
related to the form of completely positive maps in Cq. Taking in account the factorisation of
classical maps including a completely positive map and the general form of completely positive
maps, we expect that interfaces will factorise as

f

A AX

B BY

= g

B Y

g

B

A X A

h

with h completely positive. In the light of the previous remark,

[Classical-quantum interface] Let A,B ∈ Cq be quantum objects, X,Y ∈ |Cq| be basis
objects, DX := (1X ⊗ dX) ◦ δX and DA,X := 1A ⊗ DX ⊗ 1A∗. A (classical-quantum)

interface in Cq is a morphism f : A⊗X ⊗ A∗ → B ⊗ Y ⊗ B∗ such that DB,Y ◦ f ◦DA,X ,
which is depicted by

f

AX X A

B Y Y B

is completely positive.

Lemma 7.1.1 In Cq,

a. The identity 1A⊗X⊗A∗ is an interface.

b. If f : A⊗X ⊗A∗ → B ⊗ Y ⊗B∗ and g : B ⊗ Y ⊗B∗ → C ⊗ Z ⊗ C∗ are interfaces, then
so is their composite g ◦ f : A⊗X ⊗ A∗ → C ⊗ Z ⊗ C∗.

c. If f : A⊗X ⊗A∗ → B ⊗ Y ⊗B∗ and g : C ⊗Z ⊗C∗ → D⊗W ⊗D∗ are interfaces, then
so is

Classical-quantum interfaces 105

Classical-quantum interfaces

gff ⊠ g :=

Proof: For (a), we have

=

AX X A

AX X A

A X X A

A X X A

which is seen to be completely positive. For (b), consider

f

AX X A

C Z Z C

g

=

f

AX X A

g

C Z Z C

which is completely positive as the composition of completely positive maps is completely posi-
tive; therefore, interfaces are closed under composition. For (c), note first that by constraint on
the dualisers in Cb,

=DX⊗Y =

X Y

X Y XY X Y Y X

X Y

Using this, DB⊗D,Y⊗W ◦ (f ⊠ g) ◦D†A⊗C,X⊗Z is

gf

WYDBBDYW

ACXZ ZXCA

=gf

A ACX Z Z XC

B BDY WW Y D

where the equality holds via an isomorphism of graph. Now, in the middle part, we have the
CP(Cq)-tensor product of the completely positive maps

DB,Y ◦ f ◦D†A,X and DD,W ◦ f ◦D†C,Z

in Cq, which is again completely positive. Finally, the morphisms at the extremities are both of
the form

Classical-quantum interfaces 106

Classical-quantum interfaces

AXBY Y BXA

YXBAABXY

which is completely positive. As the composition of completely positive maps is completely
positive, it follows that DB⊗D,Y⊗W ◦ (f ⊠ g) ◦D†A⊗C,X⊗Z is completely positive as claimed.

�

Remark 7.1.2 The map f ⊠ g of the previous lemma can be thought of as a “mix” of the
tensor product of classical and of completely positive maps. Indeed,

interfacesclassical completely positive

+

Example 7.1.3 Every completely positive map in Cq is an interface. Every classical map is
an interface by lemma 6.5.2.

Using this, we give

Proof of lemma 6.5.4: The proof of (i) is analogous to the proof of (a) in the previous
proposition when considering the identity 1X : X → X. For (ii), using lemma 6.5.2 we see that
classical maps are interfaces; the proof then becomes the analogue of part (b) in the previous
proposition when considering classical interfaces of type X → Y and Y → Z.

�

Remark 7.1.4 Interfaces have the form we intended to target. Indeed,

g g
f = f =

where the first equality follows from the mixed normal form theorem and the second from
the notation for completely positive maps.

Now, one may wonder if such a definition is enough to ensure that wires typed with basis objects
carry only classical data. We now argue that this is the case. For any positive map ρ : I → X⊗X∗
in FdHilb with X is a basis object, we have that

D†X ◦ ρ : I → X

is a vector with only real positive entry. To see this, let us pass to the standard Dirac notation
using

Classical-quantum interfaces 107

The category CQI(Cq) of interfaces

ρ

X

g =g = ρ

X X

This is

δ†X ◦ (ρ⊗ 1X) ◦ νX =
∑

l |l〉〈ll| ◦
(

∑

i,j αij |i〉〈j| ⊗ 1X
)

◦∑k |kk〉
=
∑

i αii|i〉.

Conversely, if p : I → X is a column vector with real positive entries then

DX ◦ p : I → X ⊗X∗

is a “diagonal” positive map or, correspondingly in the standard notation, a diagonal matrix of
type X → X with all the entries of ρ on the diagonal. Finally, this entails that the composite
DX ◦D†X i.e.,

XX

gg

decoheres ρ. Thus, we see that if interfaces admit the form given above, then a composite of
interfaces of the form

g

B Y

g

B

A X A

h h

C Z C

effectively only has classical data running along the vertical wires typed with basis objects.

7.2 The category CQI(Cq) of interfaces

As we have seen in lemma 7.1.1, the identity is an interface and interfaces are closed under
composition, so we can define

[The category CQI(Cq) of interfaces] Given a category of quantum structures Cq and a
full subcategory of basis structures Cb →֒ Cq, the category CQI(Cq) of Classical Quantum

Classical-quantum interfaces 108

The category CQI(Cq) of interfaces

Interfaces has for objects pairs (A,X) where A is a quantum object and X a basis object
of Cq. A morphism f : (A,X) → (B,Y) in CQI(Cq) is an interface f : A ⊗ X ⊗ A∗ →
B ⊗ Y ⊗ B∗ in Cq. Composition and identities are inherited from Cq.

Theorem 7.2.1 The category CQI(Cq) is a category of quantum structures. The symmetric
monoidal product

⊠ : CQI(Cq)×CQI(Cq)→ CQI(Cq)

with unit (I, I) is given on objects by (A,X)⊠ (B,Y) = (A⊗B,X ⊗ Y) and on morphisms
as in proposition 7.1.1-c. The natural transformation σ has components σ(A,X),(B,Y) given by
σA,B⊗σX,Y ⊗ (σA,B)∗ in Cq. If f : A⊗X⊗A∗ → B⊗Y ⊗B∗ is an interface in Cq, then f † in
CQI(Cq) is given by f † : B ⊗ Y ⊗B∗ → A⊗X ⊗A∗ in Cq. Finally, any (A,X) ∈ CQI(Cq)
comes with a quantum structure

〈(A,X), ǫ(A,X) : (A,X)⊠ (A,X)∗ → (I, I)〉

where ǫ(A,X) is given by ǫA ⊗ ǫX ⊗ (ǫA)∗ in Cq.

Remark 7.2.2 Because of the expected form of the counit ǫ as an interface in Cq, we will
denote (A,X)∗ as (A∗,X∗) in what follows.

Proof: There are many equations to verify:

(i) CQI(Cq) is symmetric monoidal:

⊠ is a bifunctor. First, note that the symmetry—say s—on top of f ⊗ g in proposition 7.1.1-c is
inverse to the one on the bottom. Therefore, (h⊠ k) ◦ (f ⊠ g) as an interface in Cq is

s ◦ (h⊗ k) ◦ s−1 ◦ s ◦ (f ⊗ g) ◦ s−1=s ◦ (h⊗ k) ◦ (f ⊗ g) ◦ s−1 = s ◦ (h ◦ f)⊗ (k ◦ g) ◦ s−1.

which is (h ◦ f)⊠ (k ◦ g) in CQI(Cq).

⊠ is a monoidal product with unit (I, I). This follows directly from the definitions.

⊠ is symmetric. For the symmetry, using the mixed normal form theorem and some isomorphisms
of graph, we get

= k

h

f

f

k

g
=

Now, g is the CP(Cq)-tensor product of completely positive maps in Cq hence completely pos-
itive. Moreover, since f and k are completely positive, it follows that the composite k ◦ h =

Classical-quantum interfaces 109

The category CQI(Cq) of interfaces

k ◦ (f ◦ g ◦ f) is also completely positive, hence the symmetry is an interface. We now have to
show that σ is a natural isomorphism. Manifestly, for any interfaces f and g, we have

gf
fg=

Thus, σ is natural. The inverse of σ(A,X),(B,Y), σ
−1
(A,X),(B,Y) is the interface

σ−1
A,B ⊗ σ−1

X,Y ⊗ σ−1
B∗,A∗

in Cq and thus, σ is a natural isomorphism.

(ii) CQI(Cq) is †-symmetric monoidal:

The adjoint of an interface is an interface. Let f : A⊗X ⊗A∗ → B ⊗ Y ⊗B∗ be an interface in
Cq i.e., it is such that DB,Y ◦ f ◦D†A,X is completely positive. Consider,

DA,X ◦ f † ◦D†B,Y =
(

DB,Y ◦ f ◦D†A,X
)†

,

as the adjoint of a completely positive map is a completely positive it follows that f † is also an
interface giving f † in CQI(Cq).

CQI(Cq) is †-monoidal: The dagger commutes with the monoidal product as (f ⊠ g)† is given
in Cq as

(s ◦ (f ⊗ g) ◦ s†)† = s†† ◦ (f ⊗ g)† ◦ s† = s ◦ (f † ⊗ g†) ◦ s†

which is f † ⊠ g† in CQI(Cq). Moreover, we also have σ†(A,X),(B,Y) = σ−1
(A,X),(B,Y) directly from

the definitions. From which CQI(Cq) is indeed †-monoidal.

(iii) CQI(Cq) is a category of quantum structures:

We first check that ǫA⊗ ǫX ⊗ (ǫA)∗ is an interface: via an application of the mixed normal form,
we have

= =

A A XX X XA A A A XX X XA A A A XX X XA A

which is completely positive. Further, let

η(A,X) : (I, I)→ (A∗,X∗)⊠ (A,X)

be ηA ⊗ ηX ⊗ (ηA)∗ in Cq where ηA and ηX the units of the quantum structures on A and X

respectively. It is seen to be an interface using an analogue argument as the one given for the
counit. The equation

(ǫ(A,X) ⊠ 1(A,X)) ◦ (1(A,X) ⊠ η(A,X)) = 1(A,X)

is satisfied as the left-hand side is

Classical-quantum interfaces 110

The category CQI(Cq) of interfaces

=

A

A X

X

A

A A

A

X

X

A

A

=

A

A

X

X

A

A AA

AA

X

X

=

as required. The dual equation is obtained in the same manner from which the objects of
CQI(Cq) are equipped with compact structures. To show that they are equipped with quantum
structures, we must show that for any (A,X) ∈ D,

(I, I)
ǫ†

(A,X)//

η(A,X) ''PPPPPPPPPPPP
(A,X)⊠ (A∗,X∗)

σ(A∗,X∗),(A,X)

��
(A∗,X∗)⊠ (A,X)

commutes but this again follows directly from the definitions as well as ǫ(A∗,X∗) = ǫ(A,X) ◦σ(A,X).
Hence, CQI(Cq) is a category of quantum structures.

�

Using the proof of the previous theorem, we may now prove that Cc is a category of basis
structures:

Proof of theorem 6.5.5: Using lemma 6.5.2, the first part of the proof has already been proved
implicitly in theorem 7.2.1 by considering classical interfaces, i.e., classical morphism X → Y in
Cb. It remains to show that the objects of Cc inherit their basis structure from Cb. First, given
any X ∈ |Cc|, δX is also in Cc as using the generalised normal form theorem one sees that

= =

is completely positive. For µX ,

=

which is completely positive. Thus, for any X, both δX and µX are in Cc. It remains to check
that they satisfy the required equations, but this is the case since the composition, identities
and tensor product are inherited from Cb. The same applies for the dualisers, as the quantum
structures are inherited from Cb and thus, so are the basis structures.

