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Part I

L I T E R AT U R E R E V I E W

Here we review the key literature of everything that is
relevant for what we are going to do in the second part.
We start quite informally, and dive into technical details
as we progress.





1
I N T R O D U C T I O N

Nil posse creari
de nilo.

— Lucretius, De Rerum Natura [140, Book I, Lines 155-156]

The struggle to model and formally represent natural language and
meaning is probably as old as mathematical logic is [95, pp. 165-
66, 192-95, 221-28, 248-50, and 654-66]. It is especially in the last
decades, thanks to the improvements in computer science, that sci-
entists and linguists saw for the first time a real opportunity to imple-
ment what was only a philosophical exercise into something practical.
This brought new passion to the efforts to ask and solve questions
regarding the formalization of language, a passion that stems from
many different – and now independent – branches of study.

There are two different types of models that have been studied and
exploited so far. The first ones account for a strong formalization of
language structures by means of logical rules: We call these models
“Compositional”. This way of doing things draws inspiration from
the work of Frege (to which the principle of compositionality is at-
tributed) in logic [53, 66], and has been carried to natural language by
pioneers like Montague [108–110] and Chomsky [34], that are among
the first modern researchers who tried to mathematically formalize
how language works. The compositional approach has multiple de-
clensions, among which the most influential, at least with regard to
what we want to do in this document, is due to Lambek. With the
Lambek calculus [90], later restated and simplified in terms of pre-
groups [91], he gave an elegant account of how the grammar of natu-
ral language works. This is not the only way to axiomatize grammar
in mathematical terms, but it is particularly appealing for our pur-
poses since the deep connections with category theory that Lambek’s
approach has. Lambek’s approach has then be used to develop tech-
niques that take into account different grammatical constructions in
many languages, even Latin [33]. It is out of doubt that this approach
gladdens the mathematician, with its elegance and relative simplicity.
Moreover, it can be formulated in categorical terms (pregroups are,
de facto, categories) [39], and this is consistent with our intuition that
what really matters, in language, is how the words compose with each
other to form a sentence. This justifies the word “compositional” to
define this class of models. Nevertheless, compositional approaches
are also rather artificial, since they clash, from the very philosophi-
cal premises they start from, with the intrinsic empirical nature of

3



4 introduction

language. People learn how to speak by trial and error, and not by
memorizing a given set of axioms and rules; as a result language
is irregular, and all the logical rules one can define to model it feel
overimposed. Stating things in simpler terms, one can always find an
example that does not fit a given compositional model and, as Lam-
bek himself stated, “it is only fair to warn [. . . ] that some authorities
think that such difficulties are inherent in the present methods.” [90,
p. 154]
The killer feature of compositional models is that, since they are logic-
oriented, defining a logic on the language we are studying is easier,
see for instance [123]. Even in this case, though, this is not always
straightforward: For ecample, if we can assign meaning to two sen-
tences, say John reads and John writes, and we have some sort of oper-
ation to obtain a conjunction of these sentences, we would like John
reads and writes to be assigned the same meaning of the logical con-
junction between John reads and John writes. Hence, we would like
words such as and, or, not to operate directly within the logical struc-
ture of our model. This is difficult though because these words, even
if they operate in a logical fashion (at least according to our intu-
ition), exhibit very different behaviors according to the context they
are placed in. In our example, John reads and writes is the same as John
reads and John writes, so the word and “slides through” the sentence;
but you and me make a good couple is nowhere near the same as you
make a good couple and I make a good couple, which makes no sense as a
sentence. With not things are even harder: If we consider the sentence
he’s not tall, he’s short then we have a first bit that is negated and a
second bit that is intuitively compatible with this negation: Short is
somehow the opposite of tall; but if we consider he’s not tall, he’s a
giant then it is exactly the contrary that happens, and it is difficult to
treat a sentence like this logically without avoiding paradoxes. More-
over, in both cases the grammatical role of not is the same, so we have
no chance to understand how to interpret the word not just from the
grammatical role it has in a sentence.

With these considerations in mind we highlighted the real problem
of compositional models: They are very good at describing the struc-
ture of a sentence with regard to the grammatical roles words have
in it and the way they compose with each other, but it is difficult to
exploit this structure to assign a meaning to them: Meaning often acts
in a way that disrespects sentence structure.

On the other end of the spectrum there are empirical models. The
philosophy in this case is the opposite, we don’t mind about any
overimposed grammatical structure, we even disregard the grammar
altogether, and we derive meaning of words studying the context in
which they are used. These models are often called “distributional”
and rely on the Wittgensteinian assumption that “meaning is use” [143].
The reason to study them is often driven by practical applications,
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since they have been successful in tasks like thesaurus extraction [48,
72]. The killer feature here is that we can design algorithms that as-
sign meaning to thousands of words in simple ways, essentially run-
ning statistical analyses on a huge corpus. The downside is that we
do not have any hint about how the compositional structure works,
and so it is much more difficult to derive the meaning of a sentence
from its component words.
Clearly, defining a logic for distributional models is harder since we
totally disregard compositionality, so we cannot straightforwardly
plug in any intuition about how meanings should compose in our
model.

People struggled a lot in the last decades to define a way to assign
meanings to sentences that takes the best from both approaches. We
still want to be able to automatically extract meanings of words from
a corpus, but then we want the freedom to define rules to compose
these meanings in a way that is compatible with the information we
extracted.

One successful attempt to do this comes from the DisCoCat model,
developed in [39, 44]. The core idea here is that distributional models
of meaning often use a vector space formalism, and this formalism
shares many categorical features with Lambek’s pregroup approach.
To be precise, vector spaces and linear morphisms can be formulated
in categorical terms as compact closed categories. A pregroup, on
the other hand, is a compact closed category too, so there is some
structure these settings share. These similarities have been exploited
to give distributional models of meaning a compositional structure
coming from a pregroup.

One nice feature of this approach is that we can use the diagram-
matic calculus developed in categorical quantum mechanics [2, 4, 43]
in our setting, since this calculus ultimately relies on the fact that the
category we are working in is compact closed. We have a clear way,
then, to study and manipulate the means by which words compose in
a sentence, and then the “magic” of compact closed categories gives
us a way to reduce this composition to a definite meaning, in a purely
graphical way.

DisCoCat is part of a much broader area of research that goes un-
der the name of process theory. Process theories study the composi-
tional behavior of processes abstractly, usually exhibiting some form
of graphical calculus that is sound (sometimes also complete) with
respect to some semantic category that represents the kind of pro-
cesses we are interested in. This approach has been incredibly useful
and has been employed in a lot of different research areas, such as
linear algebra [138], control theory [12], Markov processes [14], sig-
nal flow graphs [25], natural language processing as we just said [44]
and electrical circuits [13]. Techniques from this last application will
in particular be useful later on in this document.
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Lately [42] the compact closed prerequisite has been dropped, show-
ing how similar results can be achieved requiring our categories just
to be monoidal closed. We also somehow preserve the diagrammatic
features, via the Baez-Stay diagrams developed in [15], that work well
for monoidal closed categories1.

At the end of the day, the mantra of categorical distributional se-
mantics boils down to having two categories G and S, representing
grammar and semantics respectively, and a functor F : G → S. Now,
these categories have to share some structure, usually compact closed-
ness, and the functor has to preserve this structure. What happens
then is that if we have a sentence, we can parse the compositional
structure the words in the sentence have, derive their reduction in
G and then apply F to understand how to derive a meaning in S.
We immediately understand that we are not bound to vector spaces
and pregroups to do this job: As long as we can find a categorical
structure that is meaningful in terms of language composition (in our
case compact closedness or monoidal closedness) then we can look
through all the categories we know having that structure to find a
suitable model for our grammar and our semantics. We then prove
that a structure preserving functor F exists and we are back in the
game. This simple observation motivated the start of a quest to find
other categories that could substitute vector spaces and pregroups
with the hope to outperform previous results. Alternative semantics
proposed include density matrices [16], expressed categorically via
the CPM construction [135]; double density matrices [10] (stating it
practically this amounts to perform CPM construction on a vector
space two times); relational semantics (used as a model of meaning
in [39] exploiting categorical similarities with vector spaces already
studied in [2, 5].2) and convex sets and relations [24], a model based
on the work of Gärdenfors [70]. We will extensively talk about the last
mentioned approach later. One of the main motivations for a change
of semantics relies in the inherent difficulty to define a good logic in
the vector spaces framework. We can define a logic for language in
the vector spaces category as it has been done in [123], but the logic
is not purely internal: It is built up by encoding things and this, from
the categorical point of view, sounds a bit arbitrary, albeit many of the
encodings are justified from an intuitive point of view. The researcher
familiar with category theory wants to see the magic of categories at
work, that is, how a logical structure that is compatible with language
naturally arises from the category we choose, without any need of ar-
bitrary choices: When a way to compose words is defined, a logic
that describes how “difficult” words like and or not behave must be

1 At the moment there isn’t, to my knowledge, a proof of completeness for these
diagrammatic calculi, and it is safe to say that Baez-Stay diagrams are still not fully
understood.

2 According to some researchers, this can be considered a categorical formalization of
the Montague semantics [39, p. 4], but this idea is not universally accepted.
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obtained for free from the compositional structure. When this does
not happen, categorists conclude that this suitable logic must exists
in some other category, and hence that we are maybe using the wrong
one.

Back to the compositional distributional mantra “grammar/func-
tor/semantics”, it has to be said that things are not always so easy.
For instance Preller shows [123, p. 119] that there isn’t a functor from
a pregroup to vector spaces that preserves compact closed structure
and that maps a basic type in the pregroup to a vector space having
dimension more than one. Luckily, if we take the freely generated
compact closed category on a set of basic types and morphisms (here
the generating morphisms represent a dictionary of words we use to
generate the category) and we use it instead of the pregroup then our
functor exists and everything works just as we expected. The formal
construction of the freely generated compact closed category on a set
of basic types and morphisms mentioned above can be found in [124].

1.1 a cognitive theory of meaning

We just mentioned Gärdenfors’ work above, en passant. Actually, this
work differs from everything else we summarised up to now in the
fact that the adopted point of view changes again. Gärdenfors doesn’t
start from linguistic assumptions. Instead, he starts from cognitive
considerations and only after tries to explain how language is per-
ceived and understood. What he does is then to define a sort of
“semantics of the mind”, describing a model of how concepts inter-
act in our heads. After doing this, he takes into account many of
the most common grammatical types (pronouns, nouns, verbs, adjec-
tives) and explains how they find a place in his framework. The main
assumption is that human beings represent concepts in their minds
by means of convex sets, products and domains, intermingling them
in structures called “conceptual spaces”. Essentially, domains repre-
sent fundamental properties a concept can have: For example, we can
have a space domain, a time domain, a colour domain and so on. A
concept is then a product of convex subsets of these domains. For in-
stance, the concept of ball will have a colour connotation, since balls
can be of almost any colour. This is formalized as a convex subset
of the colour domain, that represents all the colours a ball can have
according to the intuition of the person. Ball will also have a texture
connotation, describing the fact that a ball can be very hard (like in
the case of a Snooker ball), quite hard (a basket ball), quite soft (a
sponge ball) or almost immaterial (a ball of gas, like the sun). Also
these features will correspond to a subset in the texture domain. We
can reiterate this reasoning again and again, obtaining a set of do-
mains that describes all the properties our concepts have and that we
want to account for. The product of these domains is a conceptual
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space. A concept will then be defined by a product of the convex
subsets in every domain describing it. The convexity requirement is
motivated by the assumption that if we can consider something hav-
ing two different properties, we can consider that concept also to have
all the possible mixings between the two: Using our example again,
if we can think about a red ball and a yellow ball, Gärdenfors argues
that we can think also about an orange ball or a ball having any other
colour given by the composition of yellow and red.

The conceptual spaces approach gives elegant explanations about
many linguistic phenomena, like the use of metaphors. The idea here
is that we translate the meaning of a concept from one domain to
another, and we exploit similarities between the two to describe our
concept. So black Wednesday, referring to 16

th September 1992, when
the stock market in the UK went upside down, makes sense because
we associate the concept black, in the domain of colours, with concepts
like darkness, sadness and so on. Even without knowing the meaning
of black wednesday one can then associate it to the idea of something
very bad that happens (or happened or will happen) on a Wednesday.
Note that these associations are most of the times non trivial: If black
Wednesday means something bad, black Friday is instead perceived as
a really happy thing, at least by people that love shopping.

Anyway, Gärdenfors’ model makes many pretty good points and
provides good suggestions about how to formalize meaning, even if
it has its limitations. For instance, piano key means something black
or white, but never gray, the point being exactly that piano keys are
always painted in a way such that the distinction between the black
keys and the white keys is clear. Gärdenfors’ model struggles to ac-
count for this, since we cannot characterize piano key in the color do-
main as we would do with ball: The convexity requisite would force
us to consider every shade of gray between white and black, that is
the kind of thing we want to avoid with piano key.

One possible solution to this problem would be to note that the
most pertinent characterization of piano key is not in terms of color,
but of contrast. What is important about piano keys is not the fact
that they can be white or black, but that they are always painted in a
contrasting way such that the small keys (usually the black ones) are
distinguishable from the big ones (usually white). The correct defin-
ing domain for piano key would then be the three element semilattice

Mixing

Color 1 Color 2

Where the join of Color 1 and Color 2 can be interpreted as ambiguity
(e.g. “either Color 1 or Color 2”). The problem with this is that semilat-
tices do not seem to have much in common with convexity. We will
give a definition of convexity in Chapter 3 that will allow us to con-
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sider semilattices as legitimate domains and, in Chapter 6, we will
recast our models to allow also for structures different than convexity.
This, in principle, should offer some margin to solve this kind of prob-
lems but, even this being the case, it is clear how this solution sounds
artificial. Moreover, it is evident how in many situations we cannot
be naive in choosing our defining domains and we will have to come
up with clever tricks and observations to characterize concepts in a
way compatible with Gärdenfors’ ideas.

Another limitation of Gärdenfors’ model is that conceptual spaces
are obtained as products of different domains, but Gärdenfors never
states clearly what does he mean by “product”. Most of the times he
is referring to the cartesian product of convex sets, but this interpre-
tation is not always the one to take to figure out what’s happening
in the examples he provides. Reading [70] it is clear he has in mind
some kind of “parallel composition” that allows to put different do-
mains side by side, but this composition is never clearly defined and
the word “product” is used vaguely.

Moreover, convexity is often exploited beyond reason to justify
some ideas. All in all, the model proposed by Gärdenfors contains
clever ideas, but it is too vague to allow us to extract numbers out of
it.

Nevertheless, the problems just highlighted are deemed to be solv-
able, since they are caused by a weak mathematical formulation of the
theory and not by a conceptual inconsistency. For this reason we tried
to give a first strong formalization of Gärdenfors’ theory in categori-
cal terms, defining the category of convex sets and convex-preserving
relations [24], that will be reviewed in detail later in this document.

The most valuable idea in the conceptual spaces approach is that
the term “grammar” has to be intended more as a “way to compose
concepts” and not only as something related to language: In fact, the
subdivision in domains works on a different level with respect to the
type system commonly used when formalizing language grammars.
For instance, the word black can be, according to Lambek, an adjective
or a noun, and in these two instances it will have different types,
since the type structure of pregroups relies on the type structure of
language. For Gärdenfors, instead, these two words act on the very
same domain, the domain of colours, and there is no real difference
between black used as an adjective and black used as a noun, since
they are both referring to the same concept in essence.

To assign meaning in terms of domains has, as we highlighted
before, an intuitive explanation in cognitive terms: The word mean-
ing ultimately refers to the way we represent concepts in our head,
and moving from intuitive premises in defining a semantics just feels
“right”, whereas other approaches, like the vector spaces one, look
hacky: No one questions their effectiveness, but the author deems
as improbable that someone thinks about comparing vectors when
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asked how he intuitively perceives the idea of “meaning of a sen-
tence”. Effectiveness is, in fact, another thing to take into account,
and probably a downside of Gärdenfors’ approach (albeit we cannot
be sure about it, since the formalization of meaning according to this
theory is just in its first stage). Our concerns can here be split in two
parts:

The first one pertains to the feasibility of defining a logic on our
model. As in the vector spaces case, we want to be able to make infer-
ences in our structure: We want to define a notion of entailment (for
density matrices this has been done in [16, 18]), a notion of negation,
conjunction and so on, such that these definitions are compatible with
the language (we want to be able to explain how the word and acts
by means of the logic we are going to define, for instance). This is
even more strongly motivated if we think in cognitive terms; keeping
it simple, note that the reason why the logical conjunction is almost
always called “and” maybe relies on the intuitive idea that the word
and makes conjunctions in natural language, and the same argument
holds for many of the most used logical connectives. The author of
this document spent a considerable amount of time in trying to find
a way to implement a logic in our sets and convex relations approach,
but the problem is non-trivial. It is likely, moreover, that our formal-
ization of conceptual spaces by means of convex relations is not the
right one: Much broader and powerful generalisations of the frame-
work laid down in [24] have already been proposed [41, 104] and
will be object of in depth study in this document. This uncertainty
about the future of convex sets and convexity preserving relations
as a semantics served as a motivation to look for a more high-level
explanation of the logical connectives in terms of language, an expla-
nation that does not explicitly rely on the category we are using as
semantics. Again, the problem is non-trivial and needs to be further
investigated.

The second concern has not been investigated yet, and it looks more
difficult to account for. This is about the possibility of having an algo-
rithm that is able to build conceptual spaces from a corpus of words.
This possibility is heartily desired, because it is the only way to mark
a transition between toy models and real models of meaning. If we
do not have a way to assign meanings to concepts automatically, then
it will be impossible to use the Gärdenfors’ model for any practical
application. We remember again that this is exactly what motivated
the study of distributional models of meaning: Practical feasibility
should always be considered when one tries to model cognition and
language in mathematical terms.

With this brief introduction we hope to have given a satisfactory
account of what has been done in the last years in the field. The
synopsis of this document will then be as follows:
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• In Chapter 2 we will provide a technical explanation of how the
pregroup grammars work and what are the categorical proper-
ties we are interested in;

• In Chapter 3 we will introduce our first attempt to model a cat-
egorical semantics based on Conceptual Spaces, with detailed
examples provided in Chapter 5. The mathematical properties
of this semantics will be analyzed in depth in Chapter 4. We
will show how our new model allows us to overcome some of
the limitations of Gärdenfors’ original one, giving us the possi-
bility of extracting actual numbers out of our formalizations of
words, sentences and the like;

• In Chapter 6 we will introduce a much broader generalization
of our framework, that may well be considered the “last stop”
of relational semantics for its generality. These generalized rela-
tions will contain the structures defined in Chapter 3 as a spe-
cial case, and will allow us to perform additional operations
that were impossible before. From an operative perspective, the
most important result is probably the fact that we will now be
able to talk about distances between concepts, as it will be ex-
tensively shown with examples in Chapter 7;

• In Chapters 8 and 9 we will adopt a radically different point
of view, deeply criticizing our own work up to this point (ev-
ery now and then a bit of self-deprecation does not harm) and
using suggestions coming from exotic languages we will advo-
cate for a radically different approach to the whole problem of
language.

• In the conclusion we will stop boring the reader, trying to sum
up what have we learned up to now.





2
L A M B E K C A L C U L U S A N D P R E G R O U P S

Quare non ut intellegere possit
sed ne omnino possit non intellegere curandum.

— Quintilianus, De Institutione Oratoria [100, Book VIII, 2.24]

Pregroups have a much more complicated history than it looks.
They have been, in fact, introduced by Lambek in 1999 [91], as a sim-
plification of his work on what we call now Lambek calculus [90],
formulated nearly forty years earlier. Both serve the same purpose,
that is, defining a mathematical framework to perform formal analy-
sis on language.

2.1 residuated monoids

The original Lambek calculus was expressed in the form of a sequent
calculus. What triggers the categorical reasoning is that this calculus
(as shown in [29]) is sound and complete with respect to residuated
monoids, since residuated monoids can be easily formalised in cat-
egorical terms. For this reason, we will give the definition of Lam-
bek calculus directly in terms of residuated monoids as done in [42],
avoiding sequents and reduction rules.

Definition 2.1.1. A partially ordered set (L,6) is a set with a rela-
tion on it that is reflexive, antisymmetrical and transitive. A monoid
(L, ·, 1) is a set with a 2-ary operation on it, denoted with ·, and a
0-ary operation 1, called unit, such that (a · b) · c = a · (b · c) and
a · 1 = a = 1 · a for all a,b, c ∈ L.

Definition 2.1.2. A partially ordered monoid, denoted with (L,6, ·, 1), is
a set L with a partial order structure (L,6) and a monoid structure
(L, ·, 1) on it, such that these structures are compatible with each other
(multiplication preserves the order):

a 6 b⇒ a · c 6 b · c, a 6 b⇒ c · a 6 c · b ∀a,b, c,∈ L.

Definition 2.1.3. A residuated monoid, denoted with (L,6, ·, 1,(,�) is
a set L with a partially ordered monoid structure (L,6, ·, 1) and two
2-ary operations (,�, called right and left adjunctions of ·, such that

a 6 b( c⇔ b · a 6 c⇔ b 6 c� a ∀a,b, c,∈ L.

This structure encodes the compositionality of language as follows:
Elements of the residuated monoid stand for grammatical types, and

13
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multiplication is concatenation of types, meaning that if a,b are types,
then a · b is ab. The unit stands for the empty type and the order re-
lation stands for reduction. The adjunctions represent function types
(for instance, adjectives are usually modelled as elements n( n, that
is, things that carry the noun type to the noun type). This is further
motivated by the observation, very easy to prove from the axioms,
that a · (a ( b) 6 b (and similarly (b � a) · a 6 b); this intuitively
means that if we plug something having type a next to something
having type a ( b, this reduces to something having type b. This is
exactly what happens in natural language: If we compose a noun to
an adjective, we get a noun.

Definition 2.1.4. Given a set of words W and a set of basic grammar
types T , a Lambek type-dictionary is a subset D ⊆W× F(T), where F(T)
is the free residuated monoid generated by T 1.

The idea here is that to any word we associate one or more types (that
is, algebraic terms of the residuated monoid). For example, if n stands
for the noun type and n ( n for the adjective one, then one could
have (black,n) and (black,n ( n) as elements of D, representing the
fact that the word black can be used as a noun or as an adjective in
our grammar.

From this, we can finally define:

Definition 2.1.5. A Lambek Grammar is a pair 〈D,S〉, with D Lambek
type-dictionary and S, subset of T , called the set of basic grammatical
types.

To summarise, we choose some set of basic types T . In this T we
include a subset that denotes the basic sentence types, like “declara-
tive”, “interrogative”, “exclamative” and so on, call it S. We generate
the residuated monoid on T , then we associate to every word one or
more types that live into the monoid. Finally, we adopt the notation
〈D,S〉 to say “look, the ones on the left are our words, to every word
corresponds a type. The sentence types are the ones on the right”.
This is important because

Definition 2.1.6. A string of words w1 . . . wn is said to be grammatical
if there is a sequence of types t1, . . . , tn such that (wi, ti) ∈ D for all
1 6 i 6 n, and t1 · · · · · tn 6 s for some s in S. In this case we also say
that the string of types t1 · · · · · tn reduces to s. 2

Now it should be clear what are we doing. We are interpreting order
as reduction, and the idea then is: Take a string of words, consider
all the words separately. Look in the dictionary for their types and
compose them via multiplication. Then apply the residuated monoid
rules to get something that is in S. If this is possible, then the sentence
is grammatically correct. If this is not possible, then the sentence is
grammatically incorrect.

1 the free residuated monoid construction can be found in [90].
2 By abuse of notation we can also say that a string of words w1 . . . wn reduces to s.
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2.2 pregroup grammars

Now we consider something a bit simpler. As we already mentioned,
pregroups are a simplification of the original Lambek calculus. We
would expect, then, to get a structure that is somehow easier to man-
age than residuated monoids. This is indeed true:

Definition 2.2.1. A pregroup, denoted with (G,6, ·, 1, (−)l, (−)r) is a
set L with a partially ordered monoid structure (L,6, ·, 1) on it, and
two 1-ary operations (−)l, (−)r called left and right adjunctions respec-
tively, such that

p · pr 6 1 6 pr · p pl · p 6 1 6 p · pl ∀p ∈ G.

The only true difference between a pregroup and a residuated monoid
is that in the latter the adjunctions are 2-ary, so they take two argu-
ments, while in the former they are 1-ary, so they only take one. This
has quite big implications on the categorical properties these struc-
tures have. Note that every pregroup can be regarded as a residuated
monoid defining a � b := a · bl and a ( b := ar · b. We can also
do the opposite, and regard every residuated monoid as a pregroup
putting al = 1 � a and ar = a ( 1. The two definitions are not one
the inverse of the other: In general if we take a residuated monoid,
interpret it as a pregroup and then interpret the pregroup again as a
residuated monoid what we get will be different from the residuated
monoid we started with. 3

Fiddling with the pregroup axioms one can prove that 1r = 1l = 1
and that (al)r = (al)r = a for all a ∈ G. Moreover, (a · b)l = bl · al
and (a · b)r = br · ar for all a,b ∈ G. Be aware that adjoints are not
nilpotent, they iterate: ((−)r)r , (−)r and ((−)l)l , (−)l. What we
said for residuated monoids also applies to pregroups:

Definition 2.2.2. Given a set of words W and a set of basic gram-
matical types T , a Lambek (pregroup) type-dictionary is a subset D ⊆
W ×G(T), where G(T) is the free pregroup 4 generated by T .

Definition 2.2.3. A Lambek (pregroup) Grammar is a pair 〈D,S〉, with D
Lambek (pregroup) type-dictionary and S subset of T , the set of basic
grammatical types.

Definition 2.2.4. A string of words w1 . . . wn is said to be grammatical
if there is a sequence of types t1, . . . , tn such that (wi, ti) ∈ D for all
1 6 i 6 n, and t1 · · · · · tn 6 s for some s in S. In this case we also say
that the string of types t1 · · · · · tn reduces to s.

3 If you want to draw a universal algebraic comparison, note that every semigroup can
be interpreted as a set, and every set can be interpreted as a semigroup taking union
as operation and the empty set as unit. Nevertheless, interpreting a semigroup as a
set and then interpreting the very same set as a semigroup gives us back an algebraic
structure that is not isomorphic to the semigroup we started with: We clearly forgot
the operations in the first passage and cannot recover them. For instance, we can
never recover noncommutative semigroup structures.

4 The free pregroup construction can be found in [91].
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2.2.1 Examples

Now let’s show some examples. We will use the same examples in
the pregroup case and in the residuated monoid case. Consider the
sentence John loves Mary. The words John and Mary are nouns: If we
agree to define with n the noun type in both our formalisms, then
these words will both have type n. The word loves is a transitive verb,
that is, something that takes an argument on the left, an argument on
the right and gives back a well formed sentence. This is represented
as ((n ( s) � n) in residuated monoids and as nr · s · nl in the
pregroup setting. Then we have:

Pregroups Words Residuated Monoids

n · (nr · s ·nl) ·n 6 John loves Mary n · ((n( s)� n) ·n 6

n · (nr · s) 6 John (loves Mary) n · (n( s) 6

s (John loves Mary) s

Table 1: Reduction of John loves Mary.

In both cases the concatenation of words reduces to a sentence type,
so the sentence is grammatical. Examples can be much more com-
plicated: Take for instance the sentence I was going quietly, also used
in [30]: Here we assign the following types:

Words Types (pregroups) Types (residuated monoids)

I π1 π1

was πr1 · s2 · pl1 (π1 ( s2)� p1

πr3 · s2 · pl1 (π3 ( s2)� p1

πr1 · s2 · pl2 (π1 ( s2)� p2

πr3 · s2 · pl2 (π3 ( s2)� p2

going (p2 · il) · i (π2 � i) · i
quietly il · i (1� i) · i

Table 2: I was going quietly, type dictionary.

Type πi stands for a pronoun: π1 is the type of I, π2 is the type of you,
we, they, π3 the one for he, she, it. The conjugation of verbs is obtained
by modification of their infinitive form; we denote infinitive type as
i (then to go has type i) and the participle type as pi, where p1 is
present participle and p2 the past participle. Then a conjugation to
the participle form for a verb is obtained juxtaposing on the left the
type (pi · il) to the infinitive type. Going is then (p1 · il) · i, and this is a
consistent position, since (p1 · il) · i 6 p1, so going effectively reduces
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to a present participle. si is the type for a declarative sentence, where
s1 is a declarative sentence in the present and s2 in the past. Conju-
gated forms of the verb to be used in auxiliary position are obtained
as πri · sj · plk, so was is πri · s2 · plk: We have s2 because the word gives
us a sentence in the past, and πri is taken with i = 1 or 3, because
for second person pronouns the correct form is were. pk can be p1
or p2 because we can juxtapose both a present or a past participle to
the right. Finally, adverbs have form il · i. For the residuated monoid
the same considerations hold, but they have to be expressed in the
residuated monoids language, so using (,�.