�

Classical-quantum interfaces 111

Categorical semantics of all data

It remains to say how CP(Cq) and Cc embed in CQI(Cq). For Cc, it is easy to see that for any
A ∈ |Cq| there is a faithful canonical functor

CA : Cc → CQI(Cq) :: X 7→ (A,X).

mapping any f : X → Y in Cc unto an f ′ ∈ CQI(Cq) corresponding to the interface 1A⊗f⊗1A∗
in Cq that is:

f

X

Y

7→ f

X

Y

A A

For CP(Cq), again for any X ∈ |Cb|, there is a faithful canonical functor

QX : CP(Cq)→ CQI(Cq) :: A 7→ (A,X)

whose action on any f : A→ B in CPq(C) is given by the mapping of interfaces

BB

g g

AA

C

:=

BB

g g

AA

C

X

X

7→

BB

g g

AA

C

X

X

in Cq. Thus, as we mentioned at the beginning of this section, the quantum and the classical
fragment of our theory embed in the category of interfaces.

7.3 Categorical semantics of all data

We now inspect the different types of interfaces. This will give us a complete semantics to
describe quantum protocols as we will see in the next chapter. There are three major families of
interfaces given by: classical maps, quantum maps and interaction maps.

7.3.1 Classical maps

The classical maps in CQI(Cq) are those in the range of the functors

C− : Cc → CQI(Cq)

as defined in the preceding section. Thus, a general classical map in CQI(Cq) is depicted as

f

X

Y

A A

To simplify the presentation, as maps f : (I,X) → (I, Y) are classical interfaces or morphisms
of Cc, we won’t specify the particular type of such maps in CQI(Cq) but we must keep in mind
that this category embeds faithfully in CQI(Cq).

We now classify classical interfaces in terms of their δ- and µ-preservation. Such a classification
is summarised in

Classical-quantum interfaces 112

Categorical semantics of all data

Classical maps

Relations

Stochastic maps (µ)

Doubly stochastic maps (µ, µ†)

Permutations (δ, µ, δ†, µ†)

Functions (δ, µ)

Partial maps (δ)

where the different types of classical maps are ordered by inclusion.

1. Relations

[Convolution] Let X,Y ∈ |Cc| and f, g : X → Y . The convolution of f and g as

f ∗ g = δ†Y ◦ (f ⊗ g) ◦ δX

which is depicted as

f g

X

Y

Lemma 7.3.1 [Convolution monoid] For any X,Y ∈ Cc, the triple 〈[X,Y], ∗, ιX,Y 〉 where
[X,Y] := Cc(X,Y), ∗ is the convolution and ιX,Y := µY ◦ µX , is a commutative monoid
called the convolution monoid of X and Y .

Proof: This is almost trivial. Indeed, it is immediate that f ∗ g ∈ [X,Y]. To see that ιX,Y is
indeed a unit, consider f : X → Y , then

f

X

Y

f

X

Y

f

Y

X

==

Finally, associativity and commutativity of ∗ follows directly from the (co)commutativity and
the (co)associativity of the (co)multiplication of the †-Frobenius structure on the objects of Cc.

�

Example 7.3.2 The convolution monoid [I, I] is the monoid of scalars.

Example 7.3.3 In FdHilbc, since δX :=
∑

i |ii〉〈i| an easy calculation shows that the convo-
lution of two matrices f =

∑

i,j αij |j〉〈i| and g =
∑

i′,j′ βi′j′|j′〉〈i′| is

Classical-quantum interfaces 113

Categorical semantics of all data

f ∗ g =
∑

ij

αijβij|j〉〈i|.

This is nothing but the product of the entries of the two matrices. From this, it is easy to see
that the identity ιX,Y of a convolution monoid in FdHilb is a matrix of ones which indeed
coincides with µ†Y ◦ µX .

[Relation] A map R ∈ Cc(X,Y) is a relation if it is idempotent under the convolution i.e.:
R = R ∗R.

This definition makes sense taking the following two facts into account:

• The category Rel, since it admits a biproduct via the disjoint union, admits a matrix calculus
(c.f. [35]); there, the matrices have entries in the boolean semiring B where both 0 and 1 are
idempotent.

• Now, taking into account the example 7.3.3 and since the only two idempotent elements in
C are 0 and 1, the previous definition indeed defines a relation in that perspective.

Manifestly, relations thus defined in a category of classical maps aren’t closed under composition
in general since they are not so in FdHilb. Indeed, consider

(

1 1
0 1

)

◦
(

1 1
0 1

)

=
(

1 2
0 1

)

the latter is not idempotent under convolution, so it is not a relation. However, we can overcome
this problem by defining the suitable quotient category.

Lemma 7.3.4 Given any X,Y ∈ FdHilbc and f, g ∈ FdHilbc(X,Y), we say that f ∼ g if for
all i and j, either

1. (f)i,j = (g)i,j = 0 or

2. both (f)i,j and (g)i,j are different from 0.

The binary relation ∼ is a congruence relation on FdHilb such that every class of equivalence
contains exactly one relation as defined above.

Proof: Indeed, ∼ is reflexive symmetric and transitive so that it is an equivalence relation. We
now need to show that if f, f ′ : X → Y are related in FdHilbc(X,Y) and g, g′ : Y → Z are
related in FdHilbc(Y,Z), then both g ◦ f and g′ ◦ f ′ are related in FdHilbc(X,Z). This is the
case as these matrices have only non-negative real entries. Indeed,

(g ◦ f)ij =
∑

k

(g)ik(f)kj = 0 if and only if for all k , (g)i,k or (f)k,j = 0

and

(g′ ◦ f ′)ij =
∑

k

(g′)ik(f ′)kj = 0 if and only if for all k , (g′)i,k or (f ′)k,j = 0.

Since f ∼ f ′ and g ∼ g′, it follows that (g ◦ f)ij = 0 if and only if (g′ ◦ f ′)ij = 0. In all the
other cases, both (g ◦ f)kl and (g′ ◦ f ′)kl are non-zero. Thus, ∼ is indeed a congruence relation
on FdHilbc.

Classical-quantum interfaces 114

Categorical semantics of all data

For the second claim, this is almost immediate; indeed, if f ∼ R where R is a relation, then
they must have 0’s in the same entries and where (f)ij 6= 0, (R)i,j = 1. Such an R is manifestly
unique thus the result.

�

From this and using the definition of quotient category given in section 3.2,

[The category FdHilbR] [4,6] The quotient category FdHilbR has

• The same objects as FdHilbc and

• As morphisms, equivalence classes of morphisms under ∼.

Remark 7.3.5 We gave this construction for the sake of completeness. When we speak of a
relation below, we just mean a morphism which is idempotent under convolution and not an
equivalence class of morphisms.

2. Partial maps

[Partial map] A partial map in Cc is a relation f : X → Y such that

δY ◦ f = (f ⊗ f) ◦ δX .

Graphically, this is

f

X

Y

= f

Y

X

YY

f

In FdHilbc, such a morphism is a partial relation in the usual sense. Indeed, it is a matrix with
at most one one in each column and zeros elsewhere.

3. Functions

[Function] A function in Cc is a partial map f : X → Y such that

µY ◦ f = µX .

This is depicted as

X

=
Y

X

f

Again, in FdHilbc, these are functions in the usual sense. That is, such an f has exactly one
one in each column a zeros elsewhere.

4. Stochastic maps

[Stochastic map] A stochastic map in Cc is a morphism f : X → Y such that

µY ◦ f = µX .

Classical-quantum interfaces 115

Categorical semantics of all data

In FdHilbc, these corresponds to stochastic matrices. Indeed, since µX =
∑

i〈i|, µY ◦ f = µX
entails that each column of non-negative real numbers of f have entries which sum to 1. Moreover,
note that total maps are particular instances of stochastic maps.

5. Doubly stochastic maps.

[Doubly stochastic map] A doubly stochastic map in Cc is a stochastic map f : X → Y

such that

f ◦ µ†X = µ†Y .

That is,

X
=

Y

X

f

In FdHilb, this means that both the columns and the rows of f sum to 1, thus, this is the usual
notion of doubly stochastic matrix.

6. Bijection

[Bijection] A bijection f : X → Y in Cc is a function such that f † is also a function. In other
words, this entails that it preserves δ, µ and their adjoints.

In FdHilbc these correspond to the usual notion of bijection that is a matrix with exactly one
1 in each row and each column and zeros elsewhere. Moreover, bijections are at once particular
instances of functions and doubly stochastic maps.

7.3.2 Quantum maps

The quantum maps in CQI(Cq) are those in the range of the functors

Q− : CP(Cq)→ CQI(Cq)

defined at the end of section 7.2. Such maps are depicted as:
BB

g g

AA

C

X

X

However, note that throughout this section, we will depict such maps as their images under QI
so that we won’t clutter the notation with central wires.

7. Pure states

[Pure state] A pure state in CQI(Cq) is a map ψ : (I, I)→ (A, I) with

ψ = φ⊗ φ∗ : I ⊗ I∗ → A⊗A∗

in Cq. Such a map is depicted as

Classical-quantum interfaces 116

Categorical semantics of all data

ψ ψ∗

A A

These exactly coincide with pure states in CP(Cq).

8. Mixed states.

[Mixed state] A mixed state in CQI(Cq) is a map of the form ρ : (I, I)→ (A, I) with

ρ = (1A ⊗ ǫB ⊗ 1A∗) ◦ (ψ ⊗ ψ∗) : I ⊗ I∗ → A⊗ A∗

in Cq. It depicts as

ψ ψ∗

A A
B

Again, these correspond to mixed states in CP(Cq).

9. Unitary transformations

[Unitary transformation] A unitary transformation in CQI(Cq) is a map of type U : (A, I)→
(B, I) with

U = V ⊗ V∗ : A⊗A∗ → B ⊗B∗

in Cq such that

U † ◦ U = 1(A,I) and U ◦ U † = 1(B,I).

A unitary transformation is depicted as
BB

V V

AA

Again, such a map corresponds to unitary transformations in CP(Cq).

10. Quantum operations

Finally,

[Quantum operations] A (generic) quantum operation in CQI(Cq) is a map of type f :
(A, I)→ (B, I) with

f = (1B ⊗ ǫC ⊗ 1B∗) ◦ (g ⊗ g∗) ◦ (1A ⊗ 1A∗) : A⊗A∗ → B ⊗ B∗

that is

Classical-quantum interfaces 117

Categorical semantics of all data

BB

g g

AA

C

These are generic maps in CP(Cq) i.e., completely positive maps in Cq.

7.3.3 Interaction maps

Interactions maps is the last family of transformations in our semantics. It consists of those
maps of CQI(Cq) where classical and quantum data interact as, for instance, in measurements
or in controlled operations. In both cases, we will obtain families of maps indexed by a basis
object X. By extension, we will often need to define some properties relative to X.

Controlled maps are those maps of CQI(Cq) of type

f : (A,X)→ (B, I).