Some observations: One, these type choices look a bit arbitrary, but
they are quite well motivated, see [92] for an extensive explanation.
They are “arbitrary” in the sense that they don’t come from mathe-
matical analysis but from a diligent study of natural language (and
this could not be different, type assignments always come from em-
pirical observation). Two, they strictly depend on the language we are
modeling, and are good only for English grammar. In other languages
words will compose in different ways (especially the verbal systems
vary a lot, think about how many languages express the construction
of transitive verbs in the form “object - verb - subject”). Three, here
you can clearly see how the same word can have many different type
entries in the Lambek type-dictionary. Table 2 only accounts for a
minimal part of it, since, for instance, the word was has many other
grammatical entries in an extensive dictionary, think about I was sad:
In this case was will probably have type πr1 · s2 · nl. If we try to com-
pose the words now:

Pregroups Words

(π1) · (πr1 · s2 · pl1) · ((p1 · il) · i) · (il · i) 6 I was going quietly

(π1) · (πr1 · s2 · pl1) · ((p1 · il) · i) · 1 = I was going (quietly)

(π1) · (πr1 · s2 · pl1) · ((p1 · il) · i) 6 I was going (quietly)

(π1) · (πr1 · s2 · pl1) · (p1) 6 I was (going quietly)

(π1) · (πr1 · s2) 6 I (was going quietly)

s2 (I was going quietly)

Words Residuated Monoids

I was going quietly π1 · ((π1 ( s2)� p1) · ((p1 � i) · i) · ((1� i) · i) 6
I was going (quietly) π1 · ((π1 ( s2)� p1) · ((p1 � i) · i) · 1 =
I was going (quietly) π1 · ((π1 ( s2)� p1) · ((p1 � i) · i) 6
I was (going quietly) π1 · ((π1 ( s2)� p1) · (p1) 6
I (was going quietly) π1 · (π1 ( s2) 6

(I was going quietly) s2

Table 3: Reduction of I was going quietly.
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Clearly we chose one among the many type instances of was, pre-
cisely the only one that makes the string reduce to a sentence type:
How do we choose the types? Well, we choose them all. We try all
the possible combinations of types and try to reduce them; clearly
some of them will reduce to a sentence type and some will not, we
just discard the ones that don’t because this means we considered the
wrong grammar types for our words in those cases. If we have more
than one choice of types that reduce to a sentence then we conclude
that the original sentence can be read in different ways. Remembering
what we said in the introduction about compositional distributional
models, this means that different meanings could be assigned to our
sentence. This does not contrast with our intuition, since there are
multiple examples in natural language of sentences that can be inter-
preted in different ways.

Another question that may rise is: Do all reductions terminate?
Clearly if a sequence of types reduces to a sentence type we will get
there sooner or later, but what happens with an incorrectly typed se-
quence? If we have, say, going I was quietly, will we be able to say that
this sentence is not grammatically correct or will our reduction rule
run indefinitely without stopping? In its original paper [90] Lambek
proved that his calculus based on residuated monoids is decidable.
When he introduced pregroups [91] he also proved that the reduction
procedure is decidable in the free pregroup (that is the one we use to
build Lambek type-dictionaries and Lambek grammars), so you can
reassure yourself that compositional approaches to natural language
do not cause computational issues. We refer the reader interested in
complexity and decidability problems related to pregroup grammars
to [38, 114].

This was just a brief explanation of how pregroups and residuated
monoids work. Keep in mind that in the original works by Lambek
(and in many other that focus on the formal analysis of grammars us-
ing these structures) many more grammatical objects are taken into
account. I don’t dare to say that these models describe natural lan-
guage grammar structure completely, but, at the moment, it is safe to
affirm that they cover a huge part of the constructions that are legiti-
mately meaningful in natural language (examples of how this can go
nightmarishly wrong are given in Chapters 8 and 9 ).

2.3 monoidal and compact closed categories

We briefly mentioned in the previous sections that pregroups and
residuated monoids are interesting for categorical models of meaning
because they can be formalized in categorical terms, and these cate-
gories have nice properties. Now that we made clear how pregroups
and residuated monoids work we are ready to see their categorical
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formalization in detail. We will start with pregroups because it is
simpler.

Definition 2.3.1. A monoidal category is a tuple (C,⊗, I,α, λ, ρ), where

• C is a category (we denote as usual objects with A,B, . . . and
arrows with A→ B,X→ Y, . . . );

• ⊗, the tensor, is a functor C×C → C where we write A⊗ B for
⊗(A,B);

• I, the unit, is an object of C.

We also require that the following natural isomorphisms exist:

• αA,B,C : ((A⊗B)⊗C)→ (A⊗ (B⊗C));

• ρA : A⊗ I→ A;

• λA : I⊗A→ A.

These natural isomorphisms, moreover, must be such that any formal
and well-typed diagram made up from ⊗, α, λ, ρ, α−1, ρ−1, λ−1,
and I commutes, where “ formal” here means “not dependent on the
structure of any particular monoidal category”.

A monoidal category is moreover defined to be symmetric if there
is also a natural isomorphism

σA,B : A⊗B→ B⊗A

such that any formal and well-typed diagram made up from⊗, α, λ, ρ,
σ, α−1, ρ−1, λ−1, σ−1 and I commutes, where again “ formal” means
“not dependent on the structure. For a more satisfactory statement
and discussion of the above definition, we redirect the reader to [97].

Monoidal have been introduced and studied decades ago, see for
example [88]. For us, they are particularly useful (among other things)
because they admit the following interpretation: The objects can be
thought of as “system types”; a morphism f : A→ B is then a process
taking inputs of type A and giving outputs of type B. The object
A⊗ B represents the systems A and B in parallel; hence, a morphism
f⊗ g : A⊗ B → C⊗D is to be thought of as running the process
f : A → C whilst running the process g : B → D. The object I is
thought of as the trivial system.

Example 2.3.2. The category Rel of sets and relations is monoidal. ⊗
is the Cartesian product and I is any singleton set {∗}.

Example 2.3.3. The category FdVectR of finite dimensional real vector
spaces and linear maps is monoidal. The functor ⊗ is the tensor prod-
uct, the trivial system I is the familiar one-dimensional real vector
space R.
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Definition 2.3.4 (Dagger). Given a category C, a dagger on C is an
involutive functor † : Cop → C, meaning that it is identity on objects
and assigns to every morphism f : A → B a morphism f† : B → A

such that

idA = id†A (g ◦ f)† = f† ◦ g† f†† = f

For each couple of morphisms f : A→ B,g : B→ C and any A,B,C.

Definition 2.3.5. A compact closed category5 is a monoidal category
such that, for every object A, there are two objects Al,Ar and the
following morphisms:

εl : Al ⊗A→ I εr : A⊗Ar → I

ηr : I→ Ar ⊗A ηl : I→ A⊗Al

Such that the following equalities hold:

(idA ⊗ εl) ◦ (ηl ⊗ idA) = idA (εr ⊗ idA) ◦ (idA ⊗ ηr) = idA
(εl ⊗ idAl) ◦ (idAl ⊗ ηl) = idAl (idAr ⊗ εr) ◦ (ηr ⊗ idAr) = idAr

These equalities are usually called snake equations or yanking equations.
We say that a category is dagger compact closed if it admits a dagger
functor (−)† and ηl = εl†, ηr = εr†.

The name “yanking equations” originated in the field of categorical
quantum mechanics [3]. In [136] it was shown that there is a diagram-
matic calculus that is sound and complete for compact closed cate-
gories. Briefly, this is how it works: Objects are labeled wires, and mor-
phisms are given as nodes with input and output wires. Composing
morphisms consists of connecting input and output wires, and the
tensor product is formed by juxtaposition, as shown in Figure 1. By
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Figure 1: Monoidal graphical calculus.

convention, the wire for the monoidal unit is omitted. These diagrams
hold in every monoidal category. For compact closed categories we

5 Note that this definition is more general than the one usually employed: Nearly
always in our applications our category is symmetric and we have Al = A∗ = Ar.
Hence we can just define ε : A⊗A∗ → I, ηr : I→ A∗ ⊗A.
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also have graphical rappresentations of the morphisms ηl,ηr, εl, εr,
commonly called “caps” and “cups”, see Figure 2. In this diagram-
matic formalism the equalities given in the previous definition take
the form shown in Figure 3, hence the name “snake equations”. Note
that, in many models, we will have ηl = ηr and εl = εr. In this case
the wires will be depicted as undirected, meaning that we will draw
them simply as lines and not as arrows. Compact closed categories

εl εr

ηrηl

Figure 2: Graphical compact structure.

A Al A = A A Ar A = A

Ar =Ar ArAAl Al=Al A

Figure 3: Snake equations.

lie at a convenient level of abstraction to work with. Many of the
categories one would consider to use as either grammar or meaning
environments have a compact closed structure.

Example 2.3.6. All objects in Rel are self-dual. The caps are given by

εlX = εrX := εX : X×X→ {∗}
εX(x, x ′, ∗) ⇔ x = x ′

The associated cup ηX is just the converse of the above. Simple check
shows that the snake equations hold.

Example 2.3.7. More generally, we can build a category of relations
over any regular category, see for instance [26]. Moreover, the cate-
gory of relations over a regular category is always compact closed,
see for instance [77]. Since Set is regular, we immediately deduce the
compact closedness of Rel, showed explicitly in the previous example,
as a particular instance of this much broader result.

Example 2.3.8. fdHilb is the category of finite dimensional real inner
product spaces. As in the case of FdVectR, ⊗ is the tensor product
of vector spaces and I is the one-dimensional space R. In defining
cups and caps, we make use of the fact that if {vi}i and {uj}j are bases
for vector spaces V and U respectively, then {vi ⊗ uj}i,j is a basis for
V ⊗U. Moreover, any linear map is fully determined by its action on a
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basis. Every finite-dimensional vector space is self-dual, and the cups
and caps are given by

εlV = εrV := εV : V ⊗ V → R∑
i,j

ci,j (vi ⊗ vj) 7→
∑
i,j

ci,j〈vi|vj〉

ηrV = ηrV := ηV : R→ V ⊗ V

1 7→
∑
i

(vi ⊗ vi)

Verifying that these maps satisfy the snake equations is again a simple
check.

Compact closed categories can be used to define pregroups in cate-
gorical terms. We are not so lucky with residuated monoids and we
need another definition, namely the one of “monoidal bi-closed cate-
gory”. Stating things in the most abhorrent and brutal way possible,
a monoidal bi-closed category looks like a cartesian closed category
where instead of the cartesian product you have a tensor. Let’s make
this precise:

Definition 2.3.9. A monoidal bi-closed category6 is a monoidal cate-
gory (the notation for objects, arrows, products and tensor unit will
be the same as in the pregroup case) such that for every pair of ob-
jects A,B, there are two objects A ⇒ B,A ⇐ B, and two morphisms
evlA,B : A⊗ (A⇒ B)→ B and evrA,B : (A⇐ B)⊗B→ A, called left and
right evaluations, respectively. We also require that for every couple of
morphisms f : (A⊗ C) → B, g : (C⊗ B) → A there are two unique
morphisms, denoted with Λl(f) : C → A ⇒ B,Λr(g) : C → A ⇐ B,
that make these diagrams commute:

A⊗C A⊗ (A⇒ B) C⊗B (A⇐ B)⊗B

B A

f

idA⊗Λl(f)

evlA,B
g

Λr(g)⊗idB

evrA,B

The word “bi-closed” comes from the fact that you have A ⇒ B and
A ⇐ B for every object. If you only have one of the two then the
category is called right closed or left closed, respectively.

Note that in compact closed categories we can “bend the wires”,
that is, from f : A→ B we can obtain dfel : I→ B⊗Al setting dfel :=
(f⊗ idAl) ◦ ηl (here we are “bending on the right”, we can “bend on

6 If you like a more compact definition, a monoidal category is bi-closed when all the
functors (−)⊗A, A⊗ (−) have a right adjoint.
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the left”, that is dfer : I → Ar ◦ B setting dfer := (idAr ⊗ f) ◦ ηr). This
makes sense because if we bend the wires again we come back to f
via the yanking equations:

A I⊗A B⊗Al ⊗A

B⊗ I

B

f

' dfel⊗idA

idB⊗εl

'

We can do something quite similar with monoidal bi-closed cate-
gories, via the evaluation and Λ arrows: From f : A → B we set
dfel := Λl(f◦ ') : I → A ⇒ B (here ' is the obvious isomorphism
A⊗ I→ A, and we can obviously also do dfer := Λr(f◦ ') : I→ B⇐
A.) Composing with the evaluation function we have:

A ' A⊗ I A⊗ (A⇒ B) A ' I⊗A (B⇐ A)⊗A

B B

f

idA⊗dfel

evlA,B
f

dfer⊗idA

evrB,A

The morphisms dfel, dfer are called, in both categories, left and right
name of f, respectively.

2.4 the categorical point of view

Now, a pregroup can be presented as a compact closed category as fol-
lows: We interpret elements of a pregroup G as objects. It is common
practice to write them in lower case when referring to a pregroup
in the classical sense and to write them in upper case (following the
category-theoretic convention) when the pregroup is presented as a
category. So an element n of the pregroup will be interpreted as an
element N of the category. Since partial orders are categories (pre-
cisely, categories in which there is at most one arrow between two
objects), we interpret n 6 m as N → M. Reflexivity and transitiv-
ity of 6 assures us that there is an identity arrow for every object
and that composition behaves well. The tensor structure is given by
the monoid fragment of the pregroup, so m · n gets interpreted into
M⊗N, and 1 is the tensor unit I. The morphisms ηr,ηl, εr, εr are
the interpretation of 1 6 ar · a, 1 6 a · al, a · ar 6 1, al · a 6 1, re-
spectively. It is easy to check that yanking equations hold, take the
first one for instance: (εr ⊗ idA) ◦ (idA ⊗ ηr) is the interpretation of
a · 1 6 a · ar · a 6 1 · a, and since 1 · a = a = a · 1, it follows a 6 a,
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that is interpreted as idA. So we have (εr ⊗ idA) ◦ (idA ⊗ ηr) = idA
as expected. The other yanking equations are verified in a similar way.
Taking advantage of the graphical calculus defined above, now reduc-
tion has a straightforward graphical representation, for instance:

n nrsnl n

chickens cross roads

Residuated monoids are not compact closed categories, but they can
be represented as monoidal bi-closed categories. We do essentially
the same thing we did with pregroups, sending the partial order frag-
ment into the morphism structure and the monoid fragment into the
tensor one. Then we interpret A ( B into A ⇒ B and a � b into
A ⇐ B. The residuated monoid axioms ensure that the equations
involving evaluations still hold.

The names dfel, dfer are incredibly important, since when we want
to assign a meaning to our words, we apply the functor (the one from
our grammar – pregroup or residuate monoid in our case – to the
semantics) to words names. For instance, if we represent an adjective

as N f−→ N, then we apply the functor to dfel or dfer. What we get
in the semantics is then a morphism of type I → T , where T is the
image of the codomain of dfel or dfer through our functor. So we end
up with something of type I → T , that is, something that “picks” an
element of T : For instance, if your semantics is sets and relations over
sets, then I is a singleton, so I→ T is a relation from {∗} to T , hence a
subset of T . If your semantics is vector spaces, then I = K, where K is
the field the vector space is on, and then I→ T is a linear map from K

to the vector space T , that is, a 1-dimensional subspace of T . This ends
up being a single vector if we work only with normalised elements
(as we usually do), and so disregard all the scalars multiples.

2.4.1 Beyond standard categorial grammar

The compact closed structure is useful also to represent functional
words. An example of functional word is the verb do used as an auxil-
iary. This particular case can indeed be accounted for using cup, caps
and our graphical formalism [44]:

n nrsnl n
roadschickens crossdo

Unfortunately, the compact closed structure alone is not enough to
represent other functional words, such as relative pronouns. To account
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for these words we need to introduce more structure, that will graph-
ically be represented as multi-wires. We have the following sequence
of definitions:7

Definition 2.4.1 (Monoid). Given a symmetric monoidal category C

and an object A, a monoid on A is given by a couple of morphisms

(η : I→ A,µ : A⊗A→ A)

Such that the associativity and unit conditions hold:

µ ◦ (idA ⊗ µ) = µ ◦ (µ⊗ idA) µ ◦ (idA ⊗ η) = idA = µ ◦ (η⊗ idA)

These structures are pictorially depicted as:

µ
A A

A

η

A

We moreover say that a monoid on A is commutative if

µ ◦ σA,A = µ

where σ is the natural isomorphism representing the symmetry on C.

The definition of monoid can promptly be dualized, as follows:

Definition 2.4.2 (Comonoid). Given a symmetric monoidal category
C and an object A, a comonoid on A is given by a couple of morphisms

(ε : A→ I, δ : A→ A⊗A)

Such that the associativity and unit conditions hold:

(idA ⊗ δ) ◦ δ = (δ⊗ idA) ◦ δ (idA ⊗ ε) ◦ δ = idA = (ε⊗ idA) ◦ δ

These structures are pictorially depicted as:

δ
A A

A

ε

A

We moreover say that a comonoid on A is commutative if

σA,A ◦ δ = µ

where σ is the natural isomorphism representing the symmetry on C.

7 Since multi-wires will always be used in the undirected setting, we are only giving
the relevant undirected definitions. This in particular means that the direction of the
arrows will not be drawn in the figures that follow.
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Finally, we give the definition that interests us the most, and that
allows us to talk about multi-wires:

Definition 2.4.3 (Commutative Frobenius Algebras). Given a symmet-
ric monoidal category C and an object A, a commutative Frobenius alge-
bra on A is given by a commutative monoid and comonoid structures:

µ
A A

A

η

A
δ

A A

A

ε

A

Such that they satisfy the Frobenius axiom, graphically depicted as:

µ

A

δ

AA

A

=

µ
A A

δ
A A

= µ

A

δ

A A

A

We say that the Frobenius algebra is special if the special axiom holds:

δ

A

µ

A

=

A

A

To conclude, we say that a Frobenius algebra is a dagger Frobenius al-
gebra if C admits a dagger functor and the monoid multiplication and
unit can be obtained applying the dagger functor to the comonoid
comultiplication and counit, respectively.

Multi-wires, also called spiders [43] can be obtained “stacking up”
(co)monoids (co)multiplications [43, 86], and can be thought of as
representing the act of being connected. Graphically, spiders are just
wires that can have more (or less) than two ends.

Multi-wires connect things just as wires do. As a consequence of
the Frobenius axiom. the only thing that matters with multi-wires is
if they are connected or not. Hence, graphical rule we adopt is that
multi-wires fuse together, as depicted graphically in Figure 4. This
definition will turn to be very useful in the following chapter and will
be formalized further in definition 6.1.1, when hypergraph categories
will be introduced.

Example 2.4.4. The category Rel admits multi-wires, defined as:

X× . . .×X→ X× . . .×X :: {((x, . . . , x), (x, . . . , x)) | x ∈ X}
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=

. . .

. . .

. . .. . .

. . .. . .

Figure 4: Spider fusion.

for every object X. It is easy to see that identities and the usual cups
and caps can be obtained as particular instances of this definition.

Example 2.4.5. The category fdHilbR also admits multi-wires. Choos-
ing any orthonormal basis {vi}i for V , one can define them setting

V ⊗ . . .⊗ V → V ⊗ . . .⊗ V :: vi1 ⊗ . . .⊗ vin 7→ δi1...invi1 ⊗ . . .⊗ vi1

identities, cups and caps can again be obtained as special instances of
this definition.

As promised, multi-wires help us when it comes to modeling rela-
tive pronouns [133, 134]:

n nrsnl n

roadschickens crossthat

Focusing on the reduction rules it is easy to see that what we get
from this is a noun and not a sentence. The three-headed-multi-wire
that models the word that acts conjoining the subject, namely chickens,
with its verb, namely cross. In doing this it “stores a copy” of this
conjunction and gets rid of the sentence type via the one-headed wire,
giving us back a noun phrase.

The graphical calculus hereby exposed will be at the core of this
entire document, and finding suitable categories on which it can be
used will be one of our main tasks.





Part II

E X T E N D I N G R E L AT I O N S

Here we gradually extend the category of relations to ac-
commodate our conceptual spaces formalism. We show
the capabilities of our models with extensive examples.
Finally, we draw general considerations about the links
between grammar and semantics.





3
T H E C AT E G O RY O F C O N V E X S E T S A N D
R E L AT I O N S

Dum taxat, rerum magnarum parva potest res
exemplare dare et vestigia notitiai.

— Lucretius, De Rerum Natura [140, Book II, Line 123]

Now that we have outlined our grammar, we focus on the seman-
tics. The purpose of this chapter is to state in detail what has been
done in [24], and to point out how the categorical treatment of con-
vex relations allows for a broader formalization of Gärdenfors’ work
on conceptual spaces [70]. Moreover, we will show how categorical
notion of convexity adopted here will allow us to consider as convex
also structures that are not traditionally considered so, such as semi-
lattices. The result of this is a quite expressive formalism with which
we will model conceptual spaces.

Concept composition within conceptual spaces has been formal-
ized in [8, 94, 129], for example. All these approaches focus on noun-
noun composition rather than utilising any more complex structure,
and the way in which nouns compose often focuses on correlations
between attributes in concepts. Since then, Gärdenfors has started to
formalize verb spaces, adjectives, and other linguistic structures [70].
However, he has not provided a systematic method for how to uti-
lize grammatical structures within conceptual spaces. In this sense,
the category-theoretic approach to concept composition we describe
below will introduce a broader system for concept composition that
can be applied to more general grammatical types.

In the distributional-categorical approach to natural language pro-
cessing meanings are interpreted in categories of real vector spaces.
For our intended cognitive application, we now introduce a category
that emphasizes convex structure. The familiar definition of convex
set is a subset of a vector space which is closed under forming con-
vex combinations. In this document we lay down a different setting
that includes convex subsets of vector spaces, but allows us to con-
sider also further discrete examples.

We begin with some convenient notation. For a given set X we
write

∑
i pi |xi〉 for a finite formal convex sum of elements of X, where

pi ∈ R>0 and
∑
i pi = 1. We moreover set 0 |x〉 = 0 and |x〉+ 0 =

|x〉 for all x ∈ X. We then write D(X) for the set of all such sums.
Here we abuse the physicists ket notation to highlight that our sums
are formal, following a convention introduced in [81]. Equivalently,

31
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these sums can be thought of as finite probability distributions on the
elements of X.

Definition 3.0.1. A convex algebra is a set A together with a func-
tion α : D(A)→ A satisfying the following conditions

α (|a〉) = a, α

∑
i,j

piqi,j
∣∣ai,j〉

 = α

∑
i

pi

∣∣∣∣∣∣α
(∑
j

qi,j
∣∣ai,j〉 )

〉
(1)

Informally, α is a “mixing operation” that allows us to form convex
combinations of elements, and the equations in (1) model the follow-
ing good behavior

• Forming a convex combination of a single element a returns a
as we would expect;

• Iterating forming convex combinations interacts as we would
expect with flattening formal sums of sums.

It is worth to point out that the definition above can be elegantly
formalized categorically using monads, as we will show in the next
chapter. The categorical formalization of convex algebra will also al-
low us apply powerful machinery to study their properties.

3.0.1 Examples

We provide some examples of convex algebras.

Example 3.0.2. The closed real interval [0, 1] has an obvious convex
algebra structure. Similarly, every real or complex vector space has
a natural convex algebra structure using the underlying linear struc-
ture.

Example 3.0.3 (Simplices). For any set X, the formal convex sums of
elements of X themselves form the free convex algebra on X, which can
also be seen as a simplex with vertices the elements of X. Mixtures
are formed as follows∑

i

pi

∣∣∣∣∣∣
∑
j

qi,j
∣∣xi,j〉

〉
7→
∑
i,j

piqi,j
∣∣xi,j〉

Example 3.0.4. The convex space of density matrices provides an-
other example, with the convex structure given by the usual vector
space structure on linear operators.

Example 3.0.5. For a set X, the functions of type X → [0, 1] form a
convex algebra pointwise, with mixing operation∑

i

pi |fi〉 7→

(
λx.
∑
i

pifi(x)

)
We can see this as a convex algebra of fuzzy sets.
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Example 3.0.6 (Semilattices). As a slightly less straightforward exam-
ple, every join semilattice1 has a convex algebra structure given by∑

i

pi |ai〉 =
∨
i

ai

Notice that here the scalars pi are discarded and play no active role.
These “discrete” types of convex algebras allow us to consider objects
such as the Boolean truth values.

Example 3.0.7 (Trees). Given a finite tree, perhaps describing some hi-
erarchical structure, we can construct an affine semilattice in a natural
way. For example, consider a limited universe of foods, consisting of
bananas, apples, and beer. Given two members of the hierarchy, their
join will be the lowest level of the hierarchy which is above them both.
For instance, the join of bananas and apples would be fruit.

food

fruit

apples bananas

beer

When α can be understood from the context, we abbreviate our nota-
tion for convex combinations by writing∑

i

piai := α

(∑
i

pi |ai〉

)
Putting this convention to good use, we define a convex relation of
type (A,α) → (B,β) as a binary relation R : A → B between the un-
derlying sets that commutes with forming convex mixtures as follows

(∀i.R(ai,bi))⇒ R

(∑
i

piai,
∑
i

pibi

)
We note that identity relations are convex, and convex relations are
closed under relational composition and converse.

Example 3.0.8 (Homomorphisms). If (A,α) and (B,β) are convex al-
gebras, functions f : A→ B satisfying

f

(∑
i

pixi

)
=
∑
i

pif(xi)

are convex relations. These functions are the homomorphisms of convex
algebras. The identity function and constant functions are examples of
convex homomorphisms.

1 Here we mean a partial order that has all finite non-empty joins. Many people
call these structures “affine semilattices”, while by “semilattice” they mean what
is known in universal algebra as “complete semilattice”. In this document we pre-
fer the universal algebraic notation, so for us a “semilattice” will only have finite
non-empty joins.
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The singleton set {∗} has a unique convex algebra structure, denoted
by I. Convex relations of the form I → (A,α) correspond to convex
subsets, that is, subsets of A closed under forming convex combina-
tions.

Definition 3.0.9. We define the category ConvexRel as having convex
algebras as objects and convex relations as morphisms, with compo-
sition and identities as for ordinary binary relations.

Given a pair of convex algebras (A,α) and (B,β) we can form a new
convex algebra on the cartesian product A× B, that will be denoted
as (A,α)⊗ (B,β), with mixing operation

∑
i

pi |(ai,bi)〉 7→

(∑
i

piai,
∑
i

pibi

)

This induces a symmetric monoidal structure on ConvexRel. In fact,
the category ConvexRel has the necessary categorical structure for
categorical compositional semantics:

Theorem 3.0.10. The category ConvexRel is a dagger compact closed cate-
gory 2 The symmetric monoidal structure is given by the unit and monoidal
product outlined above. Relational converse gives a dagger structure on
ConvexRel. The cap is given by

: I→ (A,α)⊗ (A,α) :: {(∗, (a,a)) | a ∈ A}

the cup by

: (A,α)⊗ (A,α)→ I :: {((a,a), ∗) | a ∈ A}

and more generally, the multi-wires by

. . .

. . .

: A⊗ . . .⊗A→ A⊗ . . .⊗A :: {((a, . . . ,a), (a, . . . ,a)) | a ∈ A}

Every object (A,α) has a canonical commutative special dagger Frobenius
structure [86], with copy

: (A,α)→ (A,α)⊗ (A,α) :: {(a, (a,a)) | a ∈ A}

and delete

: (A,α)→ I :: {(a, ∗) | a ∈ A}

2 We have given an elementary description of ConvexRel. More abstractly, it can be
seen as the category of relations for the Eilenberg-Moore category of the finite distri-
bution monad, see Chapter 4.
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Proof. ConvexRel can be seen as the category of relations for the
Eilenberg-Moore category of the finite distribution monad. Monads
on sets are regular categories [26, Thm 4.3.5], and categories of re-
lations over regular categories have a commutative special dagger
Frobenius structure on every object [77, Thm 3.4, Ex. 3.5]. Compact
closedness is trivially implied by the Frobenius structure, that induces
a cup and a cap on every object (see for instance [43]). �

We note that the tensor product of ConvexRel is not a category the-
oretic product. For example, there are convex subsets of [0, 1]× [0, 1]
such as

{(x, x) | x ∈ [0, 1]}

that cannot be written as the cartesian product of two convex sub-
sets of [0, 1]. This behavior exhibits non-trivial correlations between
the different components of the composite convex algebra: We have a
genuine tensor.
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C H A R A C T E R I Z AT I O N O F C O N V E X A L G E B R A S

Quibus vero natura tantum tribuit
sollertiae, acuminis, memoriae,

ut possint geometriam, astrologiam, musicen
ceterasque disciplinas penitus habere notas,

praetereunt officia architectorum
et efficiuntur mathematici.