In order to justify the idea, consider the following result:

Lemma 7.3.6 In FdHilb, if

f : H⊗X → H′

where X admit a basis structure—and consequently a basis {|i〉}i—and H,H′ a quantum
structure. Then, f can be written as a row vector of operators

f =
∑

i

Fi ⊗ 〈i|

for some set of operators {Fi : H → H′}.

Proof: We have

f = f ◦ 1H⊗X
= f ◦ (1H ⊗

∑

i |i〉〈i|)
=
∑

i f ◦ (1H ⊗ |i〉〈i|)
=
∑

i(f ◦ (1H ⊗ |i〉))⊗ 〈i|

Setting Fi := f ◦ (1H ⊗ |i〉) : H → H′, the last expression can be re-written as
∑

i

Fi ⊗ 〈i|

as required.
�

We can generalise this to a category of interfaces. Indeed, an instance of map of type F :
(H,X)→ (H′,C) in CQI(FdHilb) is given by an interface

(f ⊗ f∗) ◦DH,X with f : H⊗X → H′,

Classical-quantum interfaces 118

Categorical semantics of all data

in FdHilb. Using the previous lemma and the definition of DH,X , we get

(f⊗f∗)◦DH,X =

(

∑

i

Fi ⊗ 〈i|
)

⊗

∑

j

〈j| ⊗ Fj∗

◦ (1H⊗1X⊗dX⊗1H∗)◦ (1H ◦ δX⊗1H∗).

From this, as δX =
∑

k |kk〉〈k|, we see that if 1H ⊗ |l〉 ⊗ 1H′ is composed with the previous
expression, we get

(Fl ⊗ Fl∗) ◦ (−).

Taking a positive map ρ : C → H ⊗ H′ as input in the previous expression and passing to
standard notation, we get

Fl ◦ ρ ◦ F †l .

Thus, indeed, classical data controls which operation in {Fi ⊗ (Fi)∗}i is applied. Of course, this
is just a generic map taken as an example but the following few cases are instances related to
what we need in quantum computation.

11. Controlled unitaries.

We now introduce the notion of controlled-unitaries as was introduced in [36]. When taking a map
U : (A,X) → (B, I) as controlled unitary, the usual characterisation of unitary transformation,
i.e.,

U † ◦ U = U ◦ U † = 1

is no longer valid as we have a type mismatch. However, we have the following result:

Proposition 7.3.7 [36] Let X ∈ |FdHilb| be a basis object with †-Frobenius structure

〈X, δX , µX〉 where δX :=
∑

i

|ii〉〈i| and µX :=
∑

i

〈i|.

Then a map U : H⊗X →H satisfies

1H⊗X = (1H ⊗ δ†X) ◦ (U † ⊗ 1X) ◦ (U ⊗ 1X) ◦ (1H ⊗ δX)

= (U ⊗ 1X) ◦ (1H ⊗ δX) ◦ (1H ⊗ δ†X) ◦ (U † ⊗ 1X)
(7.1)

if and only if

U =
∑

i

Ui ⊗ 〈i| (7.2)

where for all i, Ui : H → H is unitary.

The result was not proven in the cited paper, so we provide a proof here:

Proof: Suppose that U satisfies (7.1). Since we have a †-Frobenius structure on H and these
are in bijection with orthonormal bases, we can write U as a vector of matrices Aj i.e.,

U =
∑

j

〈j| ⊗ Aj .

Using this, the first equality of (7.1) becomes

Classical-quantum interfaces 119

Categorical semantics of all data

1H⊗X = (1H ⊗ δ†X) ◦
(

∑

j,j′(A
†
j′ ◦Aj)⊗ |j′〉〈j|

)

◦ (1H ⊗ δH)

= (1H ⊗
∑

l |l〉〈ll|) ◦
(

∑

j,j′(A
†
j′ ◦Aj)⊗ |j′〉〈j|

)

◦ (1H ⊗
∑

l′ |l′l′〉〈l′|)

=
(

∑

ll′(Al ◦A
†
l′)⊗ |l〉〈l′|

)

〈l|l′〉

=
∑

l(Al ◦A
†
l)⊗ |l〉〈l|

Hence, we must have Aj′ ◦A†j = 1H since the whole expression is equal to 1H⊗ 1X showing that
for all j, Aj is an isometry. Using the second equation gives that for all j, Aj is unitary.

The right to left implication follows directly by calculation.
�

In other words, we have a bijection between tuples of unitaries and the maps satisfying (7.1).
Translating this to a quantum structures Cq, one gets

[X-unitary morphism] [36] An X-unitary is a morphism U : A⊗X → B which is depicted
as

B

U

A X

where X is equipped with a basis structure and both A and B with a quantum structure
and such that

U

A

U

X

A X

A X

=
U

B

U

X

B X

B X

=

Lifting the notion to CQI(Cq) yields

[Controlled-unitary] A controlled-unitary in CQI(Cq) is a morphism

U : 〈A,X〉 → 〈B, I〉

with

U = (U ⊗ U∗) ◦DA,X

in Cq and where U is an X-unitary. Such a morphism is depicted as

U

A X

B

U

A

B

12. Controlled quantum maps

Classical-quantum interfaces 120

Categorical semantics of all data

These are the most general controlled maps i.e., controlled completely positive operations F :
(A,X)→ (B, I) with

F = (1B ⊗ ǫC ⊗ 1B∗) ◦ (f ⊗ f∗) ◦DA,X

in Cq. These are depicted as

f

A X

B

f

A

B

13. Projective measurements

At the beginning of chapter 8, we have said that the type of quantum measurement is

Initial quantum state 7→ Final quantum state ⊗ Classical output.

We now inspect what this means in details. Manifestly, the above is translated within our
construction as a morphism

A→ A⊗X

in Cq where A is a quantum object and X is a basis object. However, just having the right type
is manifestly not enough. Indeed, we have seen in chapter 2 that a projective measurement is
defined by a set of projectors {Pi}i which are self-adjoint, idempotent and mutually orthogonal.
Moreover, such a projective measurement is complete if

∑

i Pi = 1. Our plan is now to find an
analogue of these notion in Cq. Again, the basis of the presentation is taken from [36].

First, we handle the notion of

[Self-adjointness relative to a basis object] [36] Let X ∈ |Cq| be a basis object. A mor-
phism f : A→ A⊗X is self-adjoint relative to X, or X self-adjoint, if

A

1A⊗νX %%KKKKKKKKKKK

f // A⊗X

A⊗X ⊗X
f†⊗1X

OO

commute. This is depicted as
A

f

A

X

=

A

f

A

X

Now, for

[Idempotence relative to a basis object] [36] A morphism f : A → A ⊗X is idempotent

relative to X, or X-idempotent if

Classical-quantum interfaces 121

Categorical semantics of all data

A

f
��

f // A⊗X
f⊗1X

��
A⊗X

1A⊗δX
// A⊗X ⊗X

commute. This is
A

f

A

X

=

A XX

f

f

X

A

From there, we can define

[X-Projector] [36] An X-projector is a morphism P : A→ A⊗X which is X-self-adjoint and
X-idempotent.

Proposition 7.3.8 In FdHilb, a Cn-projector P : H → H ⊗ Ck where H ≃ Cn exactly
corresponds to a family of k mutually orthogonal projectors {Pi}ki=1, hence we have

∑k
i=1 Pi ≤

1H.

Proof: See [36].
�

It just remains to handle the notion of completeness which, unsurprisingly, relates to µX .

[Completeness relative to a basis object] A morphism f : A→ A⊗X is complete relative

to a basis object X, or X-complete if

(µX ⊗ 1A) ◦ f = 1A

which is depicted as
A

f

A

=
X

A

Finally,

[Projector-valued spectrum] [36] A morphism P : A → A ⊗ X is a projector-valued spec-

trum if it is an X-complete X-projector.

From which

Theorem 7.3.9 [36] Projector-valued spectra in FdHilb exactly correspond to complete fam-
ilies of mutually orthogonal projectors {Pi}i i.e.,

∑

i Pi = 1H.

Proof: See [36].
�

Classical-quantum interfaces 122

Categorical semantics of all data

With this, in FdHilb, given a state ψ : C→H and a projector-valued spectrum P : H → H⊗X
where X := C

n, then

P ◦ ψ =
∑

i

〈i|ψ〉(|i〉 ⊗ |i〉)

As already mentioned, the outcome is still in coherent superposition. We can lift the notion to
CQI(Cq) so that

[Projective measurement] A projective measurement is a morphism P : (A, I) → (A,X)
with

P = (1A ⊗ δX ⊗ 1A∗) ◦ (1A ⊗ 1X ⊗ d†X) ◦ (P ⊗ P∗)

in Cq and where P : A→ A⊗X is an X-projector. A projective measurement is complete

if, in addition, P is a projector valued spectrum. Such a morphism depicts as
A

P

A

X

P

A

A

Now, this is exactly what we want. Indeed, separating the various steps in
A

P

A

X

P

A

A
ψ ψ∗

(1)

(2)
(3)

and again taking X := Cn, and |ψ〉 :=
∑

i〈i|ψ〉|i〉 and αi := 〈i|ψ〉, we get
∑

i,j αiαj |i〉H ⊗ |j〉H∗ 7→
∑

i,j αiαj |i〉H ⊗ |i〉X ⊗ |j〉X∗ ⊗ |j〉H∗
7→ ∑

i,j αiαj |i〉H ⊗ δi,j |i〉X ⊗ |j〉H∗
=
∑

i αiαi |i〉H ⊗ |i〉X ⊗ |i〉H∗
thus, the output is no longer in coherent superposition and the classical output |i〉X is correctly
correlated with the quantum output. The previous calculation manifestly extends to mixed
states.

Proposition 7.3.10 Given an normalised mixed state ρ : (I, I) → (A, I) and a projective
measurement P : (A, I)→ (A,X), then trA ◦ (P ◦ ρ) is a stochastic map s : (I, I)→ (I,X).

Proof: The map s is stochastic if (1I ⊗ µX ⊗ 1I∗) ◦ s = 1I in Cq. The left-hand-side of the
previous equality depicts as

P

A

X

P

A

A

=
P

A

X

P

A

A

=
P

A

X
P

A
A

ψ ψ∗ ψ ψ∗ ψ ψ∗

Classical-quantum interfaces 123

Categorical semantics of all data

The first equality holds by the generalised normal form theorem. The second one by a graph
isomorphism.

=
P

A

X

P

A
A

P
A

P
A

A= X
P

A

A
A= X

ψ ψ∗ ψ ψ∗ ψ ψ∗

The first equality uses the compactness of the †-Frobenius structure. The second uses the fact
that P is X-self-adjoint. The third equality that it is X-idempotent and the normal form
theorem.

A

=

ψ ψ∗

=

The first equality uses the fact that P is X-complete. The second equality is obtained by
isomorphism of graph. The last equality uses the assumption that ρ is normalised. This shows
that, indeed, s is a stochastic vector as claimed.

�

14. Positive operator-valued measurements

In this section we study the notion of positive operator-valued measurements (POVMs). We will
do so by defining the notion in CQI(Cq) and prove an abstract version of Naimark’s theorem.
The result presented here are new and are published in [31] which the author wrote with B. Co-
ecke. Note that since the pictures we need to prove such a theorem are quite big, we will depict
them horizontally, thus one should read them from left to right.