— Vitruvius, De Architectura [102, Book I, 1.17]

In the last chapter we gave a definition of convex relations that works
on a higher degree of generality with respect to the definition of con-
vexity in terms of vector spaces we are used to: This is one of the
benefits of using category theory: Things can be done in full general-
ity. The purpose of this chapter is to analyze this definition in detail
to understand its properties and limitations, so that we will be able to
use it later on in a principled way. We will start recasting our defini-
tion using the formal language of monads, the we will study convex
algebras from a universal algebraic perspective, getting some inter-
esting cardinality results and understanding a bit better how convex
algebras and semilattices are connected. Finally, we will study connec-
tions between our convex relations and betweenness relations, that
constitute an interesting mathematical framework to describe what
it means “to be between two things”. This is interesting since such
view is also the naïve interpretation we usually give to concepts as
convexity, so studying the links between these different mathemati-
cal models seems natural. The results in this sections have all been
proved by the author of this document.

4.1 algebraic characterization

In the previous chapter we denoted finite formal combinations on a
set X as

∑
i pi |xi〉, and the set of all formal combinations on X as

D(X). Let’s make this a bit more formal.

Definition 4.1.1 (Monad). Given a category C, an endofunctor is a func-
tor T : C → C. We denote with Tn the n-fold composition of T with
itself. If there are natural transformations µ : T2 → T and η : idC → T

37
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(here idC is the identity functor on C) such that the following dia-
grams commute

T3

T2

T2

T

µT µ

Tµ

µ

T

T2

T2

T

ηT µ

Tη

µ

Then the triple (T ,η,µ) is called a monad on C.

Another interesting way to see monads is in terms of monoid ob-
jects. If you fix a category C, then you can consider the category [C,C]
having endofunctors C→ C as objects and natural transformations be-
tween them as morphisms. We can apply our diagrams in this setting:
We represent an endofunctor T as a typed wire and a natural trans-
formation as a process. The identity endofunctor idC is taken to be
the trivial wire. Having a monad then means specifying two natural
transformations

µ
T T

T

η

T

Such that they respect the following equations, graphically depicted:

µT

T

T

µ
T T

=

µ

T

T

T

µ
T T

µT

T

T

=

T

T

=

µ

T

T

T

But these are exactly the associative and unit law of a monoid: We
can then say that a monad on C is just a monoid in the category of
endofunctors on C and natural transformations between them.

Definition 4.1.2 (Eilenberg-Moore algebra). Given a monad (T ,η,µ)
on a category C, a T-algebra (A,α) is an object A together with a mor-
phism α : TA→ A such that the following diagrams commute:

T2A

TA

TA

A

µA α

Tα

α

A TA

T

α

ηA
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A morphism of T-algebras (A,α) → (B,β) is a morphism f : A → B

such that the following diagram commutes:

TA

A

TB

B

α β

Tf

f

T-algebras and their morphisms form a category, called the Eilenberg-
Moore category of the monad T .

It is well known that the function D : X → D(X) can be made func-
torial on Set and this defines a monad (D,η,µ) with identity η and
multiplication µ

η : x ∈ X→ |x〉 ∈ D(X),

µ :
∑
i

pi

∣∣∣∣∣∣
∑

j

pji
∣∣xj,i〉

 〉
∈ D2(X)→

∑
i,j

pipj1
∣∣xji〉 ∈ D(X)

A convex algebra on X is then defined as an Eilenberg-Moore alge-
bra for (D,η,µ). First of all, we want to show that the set X can be
endowed with an uncountable set of algebraic operations having sig-
nature 2.

Definition 4.1.3. Let (X,α) be an Eilenberg-Moore algebra on the
monad (D,η,µ). For each p ∈ [0, 1], the operation +p : X × X → X

is defined as

∀x,y ∈ X, +p(x,y) def⇐⇒ α(pη(x) + (1− p)η(y))

We will make almost exclusive use of the operation +p in infix nota-
tion, so we will always write x+p y instead of +p(x,y).

Proposition 4.1.4. 〈X, {+p}p∈[0,1]〉 is an algebra. Moreover, it satisfies the
equations

zero combinations x+0 y ' y;

idempotency x+p x ' x;

parametrized commutativity x+p y ' y+1−p x;

parametrized associativity (x+p y) +q z ' x+pq (y+q−pq
1−pq

z).

Note that the last three properties represent schemes of equations, since
they have to hold for every p (we cannot quantify on p because the +p are
operations).
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When we regard 〈X, {+p}p∈[0,1]〉 as an algebra,D(X) is the set of terms
generated by the operations +p: Just unfolding the definition of +p,
one can prove that

Corollary 4.1.5. The following equality holds for every p1η(x1) + · · · +
pnη(xn) ∈ D(X):

α(p1η(x1) + . . .+ pnη(xn)) =

= x1 +f(1) (x2 +f(2) (. . . (xn−1 +f(n−1) xn) . . . )

Where f(i) is defined recursively as f(1) = p1, f(i) = pi
(1−f(1))...(1−f(i−1)) .

This accounts for a completely algebraic representation of the generic
convex combination on X and is useful to prove the “inverse” of
Proposition 4.1.4, namely:

Proposition 4.1.6. Let 〈X, {+p}p∈[0,1]〉 be an algebra where every +p has
ariety two and respects zero combinations, idempotency, parametrized com-
mutativity and parametrized associativity. Then 〈X, {+p}p∈[0,1]〉 is an Eilenberg-
Moore algebra (X,α) with respect to the monad (D,η,µ).

Proof. The generic element in D(X) is in the form

n∑
i=1

pi |xi〉 =
n∑
i=1

piη(xi) = p1η(x1) + · · ·+ pnη(xn)

Define α : D(X) → X as in Proposition 4.1.5. Parametrized commu-
tativity and associativity ensure that α is well defined, meaning that
it does not depend on how the convex combinations are presented:
From the base case

α(pη(x) + (1− p)η(y)) = x+p y

= y+1−p x

= α((1− p)η(y) + pη(x))

Using parametrized associativity one can prove, by induction, that ev-
ery permutation of sums in D(X) goes through α to the same element
in X. Idempotency allows us to prove the first requirement to be an
Eilenberg-Moore algebra:

α(η(x)) = α(1η(x)) = α(pη(x) + (1− p)η(x)) = x+p x = x

It remains to prove that α behaves well with respect to to µ:

α

∑
i,j

piqi,jη(xi,j)

 = α

∑
i

piη

α
∑

j

qi,jη(xi,j)


Applying the definition,

α

∑
i,j

piqi,jη(xi,j)

 = x1,1+f(1,11) (. . . (xn,mn−1+f(n,mn−1) xn,mn) . . . )
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With f defined as:

f(1, 11) = p1q1,1,

f(i, ji) =
piqi,j

(1− f(1, 11)) . . . (1− f(1,m1))(1− f(2, 12)) . . . (1− f(i, ji − 1))

On the other hand,

α

∑
i

piη

α
∑

j

qi,jη(xi,j)

 =

= α

(∑
i

piη(xi,1 +g(i,1) (. . . (xi,mi−1 +g(i,mi−1) xi,mi
) . . . )

)
= (x1,1 +g(1,1) (. . . (x1,m1−1 +g(1,m1−1) xi,m1

) . . . ))+k(1)

+k(1) (. . . (xn,1 +g(n,1) (. . . (xn,mn−1 +g(n,mn−1) xn,mn) . . . )) . . . )

With g defined as g(1, 1) = q1,1, g(i, j) = qi,j
(1−g(i,1))...(1−g(i,j−1)) , and

k defined as k(1) = p1, k(i) = k1
(1−k(1))...(1−k(i−1)) . The equality is

then obtained using parametrized associativity to rearrange paren-
theses in the second expression (the one in g and k) to match the
disposition they have in the first (in f). �

Definition 4.1.7. We denote with Convex the category having convex
algebras as objects and convex preserving functions (as in 3.0.8) as
arrows.

Now consider V, the class of algebras 〈X, {+p}p∈[0,1]〉 that satisfy zero
combinations, idempotency, parametrized associativity and parametrized
commutativity. Thanks to the Birkhoff theorem, this class is a variety,
(that is, it is closed under direct products, subalgebras and homomor-
phic images). Connections between algebraic varieties and algebras
of monads have being thoroughly investigated, see for example[80].
Albeit the abundance of general results, in our case we are able to
prove some things directly: In fact, propositions 4.1.4 and 4.1.6 allow
us to infer that

Theorem 4.1.8. Convex can be regarded as the algebraic variety of Convex
Algebras: V and Convex are isomorphic as categories.

Proof. First of all we prove that every object in Convex can be uniquely
sent to a convex algebra in V, and vice-versa. Consider the function
f : obj (ConvexRel) → V that carries every (X,α) in 〈X, {+p}p∈[0,1]〉
with operations defined as in 4.1.3. These objects are in V because
of Proposition 4.1.4. Clearly different underlying sets in Eilenberg-
Moore algebras give rise to different algebras. Now suppose (X,α) ,
(X,β). Then α(|x〉) , β(|x〉) for some x. This means α(p1η(x1) + · · ·+
pnη(xn)) , β(p1η(x1) + · · · + pnη(xn)) for some convex combina-
tion p1η(x1) + · · ·+ pnη(xn). But then, because of Proposition 4.1.5
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f((X,α)), f((X,β)) have different terms, so they are different algebras
and f is injective.

On the other hand, consider f ′ : V → obj (ConvexRel) that asso-
ciates to every〈X, {+p}p∈[0,1]〉 an Eilenberg-Moore algebra (X,α) with
α defined as in Proposition 4.1.5. Obviously algebras with different
supports are different, and go to different objects in ConvexRel. It
remains to prove that if 〈X, {+p}p∈[0,1]〉 , 〈X, {+ ′p}p∈[0,1]〉 then also
f ′(〈X, {+p}p∈[0,1]〉) , f ′(〈X, {+ ′p}p∈[0,1]〉). Denote:

f ′(〈X, {+p}p∈[0,1]〉)
def⇐⇒ (X,α)

f ′(〈X, {+ ′p}p∈[0,1]〉)
def⇐⇒ (X,β)

If 〈X, {+p}p∈[0,1]〉 , 〈X, {+ ′p}p∈[0,1]〉 then at least two +p,+ ′p are dif-
ferent functions, and so x +p y , x + ′p y for some x,y. But then
α(pη(x)+ (1−p)η(y)) , β(pη(x)+ (1−p)η(y)) and (X,α) , (X,β), as
we wanted. To conclude the proof we just have to note how any mor-
phism of Convex trivially preserves convex operations, and hence
is a morphism of V. The opposite is also trivially true, and we are
done. �

We can now apply some nice universal algebraic tools to prove prop-
erties.

Proposition 4.1.9. The monomorphisms in Convex are exactly the injective
homomorphisms.

Proposition 4.1.10. In the category Convex the image of a convex mor-
phism h : (A,α) → (B,β) is a convex subalgebra of (B,β). Moreover,
assume h : (A,α)→ (B,β) is a monomorphism in Convex. There is then a
convex morphism imh→ (A,α) given by inverse images.

4.1.1 Semilattices

Definition 4.1.11. Let (X,α) be an object of ConvexRel. We say that
α disregards weights if, for every x,y ∈ X,p,q ∈]0, 1[, it is

α(p |x〉+ (1− p) |y〉) = α(q |x〉+ (1− q) |y〉)

Proposition 4.1.12. (X,α) disregards weights iff the corresponding algebra
in V satisfies the equation ∀x,y ∈ X, x+p y ' x+q y for every couple of
p,q such that p,q , 0, 1.

Call VL the class of algebras in V that disregard weights, that is,
the algebras that satisfy the supplementary set of equations given in
Proposition 4.1.12. Again, the existence of an equational definition is
enough to apply apply Birkhoff theorem and state that VL is a variety.
Then we have:
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Lemma 4.1.13. VL is equi-interpretable with the variety of semilattices.

Proof. In the variety VL the following equations hold:

• a+p a ' a;

• a+p b ' b+1−p a ' b+p a if p , 0, 1;

• (a +p b) +p c ' a +pp (b +p−pp
1−pp

c). If p , 0, 1 also pp , 0, 1

and hence pp , p, that means p−pp1−pp , 0, 1. Weight disregarding
implies a+pp (b+p−pp

1−pp
c) ' a+p (b+p c).

Interpreting elements into themselves and a∨ b into a+p b for some
p , 0, 1 ensures that the operation +p is idempotent, commutative
and associative, so VL has a copy of the defining semilattice equations
in itself, that is, semilattices are interpretable in VL.

In the other direction, interpret elements into themselves, every
term a +0 b into the term b and every term a +1 b into the term
a. Hence zero combinations hold by definition. Interpret moreover
every term a +p b with p , 0, 1 into a ∨ b. Weights disregarding
equations are then trivially satisfied since a∨ b ' a∨ b.

Idempotency holds because a∨ a = a ensures a+p a = a for all
p , 0, 1, while a+0 a = a and a+1 a = a trivially hold, so a+p a = a

for all p.
Parametrized commutativity is similar, b = a+0 b and b = b+1

a trivially imply a +0 b = b +1 a, while a +p b = a +1−p b holds
because of the commutativity of ∨ along with the fact that if p , 0, 1
then 1− p , 0, 1.

For parametrized associativity, take (a+p b) +q c. If p,q are not 0
or 1 then (a +p b) +q c gets interpreted into (a∨ b)∨ c. Moreover
p,q , 0, 1 imply pq, q−pq1−pq , 0, 1, then a +pq (b +q−pq

1−pq
c) goes into

a∨ (b∨ c) and the equation holds because of the associativity of ∨.
The cases with p,q equal to 0 or 1 are trivial.

Now we have to prove that if we apply interpretations back and
forth we go back to where we came from. Starting from lattices, ele-
ments trivially go back to themselves, and a∨b goes into a+p b that
goes again into a∨ b because p , 0, 1. From this we can inductively
prove that every term in the variety of semilattices goes back to itself.

In the other direction the same argument holds for elements. The
term a+0 b goes into b, b is interpreted into itself and b ' a+0 b.
For a+1 b it is sufficient to note that this is equal to b+0 a. Finally
a+p b with p , 0, 1 goes to a∨ b that goes back to a+q b for some
q , 0, 1. Then we have a+p b ' a+q b. �

This result states something that intuitively sounds like “If we squash
all the +p into one operation, parametrized associativity and parametrized
commutativity just become usual associativity and commutativity prop-
erties”. Since idempotency, associativity and commutativity are the
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equations defining semilattices as algebraic structures, we can con-
sider the algebras (X,α) that disregard weights as semilattices them-
selves.

In the algebraic formalisation of semilattices there is no real differ-
ence between meet and join (in contrast with what happens defining
these structures order-theoretically): We can then interpret the oper-
ation +p as a meet or a join. Anyway, in this work the join notation
is usually preferred, and we will stick to this convention when work-
ing with semilattices. The only exception is given by this observation:
We would be tempted to consider the convex algebra Ω induced by
the two element meet semilattice {⊥,>} with ⊥ 6 > as a subobject
classifier in Convex, motivated by the following fact:

Proposition 4.1.14. Let Ω be the convex algebra induced by the two el-
ement meet semilattice {⊥,>} with ⊥ 6 >. For a finite set X, there is a
bijective correspondence between Convex-morphisms of type F(X) → Ω

and sub-complexes of F(X), where F(X) denotes the free convex algebra
over X.

This is nevertheless not possible, since:

Counterexample 4.1.15. There are many more subalgebras of F(X)
than just the sub-complexes. It follows thatΩ cannot serve as a subob-
ject classifier, as there are insufficient morphisms F(X) → Ω to serve
as characteristic morphisms.

4.2 cardinality characterizations

Now that we built up the basic algebraic machinery to look at Convex
Algebras from a set-theoretic point of view, we can start pursuing a
characterization of Convex Algebras in terms of cardinalities of their
support sets.

This characterization will be worked out gradually, and will be
heavily influenced by the topological properties of R that rule the
relations among the +p operations through the choice of p. We will
heavily rely on Lemma 4.1.8 to freely “confuse” a convex algebra
(X,α) with its universal algebraic counterpart. The first thing we need
is a little hack:

Definition 4.2.1. Let (X,α) be a convex algebra. α is coherent if, every
time a+p ′ b = a+p bwith p ′ 6 p, then ∀z ∈ [p ′,p] it is a+z b = a+p b.

Asking for coherence intuitively means that if the result of two dif-
ferent convex combinations between the same elements and with dif-
ferent weights gives back the same element, then every other convex
combination “between” the two has to attain the same result.

This definition, albeit being something quite reasonable to ask if
we want to interpret convex combinations as mixing of elements (as
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we normally do in the Conceptual Spaces framework), will be readily
dropped: In fact, if we spoke about “hack” above it is because this
useful property de facto comes for free:

Proposition 4.2.2. Let (X,α) be a convex algebra. (X,α) is coherent.

We can now prove some basic “cardinality facts”. The proofs are te-
dious but can be easily worked out by cases.

Lemma 4.2.3. Let (X,α) be a convex algebra. If α does not disregard
weights, then |X| , 2.

Lemma 4.2.4. Let (X,α) be a convex algebra. If α doesn’t disregard weights,
then |X| , 3.

These lemmas have a central role in the proof of the following theo-
rem, responsible for the main characterization of convex algebras in
terms of cardinality.

Theorem 4.2.5. Let (X,α) be a convex algebra. If α does not disregard
weights, then X is infinite.

Proof. By Proposition 4.2.2 (X,α) is coherent. Since α does not disre-
gard weights, there are p,q ∈]0, 1[ such that a+p b , a+q b for some
a,b ∈ X. Suppose, without loss of generality, that p < q. Consider

p̄ := sup{p ′ ∈ [0, 1]|a+p ′ b = a+p b}

q̄ := inf{q ′ ∈ [0, 1]|a+q ′ b = a+q b}

These elements exists because R, and hence [0, 1], are complete.
Coherency implies that the segments of the real line [p, p̄[ and ]q̄,q]

get sent by α to a +p b, a +q b, respectively. There are now three
different possibilities:

case 1 : p < p̄ = q̄ < q. If a +p b = a +p̄ b, then the algebra
〈{a+p b,a+q b}, {+z}z∈[0,1]〉 is a sub-algebra of 〈A,α〉 that doesn’t
disregard weights having cardinality of the support equal to 2,
contradicting Lemma 4.2.3. Same happens if a+q b = a+p̄ b.
Now, if a +p b , a +p̄ b , a +q b then the algebra given by
〈{a+p b,a+q b,a+p̄ b}, {+z}z∈[0,1]〉 is a sub-algebra of (A,α)
that doesn’t disregard weights having cardinality of the support
equal to 3, contradicting Lemma 4.2.4.

case 2 : p = p̄ = q̄. First, there is no p ′ < p such that a +p ′ b =

a +p b, otherwise we could go back to the previous case and
defining 〈{a+p ′ b,a+q b}, {+z}z∈[0,1]〉 would produce a contra-
diction. Since 0 < p, there is a 0 < z < p such that a+z b ,

a +p b. Suppose that a +z ′ b = a +z b for all z ′ ∈ [z,p[: We
proceed as in the previous case, and the subalgebra of (X,α)
given by 〈{a+z b,a+p b,a+q b}, {+k}k∈[0,1]〉 does not disregard
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weights with cardinality of the support equal to 3 contradicting
again Lemma 4.2.4. Then no such z can exist and we finally infer
that ∀z ∈]0,p[, ∃z ′ ∈ [z,p[ : a+z ′ b , a+z b. The case p̄ = q̄ = q

is analogous.

case 3 : p̄ , q̄. Here, from the definition of p̄, q̄ we obtain that for all
z ∈ [p̄, q̄], it is a+p b , a+z b , a+q b.

Now, if case 2 happens for some a+p b,a+q b we are done. If not,
then then there is a third point a +z b that is not equal to a +p b

nor a +q b, with z ∈]p,q[. We can then repeat our reasoning with
a +z b and a +p b and fall again into case 3, finding a new point
p < k < z < q. Coherence implies all these +p,+k,+z,+q send a,b
into different elements. The reasoning can be reiterated by induction
and clearly holds for every natural number, so X is infinite again. �

Note that the opposite implication is not true: Lattices disregard weights
by definition and they can as well be infinite.

The author strongly believes that this result can be further im-
proved, claiming that if α disregards weights the cardinality of X
must at least be the same of R (meaning that if two non trivial convex
combinations between elements are different, then every convex com-
bination between them gets sent into a different element), but this is
not really important: The relevant thing here is how Theorem 4.2.5
poses serious limitations on the choice of the weighting system.

Essentially what it states is that using the formalism of convex al-
gebras there is no way to express the idea that two elements can
have only 2, 3 etc. fixed mixings: If one has to model how concepts,
words, meanings or whatever interact between each other using con-
vex algebras, given a couple of elements either one defines a mixing
accounting for a plethora of different mixing instances, or he just de-
fines mixing as a “platonic” concept (semilattice case) that is, one just
expresses the fact that “a,b are somehow mixed together”.

This, finally, means that the only way to account for finite differ-
ent mixings in convex relations is to tweak directly with the cate-
gorical definition of ConvexRel, using a different semiring to form
the monad of convex combinations (for instance, one could take a fi-
nite field Zp, with p prime, as semiring). This looks promising since
changing the semiring structure for the distribution monad is functo-
rial in the choice of semiring: As proved in [1], a homomorphism of
semirings R → S induces a functor between the distribution monads
built on R and S, respectively. This allows us to explore this direction
of research in a controlled, parametrized way. Said investigations will
be object of future work: For now, the author doesn’t generally believe
this limitation on the weight choice to be pathological with regard to
the applications they ought to model (as in [24]), but its existence is
good to know whenever someone may be wanting to use ConvexRel
to model different phenomena.
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4.3 betweenness relations

Since ConvexRel includes some objects extremely geometrical in na-
ture (think about real vector spaces, canonical examples of euclidean
geometry) it makes sense to ask if there is a common unifying geomet-
rical ground for convex algebras inherited by the convex structure.

There is no obvious way to reason about a generic concept of metric
for the elements of ConvexRel, hence the quest for a common geomet-
rical framework between them has to start, for the sake of simplicity,
with a definition of geometry that does not assume measure as a basic
notion.

Betweenness relations constitute the defining concept we are look-
ing for. Being the fulcrum of order geometry, these relations ought
to model the idea of a point being between other two and provide
a common framework for affine, euclidean, absolute, and hyperbolic
geometry.
Many different versions of the axioms defining betweenness relations
have been proposed across the XIX and the XX century by illustri-
ous mathematicians, among others Pasch, Peano, Hilbert, Veblen [47].
Taking into account our last claim, we start clearing any ambiguity
adopting the following definition of betweenness:

Definition 4.3.1. A beetweenness relation on X is a ternary relation B
such that

1. (a,b, c) ∈ B⇒ (c,b,a) ∈ B;

2. (a,b,a) ∈ B⇒ a = b;

3. ∀a,b,∈ X,∃c : (a,b, c) ∈ B;

4. ∀a,b,∈ X,∃c : (a, c,b) ∈ B;

5. (a,b, c), (b,a, c) ∈ B⇒ a = b;

6. (a,b, c), (b, c,d) ∈ B⇒ (a,b,d) ∈ B;

7. (a,b,d), (b, c,d) ∈ B⇒ (a,b, c) ∈ B.

As we already hinted, (a,b, c) ∈ B can be interpreted as the element b
is between the elements a and c.

We want to understand up to what point ConvexRel behaves well
with respect to betweenness relations. Relying on the structure of
convex algebras we can define a betweenness relation as:

Definition 4.3.2. Let (X,α) be a convex algebra. Define a ternary rela-
tion B ⊆ X×X×X as follows:

(a,b, c) ∈ B def⇐⇒ ∃p ∈ [0, 1] : a+p c = b

B is called the betweenness relation on (X,α).
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a

b

b ′

c

Figure 5: In a convex algebra situations like this never happen.

This relation is by definition compatible with the convex structure of
(X,α) and could be roughly interpreted as “if b is a convex combina-
tion of a and c, then b is between a and c”. As the name we chose
suggests, these relations are very similar to the betweenness relations
of Definition 4.3.1.

Lemma 4.3.3. Let (X,α) be a convex algebra, and let B be the beetweennes
relation on X. Then B satisfies axioms 1,2,3,4,5,7 of Definition 4.3.1.

Counterexample 4.3.4. Convex algebras do not satisfy, in general,
axiom 6. Take a semilattice with b = c,b , a , d , a ∨ d. Then
a+0 c = c = b, b+1 d = b = c and hence (a,b, c), (b, c,d) ∈ B, but
(a,b,d) < B.

A betweenness relation defined on (X,α) satisfies also other axioms,
in particular:

Lemma 4.3.5. Let (X,α) be a convex algebra and let B be the betweenness
relation on X. Then B satisfies the property

(a,b, c), (a,b ′, c) ∈ B⇒ (a,b,b ′) or (a,b ′,b) ∈ B

This means that B forces all the different convex combinations of the
same couple of elements to be “in line”, in the sense that situations
as the one in Figure 5 never happen.



5
T H I N G S W E C A N D O

Plebeia ingenia magis exemplis
quam ratione capiuntur.

— Macrobius, Saturnalia [99, Book VII, 4.4]

Now we put the formalism developed up to this point to good use.
First of all, we call an object of ConvexRel conceptual space. In our
applications we will need two objects, namely N to represent the
noun space and S to represent the sentence space. These will corre-
spond to their analogues in the pregroup grammar. The reader famil-
iar with conceptual space semantics will surely note how our choice
of sentence space will be tailored on the specific examples we will
give. This is because finding a satisfying, general definition for the
sentence space should is a very hard problem, if not the hardest in
distributive/conceptual space semantics. Many different ideas have
been proposed: Gärdenfors, for instance, advocates for a model in
terms of events [70]. Nevertheless, albeit the abundance of proposals
there isn’t, at least for now, a general agreement on what the most
viable definition of sentence space should be. Worse than this, we are
not even sure if this definition is context-dependent or if there is a
general, broad way to define it that can encompass the specialized
definitions one gives when examples are considered. Since framing
this kind of issue with a satisfactory amount of detail would prob-
ably produce enough material for a thesis on its own, we preferred
to provide simple, context dependent definitions of sentence spaces
that will allow us to produce examples and to illustrate how the cate-
gorical formalism we developed up to now can be used. We can only
hope that the aware linguist will forgive us.

This chapter is articulated as follows: In Section 5.1 we will describe
in detail the noun space giving examples, then we will focus on the
description of adjectives and verbs. This will give us enough gram-
matical types to make things interact together. In Section 5.2 we will
study this interaction by means of other examples.

The classes of examples we will consider are food and drink, in which
we focus on intrinsic properties of objects as taste, and robot navigation,
in which we will give a representation of spatial movement. All the
examples here have been worked out with the aid of coauthors (in
particular Martha Lewis has to be credited for many of them).

49
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(a) RGB colour cube (b) The property yellow (c) The property green

Figure 6: RGB colour space and colour properties.

5.1 adjective and verb concepts

The noun space N is defined as a monoidal product:

N = Ncolour ⊗Ntaste ⊗ . . .

where every component will represent an attribute we want to de-
scribe (such as colour, taste etc. as the subscripts suggest). A noun,
being a state I → N, will just be a convex subset of N. The sentence
space is just a convex algebra, in which we will interpret events as
individual points. We proceed giving some examples of nouns and
sentences to further illustrate what we mean.

5.1.1 Example: Food and drink

We ought to model nouns corresponding to food and drinks. The
properties we care about are colour, taste and texture, hence we choose
to represent our noun space as a decomposition of domains Ncolour,
Ntaste, Ntexture, meaning that N = Ncolour ⊗Ntaste ⊗Ntexture.

The domain Ncolour is the RGB colour space (everyone familiar with
image editing software should be confortable with this, see Figure 6).
Its elements are triples (R,G,B) ∈ [0, 1]3 where R,G,B represent the
intensity of the colour red, green and blue respectively. Another pos-
sible choice would have been to use the HSV space, in which colours
are defined in terms of hue and saturation. Representing convex com-
binations on the latter space is trickier though, and this is the main
reason to prefer the RGB choice.
The domain Ntaste is defined as the simplex having four fundamental
tastes as its vertexes, namely sweet, sour, bitter and salt (Figure 7).Ntaste

can then be written as:

Ntaste = {~t|~t =
∑
i∈I

wi~ti}

with I = {sweet, sour, bitter, salt},
∑
iwi = 1 and {~ti} the computational

basis for the vector space R4.
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Ntexture is the interval [0, 1] representing viscosity, where 0 stands
for “completely liquid” and 1 for “completely solid”.

We call a convex subset of some domain property. Some examples
of properties are defined below and illustrated in Figures 6 and 7.:

yellow = {(R,G,B)|(R > 0.7), (G > 0.7), (B 6 0.5)}

green = {(R,G,B)|(R 6 G), (B 6 G), (R 6 0.7), (B 6 0.7), (G > 0.3)}

sweet = {~t|tsweet > tl for l , sweet}

We can similarly define other properties we will use later in the same
way, such as sour and bitter. We can use properties as components to

(a) The taste tetrahedron (b) The region corresponding
to sweet = {~t|tsweet >
tl for l , sweet}

Figure 7: The taste space and the property sweet.

define nouns. To do this in a pleasant way, we will denote the convex
hull of a set A as Cl(A).

banana = {(R,G,B)|(0.9R 6 G 6 1.5R), (R > 0.3), (B 6 0.1)}×
×Cl({sweet, 0.25sweet + 0.75bitter, 0.7sweet + 0.3sour})× [0.2, 0.5]

apple = {(R,G,B)|R− 0.7 6 G 6 R+ 0.7), (G > 1− R), (B 6 0.1)}×
× [0.5, 1]×Cl({sweet, 0.75sweet + 0.25bitter, 0.3sweet + 0.7sour})× [0.5, 0.8]

beer = {(R,G,B)|(0.5R 6 G 6 R), (G 6 1.5− 0.8R), (B 6 0.1)}×
×Cl({bitter, 0.7sweet + 0.3bitter, 0.6sour + 0.4bitter})× [0, 0.01]

The only part that deserves a bit of explanation in this definition is
the taste one. Take apple as an example: Apples are never salty, hence
the salt parameter is always zero in the convex combination defining
the taste of apple. They can instead be very sweet, so sweet is cho-
sen as one of the extremes defining the convex combination. Apples
can moreover be a little bit, but not totally, bitter or sour, explaining
why the points 0.75sweet+ 0.25bitter, 0.3sweet+ 0.7bitter are chosen as
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extremal. The following pictorial definition is maybe worth one hun-
dred words:

banana = × × 0 10.2 0.5

apple = × × 0 10.5 0.8

beer = × × 0 100.01

Figure 8: Pictorial description of banana, apple, beer.

What about the sentence space? We want it to model events related
with drinking and eating. We give a discrete and very simple exam-
ple, distinguishing only from positive or negative and surprising or
unsurprising events. Our sentence space is then just B× B, where B
is the boolean semilattice {0, 1}, and the convex algebra structure is the
canonical one on products of semilattices as in Example 3.0.6, that
is in this case obtained taking the maximum element-wise. The ele-
ments of our sentence space S are then

{0, 0} = negative, unsurprising {0, 1} = negative, surprising

{1, 0} = positive, unsurprising {1, 1} = positive, surprising

5.1.2 Adjectives

In the pregroup grammar we set adjectives to have type n · nl. Since
n,nl both correspond to N in ConvexRel, we infer the that here the
adjective type is N⊗N. Using the name/coname construction we see
that adjectives are convex relations N → N, and hence subsets of
N×N, that is, convex combinations of ordered pairs.
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In the following we will denote adjectives using the subscript adj to
avoid ambiguities. We start with yellowadj, that is just

yellowadj = {(~x,~x)|xcolour ∈ yellow}

since it acts only on the colour domain. This definition is made sim-
ple from the fact that yellowadj does not care about the nature of the
noun it is acting on. On the other hand, an adjective such as softadj
does: Soft stone and soft sponge ball will nowhere have the same level
of “softness”, that has to be adjusted according to the noun we are
applying softadj to. We can avoid problems opting for a definition by
cases when possible: Restricting to apple and banana we set

softadj = {(~x,~x)|~x ∈ banana and xtexture 6 0.35 or

~x ∈ apples and xtexture 6 0.6}.

The above mentioned issues, namely the difficulty of classifying ad-
jectives set-theoretically, are broadly analyzed in [85]. Going a bit
more in depth, nouns are considered as one-place predicates, for in-
stance setting red = {x|x is red} and dog = {x|x is a dog}. Adjectives
can then be classified as intersective, where the meaning of adj noun is
just adj ∩ noun; as subsective, where adj noun ⊆ noun; and as privative,
meaning adj noun * noun.

Intersective adjectives are the simplest to describe: They act as set-
theoretic intersections and this is clearly reflected by the way we de-
fined them: Yellow banana, for instance, is just the intersection of yellow
and banana, and we can see this as “all the bananas that happen to
be yellow”. We can exploit the Frobenius structure of Theorem 3.0.10

to describe intersective adjectives, compared with the general case, as
the following picture shows:

soft
N

N

banana

=

soft

NNN

banana

yellow banana

N

NN =
yellow

N

N

banana

=

yellow banana

N NN

Figure 9: Pictorial description of adjective composition.

From this we infer that the internal structure of an intersective adjec-
tive is derived directly from a noun.
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5.1.3 Verbs

As we saw in Section 2.2.1, we can set transitive verbs to have type
nr · s ·nl in the pregroup formalism, that is sent to the object N⊗ S⊗
N in ConvexRel. To define verbs, we use concept names as shorthand,
where these can easily be calculated. For example,

green banana = {(R,G,B)|(R 6 G 6 1.5R), (G > B), (0.3 6 R 6 0.7),

, (G > 0.3), (B 6 0.1)}×
×Cl({sweet, 0.25sweet + 0.75bitter, 0.7sweet + 0.3sour})×
× [0.2, 0.5]

To fully specify a verb we should take into account all the nouns we
could apply it to. This is obviously impractical, hence for expository
purposes we restrict our nouns to banana and beer, exploiting the fact
that having different textures they do not overlap. The adjective

taste : I→ N⊗ S⊗N

Is then defined as follows:

taste = (green banana× {(0, 0)}× bitter)∪ (green banana× {(1, 1)}× sweet)

∪ (yellow banana× {(1, 0)}× sweet)

∪ (beer× {(0, 1)}× sweet)∪ (beer× {(1, 0)}× bitter)

5.1.4 Example: Robot Navigation

As we promised, now we model space-related concepts, using robot
navigation as an example. Choices of noun and sentence spaces will
have to be – unsurprisingly – radically different from the ones used
in Subsection 5.1.1.

5.1.4.1 Nouns

We want to describe:

• Some objects, such as armchair and ball;

• A couple of robots, that we will call Cathy and David;

• Some places, such as kitchen and living room.

To avoid clutter we will call these nouns a,b, c,d,k, l, respectively.
Che choose the noun space N to be decomposed in the following
domains:

Nlocation ⊗Ndirection ⊗Nshape ⊗Nsize ⊗Ncolour ⊗ ...

where Nlocation is just the real affine plane AR2. First we focus on
kitchen and living room. What we really care about here is where these
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rooms are. We describe this property using convex subsets of the
domain Nlocation as follows:

pkitchen location = {(x1, x2)|x1 ∈ [0, 5], x2 ∈ [0, 10]}

pliving room location = {(x1, x2)|x1 ∈ [5, 10], x2 ∈ [0, 10]}

pkitchen location,pliving room location have the convenient pictorial representa-
tion:

kitchen living room

0 5 10

0

10

x1

x2

From here we can obtain the nouns kitchen and living room tensoring
these properties together with other sets of characteristics defined in
the shape, size domain etc. We won’t describe these other characteris-
tics in detail since they do not play any role in our examples.

kitchen = pkitchen location ⊗ pkitchen shape ⊗ pkitchen size ⊗ ...

living room = pliving room location ⊗ pliving room shape ⊗ pliving room size ⊗ ...

We can define the other nouns in a similar way, as combinations of
convex subsets of domains defining the noun space. We do not give
any explicit description since all we require is that we are able to
distinguish one noun from the other, and this is always true up to a
sufficiently big number of domains taken into consideration.

5.1.4.2 Verbs

Before defining verbs we have to choose a suitable sentence space.
The sentences we are interested in will have the form:

The ball is in the living room.
Cathy moves to the kitchen.

The characterizing feature of these sentences is that the subject (the
ball, Cathy) is related to a complement (living room, kitchen) via a path
through space and time. When the verb is is in this path is static, so it
can be trivially represented as constant (space here is just one point);
on the other hand in the case of moves to the path is non trivial, and
we will represent it using subsets of the time and space domains. Our
sentence space will then be defined as

S = N⊗ T ⊗Nlocation
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Here the agent (that is, the subject of the verb) is represented by a
noun in the noun space N, while the path the agent takes is described
as a subset of time and location domains.

The time domain T is formalized according to our intuition as the
real line AR1, interpreting 0 as “now”, t < 0 as the past and t > 0 as
the future.

Transitive verbs type is again as in Section 5.1.1, namely N⊗ S⊗N.
Plugging in our definition of sentence space this becomes:

N⊗N⊗ T ⊗Nlocation ⊗N,

And can be thought of as sets of ordered tuples of the form:

(n1,n2, t, l,n3)

Where ni are points in the noun space, t ∈ T and l ∈ Nlocation.
The verbs we will model are is_in and moves_to. If we want to be

fussy, these verbs are not transitive, but intransitive verbs followed
by a preposition: We are exploiting the fact that when an intransitive
verb and a preposition are parsed together their complessive type
is exactly the one defining a transitive verb. To see this, note that
prepositions are usually modeled as having type sr · s · nl, hence the
combination “intransitive verb + preposition”reduces as follows:

(nr · s)(sr · s ·nl) 6 nr · s ·nl

Motivating our choice. The verb is_in acts on any of the nouns a, b,
c, d as subject, and any of the nouns k, l as object. As we said, this
verb describes a static path, and accounts only for what is happening
in the present (the fact that an agent is in some place means that the
ageint is in some place now and doesn’t tell us anything about where
the agent was before or after), and hence we represent it as:

is_in = {(~n, ~n, tnow,mlocation, ~m)|~n ∈ a∪ b∪ c∪ d, tnow = 0, ~m ∈ k∪ l}
(2)

The verb moves_to, instead, exhibits non-trivial dynamics. We can use
the following observations:

• moves_to will take again any of the nouns a, b, c, d as subject,
excluding k, l since we don’t want to model kitchen and living
room as capable to move;

• moves_to will take any of the nouns a, b, c, d, k, l as object, since
we want to be able to give meaning to sentences like David moves
to the armchair;

• By moves_to, we mean an action started in the past that is con-
cluded now, at time 0. Cathy moves to the kitchen means that,
from her position x at some point in the past t, Cathy’s position
x ′ is now in pkitchen location.
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• Since we are not interested in modeling quantum phenomena,
we assume all the paths to be continuous: Things do not teleport
instantaneously from one to another point in space.

We note that, in general, the meaning assigned to a sentence in this
model will be a convex combination of paths. In the best case, this
convex combination will consist of exactly one path, and this will be
the maximum degree of specification we are able to attain. Using the
previous considerations we define the verb moves_to as follows:

moves_to = {(~n, ~n, [t, 0], f([t, 0]), ~m) | ~n ∈ a∪ b∪ c∪ d, t < 0,

, f continuous, f(t) ∈ ~nlocation, f(0) ∈ ~mlocation} (3)

The constraints given in this definition ensure us that

• The agent cannot be k or l;

• The movement happened in the past;

• The movement desribes a path starting from the location of the
agent and ending in the location of the object;

• The movement is continuous.

Note that at the moment the locations of all nouns are subsets of AR2,
and are hence fixed in time. We saw this explicitly when we defined
the locations of the nouns kitchen and living room. On the other hand,
we would like the locations of armchair, ball, Cathy and David to be
dynamic and prone to change over time. To take account of these
issues we will probably need to extend our type system to a richer
one, that will in fact be closer to that proposed by Gärdenfors in [70].
Definition of richer type structures is object of current research.

5.2 concepts in interaction

Now that we have defined enough types and given meaning to enough
nouns, adjective and verbs, we want to show how interactions work
in our categorical model of conceptual spaces. All we have to do is
to apply the type reductions of the pregroup grammar within the
conceptual spaces formalism.
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5.2.1 Sentences in the Food Space

The application of yellowadj to banana works as follows.

yellow banana = (1N × εN)(yellowadj × banana)

= (1N × εN){(~x,~x)|xcolour ∈ yellow}

× ({(R,G,B)|(0.9R 6 G 6 1.5R), (R > 0.3), (B 6 0.1)}

×Cl({tsweet, 0.25tsweet + 0.75tbitter, 0.7tsweet + 0.3tsour})

× [0.2, 0.5])

= {(R,G,B)|(0.9R 6 G 6 1.5R), (R > 0.7), (G > 0.7), (B 6 0.1)}

×Cl({tsweet, 0.25tsweet + 0.75tbitter, 0.7tsweet + 0.3tsour})

× [0.2, 0.5]

You may have noticed that in the last line above the colour propri-
ety has changed. This reflects the intersective nature of the adjective
yellowadj: Restricting the possible choices of colour of the noun we
started with to yellow. Soft apple is calculated in the same way, giving
as result:

soft apple = {(R,G,B)|R− 0.7 6 G 6 R+ 0.7), (G > 1− R), (B 6 0.1)}

×Cl({tsweet, 0.75tsweet + 0.25tbitter, 0.3tsweet + 0.7tsour})× [0.4, 0.6]

We now show interactions involving also verbs. We use the definition
of taste that we gave in Subsection 5.1.3, finding out that even if sweet
bananas are good:

bananas taste sweet = (εN × 1S × εN)(bananas× taste× sweet)

= (εN × 1S)(banana

× (green banana× {(1, 1)}∪ yellow banana× {(1, 0)}))

= {(1, 1), (1, 0)} = positive

Sweet beer is, indeed, not1:

beer tastes sweet = (εN × 1S × εN)(beer× taste× sweet)

= {(0, 1)} = negative and surprising

5.2.2 Relative Pronouns

We already mentioned in Chapter 2, Subsection 2.4.1, that the exis-
tence of Frobenius algebras allows us to deal with relative pronouns.
This is described in detail in [86]. By relative pronouns we mean

1 This is Bob’s (my supervisor) idea. I honestly do like sweet beer.



5.2 concepts in interaction 59

words as “which” and “that”. For example, we consider the noun
phrase Fruit which tastes bitter. Its structure is displayed in Equation 4:

Fruit which tastes bitter

=

Fruit tastes bitter

(4)

Figure 10: Pictorial description of pronoun composition.

In our toy model, we can compute that Fruit which tastes bitter = green banana:

Fruit which tastes bitter =

= (µN × ιS × εN)(Cl(bananas∪ apples)× taste× bitter)

= (µN × ιS)(Cl(bananas∪ apples)× (green banana× {(0, 0)}))

= µN(Cl(bananas∪ apples)× (green banana)) = green banana

Where µN is the converse of the Frobenius copy map on N and ιS
is the delete map on S from Theorem 3.0.10. This equality clearly
comes from the fact that our choice of nouns, adjectives and verbs
is indeed limited. In a bigger model we naturally expect the noun
phrase fruit which tastes bitter to correspond to a plethora of possible
“fruit - adjective” concepts.

5.2.3 Sentences about Robot Movement

Finally, we compute meanings of sentences involving robot move-
ment. We use nouns and verbs defined in Subsection 5.1.4. We want
to compute the meaning of the sentence Cathy moves to the living room.
In order to do that, we need to assume that Cathy has a defined loca-
tion.

Cathy moves to the living room

= (εN ⊗ 1s ⊗ εN)(C⊗moves_to⊗ L)
= (εN ⊗ 1s⊗)(C⊗ {(~n, ~n, [t, 0], f([t, 0]))|f(0) ∈ Llocation} (5)

= {C, [t, 0], f([t, 0])|f(t) ∈ Clocation, f(0) ∈ Llocation}

In line (5) further constraints apply to t and f as described in Equa-
tion (3), omitted here to avoid clutter. This calculation gives us a set
of continuous line segments starting from Cathy’s location at time t
and ending in the living room at time 0.

It remains to check that this set of line segments is convex to be
sure our model is correct. We postulated Cathy to have a location,
but this is undetermined, meaning that Cathy can take any possible
location while her other attributes remain static, hence the set of pos-
sible locations defining Cathy’s position is convex. The set [t, 0] with
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t < 0 is clearly convex: If we take two of such time segments and
define a pointwise convex mixture:

p[t1, 0] + (1− p)[t2, 0] = [pt1 + (1− p)t2,p0+ (1− p)0]

= [pt1 + (1− p)t2, 0]

The condition that the start point is in the past and the end point is 0
is still satisfied. This can clearly be extended to arbitrary finite convex
mixtures by induction.

We have moreover to prove that also the sets of locations f([t1, 0]) is
convex. We then consider two sets of locations f1([t1, 0]) and f2([t2, 0])
and transform the intervals [t1, 0] and [t2, 0] to [−1, 0] by dividing
through by −ti, renaming the rescaled functions f′i. We then form a
pointwise convex combination:

pf′1 + (1− p)f′2 : [0, 1]→ Nlocation

By taking:

(pf′1 + (1− p)f′2)(τ) = pf
′
1(τ) + (1− p)f′2(τ)

= pf1((−t1)τ) + (1− p)f2((−t2)τ)

This convex combination is continuous because of composition of
continuous functions. The constraints imposed on f1, f2, namely that
f1(t1), f2(t2) ∈ Clocation and that f1(0), f2(0) ∈ Llocation, are also pre-
served: This is because Clocation and Llocation are convex by definition,
and hence

pf1(t1) + (1− p)f2(t2) ∈ Clocation, pf1(0) + (1− p)f2(0) ∈ Llocation

As we wanted.
In this chapter we have given an idea of how our model may be em-

ployed. In the next one we will generalize this formalism in a much
broader way: This will allow us to incorporate a metric in it and to
model things such as change of context and time-evolution.
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A L G E B R A I C Q - R E L AT I O N S A N D Q - S PA N S

Festina lente.

— Augustus [68, Vita Divi Augusti, 25.4]

As we mentioned at the end of the previous chapter, we want to
redefine our ConvexRel in much broader terms to accomodate some
features of interest, such as metrics and distances. We obviously want
to do this without giving up on the compact closed structure, on one
hand because it is the key feature to apply the pregroup grammar
reductions to our semantic category, and on the other because it is
ultimately what the slick and convenient graphical calculus we use
relies on. The last reason motivates us to redefine ConvexRel without
giving up on the dagger Frobenius structure either, that allows us
to model “difficult” words like pronouns, as we have already seen.
We start saying that we will be able to accomplish all this, but the
construction hereby presented will require quite a lot of explanation.
We start from general considerations of geometric nature before we
move on with formal definitions.

A binary relation between two sets (that is, what we commonly
refer to when we say “relation”) can be thought as a function from its
domain A to the powerset P(B) of its codomain B. What it does is to
send an element a to the set R(a) of elements in B that are related to
A. Equivalently, we can see it as a characteristic function

A×B→ {0, 1}

that sends a couple (a,b) to 1 if a and b are related, to 0 otherwise.
The first idea that comes to mind is then to extend this definition
considering generalized relations:

A×B→ Q

where Q is a set of truth values. Since we want to define a category,
it is paramount for us to require that composition of generalized re-
lations – from now on called Q-relations – is still a generalized re-
lation. To do this we need to impose some kind of structure on Q,
namely requiring it to be a quantale. Quantales have been introduced
in [117], and in particular the concept of quantale-valued relation is
not new [6].

61
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Definition 6.0.1 (Quantale). A quantale is a join complete partial or-
der (Q,

∨
) with a monoid structure (Q,�,k) satisfying for all a,b ∈ Q

and A,B ⊆ Q the following axioms:

a�
[∨

B
]
=
∨

{a� b | b ∈ B}[∨
A
]
� b =

∨
{a� b | a ∈ A}

We say that Q is commutative if its monoid structure is commutative.

Before going further we provide some examples of quantales that
will be useful later.

Example 6.0.2. A locale (A, sup,∧) is a set A with finite meets (∧) and
arbitrary joins (sup) such that meets distribute over joins. There are
many equivalent names for these structures, such as frame or complete
Heyting algebra, see [82] for more details. We can endow any locale
with a commutative quantale structure setting∨

A = supA

a1 � a2 = min(a,b)

k = >

• The chain {0, 1} with its usual ordering is a complete distributive
lattice, hence a commutative quantale. We will refer to this as
the Boolean quantale B;

• The chain [0, 1] ⊆ R with its usual ordering is a complete dis-
tributive lattice, hence a commutative quantale. We will refer to
this as the interval quantale I;

• The chain [0,∞] of extended positive reals with the reverse order-
ing is again a complete distributive lattice, hence a commutative
quantale. We will refer to this using the notation F.

On the set of extended positive reals with reverse order (the same
underlying set of F) we can define another commutative quantale
structure that does not come from a locale, setting:1∨

A = infA

a1 � a2 = a1 + a2
k = 0

We will call this structure the Lawvere quantale C. This structure will
be of paramount importance in Chapter 7.

1 Here we agree that if a1 or a2 or both are∞, then a1 + a2 =∞.
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When Q is a quantale we can compose two Q-relations

R : A×B→ Q S : B×C→ Q

Setting:

S ◦ R : A×C→ Q

(S ◦ R)(a,b) :=
∨
b

R(a,b)� S(b, c)

A Q-relation can be thought of as a potentially infinite matrix of truth
values. We will prove later than Q-relations form a category Rel(Q),
with the composition given above. Moreover, when Q is commutative
we will be able to define a symmetric monoidal structure on this
category that makes Rel(Q) dagger compact closed.

These categories of generalized relations are used to investigate var-
ious topological notions, for example in [40, 79]. On the other hand,
multi-valued relations have already been used in natural language
processing, for instance in [52], and we are now looking to get the
best from both approaches.

Summing up these considerations with the ones made in previous
chapters, we now end up having two different generalizations of the
relational construction:

• The first, defined in Chapter 3, incorporates some algebraic
structure in the definition of relation, allowing us to talk about
convexity;

• The second one generalizes the truth values. As we will see in
Chapter 7, this will allow us to talk about metric and distances.

Clearly, this can’t be the end of the story. Further questions naturally
arise now that we have two different relational constructions at hand:

• Are these constructions related?

• Are these constructions instances of a more general one, that is,
can we incorporate generalized truth values and convexity in
the same setting?

• Can we generalize even further, obtaining other instances of
compact closed categories?

• How do these parameters interact together? Will the correspond-
ing categories be somehow related?

We will answer to these questions in this chapter. Our starting point
will be the definition of hypergraph category [63], that captures some
nice properties that a compact closed category can have. This defini-
tion originates from work on cospans and corelations [62, 63] that is
part of a bigger research program in network theory started in [11],
and all the constructions we will perform will be instances of hyper-
graph categories.



64 algebraic q-relations and q-spans

Remark 6.0.3. Be aware that every hypergraph category can be pro-
duced by means of decorated corelations: Albeit very general, this
approach is rather abstract and moves from different premises. What
we have in mind here is a construction that is parametrized by con-
ceptual motivations that can be adjusted according to our modelling
needs, as we did for ConvexRel.

Remark 6.0.4. We will make great use of topos theory, of which stan-
dard references are [27, 83, 84, 98]. Nevertheless this use will be most
of the time “concealed”: The reader with none or limited knowledge
of topos theory should be able to read everything just interpreting our
constructions as they were defined in Set. Note moreover that our re-
lational and span constructions will always be external: We will never
do internal category theory, and the internal language of a topos will
be used just to manipulate diagrams in a convenient way. This will be
stressed further later on, where ambiguity may arise. All in all, con-
sidering the use we will make of them, the reader could just forget
that our categories are toposes: Our metalanguage is strictly classi-
cal and toposes, with respect to our application, can be thought as
just “categories with a convenient language to manipulate usual dia-
grams”.

We will proceed as follows:

• In Section 6.1 we formally introduce the definition of hyper-
graph category;

• In Sections 6.2 and 6.3 we will formally introduce algebraic Q-
relations and spans, that are the main ingredients for our model.
We will prove in Theorems 6.2.9, 6.3.2 and 6.3.7 that these con-
structions are paramterized instances of hypergraph categories;

• In Section 6.4 we will prove that our categories are order en-
riched. This key feature will allow us to introduce internal mon-
ads and metrics in Chapter 7;

• In Section 6.5 the interaction between algebraic Q-spans and
relations will be studied;

• In Section 6.6 we will study how homomorphisms of truth val-
ues functorially induce functors between our constructions, pre-
serving everything that matters;

• In Section 6.7 we will do the same with respect to the algebraic
structure, providing connections with notions as resource sensi-
tivity in the sense of linear logic;

• In Section 6.8 we will show that our constructions are also func-
torial in the choice of ambient topos, with the quantale struc-
ture being transferred along a logical functor. This amounts to
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say that our construction is well behaved with respect to the
variation of our universe of discourse;

• In Section 6.9 we will put everything together proving com-
mutativity of all the induced functors, meaning that tweaks
along different axes of variation behave well with respect to
each other.

6.0.1 Work we won’t consider

There is a lot of work on categories of relations out there. For instance,
they can be characterized in terms of allegories [67]. This approach
won’t be considered since it does not behave well with respect to
the graphical calculus, that we wanted to preserve. The concept of
cartesian bicategory of [32] shares some similarity with hypergraph
categories. The study of cartesian bicategories nevertheless aims to-
wards an abstract direction of research, and is more interested in
characterization rather than construction of models as we are. An-
other approach that is worth mentioning is the construction of cat-
egories with graphical calculi by means of PROPs [89, 96], that has
recently been used to construct various categorical models with ap-
plications in control theory [25, 54, 144]. The way these methods work
is starting with syntax and equations and building the free category
that satisfies them. This approach works well when one has clear in
mind what he wants to model and how the phenomena of interest
behave compositionally. This is not our case: We instead emphasize
the direct construction of models which can then be investigated for
their suitability to a given application.

6.1 hypergraph categories

We hit the ground running giving the definition of hypergraph cate-
gory.

Definition 6.1.1 (Hypergraph Category). A hypergraph category is a
symmetric monoidal category (recall Definition 2.3.1) such that every
object A has a commutative monoid structure and a cocommutative
comonoid structure (Definitions 2.4.1 and 2.4.2). The comonoid has
to satisfy the following equality, called coherence condition:

δ
A

A A

δ
B

B B

=

δ

A⊗B

A⊗B A⊗B

(6)

While the monoid structure to satisfy the coherence condition dual
to the one above. Notice that in the diagram above we used the same
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δ everywhere without specifying the object it acts on to avoid clutter.
This will be customary in the following when context makes notation
overload non-ambiguous.

Moreover, monoid and comonoid have to satisfy the Frobenius and
the special axioms (Definition 2.4.3).

The definition above, to be brief, captures the property of having a
symmetric monoidal category in which every object has a chosen spe-
cial commutative Frobenius algebra, such that this choice is coherent
with the tensor product.

Many examples of hypergraph categories are things we already know:

Example 6.1.2. Rel is an hypergraph category. The cocommutative
comonoid is given by the relations:

ε = {(a, ∗) | a ∈ A} δ = {(a, (a,a)) | a ∈ A}

While the monoid is defined through the relational converse applied
to the monoid structure.

But wait. . . Didn’t we say that Rel was compact closed? It is indeed,
and the whole point about hypergraph categories is exactly that they
always induce a dagger compact closed structure in a rather pleasant
way! To get aware of this the following observation is sufficient:

Proposition 6.1.3. Every hypergraph category is a dagger compact closed
category, with the cup and cap given by:

A A

=
δ

η

A A

A A

=

µ

ε

A A

Given a morphism f : A→ B, its dagger is given by:

f

B

A

Also called transpose in the linear algebraic and quantum-mechanical jar-
gon [43].

6.2 relations

Now we make the intuition on Q-relations we summarized before
precise. As we already said, Q-relations are morphisms between sets
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of type A×B→ Q, where Q is a quantale representing the truth val-
ues our relation can assume. We already mentioned that composition
of Q-relations is defined as:

(S ◦ R)(a, c) =
∨
b

R(a,b)� S(b, c)

Notice that if Q is the boolean quantale B this notion collapses to
the usual one for binary relations on Set. We define the identity mor-
phism for every set A as:

1A(a1,a2) =
∨

{k | a1 = a2}

This definition of identity is a bit cumbersome, but has one great
advantage, that is, it is not defined by cases. Definitions by cases often
make hidden use of the law of the excluded middle, and this would
block a lot of interesting generalization: Observe that, albeit all these
definitions collapse to the usual ones for relations on Set up to a
wise choice of Q, they are all constructive; there is no hidden use
of reductio ad absurdum or tertium non datur, and hence they make
sense in the internal language of an arbitrary elementary topos2. With
this we mean that we can work semi-internally, and use the internal
language of a topos to characterize our generalized relations. This
will allow us to prove a great deal of results in an easy way. Let’s
start with a definition:

Definition 6.2.1 (Q-relation). Let E be a topos, and (Q,�,k,
∨
) an

internal quantale. A Q-relation between E objects A and B is a E-
morphism of type:

A×B→ Q

E-objects andQ-relations between them form a category Rel(Q), with
identities and composition as described above.