In FdHilb, POVMs are defined as a set of positive operators

{Fi : H → H}i, Fi = f †i ◦ fi (7.3)

such that
∑

i Fi = 1H. Given a state ρ : H → H, a POVM assign for each i an outcome
probability Tr(Fiρ) which, by positivity of Fi and cyclicity of the trace can be re-written as

Tr(fiρf
†
i). (7.4)

Even if quantum operations take in account the quantum residue of such an operation, we will
be concerned here only with probabilities so that the type of a POVM f is

f : A⊗A∗ → X (7.5)

where A is a quantum object and X is a basis object. In other words, it takes as input a quantum
state and outputs a classical state which means, in the case of FdHilb, a stochastic vector if the
quantum state is normalised, i.e.:

f : ρ 7→
∑

i

Tr(fiρf
†
i)|i〉. (7.6)

Classical-quantum interfaces 124

Categorical semantics of all data

Before carrying on and abstracting the notion in CQ(C), we need to introduce some notions.

[X-isometry] An X-isometry is a morphism V : A⊗X → B for which

Vδ := (V ⊗ 1X) ◦ (1A ⊗ δX) : X ⊗A→ X ⊗B

is an isometry i.e.,

V†δ ◦ Vδ = 1X⊗A.

The later condition is depicted as

A
V
B

X

A
V

XX

[X-positivity] A morphism f : A→ A⊗X is X-positive if there exists a morphism h : C →
A⊗X such that

(1A ⊗ δ†X) ◦ (f ⊗ 1X) = (1A ⊗ δ†X) ◦ h ◦ h† ◦ (1A ⊗ δX). (7.7)

This is depicted as

=
hh

AA

X

X

C

X

A

X

A
f

X

Remark 7.3.11 In what follows, it will be notationally convenient to set

gg
AA

X X

B
hh

AA

X

C

X
:=

X

where B := C ⊗ X, g := (1A ⊗ δX) ◦ (h ⊗ 1X) which entails that the right-hand-side of
equation (7.7) re-write as g ◦ g† for this g.

The polar decomposition of a linear operator M is defined as the composite V ◦H = M where
V is an isometry and H is positive. Abstracting such a notion yields the following:

[X-Polar decomposability] A morphism f : A→ X⊗B is polar decomposable relative to X

if there exists a morphism g : A→ X ⊗A positive relative to X and a controlled isometry
V : X ⊗A→ B such that

f = g ◦ (δX ⊗ 1A) ◦ (1X ⊗ V) (7.8)

that is

Classical-quantum interfaces 125

Categorical semantics of all data

A B

X

A

g V

[X-scalar] An X-scalar is an element s : I → X of the convolution monoid [I,X] which is
depicted as

s X

Moreover, we say that the X-scalar t : I → X is an X-inverse of s if

s ∗ t = µ†X

Finally,

[POVM] A POVM in CQI(Cq) is a morphism F : (A, I)→ (I,X) where

F := TrA ◦DA,X ◦ (f ⊗ f∗)

which is depicted as

X

f

f

A

A
A

where f ∈ Cq(A,A ⊗X) is X-polar-decomposable and such that f † ◦ f = 1A.

Remark 7.3.12 The author doesn’t know how restrictive the assumption ofX-polar-decomposability
is in the previous definition. We postpone the discussion of this to future work.

Theorem 7.3.13 In CQI(FdHilb), POVMs as defined in the previous definition exactly coin-

cide with the assignments ρ 7→∑iTr(giρg
†
i)|i〉 corresponding to POVMs defined in the usual

manner.

Proof: Consider a POVM F : (A, I)→ (I,X) where

F := TrA ◦DA,X ◦ (f ⊗ f∗).

In FdHilb, the †-Frobenius structure of the basis object X induces a canonical basis vectors
{|i〉}i. Using lemma 7.3.6,

f =
∑

i

(fi ⊗ |i〉).

Using this, we can rewrite F as

Classical-quantum interfaces 126

Categorical semantics of all data

TrA ◦ (1A ⊗DX ⊗ 1A∗) ◦
[

(
∑

i fi ⊗ |i〉)⊗
(

∑

j |j〉∗ ⊗ (fj)∗
)]

◦ −

= TrA ◦
[

(1A ⊗DX ⊗ 1A∗) ◦
(

∑

i,j fi ⊗ |i〉 ⊗ |j〉∗ ⊗ (fj)∗
)]

◦ −
= TrA ◦ (

∑

i fi ⊗ |i〉 ⊗ (fi)∗) ◦ −.

Passing from the notation of CQI(FdHilb) to standard Dirac notation that is (fi⊗|i〉⊗(fi)∗)◦−
to f(−)f † ⊗ |i〉 we obtain

∑

i

TrA(fi(−)f †i)|i〉.

Using the polar decomposition of fi and cyclicity of the trace, we get
∑

i TrA(fi(−)f †i)|i〉 = TrA(Uigi(−)g†iU
†
i)|i〉

=
∑

i TrA(gi(−)g†i)|i〉

which is the intended result. Finally, by hypothesis we have f †◦f = 1A from which it follows that
g† ◦ g = 1A. The converse direction constitutes a straightforward translation into the graphical
language.

�

Theorem 7.3.14 [Naimark’s theorem] Let F : (A, I) → (I,X) be a POVM in CQI(Cq)
with

F = TrA ◦ (1A ⊗DX ⊗ 1A∗) ◦ (f ⊗ f∗)

in Cq, where f = k ◦ (δX⊗ 1A) ◦ (1X⊗V) by X-polar-decomposition. If s := TrA(k) : I → X

admits an X-inverse t : I → X under convolution, then there exists a projective measurement
on an extended system which realises F . Conversely, each projective measurement on an
extended system yields a POVM.

Remark 7.3.15 The condition that s admits an X-inverse is not very restrictive. Indeed, in
CQI(FdHilb) we can think of s as a family of scalars sii where each si is the trace of some
fi. As each of the latter are positive, that s admits an X-inverse just means that none of the
fi is equal to 0. In any case, 0 is never observed anyway so it would be silly to add such a
map to the X-family given by f .

Proof: We need to show that there exists an X-projector h : C⊗A→ C⊗A⊗X in Cq together
with an auxiliary input ρ : (I, I)→ (C, I) in CQI(Cq) such that

A

A A

A

= X

h

h

A
A

A
A

ρ

C

CC

C

auxiliary
input

projective
measurement Trace

f

f

X

The POVM F

First, we exploit X-polar-decomposability of f and get

Classical-quantum interfaces 127

Categorical semantics of all data

=

A
k U

k UA

A

X

f

f

A

A
A

X

Using graph isomorphism the right-hand-side of the previous equality is equal to

=

A
k U

k

U

A

A

X = X

k

k

A

A
A

where the last equality proceeds from the fact that U is an X-isometry and an application of the
generalised normal form theorem using the spider notation.

Let

A

C

g

C

X
s

g

:=ρ

C

C

and

hA

C A

C

gg
:=

C

A

X

X

A

C

X t

where k = g† ◦ g by X-positivity of k and remark 7.3.11.

In order to show that h is an X-projector, we need to show that it is X-idempotent and X-self-
adjoint.

For X-self-adjointness. First, observe that since k is X-positive, then s := TrA(k) is in Cc so
that s× = s. Moreover, since µX , δX and s are all invariant under (−)×,

µX = (µX)×

= (δ†X ◦ (s⊗ t))×
= (δ†X)× ◦ (s× ⊗ t×)

= δ†X ◦ (s⊗ t×),

we must also have t× = t by uniqueness of inverses. This entails that t× = t†. Thus, X-
self-adjointness proceeds by the preceding fact and a simple application of the generalised form
theorem.

Classical-quantum interfaces 128

Categorical semantics of all data

Now, for X-idempotence, we have

hA

C A

C

gg

:=

C

A

X

X

A

C

X
t

gg

X
t

X

h

X

By X-positivity, the dotted rectangle in the previous picture reduces to δX ◦s where s := TrA(k)
which is X-inverse to t under convolution, that is δX ◦ (s⊗ t) = µX . Thus, factoring out s and
t and cancelling them out via convolution, we obtain the following equality between the dotted
squares below

A

C

g

C

A

X

X

t

g

t

X

s
= =

A

C

gg

C

A

X

X

t
X

So indeed, h is X-idempotent and X-self-adjoint and thus X-projector which defines a projective
measurement by adjoining the morphism DX .

We now show that the state ρ defined as above when composed with the projective measurement
defined by h and when tracing out C∗ ⊗ A realises the POVM F that is, we have to show that
the following picture is equal to F .

A

C

g

C

X
s

g

C

gg

X

t

gg

t∗

C

A

A

A

A

The dotted square reduces to δX ◦ s by X-positivity of f so we obtain

g
X
s

g

C

g

X

t

g

t∗

C

A

A

A

s

Now, using an obvious graph isomorphism, we obtain

Classical-quantum interfaces 129

Categorical semantics of all data

g

s

g

C

g

X

t

g

t∗

A

A

A

s X

C

Again, using X-positivity of k, the previous reduces to

k

s

k

X

t

t∗

A

A

A

s X

From there, we use the generalised normal form theorem to get

k

s

k

t

t∗

A

A

A

s X

k

k

t

t∗

A

A

A

s

X=
s∗

From there, we use again the normal form theorem to cancel the loop and the symmetries and
then use convolution to cancel s against t and s∗ against t∗ so we obtain

X

k

k

A

A
A

The converse is almost immediate. First, given any projector-valued spectrum P , itsX-idempotence
and X-self-adjointness entail its X-positivity. Indeed,

X

PA A

X

X
PA A

X

= =
PA

X

P
A

X

Classical-quantum interfaces 130

Categorical semantics of all data

=
P

A

X

P
A

X

PA

X

P
A

X
=

There, the first equality is an application of the normal form theorem. The second equality uses
X-idempotence of P . The third equality is again an application of the normal form theorem.
The last equality is obtained using X-self-adjointness.

Now, again for any projector-valued spectrum P : A → A ⊗ X, we have P † ◦ P = 1A as was
already implicitly proved in proposition 7.3.10. Using this, given a projector-valued spectrum
P : A⊗ C → A⊗ C ⊗X with the auxiliary input given by the unnormalised completely mixed
state, we have

C

P

P

A

A

C

C

A

A

= C AX

which is normalised up to a C-dependent scalar—note that this is normal since the auxiliary
state is not normalised. Thus, the induced POVM is

C

P

P

A

A

C

C

A

A

X

This completes the proof.
�

We also have an analogue of proposition 7.3.10 for POVMs:

Proposition 7.3.16 Given an normalised mixed state ρ : (I, I) → (A, I) and a POVM
F(A, I)→ (I,X), then F ◦ ρ is a stochastic state s : (I, I)→ (I,X).

Proof: Immediate because of the normalisation condition of the POVM F .
�

8 Protocols

“The end justifies the means”
- Niccolo Machiavelli

The purpose of this chapter is to recast some quantum protocols in CQI(Cq) using the semantics
presented in the previous chapter. To do so, we will first introduce a graphical calculus for
CQI(Cq) that will greatly lighten the graphical notation of interfaces. Next, we will discuss two
subtle issues involving scalars namely: inverses and square roots. We will need both to work
out protocols; indeed, as a matter of example, we will need inverses of square roots to normalise
our analogue of the Bell state. For the protocols, we will introduce and prove correctness of
the quantum teleportation protocol and of superdense coding. We will show that these two
protocols are essentially equivalent up to a reversal of the operations. We will introduce and prove
correctness of the protocol of mixed state generation, and discuss the protocol of TelePOVM.
Finally, we will derive the protocol BBM92 from BB84 and vice versa. The material presented in
section 8.1 is new while the results presented in section 8.3 and above first appeared in [33] and
some of them are presented again in [32] which the author wrote with B. Coecke and D. Pavlovic.
Moreover, some protocols presented in these papers are not presented here such as coherent dense
coding and coherent teleportation [48]. A different presentation of the teleportation protocol and
entanglement swapping involving biproducts can be found in [5].