The next important step is to incorporate the algebraic structure in
Definition 6.2.1. In this way we will obtain an environment in which
the convex structure of conceptual spaces and the metric induced by
the generalized truth values (yet to be defined) will coexist. First we
formalize what we mean by algebraic structure.

Definition 6.2.2. An algebraic signature is a couple (Σ,E) were Σ is a set
of functional symbols σi : Xni → X of finite arity ni, called operations,
over a formal set of variables X, and E is a set of statements between
symbols of Σ in equational logic, that is, all the variables in every
statement are non-free and universally quantified over X.

2 Often we will just say “topos” instead of “elementary topos”. In this document no
result will be proved using further properties that other kind of toposes, such as
Grothendieck toposes, satisfy.
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Definition 6.2.3. A set A can be endowed with an algebraic structure
of type (Σ,E) if (Σ,E) can be interpreted3 in A, meaning that for every
function symbol σ ∈ Σ there is a function σA : An → A such that
n is equal to the arity of σ and the equations in E still hold for all
elements in A substituting each σ with the correspondent σA. In this
case we say that 〈A, {σAi }i:σi∈Σ〉 is an algebra of type (Σ,E).

Note that our definitions of signature and algebra make sense in
any elementary topos4. It is clear then that we can again work semi-
inernally, and manipulate our algebras (that are, indeed, external) us-
ing the same language we would use if we were to work in Set.

In the set-theoretic case we know that a relation respects the struc-
ture between algebras of the same signature if:

R(a1,b1)∧ · · ·∧ R(an,bn)⇒ R(σ(a1, . . . ,an),σ(b1, . . . ,bn))

For every operation σ ∈ Σ (regarding convex combinations as alge-
braic operations as we did in Chapter 4 it is easy to see that the
definition of convex relations we used to formalize ConvexRel is just
a particular instance of this more general one).

Clearly, since we are now working on using arbitrary quantales as
sets of truth values, we want to replace the logical symbols popping
up in the implication above with quantale operations. This leads us
to the following definition:

Definition 6.2.4 (Algebraic Q-relation). Let E be a topos, and let
(Q,�,k,

∨
) an internal quantale. Let (Σ,E) be an algebraic variety

in E. An algebraic Q-relation between (Σ,E)-algebras A and B is a Q-
relation between their underlying E-objects such that for each σ ∈ Σ
the following axiom holds:

R(a1,b1)� . . .� R(an,bn) 6 R(σ(a1, . . . ,an),σ(b1, . . . ,bn)) (7)

(Σ,E)-algebras and algebraicQ-relations form a category Rel(Σ,E)(Q),
with identities and composition as for their underlying Q-relations.

In Section 6.7 this algebraic structure will be studied in detail with
particular focus on how it interacts with other choice parameters
such as the truth values. For the moment we keep going with the
definition and study the category we are interested in. Incorporating
Definition 6.2.4 in our category we get the first, promising result:

3 Note that a set A can be endowed with many different algebraic structures, also of
the same signature. For instance, if |A| = 4, the signature of groups can be interpreted
in A in two different ways (obtaining the cyclic group of order 4 and the Klein 4

group, respectively.
4 Actually, our definition of algebra makes sense in any category with finite prod-

ucts: The interpretation of an algebraic signature is then given assigning morphisms
An → A for every functional symbol of arity n and the equations are expressed
as commutative diagrams. If our category is moreover an elementary topos, this
definition coincides with the one given in terms of the internal language.
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Proposition 6.2.5. Let E be a topos, (Σ,E) a variety in E, and (Q,�,k,
∨
)

an internal commutative quantale. The category Rel(Σ,E)(Q) is a symmetric
monoidal category. The symmetric monoidal structure is inherited from a
choice of binary products and terminal object in E.

Proof. The proof that Rel(Σ,E)(Q) is a category follows from the unit
and associative properties of quantale multiplication. We must first
confirm that identities respect algebraic structure. For σ ∈ Σ:

idA(a1,a ′1)� . . .� idA(an,a ′n) =

=
[∨

{k | a1 = a
′
1}
]
� . . .�

[∨
{k | an = a ′n}

]
=
∨

{k� . . .� k︸          ︷︷          ︸
n

| (a1 = a
′
1)∧ · · ·∧ (an = a ′n)}

6
∨

{k | σ(a1, . . . ,an) = σ(a ′1, . . . ,a ′n)}

= idA(σ(a1, . . . ,an),σ(a ′1, . . . ,a ′n))

We do the same for composition:

(S ◦ R)(a1, c1)� . . .� (S ◦ R)(an, cn) =

=

∨
b1

R(a1,b1)� S(b1, c1)

� . . .
. . .�

∨
bn

R(an,bn)� S(bn, cn)


=

∨
b1,...,bn

R(a1,b1)� S(b1, c1)� . . .� R(an,bn)� S(bn, cn)

=
∨

b1,...,bn

[R(a1,b1)� . . .� R(an,bn)]�

� [S(b1, c1)� . . .� S(bn, cn)]

6
∨

b1,...,bn

R(σ(a1, . . . ,an),σ(b1, . . . ,bn))�

� S(σ(b1, . . . ,bn),σ(c1, . . . , cn))

6
∨
b

R(σ(a1, . . . ,an),b)� S(b,σ(c1, . . . , cn))

= (S ◦ R)(σ(a1, . . . ,an),σ(c1, . . . , cn))

Now we check explicitly the associativity of composition. For rela-
tions R,S, T , we have

(T ◦ (S ◦ R))(a,d) =
∨
c

(S ◦ R)(a, c)� T(c,d)

=
∨
c

[∨
b

R(a,b)� S(b, c)

]
� T(c,d)

=
∨
b

R(a,b)�

[∨
c

S(b, c)� T(c,d)

]
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=
∨
b

R(a,b)� (T ◦ S)(b,d)

= ((T ◦ S) ◦ R)(a,d)

We also check the right identity law.

(R ◦ idA)(a,b) =
∨
a ′

idA(a,a ′)� R(a ′,b)

=
∨
a ′

[∨
{k | a = a ′}

]
� R(a ′,b)

=
∨
a ′

∨
{k� R(a ′,b) | a = a ′}

=
∨
a ′

{R(a,b)}

= R(a,b)

The left identity law proof is similar. Next, we prove this category is
symmetric monoidal. We define the monoidal unit to be the terminal
algebra. On objects, the tensor is just products of algebras. We define
the action on morphisms pointwise as:

(R⊗ R ′)(a,a ′,b,b ′) = R(a,b)� R ′(a ′,b ′)

We first confirm R ⊗ R ′ respects the algebraic structure. For σ ∈ Σ
with arity n:

(R⊗ R ′)(a1,a ′1,b1,b ′1)� . . .� (R⊗ R ′)(an,a ′n,bn,b ′n) =

= R(a1,b1)� R ′(a ′1,b ′1)� . . .� R(an,bn)� R ′(a ′n,b ′n)

= [R(a1,b1)� . . .� R(an,bn)]�
[
R ′(a ′1,b ′1)� . . .� R ′(a ′n,b ′n)

]
6 R(σ(a1, . . . ,an),σ(b1, . . . ,bn))� R ′(σ(a ′1, . . . ,a ′n),σ(b

′
1, . . . ,b ′n))

= (R⊗ R ′)((σ(a1, . . . ,an),σ(a ′1, . . . ,a ′n)),

, (σ(b1, . . . ,bn),σ(b ′1, . . . ,b ′n)))

= (R⊗ R ′)(σ((a1,a ′1), . . . , (an,a ′n)),σ((b1,b ′1), . . . , (bn,b ′n)))

Then, we show that the tensor is functorial. Identities are preserved:

(1A1 ⊗ 1A2)(a1,a2,a ′1,a ′2) = 1A1(a1,a ′1)� 1A2(a2,a ′2)

=
∨

{k | a1 = a
′
1}�

∨
{k | a2 = a

′
2}

=
∨

{k | (a1 = a
′
1)∧ (a2 = a

′
2)}

=
∨

{k | (a1,a2) = (a ′1,a ′2)}

= 1A1⊗A2(a1,a2,a ′1,a ′2)
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For composition,

[(S1 ⊗ S2) ◦ (R1 ⊗ R2)](a1,a2, c1, c2) =

=
∨
b1,b2

(R1 ⊗ R2)(a1,a2,b1,b2)� (S1 ⊗ S2)(b1,b2, c1, c2)

=
∨
b1,b2

R1(a1,b1)� R2(a2,b2)� S1(b1, c1)� S2(b2, c2)

=
∨
b1,b2

R1(a1,b1)� S1(b1, c1)� R2(a2,b2)� S2(b2, c2)

=

∨
b1

R1(a1,b1)� S1(b1, c1)

�
∨
b2

R2(a2,b2)� S2(b2, c2)


= (S1 ◦ R1)(a1, c1)� (S2 ◦ R2)(a2, c2)

= [(S1 ◦ R1)⊗ (S2 ◦ R2)] (a1,a2, c1, c2)

We consider E as a symmetric monoidal category with respect to
our choice of binary products and terminal object. We then take the
graphs (see Proposition 6.2.6 for the definition) of the corresponding
left and right unitors, associator and symmetry as the correspond-
ing structure in Rel(Q). We must confirm that these coherence mor-
phisms are natural in their parameters. The proofs are all similar, we
check the associator explicitly:

R⊗ (S⊗ T) ◦αA,B,C =
∨
x,y,z

αA,B,C(((a,b), c), (x, (y, z)))�

� [R⊗ (S⊗ T)] ((x, (y, z)), (a ′, (b ′, c ′)))

=
∨
x,y,z

[∨
{k | (a = x)∧ (b = y)∧ (c = z)}

]
�

� R(x,a ′)� S(y,b ′)� T(z, c ′)

=
∨
x,y,z

∨
{R(x,a ′)� S(y,b ′)� T(z, c ′) | (a = x)∧ (b = y)∧ (c = z)}

= R(a,a ′)� S(b,b ′)� T(c, c ′)

=
∨
x,y,z

∨
{R(a, x)� S(b,y)� T(c, z) | (x = a ′)∧ (y = b ′)∧ (z = c ′)}

=
∨
x,y,z

R(a, x)� S(b,y)� T(c, z)�
[∨

{k | x = a ′ ∧ y = b ′ ∧ z = c ′}
]

=
∨
x,y,z

[(R� S)� T ] (((a,b), c), ((x,y), z))⊗

⊗αA ′,B ′,C ′(((x,y), z), (a ′, (b ′, c ′)))

= αA ′,B ′,C ′ ◦ (R⊗ S)⊗ T

These morphisms are isomorphisms by functoriality of graphs (see
Proposition 6.2.6 for the proof). Their inverses are given by their con-
verses, as established in the proof of Proposition 6.2.6.
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Moreover, taking graphs commutes with our choice of products
in E in the sense that:

(f× g)◦ = f◦ ⊗ g◦

To check this we reason as follows:

(f× g)◦((a,a ′), (b,b ′)) =
∨

{k | (b,b ′) = (f× g)(a,a ′)}

=
∨

{k | (b = f(a))∧ (b ′ = g(a ′))}

=
[∨

{k | b = f(a)}
]
�
[∨

{k | b ′ = g(a ′)}
]

= f◦(a,b)⊗ g◦(a ′,b ′)

This guarantees that the triangle and pentagon equations hold as the
same equations hold for the cartesian monoidal structure in E. The
coherence conditions for symmetry follow similarly. �

As in the case of ConvexRel note that even if our tensor product is
the cartesian product on objects, relations of type A⊗ B → A ′ ⊗ B ′
cannot be separated into binary products R×R ′. Hence our definition
gives us a genuine tensor product.

We clearly want to put a hypergraph structure on this newly de-
fined symmetric monoidal category. To do this, we will need a couple
of useful tools that will allow us to lift relevant stuff from the under-
lying topos E. These are again generalizations of concepts from the
standard Set case. One is taking the converse of a relation: Relations
are, opposed to functions, symmetric in their arguments, and so we
can always reverse their arguments. This can be promptly generalized
to Rel(Σ,E)(Q):

Proposition 6.2.6. [Converse] Let E be a topos, (Σ,E) a variety in E,
and (Q,�,k,

∨
) an internal commutative quantale. There is an identity

on objects strict symmetric monoidal functor:

(−)◦ : Rel(Σ,E)(Q)op → Rel(Σ,E)(Q)

Given by reversing arguments:

R◦(b,a) = R(a,b)

Moreover, in the standard case we know that functions are just a
special kind of relation, and in fact we can lift any function f : A→ B

on Set to a morphism in Rel defining:

Rf := {(a,b) | f(a) = b}

This lifting is clearly functorial and can again be generalized to the
category Rel(Σ,E)(Q) as follows:
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Proposition 6.2.7. [Graph] Let E be a topos, (Σ,E) a variety in E, and
(Q,�,k,

∨
) an internal commutative quantale. There is an identity on ob-

jects strict symmetric monoidal functor:

(−)◦ : Alg(Σ,E)→ Rel(Σ,E)(Q)

With action defined on morphism f : A→ B by:

f◦(a,b) =
∨

{k | f(a) = b}

The symmetric monoidal structure on Alg(Σ,E) is the finite product struc-
ture.

Now that we have the tools to lift morphisms from E to Rel(Σ,E)(Q),
we need to find something that is worth lifting. On every category
with finite products (as E surely is being a topos) the diagonal defines
a canonical comonoid structure as follows:

Proposition 6.2.8. Let E be a category with finite products. Each object A
carries a cocommutative comonoid structure via the canonical morphisms:

! : A→ 1 and 〈1A, 1A〉 : A→ A×A

These morphisms satisfy the coherence condition (6) in Definition 6.1.1.

This is the perfect candidate to prove Rel(Σ,E)(Q) is hypergraph, and
in fact:

Theorem 6.2.9. Let E be a topos, (Σ,E) a variety in E, and (Q,�,k,
∨
) an

internal commutative quantale. The category Rel(Σ,E)(Q) is a hypergraph
category. The cocommutative comonoid structure is given by the graphs
of the canonical comonoids described in Proposition 6.2.8, and the monoid
structure is given by their converses.

Proof. For every object A of E, call εA, δA the comultiplication and
counit of Proposition 6.2.8, and ηA, µA their respective converses. The
morphisms εA, δA have in the internal logic the explicit form:

εA(a, x) = k δA(a1, (a2,a3)) =
∨

{k | a1 = a2 = a3}

Checking that ηA, µA form a monoid is straightforward from the
definition of converse. With respect to this monoid/comonoid pair,
we first confirm the special axiom:

(µA ◦ δA)(a1,a2) =
∨

(a,a ′)

δA(a1, (a,a ′))� µA((a,a ′),a2)

=
∨

(a,a ′)

[∨
{k | a1 = a = a ′}

]
�
[∨

{k | a = a ′ = a2}
]

=
∨

(a,a ′)

∨
{k | a1 = a = a ′ = a2}

=
∨

{k | a1 = a2}

= idA(a1,a2)
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Finally, we check the Frobenius axiom, omitting some stages where
the expressions get long:

((idA ⊗ δA) ◦ (µA ⊗ idA))(a1,a2,a3,a4) =

=
∨
x,y,z

idA(a1, x)� δA(a2, (y, z))� µA((x,y),a3)� idA(z,a4)

=
∨
x,y,z

{k | x = y = z = a1 = a2 = a3 = a4}

=
∨

{k | a1 = a2 = a3 = a4}

= ((δA ⊗ idA) ◦ (idA ⊗ µA))(a1,a2,a3,a4) �

Example 6.2.10. Let (∅, ∅) denote the signature with no operations or
equations, to which we will sometimes refer as the empty signature.
Algebras on the empty signature are just sets, and hence Rel(∅,∅)(Q)

is just Rel(Q). In particular, we have that Rel, Rel(B) and Rel(∅,∅)(B)
denote the same thing.

Example 6.2.11. We proved in Proposition 4.1.4 that every convex
algebra can be algebraically presented as a set with infinite binary
operations:

+p where p ∈ (0, 1)

satisfying some equations. These algebras form a variety equivalent
to Convex as we proved in Theorem 4.1.8, and calling Convex the
signature of this variety we can recast ConvexRel as RelConvex(B).

6.3 spans

RelConvex(B) allows us to customize our relation choosing the logical
universe we want to operate in (the underlying topos), the structure
of truth values (the quantale) and the algebraic structure on our ob-
jects. In this setting, though, we can only say if two elements are re-
lated and with which strength. Elements can hence be related in one
possible way, and we can introduce another, last degree of freedom
generalizing this. Recall that a span of sets:

X

A B

f g

Represents the idea that elements a ∈ A and b ∈ B are related if
f(x) = a and g(x) = b. Clearly in this setting we can do more: If
there is another x ′ such that f(x ′) = a and g(x ′) = b, then a and
b are related via the different elements x, x ′. Elements of X then can
be interpreted as proof witnesses of the relation between a and b. In a
very similar fashion to what happens in computer science, where we
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choose to distinguish between different algorithms that do the same
thing (and hence talk about complexity) or we don’t (and hence talk
about computability), here we are switching from a notion of “being
related” to a notion of “being related in a specific way”.

It is well known that isomorphism classes5 of spans between sets
form a category, where composition is defined by pullback:

A

X

X×B Y

B

Y

C

f g h k

p1 p2

In the category Set we have an explicit definition of pullback, given
by

X×B Y = {(x,y) | g(x) = h(y)}

This confirms our intuition about spans as proof-relevant relations:
Witnesses relating a, c are obtained considering couples of witnesses
each relating a,b and b, c, respectively.

We would again try to leverage the similarities between toposes
and sets to generalize the span construction to an arbitrary topos,
but we have to pay attention to what we do: If we internalize the
definition of span altogether, the fact that we are considering isomor-
phism classes of spans would put us in big trouble: Working with
isomorphism classes of spans is only possible if our topos satisfies
the axiom of choice and, as proven by Diaconescu [51], this automati-
cally entails the law of the excluded middle, implying that we should
restrict our working framework to classical toposes. Fortunately, we
can avoid this issue by working again semi-internally: Our spans are
not internalized in the internal logic of the topos: They are just ordi-
nary, decorated spans and this allows us to freely consider isomor-
phism classes of spans while we work. Then, we can exploit the fact
that each representative of an isomorphism class of spans can be de-
scribed in pretty convenient terms using the internal language: For
instance, the definition of pullback we recalled above works for an ar-
bitrary topos, and this will make our proofs much easier. Note that to
do this the proofs of independency from a particular representative
in a given isomorphism class have to be carried out externally. All in
all, to avoid making the understanding of the following results diffi-
cult, the reader that is fluent in topos theory should be aware that we
are using the internal logic to prove external facts.

5 We need to consider isomorphism classes because pullbacks are associative only up
to isomorphism, and hence we need to quotient by the isomorphism-induced equiv-
alence relation on morphisms to obtain associativity with equality as the category
theory axioms require.
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We want to mimic what we did generalizing relations, and to do
this we have to put some truth values on top of the span structure.
Notice that now we don’t need anymore a quantale structure for the
truth values, indeed we can do with a much weaker one: We defined
the composition of relations as:

(S ◦ R)(a, c) =
∨
b

R(a,b)� S(b, c)

Because we needed the quantale join exactly to “compress” all the
possible R(a,b)� S(b, c) we could obtain for different b: If we care
only about being related or not, then we want only one truth value
representing this relation, but which one should we pick? The quan-
tale join

∨
solved the situation giving us a structural way to perform

this picking operation. In the span case, though, this is not necessary
since we can have different weights for different proof witnesses. Def-
inition 6.2.1 can then be relaxed requiring Q to be just an internal
monoid.

Definition 6.3.1 (Q-span). Let E be a finitely complete category. Let
moreover be (Q,�,k) an internal monoid. A Q-span of type A→ B is
a quadruple (X, f,g,χ) where:

• (X, f : X→ A,g : X→ B) is a span in E;

• χ : X → Q is a E-morphism, referred to as the characteristic
morphism.

We can compose Q-spans (X, f,g,χ), (Y,h,k, ξ) by composing their
underlying spans by pullback, and taking the resulting characteristic
morphism to be:

X×B Y
〈p1,p2〉−−−−−→ X× Y χ×ξ−−−→ Q×Q �−→ Q

Where p1 and p2 are the pullback projections.
Generalizing the usual span case, we can introduce a morphism ofQ-

spans between two Q-spans of type A→ B

α : (X1, f1,g1,χ1)→ (X2, f2,g2,χ2)

As a E-morphism α : X1 → X2 such that:

f1 = f2 ◦α g1 = g2 ◦α χ1 = χ2 ◦α

As we already mentioned before, we will work with isomorphism
classes of spans. Everything is proven to be (see appendix, Section A)
independent from the choice of representatives of these classes, and
hence we can just ignore this fact in the notation to avoid clutter. This
is common practice when considering categories of ordinary spans,
and hence from now on by Q-span we will mean its corresponding
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isomorphism class. For every object A we can provide an identity
Q-span (A, 1, 1,χk), where χk is the constant morphism defined by:

χk = A
!−→ 1

k−→ Q

With this notion of composition and identity,Q-spans form a category.
If our internal monoid is moreover commutative, we get the following
important result:

Theorem 6.3.2. Let E be a finitely complete category, and (Q,�,k) an inter-
nal commutative monoid. The category Span(Q) is a hypergraph category.

We will not focus much on Theorem 6.3.2, that serves more as a proof
of concept. In fact, all the details about the hypergraph structure for
Span(Q) can be found as special cases in Proposition 6.3.4 and The-
orem 6.3.7. What we really want to do is again to incorporate the
algebraic structure in our definition. In this case, though, we need to
keep track of the proof witnesses, slightly complicating our definition.
We will, moreover, need to strengthen a bit the requirement that Q is
a commutative monoid: We still do not need a quantale structure as
in the relational case, but we need to introduce a partial ordering on
the monoid structure to be able to compare different kind of weights.

Definition 6.3.3. Let E be a topos, (Σ,E) a variety in E, and (Q,�,k,6)

an internal partially ordered commutative monoid. For (Σ,E)-algebras
A and B, an algebraic Q-span is a quadruple (X, f,g,χ) which is a Q-
span between the underlying E-objects satisfying the following axiom.
For every σ ∈ Σ if:

f(x1) = a1 ∧ g(x1) = b1 ∧ · · ·∧ f(xn) = an ∧ g(xn) = bn

Then there exists x such that:

f(x) = σ(a1, . . . ,an)∧ g(x) = σ(b1, . . . ,bn)

And:
χ(x1)� . . .� χ(xn) 6 χ(x) (8)

(Σ,E)-algebras and algebraic Q-spans form a category Span(Σ,E)(Q)

with identities and composition given as for the underlying Q-spans.

In this setting results similar to those for Q-relations proved in Sec-
tion 6.2 hold. We have a symmetric monoidal category, a generaliza-
tion of the graph and converse functors and, ultimately, using again
the canonical comonoids of Proposition 6.2.8, an hypergraph struc-
ture.

Proposition 6.3.4. Let E be a topos, (Σ,E) a variety in E, and (Q,�,k,6)

an internal partially ordered commutative monoid. The category Span(Σ,E)(Q)

is then a symmetric monoidal category. The symmetric monoidal structure
is inherited from the finite product structure in E.
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Proof. Firstly, we check that Span(Σ,E)(Q) is a category. We must con-
firm that the identity morphisms are algebraic. The required condi-
tion is immediate, as objects are closed under the algebraic operations,
and the characteristic morphism is constant in the internal language.

Now we must confirm that composition is independent of repre-
sentatives. Consider span isomorphisms:

ϕ : (X1, f1,g1,χ1)→ (X2, f2,g2,χ2)

ψ : (Y1,h1,k1, ξ1)→ (Y2,h2,k2, ξ2)

We must show an isomorphism between the Q-spans:

(X1 ×B Y1, f1 ◦ p1,k1 ◦ p2,� ◦ (χ1 × ξ1) ◦ 〈p1,p2〉)
(X2 ×B y2, f2 ◦ p ′1,k2 ◦ p ′2,� ◦ (χ2 × ξ2) ◦ 〈p ′1,p ′2〉)

We calculate, using properties of pullbacks:

f2 ◦ p ′1 ◦ϕ×B ψ = f2 ◦ϕ ◦ p1 = f1 ◦ p1
g2 ◦ p ′2 ◦ϕ×B ψ = g2 ◦ψ ◦ p2 = g1 ◦ p2

Also,

� ◦ (χ2 × ξ2) ◦ 〈p ′1,p ′2〉 ◦ϕ×B ψ = � ◦ (χ2 × ξ2) ◦ (ϕ×ψ) ◦ 〈p1,p2〉
= � ◦ (χ2 ◦ϕ, ξ2 ◦ψ) ◦ 〈p1,p2〉
= � ◦ (χ1 ×ψ1) ◦ 〈p1,p2〉

And as ϕ×B ψ has an inverse in E we can use Lemma A.0.1 to com-
plete this part of the proof. Next, we must confirm that composition
of algebraic Q-spans preserves the algebraic condition. Assume:

f(p1(z1)) = a1 ∧ k(p2(z1)) = c1 ∧ . . .

· · ·∧ f(p1(zn)) = an ∧ k(p2(zn)) = cn

Then there exist x1, . . . , xn and y1, . . . ,yn such that:

f(x1) = a1 ∧ g(x1) = h(y1)∧ k(y1) = c1 ∧ . . .

· · ·∧ f(xn) = an ∧ g(xn) = h(yn)∧ k(yn) = cn

Therefore as the component spans are algebraic, there exist x and y
such that:

f(x) = σ(a1, . . . ,an)∧ g(x) = h(y)∧ k(y) = σ(c1, . . . , cn)

And both:

χ(x1)� . . .� χ(xn) 6 χ(x) ξ(y1)� . . .� ξ(yn) 6 ξ(y)

Therefore we have (x,y) in the apex of the composite span, with truth
value χ(x)� ξ(y). By monotonicity of the monoid multiplication:

χ(x1)� . . .� χ(xn)� ξ(y1)� . . .� ξ(yn) 6 χ(x)� ξ(y)
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Finally, as the multiplication is commutative:

χ(x1)� ξ(y1)� . . .� χ(xn)� ξ(yn) 6 χ(x)� ξ(y)

Now we are ready to verify the axioms defining a category, namely
identity laws and associativity of composition; we start with the left
identity axiom. Firstly we note:

(B, idB, idB,χk)◦ (X, f,g,χ) = (X×BB, f◦p1,p2,�◦ (χ×χk)◦ 〈p1,p2〉)

We claim p1 is a Q-span morphism to the span (X, f,g,χ). The condi-
tions for this being a span morphism are f ◦ p1 = f ◦ p1 and g ◦ p1 =

p2, and the second condition is obvious from the pullback square.
Finally, we must confirm this also commutes with the characteristic
functions.

� ◦ (χ× χk) ◦ 〈p1,p2〉 = p1 ◦ (χ×!) ◦ 〈p1,p2〉
= p1 ◦ 〈χ ◦ p1, ! ◦ p2〉
= χ ◦ p1

We must prove that p1 is an isomorphism, the required inverse be-
ing given by the universal property of pullbacks as 〈1,g〉. Checking
that this is an isomorphism follows from the universal property of
pullbacks. We can then use Lemma A.0.1 to complete this part of the
proof. The right identity axiom follows similarly.

We must then confirm associativity. We consider the composites:

L = ((Z, l,m, ζ) ◦ (Y,h,k, ξ)) ◦ (X, f,g,χ)

R = (Z, l,m, ζ) ◦ ((Y,h,k, ξ) ◦ (X, f,g,χ))

Via the usual proof for categories of ordinary spans,

ι := 〈p1 ◦ p1, 〈p2 ◦ p1,p2〉〉 : (X×B Y)×C Z→ X×B (Y ×C Z)

Is an isomorphism of spans. It remains to show that this commutes
with the characteristic morphisms. This is a space consuming exercise
in tracking various canonical morphisms, and is most easily handled
using the graphical calculus for a cartesian monoidal category. Details
are omitted to avoid a long typesetting exercise for the diagrams. This
concludes the proof that Span(Σ,E)(Q) is a category.
It remains to prove that Span(Σ,E)(Q) is symmetric monoidal. We
define a functor ⊗ : Span(Σ,E)(Q)×Span(Σ,E)(Q)→ Span(Σ,E)(Q) as
follows:

A⊗B = A×B
(X1, f1,g1,χ1)⊗ (X2, f2,g2,χ2) =

= (X1 ×X2, f1 × f2,g1 × g2,� ◦ (χ1 × χ2))
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This functor respects the algebraic structure: for algebraic Q-spans
(X, f,g,χ) and (X ′, f ′,g ′,χ ′), if

(f× f ′)(x1, x ′1) = (a1,a ′1)∧ · · ·∧ (f× f ′)(xn, x ′n) = (an,a ′n)

And

(g× g ′)(x1, x ′1) = (b1,b ′1)∧ · · ·∧ (g× g ′)(xn, x ′n) = (bn,b ′n)

Then:

f(x1) = a1 ∧ f
′(x ′1) = a

′
1 ∧ · · ·∧ f(xn) = an ∧ f ′(x ′n) = a

′
n

And:

g(x1) = b1 ∧ g
′(x ′n) = b

′
1 ∧ · · ·∧ g(xn) = bn ∧ g ′(x ′n) = b

′
n

As the spans are algebraic, there exist x and x ′ such that:

χ(x1)� . . .� χ(xn) 6 χ(x) χ ′(x ′1)� . . .� χ ′(x ′n) 6 χ ′(x ′)

By monotonicity and commutativity of the monoid multiplication, we
then have:

χ(x1)� χ ′(x ′1)� . . .� χ(xn)� χ ′(x ′n) 6 χ(x)� χ ′(x ′)

Next step is to show that our functor respects equivalence classes of
spans. Assume we have span isomorphisms:

ϕ : (X1, f1,g1,χ1)→ (X ′1, f ′1,g ′1,χ ′1)

ψ : (X2, f2,g2,χ2)→ (X ′2, f ′2,g ′2,χ ′2)

The product ϕ×ψ gives an isomorphism of ordinary spans:

ϕ×ψ : (X1, f1,g1,χ1)⊗ (X2, f2,g2,χ2)→
→ (X ′1, f ′1,g ′1,χ ′1)⊗ (X ′2, f ′2,g ′2,χ ′2)

It then remains to check this commutes with characteristic morphisms.
We calculate:

� ◦ (χ ′1 × χ ′2) ◦ (ϕ×ψ) = � ◦
[
(χ ′1 ◦ϕ)× (χ ′2 ◦ψ)

]
= � ◦ (χ1 × χ2)

And also this part is done. We now proceed to check functoriality.
That our definition gives a functor as an operation on the underlying
spans is well known. It remains to check the behaviour with respect
to characteristic morphisms. For identity Q-spans, the resulting char-
acteristic function is � ◦ (χk × χk) = χk. For composition, we note
there is an isomorphism of spans:

〈〈p1 ◦ p1,p1 ◦ p2〉, 〈p2 ◦ p1,p2 ◦ p2〉〉 : (X×B Y)× (X ′ ×B ′ Y ′)→
→ (X×X ′)×B×B ′ (Y × Y ′)
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We must show that this commutes with the corresponding character-
istic morphisms. The following unpleasant calculation establishes the
required equality:

� ◦ (�×�) ◦
[
((χ× ξ) ◦ 〈p1,p2〉)× ((χ ′ × ξ ′)〈p1,p2〉)

]
=

= � ◦ (�×�) ◦
[
(χ× ξ)× (χ ′ × ξ ′)

]
◦

◦ 〈〈p1 ◦ p1,p2 ◦ p1〉, 〈p1 ◦ p2,p2 ◦ p2〉〉
= � ◦ (�×�) ◦

[
(χ× χ ′)× (ξ× ξ ′)

]
◦

◦ 〈〈p1 ◦ p1,p1 ◦ p2〉, 〈p2 ◦ p1,p2 ◦ p2〉〉◦
◦ 〈〈p1 ◦ p1,p2 ◦ p1〉, 〈p1 ◦ p2,p2 ◦ p2〉〉

= � ◦ (�×�) ◦
[
(χ× χ ′)× (ξ× ξ ′)

]
◦

◦ 〈〈p1 ◦ p1,p1 ◦ p2〉, 〈p2 ◦ p1,p2 ◦ p2〉〉

Now we focus on proving that this functor gives us a monoidal struc-
ture: We take as our monoidal unit the terminal object in E and the
tensor to be the functor we just defined. Since we want to proceed
as in the relational case, lifting associators and unitors from the un-
derlying topos E using the converse and graph functors defined in
Proposition 6.3.5, we have to check that these functors commute with
our tensor. For converse this is trivial. For graph, this amounts to
check commutativity of the diagram:

Span(Σ,E)(Q)× Span(Σ,E)(Q) Span(Σ,E)(Q)

E× E E

⊗

×

(−)◦ × (−)◦ (−)◦

On objects this is obvious, as all the functors involved act as the iden-
tity on objects. On morphisms we reason:

(f1 × f2)◦ = (A1 ×A2, idA1×A2 , f1 × f2,k)

= (A1, idA1 , f,k)⊗ (A2, idA2 , f,k)

= (f1)◦ ⊗ (f2)◦

Therefore the graphs of the coherence morphisms in E lift to the cate-
gory Span(Σ,E)(Q). We must confirm that each of these remains nat-
ural. To do this, we first prove that the following equation holds for
every couple of E-morphisms l,h:

l◦ ◦ (X, f,g,χ) ◦ ◦h = (X,h ◦ f, l ◦ g,χ)
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Where ◦h is an identity on objects functor6 defined as:

◦(−) : Eop → Span(Σ,E)(Q)

f : A→ B 7→ (A, f, idA,χk)

We firstly consider the case of post composition with the graph of
a morphism in the underlying category, that is, l◦ ◦ (X, f,g,χ). This
composite is given by the pullback span:

(X×B B,p1 ◦ f,p2 ◦ l,� ◦ (χ× χk) ◦ 〈p1,p2〉)

We note that p1 ◦ 〈idX,g〉 = idX and

〈idX,g〉 ◦ p1 = 〈p1,g ◦ p1〉 = 〈p1,p2〉 = idX×BB

And so p1 and 〈idX,g〉witness an isomorphism in E. We next confirm
they give a span isomorphism. One of the conditions for p1 to be a
span morphism is trivial, for the other:

l ◦ g ◦ p1 = l ◦ idB ◦ p2 = l ◦ p2

Finally, we must confirm that this commutes with the characteristic
morphisms.

� ◦ (χ× χk) ◦ 〈p1,p2〉 = χ ◦ p1 ◦ 〈p1,p2〉 = χ ◦ p1

Now we note that:

(X, f,g,χ) ◦ ◦h = (X, f,g,χ) ◦ h◦◦
= (h◦ ◦ (X, f,g,χ)◦)◦

= (h◦ ◦ (X,g, f,χ))◦

= (X,g,h ◦ f,χ)◦

= (X,h ◦ f,g,χ)

Combining these two observations then completes the proof that our
equation holds. Back to naturality, applying what we just proved it is
sufficient to show that the following are span isomorphisms:

λX : (1×X, λA ◦ (id1 × f), λB ◦ (id1 × g),� ◦ (χk × χ))→ (X, f,g,χ)

ρX : (X× 1, ρA ◦ (f× id1), ρB ◦ (g× id1),� ◦ (χ× χk))→ (X, f,g,χ)

αX,Y,Z : ((X1 ×X2)×X3,αA1,A2,A3((f1 × f2)× f3),
,αB1,B2,B3 ◦ ((g1 × g2)× g3), . . . )→ (X1 × (X2 ×X3))

σX,Y : (X1 ×X2,σA1,A2 ◦ f1 × f2,σB1,B2 ◦ g1 × g2, ,� ◦ (χ1 × χ2))→
→ (X2 ×X1, f2 × f2,g2 × g1,� ◦ (χ2 × χ1))

And this is now just a straightforward (but very unpleasant) check.
�

6 The proof of ◦(−) being a functor is completely analogous to the proof of (−)◦
being a functor found in Proposition 6.3.5. It is moreover easy to check that if Q is
commutative then ◦(−) = (−)◦ ◦ (−)◦.
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Proposition 6.3.5. [Converse] Let E be a topos, (Σ,E) a variety in E,
and (Q,�,k,6) an internal partially ordered commutative monoid. There
is an identity on objects strict symmetric monoidal functor:

(−)◦ : Span(Σ,E)(Q)op → Span(Σ,E)(Q)

Given by reversing the legs of the underlying span:

(X, f,g,χ)◦ = (X,g, f,χ)

Proposition 6.3.6. [Graph] Let E be a topos, and (Q,�,k,6) an internal
partially ordered commutative monoid. There is an identity on objects strict
symmetric monoidal functor:

(−)◦ : Alg(Σ,E)→ Span(Σ,E)(Q)

With the action on morphism f : A→ B given by:

f◦ = (A, idA, f,χk)

Theorem 6.3.7. Let E be a topos, (Σ,E) a variety in E, and (Q,�,k,6) an
internal partially ordered commutative monoid. The category Span(Σ,E)(Q)

is a hypergraph category. The cocommutative comonoid structure is given
by the graphs of the canonical comonoids described in Proposition 6.2.8, and
the monoid structure is given by their converses.

In the following chapters we will see that spans are much easier to
use than relations. Not only they are more “powerful”, allowing us to
choose proof witnesses, but more than anything else the requirement
downgrading from commutative quantale to commutative partially
ordered monoid makes things much easier when it comes to really
exploit the structure of the topos we are working in.

Example 6.3.8. The span construction allows us to construct varia-
tions on the models we are already interested in. For example, using
the same observations made in Example 6.2.11, we can construct a
proof relevant version of ConvexRel. From a practical perspective,
this presents the possibility of models in which we can describe the
interaction of cognitive phenomena, providing quantitative evidence
for any relationships that we conclude hold.

Example 6.3.9. Interesting instances of elementary toposes different
than Set are presheaf toposes SetC

op

for a small category C. Presheaves
can be thought of as “sets varying with time” and offer a natural
choice to model relations and spans that are time or context sensitive.
This idea will be explored in detail in the next chapter and consti-
tuted the main motivation to generalize our formalism to arbitrary
logical universes.
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6.4 order enrichment

In this section we will lay the basics that will allow us to talk in detail
about internal monads and distances in the next chapter. To talk about
order enrichment we first have to specify what an enriched category
is.

Intuitively, we say that a C is enriched over V (or that C is a V-
category) if, for every A,B objects of C, HomC [A,B] is an object
of V. Note that now since our homsets are not sets anymore (ob-
jects of V may not have an analogous of elements), we need to spec-
ify how composition and identity laws work in this setting. This
is done requiring V to be monoidal, and specifying for each A ob-
ject of C some V-morphism idA : I → HomC [A,A] (here I is the
monoidal unit of V) and, for each A,B,C objects of C, some mor-
phism cA,B,C : HomC [B,C]⊗HomC [A,B] → HomC [A,C]. idA intu-
itively “picks” the identity morphism in HomC [A,A], while cA,B,C

intuitively represents morphism composition. Clearly the id(−) and
c(−),(−),(−) as defined above have to satisfy some conditions that
mimic the usual unit and associativity laws for standard categories.

Connected to the notion of enriched category, there is the one of
enriched functor. In fact, if C and D are V-categories, having just a
generic functor F : C → D doesn’t say much about what happens to
the enriched structure. An enriched functor F : C→ D is then specified
by the following data: To each object A of C we assign an object FA
of D, as in the “traditional” case. On morphisms, the definition is
different: We require that for each HomC [A,B] there is a V-morphism
HomC [A,B]→ HomD [FA, FB] that respects conditions analogous to
identity and composition preservation. If you want to know more
about enriched categories and functors, see [87].

Example 6.4.1. fdVectR is enriched over itself: The linear applications
between real vector spaces A and B form themselves a real vector
space (ifm,n are the dimensions ofA,B respectively, Hom fdVectR

[A,B]
has dimensionm×n). Compatibility of the enrichment with composi-
tion in the base category is ensured by the usual laws of composition
for linear applications.

Example 6.4.2. More generally, fdHilb is enriched over itself for the
same reasons outlined in the previous example.

Example 6.4.3. Rel is enriched over the category Pos, since every cou-
ple of relations R,R ′ from A to B can be ordered pointwise and this
implies that Hom Rel [A,B] forms a partial order compatible with re-
lational composition.

Example 6.4.4. More in general, any symmetric monoidal closed cat-
egory is canonically enriched over itself.

What we want to do now is enriching our categories of relations and
spans over ordered sets. Order enriching is not new when it comes to
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models for language. It proved to be a relevant tool also in the study
of ambiguity [121, 122] and lexical entailment [17], whose investiga-
tions bring awesome results when tackled from an order-theoretic
perspective.

Example 6.4.3 is particularly relevant for us. It states that the cat-
egory we started from is enriched over posets, and hence the ques-
tion that spontaneously arises is: Does this hold also for algebraic
Q-relations and spans? The answer is obviously a resounding YES!,
otherwise we wouldn’t be talking about this right now.

To prove that a category is enriched over posets (or on preorders)
it is sufficient to prove that each homset is a poset (preorder, respec-
tively) and that this poset (preorder) is compatible with composition
(that is, composition must be monotone in both components). We
honor our (recently established, for sure) tradition assessing the rela-
tional case first.

Definition 6.4.5. Let E be a topos and (Q,�,k,
∨
) an internal quan-

tale. We define a partial order on Q-relations as follows:

R ⊆ R ′ iff ∀a,b.R(a,b) 6 R ′(a,b)

Algebraic Q-relations are ordered similarly, by comparing their un-
derlying Q-relations.

Theorem 6.4.6. Let E be a topos, (Σ,E) a variety in E, and (Q,�,k,
∨
)

an internal commutative quantale. The category Rel(Σ,E)(Q) is a partially
ordered (Pos-enriched) symmetric monoidal category.

Proof. First of all we have to prove that our partial order is well de-
fined. It is clearly reflexive. For transitivity, if R ⊆ R ′ and R ′ ⊆ R ′′,
then we infer:

` R(a,b) 6 R ′(a,b) and ` R ′(a,b) 6 R ′′(a,b)

Therefore internally:

` (R(a,b) 6 R ′(a,b))∧ (R ′(a,b) 6 R ′′(a,b))

And so by transitivity of the order on the quantale:

` R(a,b) 6 R ′′(a,b)

Finally, if R ⊆ R ′ and R ′ ⊆ R, and so internally

` (R(a,b) 6 R ′(a,b))∧ (R ′(a,b) 6 R(a,b))

By antisymmetry of the order on the internal quantale:

` R(a,b) = R ′(a,b)
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And so:
` ∀a,b.R(a,b) = R ′(a,b)

Meaning externally R = R ′.
Next, we must confirm that composition is monotone in both com-

ponents. As the proofs are symmetrical, we only consider precompo-
sition explicitly. Assume R ⊆ R ′. We consider post-composing each
of these relations with the relation S. Remembering that the quantale
product preserves order, we calculate:

(S ◦ R)(a, c) =
∨
b

R(a,b)� S(b, c)

6
∨
b

R ′(a,b)� S(b, c)

= (S ◦ R ′)(a, c)

Finally, we must confirm that the tensor on Rel(Σ,E)(Q) is monotone
in both arguments. Assume again R ⊆ R ′. We calculate:

(R⊗ S)(a,b, c,d) = R(a,b)� S(c,d)
6 R ′(a,b)� S(c,d)
= (R ′ ⊗ S)(a,b, c,d) �

As usual in the span case proof witnesses must be accounted for ex-
plicitly when casting our definitions, even if what we do is conceptu-
ally analogous to the relational one.

Definition 6.4.7. Let E be a topos and (Q,�,k,6) and internal par-
tially ordered monoid, we define a preorder on Q-spans as follows:

(X1, f1,g1,χ1) ⊆ (X2, f2,g2,χ2)

If there is a E-monomorphism m : X1 → X2 such that:

f1 = f2 ◦m g1 = g2 ◦m ∀x.χ1(x) 6 χ2(m(x))

Algebraic Q-spans are ordered similarly, by comparing their underly-
ing Q-spans.

Theorem 6.4.8. Let E be a topos, (Σ,E) a variety in E, and (Q,�,k,6) an
internal partially ordered commutative monoid. The category Span(Σ,E)(Q)

is a preordered (Preord-enriched) symmetric monoidal category.

Proof. Firstly, we must confirm that this ordering is independent of
choices of representatives for equivalence classes of spans.

Assume (X1, f1,g1,χ1) ⊆ (Y,h1,k1, ξ1), and span isomorphisms:

i : (X1, f1,g1,χ1)→ (X2, f2,g2,χ2)

j : (Y1,h1,k1, ξ1)→ (Y2,h2,k2, ξ2)
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Let m : (X1, f1,g1,χ1) → (Y,h1,k1, ξ1) be the span morphism that is
monic in E required by the assumed order structure. There is then a
span morphism:

j ◦m ◦ i−1 : (X2, f2,g2,χ2)→ (Y2,h2,k2, ξ2)

Which is monic in E as monomorphisms are closed under composi-
tion. We then have:

χ2(x) = χ1(i
−1(x)) = ξ1(m ◦ i−1(x)) = ξ2(j ◦m ◦ i−1(x))

The relation ⊆ is clearly reflexive via the identity Q-span morphism.
For transitivity, assume (X, f,g,χ) ⊆ (Y,h,k, ξ) ⊆ (Z,m,n, ζ). De-

note the required monomorphisms as r : (X, f,g,χ) → (Y,h,k, ξ) and
s : (Y,h,k, ξ) → (Z,m,n, ζ), respectively. There is then an obvious
span morphism s ◦ r that is a monomorphism in E. We then have
χ(x) 6 ξ(r(x)) and so ξ(r(x)) 6 ζ(s ◦ r(x)). By transitivity of the quan-
tale ordering the conclusion χ(x) 6 ζ(s ◦ r(x)) follows. Then, we must
confirm that composition is monotone in both components. As the
proofs are symmetrical, we only consider precomposition explicitly.

Assume (X1, f1,g1,χ1) ⊆ (X2, f2,g2,χ2) as witnessed by some E

monomorphism m : X1 → X2. We consider post-composing each of
these spans with the span (Y,h,k, ξ). There is then a Q-span mor-
phism:

m×B idY : {(x1,y) | f1(x1) = h(y)}→ {(x2,y) | f2(x2) = h(y)}

And the underlying morphism is a monomorphism in E by standard
properties of pullbacks and monomorphisms. By monotonicity of the
tensor:

(� ◦ (χ1 × ξ) ◦ 〈p1,p2〉)(x,y) = χ1(x)� ξ(y)
6 χ2(m(x))� ξ(y)
= (� ◦ (χ2 × ξ) ◦ 〈p1,p2〉)(m(x),y)

= (� ◦ (χ2 × ξ) ◦ 〈p1,p2〉 ◦ (m×B idY))(x,y)

Finally, we must confirm that the tensor functor on Span(Σ,E)(Q) is
monotone in both arguments. Assume (X1, f1,g1,χ1) ⊆ (X2, f2,g2,χ2)
witnessed by E monomorphism m : X1 → X2. There is then a span
morphism:

m× 1 : (X1, f1,g1,χ1)⊗ (Y,h,k, ξ)→ (X2, f2,g2,χ2)⊗ (Y,h,k, ξ)

And this is an E monomorphism by standard theory of products and
monomorphisms. We then calculate:

� ◦ (χ1 × ξ)(x,y) = χ1(x)� ξ(y)
6 χ2(m(x))� ξ(y)
= (� ◦ (χ2 × ξ) ◦ (m× 1))(x,y) �
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We can say that a functor between categories C,C ′ enriched over D is
a D-functor if it respects the structure of 2-cells. The general definition
of this fact involves quite a bit of machinery, but in our case this just
translates to the requirement that if h ⊆ k for h,k ∈ HomC [A,B], then
Fh ⊆ Fk. We can use this notion to show that the converse functor
preserves our orderings:

Proposition 6.4.9. Let E be a topos, and (Σ,E) a variety in E. Converses
respect order structure, in that:

• If (Q,�,k,
∨
) is an internal quantale, the converse functor of Propo-

sition 6.2.6 is a partially ordered functor;

• If (Q,�,k,6) is an internal partially order monoid, the converse func-
tor of Proposition 6.3.5 is a preordered functor.

6.5 from spans to relations

Now that we laid all our parameters into place, we can start study-
ing the relationships between them. We start with the simplest one,
relating proof relevance and provability.

Intuitively, the morphisms of Span(Σ,E)(Q) distinguish between dif-
ferent ways to relate the same couple of elements. It would be rea-
sonable to expect that a span can then be collapsed into a relation
“compressing” all the weights assigned to proof witnesses of the re-
lationship between a fixed couple of elements into only one. This
“compressing” operation draws a perfect similarity with the role that
the quantale join has in the definition of composition in Rel(Σ,E)(Q):
It skims through all the possible paths connecting two elements and
picks the optimal one.

What we can infer from this is that to be able to collapse an al-
gebraic Q-span into a Q-relation Q has to be again a quantale. This
being the case, we can effectively prove algebraic Q-spans and Q-
relations to be compatible. Even better, this compatibility preserves
graphs and converses, de facto carrying the hypergraph structure of
Span(Σ,E)(Q) to the hypergraph structure of Rel(Σ,E)(Q).

Theorem 6.5.1. Let E be a topos, (Σ,E) a variety in E and (Q,�,k,
∨
)

an internal commutative quantale. There is an identity on objects, strict
symmetric monoidal Preord-functor with action on morphisms:

V : Span(Σ,E)(Q)→ Rel(Σ,E)(Q)

V(X, f,g,χ)(a,b) =
∨

{χ(x) | f(x) = a∧ g(x) = b}
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V commutes with graphs and converses in that:

Alg(Σ,E)

Span(Σ,E)(Q) Rel(Σ,E)(Q)

(−)◦ (−)◦

V

Span(Σ,E)(Q)op

Span(Σ,E)(Q)

Rel(Σ,E)(Q)op

Rel(Σ,E)(Q)

(−)◦ (−)◦

Vop

V

Proof. It is easy to check that this definition is independent of our
choice of representatives. We moreover check preservation of identi-
ties:

V(A, idA, idA,χk)(a1,a2) =
∨

{χk(a) | idA(a) = a1 ∧ idA(a) = a2}

=
∨

{k | a = a1 ∧ a = a2}

=
∨

{k | a1 = a2}

= idA(a1,a2)

That the functor commutes with the tensor is clear from the defini-
tion. That the coherence morphisms for the monoidal structures are
preserved on the nose is clear as they were constructed using the
graph constructions, and V preserves graphs. To see that V preserves
preorders, we assume (X1, f1,g1,χ1) ⊆ (X2, f2,g2,χ2), witnessed by
a monomorphism m : X1 → X2. We then calculate:∨

{χ1(x) | f1(x) = a∧ g1(x) = b} 6

6
∨

{χ2(m(x)) | f2(m(x)) = a∧ g2(m(x)) = b}

6
∨

{χ2(x
′) | f2(x

′) = a∧ g2(x
′) = b}

Lastly, we check that V commutes with graph and converse. For
graph, if f is a morphism A→ B in E, then f◦ = (A, idA, f,χk) and:

V(f◦)(a,b) = V(A, idA, f,χk)(a,b) =
∨

{χk(x) | x = a∧ f(x) = b}

but, being χk(x) = k for every x, we can rewrite the right-hand-side as∨
{k | f(a) = b}, that is exactly the definition of graph in the category

of Q-algebraic relations, and we are done. For converse,

V((X, f,g,χ)◦)(b,a) = V(X,g, f,χ)(b,a)

=
∨

{χ(x) | g(x) = b∧ f(x) = a}

=
∨

{χ(x) | f(x) = a∧ g(x) = b}

= V(X, f,g,χ)(a,b)

= V(X, f,g,χ)◦(b,a) �
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6.6 changing truth values

We would expect that up to a wise choice of morphisms between
our structures of truth values functorial relationships between mod-
els are established. This all goes through very smoothly, as we now
elaborate.

Clearly it is natural to ask the morphisms between structures of
truth values to preserve this structures. In the case of algebraic Q-
relations, this amounts to consider internal quantale homomorphisms.

As the hypergraph structure is lifted from the underlying topos
assigning truth values to monoids and comonoids in a trivial way by
means of the graph functors, we would expect this structure to be
also preserved. This is indeed the case, as we see:

Theorem 6.6.1. Let E be a topos, (Σ,E) a variety in E, and h : Q1 → Q2 a
morphism of internal commutative quantales. There is an identity on objects,
strict symmetric monoidal Pos-functor h∗, with action on morphisms:

h∗ : Rel(Σ,E)(Q1)→ Rel(Σ,E)(Q2)

A×B R−→ Q1 7→ A×B R−→ Q1
h−→ Q2

The assignment h 7→ h∗ is functorial. Moreover, the functor h∗ commutes
with graphs and converses, that is, the following diagrams commute:

Alg(Σ,E)

Rel(Σ,E)(Q1) Rel(Σ,E)(Q2)

(−)◦ (−)◦

h∗

Rel(Σ,E)(Q1)
op

Rel(Σ,E)(Q1)

Rel(Σ,E)(Q2)
op

Rel(Σ,E)(Q2)

(−)◦ (−)◦

(h∗)op

h∗

Proof. Preservation of identities, compositions and tensors follows
from the fact that h preserves quantale identities, products and joins.
In particular, the preservation of quantale joins makes h also order-
preserving, proving that h∗ is a Pos-functor. The functoriality of as-
sigments is trivial: Postcomposing with the identity function on a
quantale gives back the same category we started from, and the com-
position of quantale homomorphisms is a quantale homomorphism.
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Commutativity with graph and converse is straightforward, and we
just prove the graph commutativity explicitly:

h∗(f◦)(a,b) = h ◦ f◦(a,b)

= h
(∨

{k | f(a) = b}
)

=
∨

{h(k) | f(a) = b}

=
∨

{k | f(a) = b}

Where the last equality follows from the fact that the quantale homo-
morpshism h preserves units. But the last line is exactly the definition
of graph in Rel(Σ,E)(Q2), as we wanted. Preservation of graphs and
converses clearly implies preservation of the hypergraph structure on
the nose. �

Example 6.6.2. There is a quantale morphism B→ Q from the Boolean
quantale to any other quantale Q, sending the top element to the top
element and the bottom element to the bottom element. The induced
functor identifies the ordinary binary relations as a subclass of mor-
phisms in Rel(Q). This will in particular turn useful in the next chap-
ter, where we will see how the Lavwere quantale C is used along
with internal monads to induce a metric on our objects. The quantale
homomorphism B → C will then allow us to “metrize” the classic
category of sets and relations.

In the very same way we can consider RelConvex(B) and use the
same trick to induce a metric on conceptual spaces.

In the case of the span construction we have a completely analo-
gous result, with the difference that morphisms of partially ordered
monoids are the appropriate notion of homomorphism to consider.

Theorem 6.6.3. Let E be a topos, (Σ,E) a variety in E, and h : Q1 → Q2
a morphism of internal partially ordered commutative monoids. There is
an identity on objects, strict symmetric monoidal Preord-functor h∗, with
action on morphisms:

h∗ : Span(Σ,E)(Q1)→ Span(Σ,E)(Q2)

(X, f,g,χ) 7→ (X, f,g,h ◦ χ)

The assignment h 7→ h∗ is functorial. Moreover, the functor h∗ commutes
with graphs and converses, that is, the following diagrams commute:

Alg(Σ,E)

Span(Σ,E)(Q1) Span(Σ,E)(Q2)

(−)◦ (−)◦

h∗
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Span(Σ,E)(Q1)
op

Span(Σ,E)(Q1)

Span(Σ,E)(Q2)
op

Span(Σ,E)(Q2)

(−)◦ (−)◦

(h∗)op

h∗

Proof. Identical to the relational case. �

Example 6.6.4. For any commutative partially ordered monoid Q

there is a partially ordered monoid morphism 1 → Q, induced by
the monoid unit. Here, 1 is the terminal quantale. Therefore there is
a strict symmetric monoidal functor

Span(Σ,E)(1)→ Span(Σ,E)(Q)

This example motivates our use of partially ordered monoids, rather
than simply restricting to the quantales of interest in our primary
applications, as the required morphism is not a quantale morphism.

6.7 algebraic structure

We now investigate the interaction between truth values and algebraic
structure. Again, this will lead to functorial relationships between
models, but the subject is more delicate than in the previous sections.

Definition 6.7.1. Recall Definition 6.2.2. A term of type Σ is a formal
functional symbol Xn → X for some n (called ariety of τ) obtained by
compostion of operation symbols in Σ, projections and diagonals.

We moreover say that a term τ over a finite set of variables is:

• Linear if it uses each variable exactly once (diagonals and pro-
jections are not part of the compositon);

• Affine if it uses each variable at most once (projections are al-
lowed but diagonals are not);

• Relevant if it uses each variable at least once (diagonals are al-
lowed but projections are not);

• Cartesian to emphasize that its use of variables is unrestricted
(diagonals and projections both allowed).