This chapter marks our departure from FdHilb. Indeed, while we have motivated our semantics
with this category as our primary example, we won’t rely on it to motivate our protocols here. Of
course, the protocols we present here were originally developed in that category so they indeed
work there. However, we believe it is suitable to work in the general case to stress that the
semantics presented in the previous chapter is self-sufficient.

8.1 A graphical notation for interfaces

To depict protocols in CQI(Cq) it will be convenient to simplify the pictures. We will do so using
the fact that when depicting an interface, the quantum part of a picture is always symmetric with
respect to the classical part which lies along some vertical axis; using this idea, we will introduce
a notation that allows us to “fold” the picture thus simplifying the notation. The notation we
will introduce can be seen as the formalisation of the “ground” notation for the decoherence that
has been in circulation for some time together with some elements of the notation introduced
in [24] where a black triangle was used to represent the environment. In contrast with these,
the graphical notation we present here fully accommodates interfaces and is richer than the

Protocols 132

A graphical notation for interfaces

previous notations at many levels: namely, it clearly distinguishes the notion of central and
non-central symbols (see below) and it accommodates the issue of dimension of X as a central
symbol (see remark 8.1.9 and usage in the teleportation protocol below).

Folding of central symbols

We start by discussing the notation for central symbols that is, wires and morphisms carrying
classical data. Consider the following (very) general interface:

f fg

B BY W

A AX Z

There, we have the morphism f on the left-hand-side which is reflected on the right-hand-side
along some axis running parallel to the vertical wires labeled by X, Y , Z and W . On the other
hand, the morphism f is not duplicated and the set of wires labeled by X are connected by the
morphism DX while those controlled by Y are connected by the morphism D†Y . In other words,
the controlling wire splits in two while the outputs merge in a single wire. Thus, when folding a
picture, we must find a way to distinguish the classical wires and morphisms that are doubled or
reflected from those that are not. For the remainder of the discussion, we will say that a symbol—
wire or morphism—is central if it not doubled or reflected when depicted as an interface. We
will distinguish central from non-central wires—and by extension such morphisms—by adding a
circle around the usual black dots i.e.:

Notation. A wire that connects to the black dot is central. A wire that connects to (or stop
at the circumference of) the outer circle gets duplicated and one of the two resulting wires is
dualised when unfolding the picture. Finally, we will call the previous symbol a big circle.

Remark 8.1.1 Of course, this doesn’t mean we will add circles around all the black dots.
We will do so only in the presence of central symbols. Indeed, nothing in the semantics
of CQI(Cq) prevents us to have non-central structural morphisms from the †-Frobenius
structure since a basis object is also a quantum object.

All this is better illustrated by some examples. There, the symbol appearing in the folded
graphical representation is on the left while the regular graphical representation of interfaces is
on the right.

1. Identity over the controlling data:

X

:=

X

By extension, a central morphism is depicted as

Protocols 133

A graphical notation for interfaces

:=f

X

Y

f

Y

X

2. The morphism DX :

X

:=

X

3. The morphism D†X :

X

:=

X X

4. Tensor product of classical maps: If f : X → Y and g : Z → W are classical maps, their
folded representation depict as

g

W

Z

:=g

Z

W

f

X

Y

f

Y

X

All this, of course, with possible reorientation of the wires.

Remark 8.1.2 One must be careful when passing from the folded to the unfolded notation
with DZ ’s where Z is a compound object i.e.: an object of the form X ⊗Y . Indeed, we have

X Y Y X

X Y
X ⊗ Y

=

X Y X ⊗ Y

=:=

by constraints on the structural morphisms of the basis structures in Cb. In particular, we
must not forget these symmetries when unfolding DZ and factoring the tensor product of
morphisms. Of course, the same remark applies for D†Z with Z := X ⊗ Y .

Remark 8.1.3 One must not confound δ’s and D’s or their adjoints. If a δ (or its adjoint) is
central, then it gets depicted as a central morphism i.e., for instance, δX gets depicted as

Protocols 134

A graphical notation for interfaces

X

Folding of quantum symbols

1. Identities:

:=

A A A

2. Traces:

A

:=

A A

⊤

3. Cotraces (unnormalised maximally mixed states):

A:=
A

⊥
A

4. Quantum maps:

f f

B B

A A

:=f

⊤

A

B

5. Tensor product of quantum maps:

f f

B B

A A

:=f

⊤

A

B

g

⊤

D

g g

C C

D D

C

and again, with possible reorientation of the wires.

Example 8.1.4 We have:

Protocols 135

A graphical notation for interfaces

⊤
A

:=

A

=

A AA
A

⊥
=:

General folding

Using this notation, the general interface depicted above can be denoted as

f fg

B BY W

A AX Z

:=f g

Z

W

⊤

A X

B Y

While the simplification in the notation might not be obvious with this, consider the folding of
the tensor product of two morphisms in CQI(Cq) as interfaces, this is:

f f

B BD W

A A

Y

:=f

⊤

A X

g

⊤

C Z

D

g

C

g

C X Z

B D Y W

Our notation reduces the number of symmetries in the depiction from six to two. In most cases,
such symmetries are meaningless from an operational standpoint and getting rid of these is a
major achievement of this notation. That it indeed simplifies the notation will become even
clearer when we depict protocols below.

Now, while this notation is sufficient to depict the morphisms of CQI(Cq) as interfaces, we might
need to use the mixed normal form theorem with the big circles in our proofs. Thus, we can
generalise the preceding notation to spiders as follows: when there are no central wires we get

:=

...

...

... ...

... ...

When there are central wires—separated from their counterparts by dotted lines in the following
picture—, we use

Protocols 136

A graphical notation for interfaces

:=

...

...

... ...

... ...

...

...

...

...

which is the obvious generalisation of the preceding notation.

Example 8.1.5 Using the previous notation, one gets:

:=

Example 8.1.6 Again, using this notation, a central δ becomes

X

=

X

Example 8.1.7 An application of the generalised normal form theorem with spider notation
adapted to this graphical notation is

:= = =:

Remark 8.1.8 In general, one may “fuse” two big circles together as long as he keeps central
wires connected to the black dot in the resulting big circle and the non-central ones connected
to the outer circle of the resulting big circle. That is, in the same way as we did in the
previous two examples. Clearly, non-ambiguity of the big circle notation together with the
mixed normal form theorem allow such an operation.

Remark 8.1.9 Just a big circle without wires makes sense. Indeed, switching over to the
regular notation for interfaces, one gets

:= = = =

which is the dimension of the basis object labelling the wire as µ◦µ† =
∑

i〈i|i〉. Importantly,
it must be stressed that such a symbol remains central.

In conclusion, note that while this notation is convenient for clarity, it is sometimes useful to work
with the standard notation for proofs c.f. the proof of Naimark’s theorem where we sometimes

Protocols 137

Inverses and square roots of scalars

used asymmetrical arguments. However, as we won’t need to do this for protocols, the folded
notation will enable us to present some less cluttered and more readable pictures.

8.2 Inverses and square roots of scalars

In this section, we discuss the notions of inverses and square-roots of scalars in CQI(Cq). Such
notions will be crucial when working out protocols.

8.2.1 Square-roots of scalars

The following was also remarked by B. Coecke and D. Pavlovic in [36].

Proposition 8.2.1 The positive scalars in the scalar monoid Cq(I, I) have self-adjoint square-
roots when embedded in CPq(C) via s 7→ s⊗ s∗.

Proof: Let s : I → I be a positive scalar with s = ψ ◦ ψ where ψ : I → A. The morphism
ǫA ◦ (ψ⊗ψ∗) is in CPq(C)(I, I) and we have t ◦ t = s⊗ s∗. Self-adjointness of t follows from the
fact that

t = ǫA ◦ (ψ ⊗ ψ∗) = (ψ† ⊗ ψ∗) ◦ ηA∗ = t†

by properties ǫ and η.
�

8.2.2 Universal localisation of a †-compact category

In general, the commutative monoid of scalar C(I, I) of a category of quantum structures does
not admit multiplicative inverses. However, it was remarked by B. Coecke and D. Pavlovic
in [37] that for any category of quantum structures Cq, it is possible to construct an essentially
unique category LCq where every positive scalar has an inverse. Such a construction shares
many analogies with the construction of the field of quotients of an integral domain (see [62] pp.
210 for instance). We now give a brief outline of the results of [37] which themselves rely on the
calculus of fraction presented in [47]:

[Positive scalar] Let Cq be a category of quantum structures. A scalar s ∈ Cq(I, I) is positive

if there exists a morphism ψ : I → A such that s = ψ† ◦ ψ.

[Zero and divisors of zero] A scalar s is a zero if for all scalars t, s ◦ t = s. Moreover, a
scalar s is a divisor of zero if there exists a scalar t such that s ◦ t is equal to zero.

It is easy to see that if Cq(I, I) has a zero, it is unique. If it exists, we will denote zero as o.

[Locality] [37] A category of quantum structures is local if all its positive scalars are either
divisors of zero or are invertible.

Note that the scalars s : (I, I)→ (I, I) in CQI(Cq) are positive, hence if CQI(Cq) is local, this
is enough for our purposes but still, this might not be the case in general. However, the following
holds:

Protocols 138

Teleportation-enabling measurements

Theorem 8.2.2 [37] Every category of quantum structures Cq has a universal localisation LCq
equipped with a functor Cq → LCq preserving the quantum structures, which is initial for all
local categories of quantum structures with functor preserving the quantum structures from
Cq. In particular, the objects of LCq are those of Cq, and a morphism in LCq(A,B) is of
the form f/s, where

s ∈ Σ := {s ∈ C(I, I) | for all t ∈ C(I, I), s ◦ t 6= o},

and these fractions are taken modulo the congruence

f

s
=
g

t
if and only if there exists u, v ∈ Σ such that u ◦ s = v ◦ t and u · f = v · g.

Proof: See [37].
�

Remark 8.2.3 One should be careful with the preceding result. Indeed, the construction may
be applied without problems provided the functor turns out to be faithful. This seems to be
the case, for instance, in the category of modules over a ring R since the choice of Σ excludes
all divisors of zero. It is not known to the author whether or not this functor is faithful in
general. Nonetheless, we will assume in what follows that the category in which we work is
local.

8.3 Teleportation-enabling measurements

In [76], R. F. Werner establishes the one-to-one correspondence between quantum teleportation
schemes, dense coding schemes and certain orthonormal bases of maximally entangled vectors.
We now abstract his results in terms of X-unitaries and X-states.

[Teleportation-enabling measurement] A teleportation-enabling measurement is a mor-
phism W : A⊗A→ A⊗A⊗X

AA

AA X

a

a

W

W

where W : A⊗X → A is an X-unitary, a : I → I is Dim(A)−1/2 and

AA

a
W

X

is such that

Protocols 139

Teleportation-enabling measurements

AA

AA

X
a

a

W

W

=

A A

and A

X
a

a

W

W

=

X

A

X

which are the abstractions of Dim(X) ≥ Dim(A)2 and Tr(U †j ◦ Ui) = δi,j respectively.