Using compositonality of morphisms we can promptly extend Defini-
tion 6.2.3 to terms and talk of a term τA in an algebra A.

The concept of term is fundamental to define what interpretation of
signatures is. Consider this example: We can say that any group is
also a monoid, because we can “forget” the inverse operation and
keep only the addition and unit, and associativity and unit law will
still hold. The key of this consideration is the following:
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• We can map every formal operation f in the signature of monoids
to a term τf in the signature of groups. In our case this mapping
is basically an immersion;

• We can use the equations in the signature of groups to prove
that the equations in the signature of monoids hold for the
terms τ that are in the image of the mapping defined above:
The signature of groups intuitively contains a copy of the equa-
tions in the signature of monoids;

• Given a group G we can consider the term τGf in G. < G, τGfi >
then defines a monoid, as we wanted.

We can use the generalized version of this fact to define interpreta-
tions of signatures:

Definition 6.7.2 (Interpretation). An interpretation of signature (Σ1,E1)
in signature (Σ2,E2) is a mapping assigning each σ ∈ Σ1 to a derived
term of (Σ2,E2) of the same arity, such that the equations E1 can
be proved in equational logic from E2. We say that an interpretation
is linear, affine, relevant or cartesian if all the derived terms used in the
interpretation are suitably restricted. It is standard that every inter-
pretation i contravariantly induces a functor î between the categories
of algebras, as clear from the previous considerations.

All the fuss about distinguishing between linear, affine, relevant and
cartesian terms comes from the fact that Inequations (7) and (8) are
only required to hold for the operations in our signature, hence do
not extend to composition of operations involving projections and
diagonals. Since interpretations of algebras use also these two types
of morphisms we have to put restrictions on how our relations and
spans are defined to consequently obtain a functorial relationship be-
tween the resulting categories of models.

Definition 6.7.3. Let E be a topos. If (Q,�,k,
∨
) is an internal quan-

tale, we say that a Q-relation R is affine if R(a1,b1) � R(a2,b2) 6
R(a1,b1) and relevant if R(a,b) 6 R(a,b) � R(a,b). R is cartesian if
it is both affine and linear. We say that R is linear to emphasize that
no additional axioms are assumed to hold. Similarly, if (Q,�,k,6) is
an internal partially ordered monoid, we say that a Q-span (X, f,g,χ)
is affine if χ(x1)� χ(x2) 6 χ(x1), and relevant if χ(x) 6 χ(x)� χ(x).
AQ-span is said to be cartesian if it is both affine and relevant, and lin-
ear if no additional axioms are assumed to hold.

Our terminology is derived from that sometimes used for variants
of linear logic. If we view truth values as resources, the question is
about when these resources can be “copied” or “deleted”. The next
proposition shows that if our truth values are well behaved, so are
our morphisms.
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Lemma 6.7.4. Let (Q,�,k,
∨
) be an internal quantale. If for every p,q

the inequality p� q 6 p holds, then every relation is affine. If p 6 p� p
holds then every relation is relevant. Similarly, if (Q,�,k,6) is an internal
partially ordered monoid, if p� q 6 p holds then every span is affine and
if p 6 p� p then every span is relevant.

It is easy to check that if p� q 6 p and p 6 p� p both hold then � is
idempotent, making Q into a locale and viceversa. We then have the
following direct corollary:

Corollary 6.7.5. If Q is a locale all relations in Rel(Σ,E)(Q) are cartesian.

Restricting to one special kind of relations/spans among the ones
defined above preserves the hypergraph structure:

Theorem 6.7.6. Let E be a topos and (Σ,E) a variety in E. If (Q,�,k,
∨
) is

a commutative quantale, the affine, relevant and cartesian relations each form
a sub-hypergraph category of Rel(Σ,E)(Q). If (Q,�,k,6) is a commutative
partially ordered monoid, the affine, relevant and cartesian spans each form
a sub-hypergraph category of Span(Σ,E)(Q). In each case, the morphisms in
the image of the graph functor are all cartesian.

Proof. Just note that

• Composition of affine (relevant, cartesian) relations is again affine
(relevant, cartesian);

• Similarly, composition of affine (relevant, cartesian) spans is
again affine (relevant, cartesian);

• Tensor of affine (relevant, cartesian) relations is again affine (rel-
evant, cartesian);

• Similarly, tensor of affine (relevant, cartesian) spans is again
affine (relevant, cartesian);

• If a relation is constant with value the quantale unit, then it is
cartesian, and hence, also affine and relevant;

• If a span with characteristic morphism χ is such that χ is con-
stant with value the commutative partially ordered monoid unit,
then the span is cartesian, and hence, also affine and relevant.

The first two observations, along with the fact that identies are con-
stant in the span case and can only hit the quantale unit as a value in
the relational case, tell us that restricting our categories of relations
(spans) to affine (relevant, cartesian) ones gives us a subcategory. The
fact that all the machinery used to define the hypergraph structure
comes from taking the graphs of morphisms in the underlying topos
E, along with the last four observations, tells us that the hypergraph
structure is preserved when we restrict to the affine (relevant, carte-
sian) version of our category, and this concludes the proof. �
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Definition 6.7.7. We write Rellin
(Σ,E)(Q), Relaff

(Σ,E)(Q), Relrel
(Σ,E)(Q) and

Relcart
(Σ,E)(Q) for the corresponding sub-hypergraph categories of carte-

sian relations described in Theorem 6.7.6. The definition extends straight-
forwardly to the span case.

Our restricted classes of relations respect the corresponding classes
of terms.

Proposition 6.7.8. Let E be a topos, (Σ,E) a variety in E and (Q,�,k,
∨
)

an internal commutative quantale. For linear (affine, relevant, cartesian) al-
gebraic Q-relation R : A→ B the axiom:

R(a1,b1)� . . .� R(an,bn) 6 R(τ(a1, . . . ,an), τ(b1, . . . ,bn))

Holds for every linear (affine, relevant, cartesian) n-ary derived operation τ.

Proof. Suppose R is a linear relation. We proceed by induction. By
definition, if τ is any n-ary operation, then it is:

n⊙
k=1

R(ak,bk) 6 R(τ(a1, . . . ,an), τ(b1, . . . ,bn))

Now let τ1, . . . , τn be operations of arities k1, . . . ,kn, respectively. Be-
ing τ an operation, it is:

n⊙
i=1

R(τi(a
i
1, . . . aiki), τi(b

i
1, . . . biki)) 6

6 R(τ(τ1(a
1
1, . . . a1k1), . . . , τn(a

n
1 , . . . aikn)),

, τ(τ1(b11, . . . b1k1), . . . , τn(b
n
1 , . . . bnkn)))

And combining with the same condition on the τi one obtains:

n⊙
i=1

ki⊙
z=1

R(aiz,b
i
z) 6 R(τ(τ1(a

1
1, . . . a1k1), . . . , τn(a

n
1 , . . . aikn)),

, τ(τ1(b11, . . . b1k1), . . . , τn(b
n
1 , . . . bnkn)))

This concludes the first part of the proof since every linear term can
be written as a concatenation of operations.

Affine terms are obtained as compositions of operations and projec-
tions. It is thus sufficient to prove that the condition holds for affine
relations if τ is a projection. Then, we can treat any n-ary projection
as a generic operation and proceed as in the previous case. But the
condition:

n⊙
k=1

R(ak,bk) 6 R(π(a1, . . . ,an),π(b1, . . . ,bn))

Being the right hand side just R(ai,bi), trivially holds when R is
affine.
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Relevant terms are obtained as compositions of operations and di-
agonals. Note that a diagonal δ is not a term when taken alone be-
cause it is not a morphism of the form Xn → X for some n. This
means that if a term is built using diagonals, there is always at least
one operation that is composed with the diagonal on the left. The
proof is then very similar to the previous ones, with the additional
step that if R is relevant, then the condition has to be proven to hold
for every τ(x1, . . . , xi, δ(x), xi+1, . . . , xn), where δ is them-th diagonal
and τ is any (n+m)-ary operation.

For cartesian terms it is sufficient to put all these observation to-
gether and proceed in the same way. �

Similarly, spans with sufficient structure respect the corresponding
types of derived terms.

Proposition 6.7.9. Let E be a topos, (Σ,E) a variety in E, and (Q,�,k,6)

an internal partially ordered commutative monoid. For (Σ,E)-algebras A
and B, and linear (affine, relevant, cartesian) algebraic Q-span (X, f,g,χ)
and n-ary linear (affine, relevant, cartesian) term τ if:∧

i

(f(xi) = ai ∧ g(xi) = bi)

Then there exists x such that:

f(x) = τ(a1, ...,an) and g(x) = τ(b1, ...,bn) and
⊙
i

χ(xi) 6 χ(x)

Proof. As in the relational case, we proceed by induction. Let (X, f,g,χ)
be a span. By definition, if τ is any n-ary operation, then the axiom:

n∧
i=1

(f(xi) = ai ∧ g(xi) = bi) =⇒ ∃x : f(x) = τ(a1, . . . ,an)∧

∧g(x) = τ(b1, . . . ,bn)∧
n⊙
i=1

χ(xi) 6 χ(x)

Is already satisfied. Now let τ, τ1, . . . , τn be operations of arities n,
k1, . . . ,kn, respectively. Being τ an operation, it is:

n∧
i=1

(f(xi) = τi(a
i
1, . . . aiki)∧ g(x

i) = τi(b
i
1, . . . biki)) =⇒

=⇒ ∃x : f(x) = τ(τ1(a11, . . . a1k1), . . . , τn(a
n
1 , . . . aikn))∧

∧g(x) = τ(τ1(b
1
1, . . . b1k1), . . . , τn(b

n
1 , . . . bikn))∧

∧

n⊙
i=1

χ(xi) 6 χ(x)
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And combining with the same condition on the τi one obtains:

n∧
i=1

ki∧
j=1

(f(xij) = a
i
j ∧ g(x

i
j) = b

i
j) =⇒

=⇒ ∃x : f(x) = τ(τ1(a11, . . . a1k1), . . . , τn(a
n
1 , . . . aikn))∧

∧g(x) = τ(τ1(b
1
1, . . . b1k1), . . . , τn(b

n
1 , . . . bikn))∧

∧

n⊙
i=1

ki⊙
j=1

χ(xij) 6 χ(x)

This concludes the proof since every linear term can be written as a
concatenation of operations.

For affine, relevant and cartesian terms the considerations done
in the proof of Proposition 6.7.8 can easily be adapted to the span
case. �

Finally, we can establish a contravariant functorial relationship be-
tween interpretations and functors between models.

Theorem 6.7.10. Let E be a topos and (Q,�,k,
∨
) an internal commutative

quantale. Let i : (Σ1,E1)→ (Σ2,E2) be a linear interpretation of signatures.
There is an identity on morphisms strict symmetric monoidal functor:

i∗ : Rellin
(Σ2,E2)(Q)→ Rellin

(Σ1,E1)(Q)

Sending each (Σ2,E2)-algebra to the corresponding (Σ1,E1)-algebra under
the interpretation. The assignment i 7→ i∗ extends to a contravariant functor.
i∗ commutes with graphs and converses, that is, the following diagrams
commute:

Alg(Σ2,E2)

Rellin
(Σ2,E2)(Q)

Alg(Σ1,E1)

Rellin
(Σ1,E1)(Q)

(−)◦ (−)◦

i∗

i∗

Rellin
(Σ2,E2)(Q)op

Rellin
(Σ2,E2)(Q)

Rellin
(Σ1,E1)(Q)op

Rellin
(Σ1,E1)(Q)

(−)◦ (−)◦

(i∗)op

i∗

The bottom functor in the first diagram is the obvious induced functor be-
tween categories of algebras. Similar results hold for affine, relevant and
cartesian interpretations and relations.

Proof. An object of Rellin
(Σ2,E2)(Q) is written as 〈A,σj〉, where A is an

object of E and the σj are morphisms An → A in bijective correspon-
dence with the operations in Σ2, agreeing with them on arities, and
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such that they satisfy the equations in E2 (these equations are just
commutative diagrams between the above mentioned morphisms).
The linear (affine, relevant, cartesian) interpretation i maps every op-
eration in σ ′k ∈ Σ1 to a linear (affine, relevant cartesian) term i(σ ′k)

on Σ2, such that these terms satisfy the equations in E1. This means
that 〈A, i(σ ′k)〉 is an algebra of type (Σ1,E1).

The functor i∗ then acts as follows: It sends every algebra 〈A,σj〉 to
〈A, i(σ ′k)〉, and it is identity on morphisms (the fact that morphisms
of Rellin

(Σ2,E2)(Q) are also morphisms of Rellin
(Σ1,E1)(Q) is a direct con-

sequence of Proposition 6.7.8). Functoriality then holds trivially being
i∗ identity on morphisms. Noting that i∗ and î are identity on mor-
phisms and they act on the same way on objects, whereas converse
and graph are instead identity on objects, commutativity of i∗ with
converse and graphs holds trivially. �

A similar contravariant functorial relationship holds between inter-
pretations and functors between span-based models.

Theorem 6.7.11. Let E be a topos and (Q,�,k,6) an internal partially
ordered commutative monoid. Let i : (Σ1,E1) → (Σ2,E2) be a linear inter-
pretation of signatures. There is an identity on morphisms strict monoidal
functor:

i∗ : Spanlin
(Σ2,E2)(Q)→ Spanlin

(Σ1,E1)(Q)

Sending each (Σ2,E2)-algebra to the corresponding (Σ1,E1)-algebra under
the interpretation. The assignment i 7→ i∗ extends to a contravariant functor.
i∗ commutes with graphs and converses, that is, the following diagrams
commute:

Alg(Σ2,E2)

Spanlin
(Σ2,E2)(Q)

Alg(Σ1,E1)

Spanlin
(Σ1,E1)(Q)

(−)◦ (−)◦

i∗

i∗

Spanlin
(Σ2,E2)(Q)op

Spanlin
(Σ2,E2)(Q)

Spanlin
(Σ1,E1)(Q)op

Spanlin
(Σ1,E1)(Q)

(−)◦ (−)◦

(i∗)op

i∗

The bottom functor in the first diagram is the obvious induced functor be-
tween categories of algebras. Similar results hold for affine, relevant and
cartesian interpretations and relations.

The extensional collapse functor of Section 6.5 also respects our dif-
ferent classes of spans and relations.

Proposition 6.7.12. Let E be a topos, (Σ,E) a variety in E and (Q,�,k,
∨
)

an internal commutative quantale. The functor of Theorem 6.5.1 maps lin-
ear (affine, relevant, cartesian) algebraic Q-spans to linear (affine, relevant,
cartesian) algebraic Q-relations.
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Now we briefly discuss some examples.

Example 6.7.13. For any signature (Σ,E) there is a trivial linear in-
terpretation (∅, ∅) → (Σ,E). We therefore have, for every choice of
internal quantale Q, strict symmetric monoidal forgetful functors:

Rel(Σ,E)(Q)→ Rel(∅,∅)(Q)

Span(Σ,E)(Q)→ Span(∅,∅)(Q)

Hence the category of Q-relations on sets is the terminal object in the
category that has categories of algebraic Q-relations as objects and
functors induced by algebraic interpretations between them as mor-
phisms.

Example 6.7.14. We can present real vector spaces by a signature with
a constant element representing the origin, and a family of binary
mixing operations, indexed by the scalars involved, satisfying suit-
able equations. We denote this signature as Linear. It is easy to prove
that there is an interpretation Convex→ Linear. For any commutative
quantale Q, this interpretation induces a functor:

RelLinear(Q)→ RelConvex(Q)

So, as we would expect, we can find the vector spaces in the convex
algebras, in a manner respecting all the relevant categorical structure.

Example 6.7.15. An affine join semilattice is a set with an associative,
commutative, idempotent binary operation. From an information the-
oretic perspective, we think of convex algebras as describing proba-
bilistic ambiguity. Affine join semilattices can then be thought of as
modelling unquantified ambiguity. As proved in Chapter 4, if we de-
note the signature for affine join semilattices as Affine there is an
interpretation Convex→ Affine inducing a functor:

RelAffine(Q)→ RelConvex(Q)

Relating these two different models of epistemic phenomena. This
exhibits another interesting subcategory of ConvexRel.

6.8 changing topos

We now explore the last axis of variation, the topos structure. We
would expect that, if E and F are elementary toposes, given a suitable
functor L : E → F it would be possible to lift it to a functor between
their respective relation and span constructions. Since the definitions
of these categories make wide use of the internal language, it should
not be surprising that by “suitable” we actually mean that L behaves
well with respect to the logical properties of E,F.
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Definition 6.8.1. Given toposes E,F, a functor L : E → F is called
logical7 if:

• L preserves products;

• L preserves exponentials;

• L preserves the subobject classifier.

Logical functors are the right functors to consider, since they preserve
the validity of internal formulas: If |= φ in E, then |= Lφ in F for every
formula φ written in the language of first order intuitionistic logic.

To make the following results more readable, we will have to slightly
refine our notation, writing RelE(Σ,E)(Q) and SpanE

Σ,E(Q) to explicitly
indicate that the constructions are performed on topos E. If L : E→ F

is a logical functor and Q is an internal quantale in E, then the fact
that L preserves models of first order intuitionistic theories implies
that LQ is an internal quantale in F. It makes sense, then, to consider
how RelE(Σ,E)(Q) and RelF(Σ,E)(LQ) are related. The main result of the
section is the following:

Theorem 6.8.2. Let E,F be toposes, and L : E → F be a logical functor.
Let (Q,�,k,

∨
) be an internal commutative quantale in E and (Σ,E) be a

signature. There is a symmetric monoidal functor:

L∗ : RelE(Σ,E)(Q)→ RelF(Σ,E)(LQ)

The assignment L 7→ L∗ is functorial.

Proof. The proof heavily relies on the fact that logical morphisms pre-
serve models of logical theories: We know that, if T is a logical theory,
a logical functor L : E → F preserves every interpretation (that is,
every model), of T in E. This is because an interpretation of T in E

assigns to every term and formula its correspondent in the Mitchell-
Bérnabou internal language: Every type is interpreted in a product of
objects, and every constant into a morphism of E. The axioms corre-
spond, finally, to commutative diagrams in E. Since these diagrams in-
volve only limits, exponentials and subobject classifiers, they are pre-
served by L up to isomorphism. This means that the image through L
of objects and morphisms that constitute a model of T in E is a model
of T in F. The idea is then to state our definition of composition and
identity of RelE(Σ,E)(Q) in terms of logical theories: In this case the
composition and the identity of two algebra-preserving relations will
be just a model of this theory in E, and will hence be preserved by

7 Note that another definition of functor that may be worth consider here is the one of
geometric morphism. We used logical functors because we are dealing with elementary
toposes and we care about the preservation of intuitionistic first-order formulas. Ge-
ometric functors, instead, preserve geometric theories that are a completely different
beast, and are widely used in the framework of Grothendiek toposes. Note moreover
that every Grothendiek topos is an elementary topos, but the opposite is not true.
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L. The images through L of our relations will then still satisfy our
definition of composition in the internal language of F, guaranteeing
that L(R ◦ S)(a, c) =

∨
b{LR(a,b)� LS(b, c)} = (LR ◦ LS)(a, c). From

this, we can define L∗ : RelE(Σ,E)(Q)→ RelF(Σ,E)(LQ) as follows:

• On objects, L∗(A) = L(A);

• On morphisms, denoting with κ the canonical isomorphism
from LA× LB to L(A×B),

L∗(R) = LA× LB κ−→ L(A×B) LR−−→ LQ

Now we have to state what our composition is in terms of logical
theories. Given a signature (Σ,E), we can define a logical theory

T = (A,B,C,Q, {σAi }σi∈Σ,{σBi }σi∈Σ, {σCi }σi∈Σ,

�,
∨

,k, idB,RAB,RBC,RAC),

where

• For a given σi ∈ Σ of ariety ni,

– σAi is a constant of type AA
ni ;

– σBi is a constant of type BB
ni ;

– σCi is a constant of type CC
ni ;

• � is a constant of type QQ×Q;

•
∨

is a constant of type QPQ;

• k is a constant of type Q;

• idB is a constant of type QB×B;

• RAB,RBC,RCD are constants of type QA×B,QB×C,QA×C, re-
spectively.

We require this theory to satisfy the set of axioms :

{αidB , {αA}, {αB}, {αC}, {αQ}, {αRAB}, {αRBC},αcomp}

Where:

• {αA} is the set of axioms that makes 〈A, {σAi }σi∈Σ〉 into an alge-
bra of type (Σ,E);

• {αB} is the set of axioms that makes 〈B, {σBi }σi∈Σ〉 into an algebra
of type (Σ,E);

• {αC} is the set of axioms that makes 〈C, {σCi }σi∈Σ〉 into an alge-
bra of type (Σ,E);
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• {αQ} is the set of axioms that makes (Q,⊗,k,
∨
) into an internal

quantale;

• αidB is the axiom ∀b,b ′.idB(b,b ′) =
∨
{k | b = b ′};

• {αRAB} is the set of all the axioms, one for every σi ∈ Σ of ariety
n, of the form:

∀a1,...,an,b1...,bn

∨{

RAB(σ
A
i (a1, . . . ,an),σBi (b1, . . . ,bn)),

n⊙
j=1

R(aj,bj)

}
=

= RAB(σ
A
i (a1, . . . ,an),σBi (b1, . . . ,bn))

(Note that in this setting to use the quantale order relation we
have to write explicitly what it is. The axiom above is nothing
but the algebra preservation axiom for RAB written explicitly
using the algebraic lattice structure);

• {αRBC} is the set of all the axioms, one for every σi ∈ Σ of ariety
n,of the form:

∀b1...,bn,c1,...,cn

∨{

RBC(σ
B
i (b1, . . . ,bn),σCi (c1, . . . , cn)),

n⊙
j=1

R(bj, cj)

}
=

= RBC(σ
B
i (b1, . . . ,bn),σCi (c1, . . . , cn))

• Finally, αcomp is the axiom:

∀a, c.RAC(a, c) =
∨

{RAB(a,b)� RBC(b, c) | b ∈ B}

An interpretation of this theory in the topos E then consists of three
morphisms in E

RAB : A×B→ Q RBC : B×C→ Q RAC : A×C→ Q

Where the sets of axioms {αA}, {αB}, {αC} get interpreted into commu-
tative diagrams ensuring that A,B,C are algebras of signature (Σ,E),
respectively, while {αRAB}, {αRBC} guarantee that RAB and RBC respect
the usual algebraic condition. {αQ} gets interpreted into diagrams en-
suring that Q is an internal quantale and αcomp guarantees that RAC
is exactly the composition of relations RAB,RBC in RelE(Σ,E)(Q). �

As in the previous cases, graph and converse functors are preserved.
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Proposition 6.8.3. With the same assumptions, the induced functor L∗ of
Theorem 6.8.2 commutes with graphs and converses. That is, the following
diagrams commute:

AlgE(Σ,E)

RelE(Σ,E)(Q)

AlgF(Σ,E)

RelF(Σ,E)(LQ)

(−)◦ (−)◦

L

L∗

RelE(Σ,E)(Q)op

RelE(Σ,E)(Q)

RelF(Σ,E)(LQ)op

RelF(Σ,E)(LQ)

(−)◦ (−)◦

(L∗)op

L∗

As with relations, morphisms between toposes extend functorially to
morphisms between spans.

Theorem 6.8.4. Let E,F be toposes, and L : E → F be a logical functor.
Let (Q,�,k,6) be an internal partially ordered commutative monoid in E

and (Σ,E) be a signature. There is a symmetric monoidal functor:

L∗ : SpanE
(Σ,E)(Q)→ SpanF

(Σ,E)(LQ)

The assignment L 7→ L∗ is functorial.

Proof. Here the same considerations used to prove Theorem 6.8.2
hold. Given a signature (Σ,E), the logical theory we use is:

T = (X,A,B,Q, {σAi }σi∈Σ, {σBi }σi∈Σ, f,g,χ,�,6,k)

Where:

• For a given σi ∈ Σ of ariety ni,

– σAi is a constant of type AA
ni ;

– σBi is a constant of type BB
ni ;

– σCi is a constant of type CC
ni ;

• f,g,χ are constants of type XA,XB,XQ", respectively;

• � is a constant of type QQ×Q;

• 6 is a constant of type ΩQ×Q;

• k is a constant of type Q;

We require this theory to satisfy the set of axioms:

{{αA}, {αB}, {αC}, {αQ}, {αX}}
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• {αA} is the set of axioms that makes 〈A, {σAi }σi∈Σ〉 into an alge-
bra of type (Σ,E);

• {αB} is the set of axioms that makes 〈B, {σBi }σi∈Σ〉 into an algebra
of type (Σ,E);

• {αC} is the set of axioms that makes 〈C, {σCi }σi∈Σ〉 into an alge-
bra of type (Σ,E);

• {αQ} is the set of axioms that makes (Q,�,k,6) into an internal
partially ordered monoid;

• {αX} is the set of axioms, one for every σ ∈ Σ of ariety n, of the
form:

∀x1,...,xn∃x.f(x) = σAi (f(x1), . . . , f(xn)∧

∧
(
g(x) = σBi (g(x1), . . . ,g(xn)

)
∧

∧

n⊙
j=1

χ(xj) 6 χ(x)

A model of T in E is just a span that respects the algebraic structure
and we know that L preserves this condition. L∗ then agrees with L on
objects and is defined as (LX,Lf,Lg,Lχ) on the morphism (X, f,g,χ).
For composition and identity we do not need to invoke any logical
theory: The identity span is of the form (X, 1X, 1X,χk), and the span
part is clearly preserved because functors preserve identities in gen-
eral. The quantale part χk is the morphism A → 1 → Q where the
final arrow sends the terminal object to the quantale unit. Again, be-
ing L logical this is trivially preserved. For composition, note that the
span part is composed via pullbacks and L preserves limits. For the
quantale part we have, supposing (Z,h,k, ζ) to be the composite of
(X, f,g,χ) and (Y, f ′,g ′,υ),

LZ L(X× Y) L(Q×Q) L(Q)

LX× LY LQ× LQ

L〈p1,p2〉

〈Lp1,Lp2〉

L(χ× υ)

Lχ× Lυ

L(�)

�iso iso

Where p1,p2 are the pullback projections. The top row is the image
of ζ through L. The triangle on the left and the square on the cen-
ter commute because L preserves limits, while the triangle on the
right commutes because every partially ordered monoid is obviously
a model of a theory, so the multiplication of Q gets carried in the mul-
tiplication of LQ. Moreover, since L trivially preserves isomorphisms,
we can be sure that isomorphic spans get carried to isomorphic spans,
hence our correspondence doesn’t depend on the choice of represen-
tatives. �
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The essential structure is again respected by the induced functors.

Proposition 6.8.5. With the same assumptions, the induced functor L∗ of
Theorem 6.8.4 commutes with graphs and converses. That is, the following
diagrams commute:

AlgE(Σ,E)

SpanE
(Σ,E)(Q)

AlgF(Σ,E)

SpanF
(Σ,E)(LQ)

(−)◦ (−)◦

L

L∗

SpanE
(Σ,E)(Q)op

SpanE
(Σ,E)(Q)

SpanF
(Σ,E)(LQ)op

SpanF
(Σ,E)(LQ)

(−)◦ (−)◦

(L∗)op

L∗

Example 6.8.6. Given any category C we can form a corresponding
presheaf category, having representable functors from C to Set as ob-
jects and natural transformations as morphisms. Presheaves consti-
tute one of the most important examples of toposes, and it makes
sense to ask how Theorems 6.8.2, 6.8.4 behave in these circumstances.

In general, given arbitrary categories C,D it is difficult to say when
a functor F : C → D lifts to a logical functor between the correspond-
ing presheaves. Nevertheless, the following result holds: If C,D are
groupoids (categories in which every arrow is an isomorphism), then
any functor F : C → D lifts to a logical functor F̄ between presheaves.
This is because truth values in presheaf toposes are defined in terms
of sieves (subfunctors of the homset functor) and these sieves trivialize
when the only arrows at our disposal are isos. This in turn trivializes
the structure of truth values in the presheaf itself, that ends up to be
defined pointwise from Set.

Theorems 6.8.2, 6.8.4 then ensure that F̄ can be lifted to the rela-
tional and span structures built on SetC and SetD, respectively.

Example 6.8.7. If E is a topos, and f : I → J is a morphism of E,
then pulling back along f induces a logical functor F : E/J → E/I.
Theorem 6.8.2 guarantees the existence of a functor:

F∗ : RelE/J(Σ,E)(Q)→ RelE/I(Σ,E)(FQ)

In particular, this means that there is always a functor:

F∗ : RelE(Σ,E)(Q)→ RelE/I(Σ,E)(FQ)

where E/I is any slice topos of E.