Now, note that in

AA

AA X

a

a

the non-grey part is a bipartite projector defined by the composition of a normalised abstract
Bell state with its adjoint. Using the fact that W : A⊗X → A is an X-unitary indeed gives the
following

Proposition 8.3.1 A teleportation-enabling measurement is a projector-valued spectrum.

Proof: We have to verify that W is X-self-adjoint, X-idempotent and X-complete. It is man-
ifestly X-self adjoint and X-complete by construction, so it remains to check that it is X-
idempotent:

AA

A

A

X

a

a

W

W

a

a

W

W

A X

AA

A X

a
W

a W

A X

=

AA

A X

a
W

a W

A X

=

as required.
�

Protocols 140

Teleportation

8.4 Teleportation

The teleportation protocol [13] is a means by which two parties, Alice and Bob, exchange the
information contained quantum state using quantum entanglement and classical communication.
The protocol is described as follows:

• Alice and Bob share a Bell state ηA : I → A∗ ⊗A i.e., Alice has one half and Bob the other.

• Alice performs a teleportation-enabling measurement on the compound system consisting of
the state she wishes to exchange with Bob and her share of the Bell state. By doing so, she
collapses the state of the compound system so the information that was contained in the
state she wishes to transfer is no longer accessible to her11.

• Alice sends the result of her measurement to Bob via a classical channel.

• Using the classical information he received from Alice, Bob applies a correction via the
underlying X-unitary transformation W of the teleportation-enabling measurement on his
share of the Bell state and recovers the initial state.

Using the folded notation and a teleportation-enabling measurement as described in the previous
section, we can depict this protocol as:

a

W

ψ
a

⊤

W

Alice

Bob
Shared Bell state

Measurement

Classical communication

Correction

AA

X

There, the scalars a : I → I are equal to Dim(A)1/2 and are added to normalise the Bell state
and its adjoint.

Remark 8.4.1 To be perfectly aligned with the standard notation, the big circles and the
classical wires should pass to the right of the rightmost quantum wire. However, the symmetry
induced by such a graph isomorphisms are irrelevant when taking in account the description
of the protocol therefore, we can omit them. This fact provides further motivation for the
notation.

We can also prove correctness of the protocol as

From which teleportation is not a cloning operation but really a transfer of information.11

Protocols 141

Superdense coding

a

W

ψ
a

⊤

W

=
W

ψ

⊤

W
A

X

AA A A

X

where A = a • a = Dim(A)−1 (where the first “A” is a scalar) and fused the two big circles
together. Now, using a graph isomorphism, we obtain:

=
W

ψ

⊤ W

A

=

ψ

⊤

A
=

ψ

⊤

A

A

X

X

A A

The first equality proceeds using X-unitarity of W while the second is obtained by the fact that
the big circle is central but not the scalar A. Hence, in the regular graphical representation of
CQI(Cq)—which is implicit here—, we have two such scalars and we obtain A•A•Dim(X) = 1I
since Dim(X) = Dim(A)2. Hence, teleportation reduces to the identity channel between Alice
and Bob.

8.5 Superdense coding

The protocol of superdense coding [14] is way in which two parties sharing a maximally entangled
state exchange classical information using qubits instead of bits. Without entanglement, the
maximum number of bits per qubit is one. However, in the case of superdense coding, since
Alice and Bob share a maximally entangled state, they can achieve a ratio of two bits per qubit
hence the term superdense. Superdense coding is described as follows:

• Alice and Bob share a Bell state ηA : I → A∗ ⊗ A.

• To transmit a classical message x, Alice applies a unitary transformation depending on x

on her share of ηA using the X-unitary transformation W from the teleportation-enabling
measurement.

• Alice sends her encoded qubit to Bob.

• Bob measures the joint system via a teleportation-enabling measurement and recovers the
message.

This protocol can be depicted as

Protocols 142

Teleportation↔ Superdense coding

a

x
a

W

Alice

Bob
Shared Bell state

Encoding

Quantum communication

Measurement
W

We can also prove correctness of the protocol as

a

x
a

W

W

=

x

W

W

=

x

A

A
A

X

X

X

X X

a

a

The first equality is obtained from a graph isomorphism i.e., to slide W along the wire labeled
by A in order to bring it aside W ∗. The second equality is obtained from the condition on the
X-states in the definition of a teleportation-enabling measurement.

=

x

X

=

x

X

The first equality is obtained by yanking the wire labeled by X and the second by fusing together
the two big circles. Hence, the superdense coding indeed reduces to an identity over a classical
channel.

8.6 Teleportation ↔ Superdense coding

We now show that superdense coding is equivalent to quantum teleportation up to a reordering
of the operations. Starting from superdense coding, swapping of the encoding↔ correction and
the measurement is done as

Protocols 143

Teleportation↔ Superdense coding

a

a

W

W

↔

A

A

X

X

Dense coding

reordering

a

a

W

W
A

A

X

The right-hand-side picture can be read as follows: the input is now after the dotted line,
while the output is before the dotted line. Also, we connected the wires labeled by X as the
measurement now comes before the correction. Such a “temporal” ordering of the picture is
counterintuitive but we will just use isomorphism of graphs to recover teleportation. In order to
have input and outputs of the protocol at the right place, we stretch the wires to the boundary
of the picture to obtain:

a

a

W

W
A

A

X= =

a

a

W

A

A

X

W

The equality is obtained by sliding the W along the wire labeled by X and using yanking on the
leftmost wire labeled by A on the first picture.

a
a

W

A

X

A

W

= = a

W

a

W

Teleportation

X

A

A

Protocols 144

Mixed state generation

The first equality is obtained by yet another sliding of the W along the wire labeled by X and
the second equality is obtained by yanking the “zig-zagging” wire labeled by A—we can do so
as this zig-zag is just an artefact of the reorganisation of the operations. We indeed recover the
teleportation protocol.

Remark 8.6.1 Such a result is unsurprising. Indeed, teleportation and superdense coding
share the same structural resources.

8.7 Mixed state generation

Mixed state generation [16] is a simple protocol that can be described as follows:

• Alice and Bob share a Bell state ηA : I → A∗ ⊗ A.

• Alice measures her part of the Bell state using a POVM.

• Now Bob has the completely mixed state and Alice has additional information concerning
his state given by the outcome of the measurement.

Such a protocol is depicted from the perspective of Alice as:

⊤

f

A X

AliceBobBell state

POVM

=

A X

AliceBob

f

⊥

To see that Bob indeed holds the completely mixed state, note that if trace out Alice’s part, we
obtain:

⊤

f

A X

AliceBobBell state

POVM

Tracing

⊤

A

Bob

=

A

Bob

⊥

8.8 telePOVM

We now use the idea behind mixed state generation and extend it to a generalised teleportation
protocol called TelePOVM [16]. From Naimark’s theorem which we proved in chapter 7, we know
that each projective measurement on an extended system yields a POVM. Thus, we may use the
state to teleport as an ancilla and a teleportation enabling-measurement to construct a POVM.
Alice can then measure her share of the Bell state using this POVM and send the outcome to

Protocols 145

BBM92 ↔ BB84

Bob who can apply a correction in order the recover the initial state. TelePOVM is depicted as
follows:

a

W

ψ

a

⊤

W

Alice

Bob
Shared Bell state

POVM

Classical communication

Correction

We can also prove correctness of this protocol, but this is essentially the same as for the quantum
teleportation protocol.

8.9 BBM92 ↔ BB84

We now show that BBM92 [12] is topologically (or graphically) equivalent to BB84 [11], a protocol
akin to Ekert91 ??. This result is more surprising than the equivalence that we described between
teleportation and superdense coding, since these two protocols do not share the same structural
resources.

BBM84 is a cryptographic protocol that describes how two parties sharing entangled states can
generate a key to communicate securely. It is described as follows:

• Alice first chooses random classical data.

• Alice chooses a random basis in which she encodes the classical data from the previous step.

• Alice then transmits the encoded data through a quantum channel to Bob.

• Bob measures the data he receive in a random basis (but from the same set of bases as Alice).
If he measures in the same basis as Alice encoded her data, then he receives the information
that Alice intended to send; otherwise, the outcome of his measurement is random data.

• Alice and Bob then compare the bases in which they encoded/measured, and keep the data
if both agree and add it to the key. Otherwise, they discard it.

This protocol is depicted as follows:

Protocols 146

BBM92 ↔ BB84

Public BobAlice
Creating classical
correlation

Coding in a
random basis

Measuring in a
random basis

Comparing

M

M

A

X X X

BBM92 is yet another cryptographic protocol used to generate a secure key between two parties.
It is described as follows:

• Alice and Bob share a Bell state ηA : I → A∗ ⊗ A.

• Both Alice and Bob choose a random basis in which they measure their share of the Bell
state. If they both measured in the same basis, they must have the same result since ηA is
entangled. If not, then the outcome is discarded.

• Alice and Bob compare their result on a public channel. By the remark of the previous point,
if they measured in the same basis, then the outcome is kept and becomes a part of the key
to communicate securely.

• The process is repeated as needed to construct a key of appropriate length.

BBM92 is depicted as follows:

M

=

Alice Bob

M

A

Public
Bell state

Measuring in
a random basis

Comparing

X X X

We can now derive BB84 from BBM92 by first sliding the leftmost M along A, that is

Protocols 147

BBM92 ↔ BB84

M

M

A =
M

M

A

X X X X X X

and the second equality is obtained by sliding the big circle at the bottom of the Bell state.

Although BB84 and BBM92 do not share the same structural resources, the previous result is
akin to the so-called purification of BB84 found in a security proof of BB84 [72]. The exact
nature of the correspondence of this security proof—of the purification of BB84—and the topo-
logical equivalence between BB84 and BBM92 that we showed in our formalism remains to be
determined.

9 Conclusion

In this dissertation, we provided a categorical semantics for quantum computation with classical
control. In contrast to the previous works on this subject, namely [5] and [68], we did so without
relying on a biproduct structure, thus remaining in the language of †-monoidal categories. It
is worth noting that such a construction relies on relatively few structures, namely, to have a
category C with

• A symmetric monoidal structure for the tensor,

• A dagger structure i.e., the symmetric monoidal structure comes together with an involutive
identity-on-object contravariant functor coherent with the symmetric monoidal structure.
Such a structure provides us with a formal framework to handle the notion of adjoints,

• Quantum structures as compact structures coherent with the dagger structure which provides
the categorical analogue of bipartite maximally entangled states and

• Base structures as special †-Frobenius objects which provide us with an axiomatisation of
bases in the monoidal language.

Assuming these structures and using standard techniques, we constructed a comprehensive cat-
egorical semantics for quantum computation with classical control.

Something that hasn’t been discussed elsewhere is that there has been another proposal for
classical types given by P. Selinger in [69]. Classical types therein are obtained by splitting
of self-adjoints idempotents on quantum types; in the words of the author “this means that
classical data can be described as quantum data with additional properties (for example, the
property of being a standard basis vector).” From this, it may seem obvious that there are
strong affinities between the notion of classical types presented there and the one we presented
in this dissertation. However, the exact nature of this correspondence isn’t known either to me
or to the author of the cited paper. In contrast to splitting idempotents, the construction we
presented here enables us to define various species of classical maps such as (bi)stochastic maps
and bijections which are valuable assets from an operational standpoint.

We now propose a few avenues of research and concluding remarks:

Conclusion 149

Internal traces

First, a point that was briefly mentioned in chapter 5 was the notion of internal traces. Still
succinctly but in more details than there, the notion of internal traces in a symmetric monoidal
category C—as initially proposed by Y. Delbecque—can be formalised as a family of morphisms
{TrA : A → I | A ∈ |C|} where each components of the family behaves coherently with the
monoidal structure i.e.: trI = 1I ,

I ⊗A TrI⊗A //

λA

��

I

,

A⊗ I TrA⊗I //

ρA

��

I

,

A⊗ B TrA⊗B //

σA,B

��

I

A

TrA

=={{{{{{{{{{{{{{{

A

TrA

=={{{{{{{{{{{{{{{
B ⊗A

TrB⊗A

==zzzzzzzzzzzzzz

A⊗ (B ⊗ C)

αA,B,C

��

TrA⊗(B⊗C) // I

and

A⊗ B TrA⊗TrB //

TrA⊗B
""FFFFFFFFFFFFFFFF
I ⊗ I

≃

��
(A⊗B)⊗ C

Tr(A⊗B)⊗C

66nnnnnnnnnnnnnnnnnnnnnnnn

I

With respect to this, most of the axioms of the usual trace as presented in section 4.4 carry over
in the context of internal traces. However, the dinaturality axiom of traces finds no counterparts
in the context of internal traces. Last year, we remarked that this yields some incongruities
e.g.

∑

i〈i| is an internal trace in FdHilb which seems to indicate that something is missing to
this axiomatisation. Consequentially, the author conjectured that we must require invariance
of the internal trace under some isomorphisms. For instance, invariance over unitaries would
accommodate the notion of internal trace in the category of trace non-increasing completely
positive maps, a subcategory of CP(FdHilb) which is not monoidal traced. Invariance under
permutations is probably sufficient for the category SRel; however, the details still need to be
checked and it is not clear whether requiring such an invariance is the right way to proceed to
correctly axiomatise this concept.

Topological quantum computing

One of the main problems faced in the implementation of a quantum computer is that of quantum
decoherence. Basically, this problem reduces to the fact that it is not possible to isolate a
quantum system from its environment, thus causing a rapid corruption of the data. In response
to this, Kitaev, Freedman, Larsen and Wang proposed in [45] and [46] the concept of topological
quantum computation, that is, to encode quantum data into global (i.e., topological) degrees of
freedom instead of local ones as it is usually done. Such a topological quantum computation
uses anyons—quasi-particles with fractional statistics—to encode information. A full exposition
of the physics and the mathematics describing these particles involves a mix of experimental
phenomena (the fractional quantum Hall effect), topology (braids), algebra (Temperley-Lieb
algebra, braid group and category theory) and quantum field theory. In particular, it is because
of their topological nature that it is believed that they can provide a robust realisation of a
quantum computer, i.e., one less subject to decoherence.

Closer to the subject at stake here, the formalism of topological quantum computation relies
heavily on category theory—see [51], a survey paper that the author wrote with P. Panangaden.

Conclusion 150

In fact, the algebra of anyons are described in terms of semisimple modular categories, a par-
ticular instance of monoidal categories. However, it is usually taken that the hom-sets of these
categories are enriched over finite-dimensional Hilbert spaces thus enabling the passage from the
algebra of anyons to the usual context of quantum computation. Now, as categories of quantum
structures are a suitable framework to discuss quantum computation the natural question here is
how to give a categorical semantics for topological quantum computation that fits the semantics
given in this thesis.

Graphical protocol design

In the introduction, we mentioned that the graphical calculus may be, to some extent, a suitable
alternative to quantum circuits as a representation of quantum computations. Such an assertion
however, is perhaps a bit to wide to be taken as it stands.

Even if it is clear that any quantum circuit can be translated within our graphical language,
the strength of the graphical language is that it is a proof technique allowing one to show, for
instance, the equivalence or correctness of protocols. From this, graphical manipulations and
transformations require a good identification of the various properties of the different morphisms
that are used, or else, we end up with a (static) representation of formulas and we lose the
main interest of the graphical calculus. Manifestly, the semantics presented in the previous
chapters enables us to define many remarkable properties for morphisms but to what extent?
This question is probably still too broad to have a precise answer. Let us say that in the quantum
circuit model, one can define a basis for quantum circuits; these are defined by a set of gates
which can simulate any quantum gates. Using such a notion, one can indeed show that any
quantum circuit can be written with the elements of such a basis. However, in the context of
Hilbert space, one can rely on the notion of distance between operators derived from the norm
which is always a real non-negative value. In contrast, in a general categorical context, there is no
order whatsoever between the elements (perhaps of some subset) of the scalar monoid Cq(I, I),
such as one has in FdHilb, from which the regular notion of “universal set of gates” probably
makes no sense in such a context.

Thus, if axiomatising the classical control with respect to the monoidal structure is an important
step towards a comprehensive categorical presentation of quantum computation, and since it is
not possible to speak of universality in this context, I believe that the next step is to reason
about states and operations. An important step forward in that direction has been taken in [29]
where B. Coecke and R. Duncan discuss complementary observables in terms of the abstract
notion of scaled bialgebras and derive many known identities about quantum gates, circuits and
algorithms (see section 6 of the cited paper).

In conclusion, it is my belief that the graphical calculus is much more intuitive and “human
readable” than 2n × 2n matrices. In that sense, I see good chances that in a near future, new
protocols and algorithms will be invented using such a calculus. However, the work contained in
this thesis was—perhaps unfortunately—just a stepping stone towards this goal.

Bibliography

[1] S. Abramsky, Abstract scalars, loops, free traced and strongly compact closed categories, in
Proceedings of CALCO 2005, pp. 1–31, Springer Lecture Notes in Computer Science 3629,
2005.

[2] S. Abramsky, A Structural Approach To Reversible Computation, Theoretical Computer
Science vol. 347(3), pp. 441–464, 2005.

[3] S. Abramsky, R. Blute and P. Panangaden, Nuclear trace ideals in tensored ∗-categories.
Journal of Pure and Applied Algebra, 45, pp. 3–47, 1999.

[4] S. Abramsky and B. Coecke, Physical Traces: Quantum vs. Classical Information Process-

ing, in Electronic notes in Theoretical computer science (ENTCS) (special issue: Proceedings
of Category Theory in Computer Science 2002), 69, 2003.arXiv:cs/0207057

[5] S. Abramsky and B. Coecke, A Categorical Semantics of Quantum Protocols, in Proceed-
ings of the 19th annual IEEE Symposium on Logic in Computer Science (LiCS’04), IEEE
Computer Science Press, pp. 415–425, 2004. An extended & improved version is available
at arXiv:quant-ph/0402130

[6] S. Abramsky and B. Coecke, Abstract physical traces, in Theory and Application of Cate-
gories 14, pp. 111–124, 2005. http://www.tac.mta.ca/tac/volumes/14/6/14-06abs.html

[7] S. Abramsky and B. Coecke, Categorical quantum mechanics, in the Handbook of Quantum
Logic and Quantum Structures vol II, Elsevier, 2008.

[8] S. Abramsky and R. Duncan, A Categorical Quantum Logic, in Proceedings of the 2nd
Worskhop on Quantum Programming Languages (QPL), pp. 3–20, P. Selinger, Ed., TUCS
General Publication, 2005.

[9] T. Altenkirch and J. Grattage, A functional quantum programming language. Proceedings
of the 20th Annual IEEE Symposium, pp. 249–258, 2005.

[10] D. Bouwmeester, A. Ekert and A. Zeilinger, eds. The Physics of Quantum Information.
Springer-Verlag, 2001.

[11] C. H. Bennett and G. Brassard, Quantum cryptography: public key distribution and coin

tossing, Proceedings of IEEE international conference on computer systems and signal pro-
cessing, Bangalore India, pp. 175-179, 1984.

[12] C. H. Bennett, G. Brassard and N. D. Mermin, Quantum cryptography without Bell’s

theorem. Phys. Rev. Lett. 68, 557, 1992.

Bibliography 152

[13] C. H. Bennett, G. Brassard, C. Crepeau, R. Jozsa, A. Peres, W. K. Wootters, Teleporting

an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels, Phys.
Rev. Lett. 70, pp. 1895–1899, 1993.

[14] C. Bennett and S. J. Wiesner, Communication via one- and two-particle operators on

Einstein-Podolsky-Rosen states. Phys. Rev. Lett., 69:2881, 1992.

[15] G. Brassard, A. Broadbent, A. Tapp, Quantum pseudo-telepathy, Foundations of physics,
35:11, pp. 1877–1907, 2005.

[16] G. Brassard, P. Horodecki and T. Mor. Telepovm – a generalized quantum teleportation

scheme. IBM Journal of Research and Development, 2004.

[17] J. Baez, Quantum quandaries: A category-theoretic perspective, in S. French et al. (Eds.)
Structural Foundations of Quantum Gravity, Oxford University Press, 2004. arXiv:quant-

ph/0404040

[18] B. Bakalov and A. Kirilov Jr., Lectures on tensor categories and modular functor. In
University Lectures Series vol. 21, American Mathematical Society, 2001.

[19] M. Barr, *-Autonomous Categories, in Lecture Notes in Mathematics 752, Springer-Verlag,
1979.

[20] S. Bell, On the Einstein Podolsky Rosen paradox. Physics 1, 195, 1964.

[21] M. Choi, Completely positive linear maps on complex matrices, Linear Algebra and Its
Applications, pp. 285–290, 1975.

[22] B. Coecke, The logic of entanglement. An Invitation, in Oxford University Computing
Laboratory Research Report nr. PRG-RRR-03-12, 2004. Eight page short version (recom-
mended) available at arXiv:quant-ph/042014. Full version at web.comlab.ox.ac.uk/oucl/publications/tr/rr-

03-12.html

[23] B. Coecke, Quantum information-flow, concretely, and axiomatically, in Proceedings of the
2nd Workshop on Quantum Programming Languages (QPL), P. Selinger Ed., TUCS General
Publication, pp. 57–74, 2005.

[24] B. Coecke, Axiomatic description of mixed states from Selinger’s CPM construction.in Pro-
ceedings of the 4th Workshop on Quantum Programming Languages (QPL), P. Selinger Ed.,
Electronic Notes in Theoretical Computer Science (ENTCS), pp. 57–74, 2006.
http://www.mathstat.dal.ca/ selinger/qpl2006/proceedings.html

[25] B. Coecke, Quantum information-flow, concretely, and axiomatically, in Proceedings of
Quantum Informatics 2004, pp. 15–29, Y. I. Ozhigov Ed., Proceedings of SPIE 5833,
2005. arXiv:quant-ph/050613

[26] B. Coecke, De-linearizing linearity: Projective quantum axiomatics from strong compact clo-

sure, in Electronic Notes in Theoretical Computer Science (special issue: Proceeding of the
3rd International Workshop on Quantum Programming Languages), 2005. arXiv:quant-

ph/0506134

[27] B. Coecke, Kindergarten Quantum Mechanics, Invited talk at Quantum Information, Com-
putation and Logic: Exploring New Connections, Perimeter Institute, Waterloo, Canada,
July 1722, 2005. arXiv:quant-ph/0510032v1.

[28] B. Coecke, Introducing Categories to The Practising Physicist – Lecture notes, 2005.
http://web.comlab.ox.ac.uk/oucl/work/bob.coecke/Cats.pdf

Bibliography 153

[29] B. Coecke and R. Duncan, Interacting quantum observables in Proceedings of Automata,
Languages and Programming 35th International Colloquium, ICALP 2008, Reykjavik, Ice-
land, July 7-11, 2008.

[30] B. Coecke and B. Edwards, Toy quantum categories. in Proceedings of Quantum Physics
and Logic 2008, Electronic Notes in Theoretical Computer Science, to appear.

[31] B. Coecke and É. O. Paquette, POVMs and Nairmarks theorem without sums, to appear
in Proceedings of the 4th International Workshop on Quantum Programming Languages,
Electronic Notes in Theoretical Computer Science. arXiv:quant-ph/0608072v2

[32] B. Coecke, É. O. Paquette and D. Pavlovic, Classical and quantum structuralism. To appear
in: Semantic techniques in Quantum Computation. S. Gay and I. Mackie, Eds. Cambridge
University Press.

[33] B. Coecke, É. O. Paquette and D. Pavlovic, Classical and quantum structures. Oxford
University Computing Laboratory Research Report PRG-RR-08-02. Available at
http://web2.comlab.ox.ac.uk/oucl/publications/tr/rr-08-02.html

[34] B. Coecke, É. O. Paquette and S. Perdrix, Bases in diagrammatic quantum protocols. Pro-
ceedings of the 24th Conference on the Mathematical Foundation of Programming Semantics
(MFPS XXIV). Electronic Notes in Theoretical Computer Science. To appear.

[35] B. Coecke, É. O. Paquette, Categories for the Practising Physicist. To appear in: New

structures in physics. B. Coecke Ed. Springer Lecture Notes in Physics.

[36] B. Coecke and D. Pavlovic, Quantum measurements without sums, invited paper to ap-
pear in The Mathematics of Quantum Computation and Technology; Chen, Kauffman and
Lomonaco Eds., Taylor and Francis, 2006.

[37] B. Coecke and D. Pavlovic, Scalar inverses in quantum structuralism. Oxford University
Computing Laboratory Research Report PRG-RR-08-03.
http://web2.comlab.ox.ac.uk/oucl/publications/tr/rr-08-03.html

[38] B. Coecke, D. Pavlovic and J. Vicary. Commutative dagger Frobenius algebras in FdHilb

are bases. Oxford University Computing Laboratory Research Report RR=08-03, 2008.

[39] Y. Delbecque, Game semantics for quantum data. Proceedings of the wokshop on Quantum
workshop on physics and logic (QPLV), 2008.

[40] Y. Delbecque and P. Panangaden, Game semantics for quantum stores. Proceedings of
the 24th Conference on the Mathematical Foundation of Programming Semantics (MFPS
XXIV). Electronic Notes in Theoretical Computer Science. To appear.

[41] Y. Delbecque, A quantum game semantics for the measurement calculus. Proceedings of
the 4th International Workshop on Quantum Programming language (QPL’06), 2006.

[42] R. Duncan, Types for quantum computing. D.Phil. Thesis, Oxford University, 2006.

[43] A. K. Ekert, Quantum cryptography based on Bell’s theorem, Phys. Rev. Let., 6, pp.
661-663, 1991.

[44] A. Einstein, B. Podolsky and N. Rosen. Can quantum-mechanical description of physical

reality can be considered complete? Physical review 47, 777, 1935.

[45] M. Freedman, A. Kitaev and Z. Wang, Simulation of Toplogical Field Theories by Quantum

Computers, Comm. Math. Phys., 227(3), pp. 587–603, 2002.

[46] M. Freedman, M. Larsen and Z. Wang, A modular functor which is universal for quantum

computation. Springer-Verlag in Comm. Math. Phys, 227(4), pp. 605–622, 2001.

Bibliography 154

[47] P. Gabriel and M. Zisman, Calculus of Fractions and Homotopy Theory. Springer-Verlag,
1967.

[48] A. Harrow. Coherent communication of classical messages. Phys. Rev. Let., 92:097902,
2004.

[49] D. Knuth. The Art of Computer Programming, Volume 3: Sorting and Searching, Third
Edition. Addison-Wesley, 1997.

[50] É. O. Paquette, A categorical semantics for topological quantum computation, M. Sc. thesis,
University of Ottawa, 2004.

[51] É. O. Paquette and P. Panangaden, A categorical presentation of quantum computation

with anyons. To appear in: New structures in physics. B. Coecke Ed. Springer Lecture
Notes in Physics.

[52] A. Joyal and R. Street, The geometry of tensor calculus I. Advances in Mathematics, 88,
pp. 55–112.

[53] A. Joyal and R. Street, Braided tensor categories. Advances in Mathemathics, 102, pp.
20–78, 1993.

[54] A. Joyal, R. Street and D. Verity, Traced monoidal categories, London Mathematical Society
Lecture Note Series 64, Cambridge University Press, 1982.

[55] A. Y. Kitaev, A. H. Shen and M. N. Vyalyi, Classical and quantum computation. In
Graduate studies in Mathematics, Vol. 47. American Mathematical Society, 2002.

[56] J. Kock, Frobenius Algebras and 2D Topological Quantum Field Theories, London Mathe-
matical Society, in Student Texts 59, 2004.

[57] G. M. Kelly and M. L. Laplaza, Coherence for compact closed categories, Journal of Pure
and Applied Algebra, 88, pp. 193–213, 1980.

[58] S. Mac Lane, Categories for the Working Mathematician, in Graduate texts in mathematics
vol. 5, Springer, second edition, 2000.

[59] J. Lambek and P. J. Scott, Introduction to higher order categorical logic, Cambridge Uni-
versity Press, Cambridge, 1986.

[60] A. K. Lenstra and H. W. Lenstra, Jr. (eds.). The development of the number field sieve.
Lecture Notes in Math. (1993) 1554. Springer-Verlag.

[61] S. Lipschutz, Algèbre Linéaire, cours et problèmes, Série Schaum, 1977.

[62] W. K. Nicholson, Introduction to Abstract Algebra. John Wiley & Sons, Inc. 1999.

[63] M. A. Nielsen and I. L. Chuang, Quantum computation and quantum information. Cam-
bridge University Press, 2000.

[64] A. K. Pati and S. L. Braunstein, Quantum no-deleting principle and some of its implications.
Nature, 404, 164, 2000.

[65] R. Penrose and W. Rindler, Spinors and Spacetime, Cambridge University Press, 1984.

[66] P. Selinger, Towards a quantum programming language, in Mathematical Structure in Com-
puter Science, 14(4), pp. 527–586, 2004. http://www.mscs.dal.ca/ selinger/papers/qpl.pdf

[67] P. Selinger, A brief survey of quantum programming languages. Proceedings of the 7th
International Symposium on Functional and Logic Programming, Nara, Japan. Springer
LNCS 2998, pp 1–6.

Bibliography 155

[68] P. Selinger, Dagger compact closed categories and completely positive maps, in Proceedings
of the 3rd International Workshop on Quantum Programming Languages (QPL), ENTCS
170 pp. 139–163, 2007. http://www.mscs.dal.ca/ selinger/papers/dagger.pdf

[69] P. Selinger, Idempotents in dagger categories, to appear in Proceedings of the 4th Interna-
tional Workshop on Quantum Programming Languages.
http://www.mscs.dal.ca/ selinger/papers/idem.pdf

[70] P. Selinger and B. Valiron, On a fully abstract model for a quantum linear functional lan-

guage. Proceedings of the 4th International Workshop on Quantum Programming language
(QPL’06), 2006.

[71] P. Selinger and B. Valiron, A lambda calculus for quantum computation with classical

control. Mathematical structures in computer science, 16(3), pp. 527–552, 2006.

[72] P. Shor and J. Preskill, Simple Proof of Security of the BB84 Quantum Key Distribution

Protocol. Phys. Rev. Lett., 85, pp. 441–444, 2000. arXiv:quant-ph/0003004

[73] B. Valiron, A functional programming language for quantum computation with classical

control. M. Sc. Thesis, University of Ottawa, 2004.

[74] A. van Tonder, A lambda calculus for quantum computation, SIAM J. of Comput. 33, pp.
1109–1135, 2004.

[75] V. G. Tuarev, Axioms for topological quantum field theories, in Annales de la faculté des
sciences de Toulouse 6e série 3(1), pp. 135 – 152, 1994.

[76] R. F. Wener, All teleportation and dense coding schemes. J. Phys. A: Math. Gen. 34
7081-7094 J. Phys. A: Math. Gen. 34 7081-7094. arXiv:quant-ph/0003070v1

[77] W. K. Wooters and W. H. Zurek. A single quantum cannot be cloned. Nature, 299(5886),
pp. 802–803.

[78] W. H. Zurek, Decoherence and the transition from quantum to classical – Revisited, arXiv:quant-
ph/0306072, 2003.

Index 156

Index

†-Frobenius structure 71

†-monoidal category 46

Cat 25

CP(Cq) construction 64

a

Adjoint 7

Antilinear map 6

b

Base structure 88

Basis 9

Bijection 89, 115

Bounded linear operator 6

c

Canonical trace 54

Category 20

Category of basis structures 91

Category of quantum structures 52

Classical-quantum interface 104

Classical network 74

Commutative diagram 28

Compact category 51

Compact structure 50

Completely mixed state 18

Completely positive map 62

Completely positive operator 13

Congruence relation 23

Conjugate space 8

Connectedness 75

Contravariant functor 27

Convolution 112

Convolution monoid 112

d

Density operator 16

Divisor of zero 137

Doubly stochastic map 115

Dualiser 89

Dual of a morphism 50

e

Ensemble of pure states 16

Entangled state 14

Equivalence of categories 37

f

Faithful functor 25

Full functor 25

Function 114

Functor 25

g

Graphical calculus for †-monoidal categories
47

Graphical calculus for categories of quantum
structures 57

Graphical calculus for symmetric monoidal
categories 43

h

Hermitian transpose of a matrix 11

Hilbert space 6

i

Initial object 23

Inner product and inner product space 6

Internal comonoid 41

Internal monoid 40

Isomorphism 22

k

Kronecker product 11

l

Linear and multilinear map 5

Localisation of a category of quantum struc-
tures 137

m

Maximally entangled state 18

Mixed connectedness 94

Mixed network 94

Mixed normal form 95

Mixed state in CQI(Cq) 116

Monoidal category 32

Monoidal functor 37

Monoid of scalars 41

Index 157

n

Natural transformation 28

Norm 6

Normal form 76

o

Opposite category 26

Orthogonal vectors 6

p

Partial map 114

Partial trace 12

Positive element 62

Positive morphism 61

Positive operator 7

Positive scalar 137

Product of categories 31

Projector 15

Projector-valued spectrum 15

Pure state in CQI(Cq) 115

q

Quantum operation in CQI(Cq) 116

Quantum structure 52

Qubits 13

Quotient category 23

s

Self-adjoint and unitary morphism 47

Self-adjoint operator 7

Stochastic map 114

Strict compact closed category 51

Strict monoidal category 34

Subcategory 25

Superoperator 17

t

Tensor product 8

Tensor product of Hilbert spaces 9

Terminal object 23

The category FdHilbR 114

The category of interfaces 107

Trace 12

Trace-preserving operator 13

Traced monoidal category 39

u

Unitary operator 7

Unitary transformation in CQI(Cq) 116

z

Zero 137