106 algebraic q-relations and q-spans

6.9 independence of the axes of variation

Finally, we establish that our various induced functors between mod-
els are independent, in that they all commute with each other. Unfor-
tunately, the commutativity of the functors induced by interpretations
between algebras, order structure and quantale morphisms with L∗

will hold only up to isomorphism. This depends intrinsicly on the def-
inition of logical functor, that is, in turn, defined to preserve validity
of formulas in the internal language only up to natural isomorphism.

Theorem 6.9.1. Let E be a topos, h : Q1 → Q2 a morphism of internal
commutative quantales, i : (Σ1,E1) → (Σ2,E2) a linear interpretation and
L : E → F a logical functor. For the induced functors of Theorems 6.6.1,
6.6.3, 6.7.10, 6.7.11, 6.8.2 and 6.8.4, the following diagram commutes (be
aware that in the hypercube below commutative squares involving L∗ only
commute up to isomorphism. Other squares commute up to equality):

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

L∗

L∗

L∗

L∗

L∗

L∗

L∗
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Where the inner cube is:

Spanlin,E
(Σ2,E2)

(Q1) Spanlin,E
(Σ1,E1)

(Q1)

Spanlin,E
(Σ2,E2)

(Q2) Spanlin,E
(Σ1,E1)

(Q2)

Rellin,E
(Σ2,E2)

(Q1) Rellin,E
(Σ1,E1)

(Q1)

Rellin,E
(Σ2,E2)

(Q2) Rellin,E
(Σ1,E1)

(Q2)

i∗

i∗
h∗ h∗

i∗

i∗
h∗ h∗

And the outer cube is:

Spanlin,F
(Σ2,E2)

(LQ1) Spanlin,F
(Σ1,E1)

(LQ1)

Spanlin,F
(Σ2,E2)

(LQ2) Spanlin,F
(Σ1,E1)

(LQ2)

Rellin,F
(Σ2,E2)

(LQ1) Rellin,F
(Σ1,E1)

(LQ1)

Rellin,F
(Σ2,E2)

(LQ2) Rellin,F
(Σ1,E1)

(LQ2)

i∗

i∗
(Lh)∗ (Lh)∗

i∗

i∗
(Lh)∗ (Lh)∗

In both cases the vertical arrows are the functors of Theorem 6.5.1. Similar di-
agrams commute for affine, relevant and cartesian interpretations, relations
and spans.
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A disputandi subtilitate orationem
ad exempla traducimus.

— Cicero, Tusculanae Disputationes [101, Book III, 56]

Starting from our first conceptual spaces axiomatization of Chapter 3,
in Chapter 6 we broadly extended our original model along four dif-
ferent axes of variation. We can now tweak the algebraic structure that
was at the base of our definition of convexity, generalize the structure
of truth values going beyond simple binary dichotomies and account
for proof witnesses when establishing a relation between convex sets
is not enough; lastly, we allowed for the use of different universes
of discourse in the choice of an arbitrary topos other than Set. Re-
markably, we were able to do all this saving the compact closed and
hypergraph structure, meaning that we still have our beautiful graph-
ical calculus made of cups, caps and multi-wires. Now we will elabo-
rate on these properties further, and will focus in particular on three
concepts:

• First of all, in Section 7.1 we will account for a construction
we anticipated in Chapter 6. Namely, we will use the order en-
richment to define internal monads on our models. We will
show how internal monads will give us things that look like
distances in the relational case and internal categories in the
span case [131]. This is probably the biggest contribution of this
chapter, since taking distances of concepts has always been one
of the most usueful features of conceptual spaces models based
on vector spaces. With internal monads, we are getting this fea-
ture in our model too.

• In Section 7.2 we will show how the span construction can be
used to model semantic ambiguity, with different proof wit-
nesses allowing us to vary how strongly different words are
related, depending on how they are interpreted;

• In Section 7.3 we will switch to other universes of discourse,
investigating which toposes could give us a base to model in-
teresting phenomena. In particular, we will focus on presheaf
toposes and we will show how, if the algebraic Q-relation con-
struction is difficult to use because internal quantales are much
less innocuous beasts than it may seem, on the other hand the

109
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algebraic Q-span construction behaves particularly well, allow-
ing us to formalize different arguments of interest in linguistics
and cognition, such as concepts varying over time or different
agents.

Since we already went through an awful lot of mathematics in the
last chapter, we will now try to proceed in a more grounded way by
means of examples, harvesting the fruits of our work.

7.1 metric and distances (finally)

Implementing metrics in a compact closed environment is tricky. The
standard approach one could think of is to start from categories of
metric spaces and considering relations over them. This approach is
however destined to fail quite soon since these categories are not reg-
ular, and we cannot employ the results in [77] to infer compact closed-
ness. Without any sugar, this means that the approach we used in the
previous chapters to define ConvexRel is deemed to fail on metric
spaces no matter what and that, in general, the “standard” categori-
fied idea of “taking distances” is not compatible with our idea of
categories admitting a diagrammatic calculus in terms of string dia-
grams. To solve this problem, we have to rely on different ways to
categorify the notion of distance.

Our idea is to introduce something that looks like a metric struc-
ture on categories of relations relying on the the broadened definition
of truth values that a relation can assume. This is directly compati-
ble with the direction of our work in Chapter 6: To put a metric on
Rel(Σ,E)(Q) the last thing we need is the bicategorical notion of inter-
nal monad.

Consider a category C enriched over Cat (the category of categories
and functors between them). In this setting, every homset of C is a
category, and so we can talk about “elements” of the homsets (ev-
ery morphism A → B in C is an object of HomC [A,B]). A category
enriched over Cat is usually called 2-category. We can further relax
our definition, requiring our composition to be associative only up
to isomorphism. What we get, then, is called a bicategory (for more
information, see [21]).

Remark 7.1.1. In this setting objects of C are usually called 0-cells,
while morphisms of C are called 1-cells. We will denote 0-cells with
capital letters and 1-cells as f : A → B, as we usually do. Now, since
for each A,B HomC [A,B] is itself a category, we can consider mor-
phisms of HomC [A,B], that are called 2-cells, and we will denote
them as h⇒ k.

When we have a bicategory, we can internalize the notion of monad,
as follows: We can identify categories with 0-cells, functors with 1-
cells and natural transformations with 2-cells. An internal monad on
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an object A is then just a 1-cell d : A → A together with 2-cells
η : idA ⇒ d, µ : (d ◦ d) ⇒ d such as the usual monad diagrams hold.
This prompts the following definition:

Definition 7.1.2. Given a bicategory C and an objectA of C, an internal
monad on A is a monoid in the monoidal category HomC [A,A] with
composition as tensor and identity as tensor unit. More information
about internal monads can be found in [139].

Now, note that both preordered sets and posets are special cases of
categories, so we can apply the concept of internal monad to our
setting. Being Rel(Σ,E)(Q) enriched over posets (Theorem 6.4.6), we
do not have much choice for our 2-cells: for every d either they exist,
and in this case there is exactly one couple of arrows η : idA ⇒ d

and µ : d ◦ d ⇒ d, for which the monad conditions will be satisfied
trivially, or they do not, in which case d is not an internal monad. In
our relational setting the internal monad condition then reads:

∀a,b.
∨

{k | a = b} 6 d(a,b)
∨
x

d(a, x)� d(x,b) 6 d(a,b) (9)

Recall now the quantales given in Example 6.0.2:

• The Boolean quantale is given by the two element complete Boolean
algebra B = {>,⊥}, with the join and multiplication given by the
join and meet in the Boolean algebra;

• The Lawvere quantale C is given by the chain [0,∞] of extended
positive reals with the reverse ordering, hence minima in [0,∞]

provide the joins of the quantale, and the monoid structure is
given by addition;

• The force quantale F has again the extended positive reals with
reverse order as its partial order, but now we use max as the
monoid multiplication;

• The interval quantale I is given by the ordered interval [0, 1] with
suprema as joins and minima as the monoid multiplication.

If we specialize the conditions (9) to Rel(Σ,E)(C) they are equivalent
to:

R(a,b) + R(b, c) > R(a, c), 0 = R(a,a)

Where the ordering, the + and the 0 are the usual ones for real num-
bers. Using the Lawvere quantale, then, the condition of being an
internal monad is equivalent to the condition of being a (non neces-
sarily symmetric) distance. We therefore consider these internal mon-
ads as describing generalized metric spaces. This observation is impor-
tant in the field of monoidal topology [79]. Similarly, if we consider
Rel(Σ,E)(F) the conditions (9) become:

max(R(a,b),R(b, c)) > R(a, c), 0 = R(a,a)
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and we can therefore see such internal monads as generalized ultramet-
ric spaces.

So we see that, in some nice cases, internal monads end up being
distances describing some (kind of) metric spaces. An interpretation
of what these distances represent, that at the moment we still lack,
will be inevitably linked to the interpretation we give to our truth
values. In fact, all the quantales hereby considered happen to be the
sensible choice to model a different class of phenomena:

Example 7.1.3. The relations over the Lawvere quantale C can be
thought of as describing costs [93]. The value R(a,b) describes the
cost of converting a into b. A cost of 0 means a and b are maximally
related and can be freely interconverted. A cost of ∞ indicates com-
pletely unrelated elements, that cannot be converted between each
other for any finite cost. The value (S ◦R)(a, c) describes the cheapest
added cost of converting a into some b, and then converting that b
into c. If we perform two conversions in parallel, (R� R ′)(a,a ′,b,b ′)
describes the sum of the two individual conversion costs.

With regard to the algebraic structure, consider the operations σi
in the algebraic signature as means of going from raw materials or
quantities a1,a2, . . . an to a processed product σi(a1, . . . ,an). The In-
equation (7) in Definition 6.2.4 then states that the cost of converting
a processed product into another obtained by the same means but
different materials is smaller than the sum of the costs needed to con-
vert raw materials between them (post-conversion is somehow more
convenient than converting everything before).
In this setting, we can think of a state I→ A as giving a table of costs
for acquiring the resources in A, and similarly an effect A → I is a
table of costs for disposing of resources in A.

In the Lawvere quantale an internal monad d describes costs such
that:

• Converting a into itself (e.g. by doing nothing) is free;

• Converting a into b directly is cheaper than converting a into b
by means of an intermediate conversion to some other x.

Note that our definition of internal monad in a Lawvere quantale
is compatible with the usual definition of distance. This observation
is one of the key reasons why the Lawvere quantale is relevant in
monoidal topology.

Proposition 7.1.4. The usual distance on Rn defines an internal monad on
Rel(∅,∅)(C), where (∅, ∅) is the empty signature corresponding to just sets
as already showed in Example 6.7.13. Hence, the usual euclidean distance
defines an internal monad on the category of sets and C-relations.

Example 7.1.5. The quantale F has the same underlying set as the
Lawvere quantale, but its different algebraic structure leads to an-
other interpretation. We think of R(a,b) as the peak force required to
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move a to b [93]. The value given by the composite (S ◦ R)(a, c) then
describes the optimum peak force we will require to move a to c. To
better explain this, imagine the following scenario: Suppose you want
to move a to c and that you can perform this job in two different ways:
You can either move a to b and then b to c; or you can move a to b ′

and then b ′ to c. The peak force required to perform each of these
operations is as in the following table:

Movement Peak force required (in some fixed units)

a to b 1

a to b ′ 1.5

b to c 1.7

b ′ to c 0.3

Table 4: Peak force costs for movements between a,b,b ′, c.

The total peak force required to move a to c through b is then 1.7,
while moving a to c through b ′ requires a peak force of 1.5. Composi-
tion in Rel(Σ,E)(F) returns the the preferred alternative if we want to
minimize our peak effort, that would be the value 1.7 in the example
above. Similarly, the truth value (R� R ′)(a,a ′,b,b ′) gives the peak
force required to complete both conversions, assuming these costs
are independently incurred.

The Inequation (7) in Definition 6.2.4 can here be interpreted as
follows: σi ∈ Σ expresses some kind of relation a1, . . . ,an satisfy (e.g.
σi tells us all the aj are tied one with the other and must be moved
all together). Moving σi(a1, . . . ,an) to σi(b1, . . . ,bn) then requires a
peak force that is smaller than the sum of the peak forces required to
move every aj to bj separately.

In this setting internal monads describe relations such that:

• The peak force required to move a to a (that is, to do nothing)
is zero;

• The peak force needed to move a to b is less than moving a to x
first and then x to b (a direct path is always the most convenient
one).

As with Example 7.1.3, we can think of states and effects as tables of
acquisition and elimination forces.

Example 7.1.6. We can interpret ordinary relations over the Boolean
quantale as modelling connectivity. R(a,b) tells us that a is connected
to b, composition tells us that we can chain connections together, and
the tensor product tells us that we can connect pairs of elements
together using a pair of connections between their components. In-
equation (7) in Definition 6.2.4 says that if elements are connected
so are operations between them. Generalizing to the interval quan-
tale, we now think of R(a,b) as “connection strength” between a
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and b. The composite (S ◦ R)(a, c) gives the best connection quality
that we can achieve in two steps via B. Similarly, the parallel com-
posite (R� R ′)(a,a ′,b,b ′) gives a conservative judgment of the con-
nection quality we can achieve simultaneously between both a and b
and a ′ and b ′ as the lower of the two individual connection strengths.
With respect to the algebraic structure we have that the strength of the
connection between operations performed between objects is at least
as strong as the minimum connection strength between the objects
themselves.

In this setting internal monads describe relations such that:

• a is always connected to itself with maximum strength;

• A direct connection between a and b is always stronger than
connecting a and b my means of some other x: Bouncing the
signal through intermediate stations may cause losses.

States describe the “transmission strength” with which signals enter
the system from the environment, and effects describe the “reception
quality” when consuming output signals.

Alternatively, we could view relations over I as fuzzy relations:
States and effects are sets with fuzzy membership, morphisms are
fuzzy predicates. Graded membership is widely used in cognitive sci-
ence, for example in [20, 49, 73, 74, 130]. Concepts such as “tall” have
no crisp boundary and are better modelled using grades of member-
ship. Although human concept use does not obey fuzzy logic [119],
fuzzy relations may prove useful.

In each of these cases, clearly, internal monads are also algebraic Q-
relations, and hence respect the algebraic structure of the objects they
act on.

We already proved in Chapter 6 that every quantale homomor-
phism h : Q1 → Q2 induces a strict monoidal functor from Rel(Σ,E)(Q1)

to Rel(Σ,E)(Q2) (Theorem 6.6.1). It is moreover easy to prove that:

Proposition 7.1.7. If h : Q1 → Q2 is an injective quantale morphism (in
Set), the induced strict monoidal functor h∗ : Rel(Σ,E)(Q1)→ Rel(Σ,E)(Q)

is faithful.

We put together this simple proposition with Example 6.6.2, special-
izing it to the case Q is the Lawvere quantale C.

Proposition 7.1.8. There is a quantale homomorphism from the Boolean
quantale B to the Lawvere quantale L given by:

⊥ 7→∞ > 7→ 0 (10)

The quantale homomorphism in (10) is clearly injective, and hence
the category of ordinary binary relations over sets can be seen as a
subcategory of Rel(∅,∅)(C).
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Now remember that Rel(∅,∅)(B) is just Rel. A state I → X in Rel is
clearly a subset of X. We can then consider two subsets U,V of X and
express them as two states U,V : I → X. Applying the converse and
composing, V◦ ◦U is a relation I → I. By definition, the monoidal
unit comes from the underlying terminal object in Set and hence it
is just the singleton set {∗}. The relation V◦ ◦U then evaluates to 1
if U,V have non-empty intersection and 0 otherwise and acts as a
rudimental definition of distance between sets or, to be more precise,
as a “separation test”. Seeing Rel as a subcategory of Rel(∅,∅)(C) as
we pointed out above, we can put our internal monads to good use
hugely refining this consideration:

Proposition 7.1.9. If U,V ⊆ X and d is an internal monad in Rel(C), the
composite V◦ ◦ d ◦U is the infimum of the distances between elements in U
and V .

This gives us the greatest lower bound on the distances between ele-
ments in U and V , providing a finer grain measure of similarity than
can conventionally be achieved in relational models. Keep in mind
that V◦ ◦d◦U gives us the infimum of the distances between elements
in U and V according to d, and since d is not required to be symmet-
ric, U◦ ◦d ◦V may give a different measure of similarity. Asymmetric
measures of distance are not at all a bad thing, instead they are quite
relevant when it comes to applications in cognitive science. A fun-
damental concept in psychology is that of similarity, which can be
used as the basis of concept formation. Similarity between objects or
concepts can be explained by locating objects in some sort of concep-
tual or feature space, modelling similarity as a function of distance,
for example as in [137]. However, judgements of similarity are not
necessarily symmetric [141]: In one study examining the similarity
between pairs of countries, participants are asked to choose between
statements ‘Country A is similar to country B’ or ‘Country B is simi-
lar to country A’. In all cases, a majority of participants preferred the
statement where the latter country was considered more prominent.

Everything we said can be promptly generalized to algebraic C-
relations, and we obtain:

Corollary 7.1.10. If U,V ⊆ X and d is an internal monad in Rel(Σ,E)(C),
the composite V◦ ◦ d ◦U is the infimum of the distances between elements
in U and V .

In particular, if we see RelConvex(B) as a subcategory of RelConvex(C)

we are finally able to measure distances between convex sets! The
distances we pick can be rather exotic, but also the standard, familiar
ones can be used. In fact,

Proposition 7.1.11. The euclidean distance on Rn respects convexity.

So one can measure the distance between convex sets also according
to our naive geometrical intuition.
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Internal monads are defined on objects, but what happens if our
objects can be decomposed as a tensor of other objects in the category?
Stating it differently, if we have an internal monad on every object Xi
for a finite number of i, can these internal monads be lifted to an
internal monad on

⊗
i Xi? This is particularly relevant for us since

in Chapter 5 we defined the noun space as a big tensor of smaller
domain spaces. We have an intuitive notion of distance for some of
these domains, but we have no real clue of how distance between
nouns could be measured. Luckily,

Proposition 7.1.12. Let X1, . . . ,Xn be objects of Rel(Σ,E)(Q) such that we
can choose an internal monad di for every Xi. Then d1 ⊗ . . .⊗ dn is an
internal monad on X1 ⊗ . . .⊗Xn.

Example 7.1.13. Now we can use these results starting from the ex-
amples in Chapter 5. A noun in the food and drink example of sub-
Section 5.1.1 was expressed as a subset of the tensor product Ncolour⊗
Ntaste ⊗Ntexture. Ncolour is just [0, 1]3, on which we can consider the re-
striction of the euclidean distance in R3, call it dcolour. Similarly, Ntaste

is just the 4-dimensional simplex, and we can take dtaste to be the re-
striction of the euclidean distance in R4. Finally, we take dtexture to be
the euclidean distance on R restricted to [0, 1].
Now recall that (Figure 8 may help):

banana = {(R,G,B)|(0.9R 6 G 6 1.5R), (R > 0.3), (B 6 0.1)}×
×Cl({sweet, 0.25sweet + 0.75bitter, 0.7sweet + 0.3sour})× [0.2, 0.5]

apple = {(R,G,B)|R− 0.7 6 G 6 R+ 0.7), (G > 1− R), (B 6 0.1)}×
× [0.5, 1]×Cl({sweet, 0.75sweet + 0.25bitter, 0.3sweet + 0.7sour})× [0.5, 0.8]

beer = {(R,G,B)|(0.5R 6 G 6 R), (G 6 1.5− 0.8R), (B 6 0.1)}×
×Cl({bitter, 0.7sweet + 0.3bitter, 0.6sour + 0.4bitter})× [0, 0.01]

First things first, via the equivalence between the categories ConvexRel
and Rel(Convex)(B) and the injective quantale homomorphism B→ C
we consider ConvexRel as a subcategory of Rel(Convex)(C).
dcolour, dtaste and dtexture are internal monads of Rel(Convex)(C) on

their underlying objects by Proposition 7.1.10, and hence also the
product dcolour⊗dtaste⊗dtexture is an internal monad onNcolour⊗Ntaste⊗
Ntexture by Proposition 7.1.12. Identifying banana, apple and beer by
their states, we can calculate now how distant these concepts are. Do-
ing

banana◦ ◦ (dcolour ⊗ dtaste ⊗ dtexture) ◦ apple

we get that the distance between banana and apple is 0: This is because
both these nouns can be completely yellow, and hence by Proposi-
tion 7.1.9 the distance between banana and apple in Ncolour is 0. Sim-
ilarly, the distance between them in Ntaste is again 0, because both
contain tsweet in the convex sets describing their tastes. Finally, both
contain 0.5 in their texture domain, and hence their distance is 0 also
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in the texture domain. Since the tensor product in Rel(Convex)(C) is
just addition of real numbers and 0 + 0 + 0 = 0, the total distance
between banana and apple is 0. On the contrary, doing

banana◦ ◦ (dcolour ⊗ dtaste ⊗ dtexture) ◦ beer

has a different outcome: The distances between these two nouns are
again 0 in the colour and taste domains, but the infimum of their dis-
tances in the texture domain is 0.5− 0.01 = 0.49. Hence the distance
between banana and beer amounts to be 0+ 0+ 0.49 = 0.49.

This measure of distance can look a bit bad, because it cannot really
distinguish between apple and banana, that surely are different things.
On the other hand, this could be taken as a measure of failure: The
distance between banana and apple is 0 because:

• Both a banana and an apple can have the same yellowish colour.
The texture of the colour may be different (spots, stains etc.),
but we are only considering the colour itself;

• Both a banana and an apple can have the same texture: A par-
ticularly ripe apple can be very creamy as a particularly unripe
banana can be quite hard;

• Apples and bananas taste differently, but it is very difficult to
express this difference only in terms of the fundamental tastes
(sweet, bitter, sour, salt). Again, the result is that according to
our model a banana and an apple may eventually taste the
same.

It is evident, then, that the real problem here is that our model is
not taking into account some feature that really distinguishes banana
and apple. On the other hand this is the case with banana and beer:
The distance between these two nouns is nonzero and this is due
to the evident difference in terms of consistence between them: No
matter how ripe a banana can be, its texture will never be as liquid as
beer is. When the distance between two nouns expressing intuitively
different concepts is 0, we can then conclude that we need to take
more parameters into account while casting our model.

This application of the euclidean distances prompts a final remark:

Remark 7.1.14. Given objects X1, . . . ,Xn and internal monads on them
d1, . . . ,dn, the internal monad d1 ⊗ . . .⊗ dn on X1 ⊗ . . .⊗ Xn may
be different from what we expect because it heavily depends on
the quantale of truth values we are considering. For instance, take
R2: Seeing it as R ⊗ R and denoting with dn the euclidean dis-
tance on Rn, we can consider the internal monads d2 and d1 ⊗ d1
on R2. It is easy to check that d2 , d1 ⊗ d1 in Rel(∅,∅)(C). In fact,
d2(a,b) =

√
(a1 − b1)2 + (a2 − b2)2, while (d1 ⊗ d1)(a,b) = (a1 −

b1) + (a2 − b2).
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M. Kelly

R. Street

G. Bird

B. Day

R. Blackwell
G. Lewis

T.G. Room

A. Horadon

A. Shannon

R. Ollerton

C. Pastro

M. Shum
S. Johnson

P. McCrudden
M. Weber

E. Panchadcharam
D. Chikhladze

D. Oury
T. Booker

C. Kachour
A. Campbell

Figure 11: The mathematical family tree.

We now provide an extended example of the application of relations
over generalized truth values.

Example 7.1.15 (Family Trees). We will assume our universe of dis-
course to be the “mathematical family tree” in Figure 11, built using
information about supervisor relationships freely available from the
mathematics genealogy project [46]. A vertical line represents a Super-
visor – PhD student relationship, with the supervisor in diagrammat-
ically higher position. For example, T. G. Room is the supervisor of A.
Horadon, Ross Street was supervised by both Room and Kelly, and
Kelly supervised five different students. We will define two individ-
uals to be “academic siblings” if they share one or more supervisors.
For example M. Shun and S. Johnson are academic siblings.

What makes this family tree interesting is that there are relation-
ships that rarely occur in ordinary genealogy trees. For instance, Bird
is both an academic sibling and a student of Street. In a real fam-
ily graph this would imply an unconventional relationship in which
Street is both a parent and sibling of Bird. Such possibilities make
the academic family tree an interesting set of relationships with non-
trivial structure.
We will freely borrow terms from genealogy, saying for instance that
Shum is the cousin of Shannon, or that Kelly is an ancestor of Weber.
We set the following goals:

• We want to use a relational model to give meaning to sentences
such as “Bird is a student of Kelly”;

• If we define other genealogical relationships such as “grand-
parent”, “cousin” or “ancestor” in the natural way, we expect
these definitions to coincide with the ones obtained composi-
tionally in our model. Ideally, “Kelly is a academic grandparent
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of Shum” and “Kelly is a supervisor of a supervisor of Shum”
should have the same meaning;

• We would like to express more complicated degrees of kinship,
such as “Blackwell is the second-degree academic cousin of Ho-
radon”, again in a purely compositional way;

• We want this process of defining complicated relations from
simpler ones to be scalable, such that it can be used on family
trees of arbitrary size.

We model the compositional structure of these relationships using a
very simple pregroup grammar, with only one basic type N denot-
ing nouns. In particular, our sentence type will simply be the pre-
group unit, meanings sentences will be interpreted as scalars 1 in
our monoidal category. This is a rather heterodox choice: Usually, the
sentence type is assumed to have non-trivial structure because we
are interested in comparing the meaning of a rich space of potential
sentences. In our setting however, it is not particularly interesting to
compare the sentences “Ralph is the brother of Mary” and “John is
the son of Mark”. Instead, what we would really like is to measure
how true the individual sentences are, ideally quantifying the degree
of kinship between the people involved. We can achieve this by cre-
atively varying our choice of truth values.

As sentence meanings are interpreted as numbers, they correspond
to a single truth value. If we choose B as quantale for truth values, in
the spirit of Montague there are only two possible choices, a sentence
is either true of false. Things will get more exciting once we move
to less conventional truth values, but we begin with some simple
examples.

Taking B as our quantale, we define the following relation on sets
pointwise in the obvious way:

C(x,y) = x is the academic child of y

C(x,y) is > if x is a child of y, and ⊥ otherwise. We can build many
interesting academic relationships out of the child relation C, for ex-
ample:

S = (C◦ ◦C) \ 1N the sibling relationship

P = C◦ the parent relationship

G = P ◦ P the grandparent relationship

K = P ◦ S ◦C the cousin relationship

Where 1N is the usual identity relation on our nouns, that can be
explicitly written as

1N(x,y) =

> if x = y

⊥ otherwise

1 Recall scalars are morphisms of type I→ I.
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We can interpret our various family tree relations as simple verbs,
as illustrated in Figure 12. We drew the sentence space as a dashed

R
NN I

Figure 12: Relations are interpreted as simple verbs.

wire, as it is actually the monoidal unit and it would not normally
be explicitly drawn according to our formalism. A simple graphical
calculation establishes that “Kelly is a parent of Street”, as follows:

Kelly

Street

C
C

StreetKelly
StreetPKelly

= = =>

Similar calculations show that “Shum is the cousin of Shannon”, whereas
“Shum is the cousin of Street” is false. More surprisingly, Pastro is his
own cousin!

So far, so good. We now move to more expressive truth values that
will allow us to quantify “how related” two individuals in the hierar-
chy are.

Definition 7.1.16. The step quantale N is given by the extended natural
numbers N∪ {∞} with the reverse ordering. Joins are minima and we
take addition as the monoid multiplication. This can be seen as a
discrete version of the Lawvere quantale L.

As expected, we now use Rel(N) as our semantics. In this case, we
re-define C as follows:

C(x,y) =

1 iff x is directly below y

∞ otherwise

We then define the parent, grandparent and cousin relations as we
did before. The sibling relation S is defined as P ◦C. It is easy to see
how our truth values represent the degree of kinship between our in-
dividuals: A parent-child relation between x and y can assume value
one or∞, depending if it is satisfied or not according to our tree. The
sibling relationship S can have value two or ∞: We are considering
being a sibling as a more distant relationship than parenthood. Al-
though slightly surprising at first sight, this observation makes sense
from an heraldry perspective, where the parent-child relationship is
considered to be stronger than that of siblings. If two individuals are
cousins, the degree of kinship will be 4, and so on. The strongest
degree of all, zero, can only be attained by the identity relation, cor-
responding to “being oneself”. Note how in this framework an indi-
vidual can be considered “their own sibling” but, in doing so, this
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relation will be satisfied only with value two, while considering an
individual as “oneself” attains value zero.

The impact of using the truth values in the quantale N is most
pronounced when we consider relations such as “ancestor” and “rel-
ative”. In order to do so, we extend the notion of transitive closure to
relations over a quantale. Firstly, we define for a relation F : X→ X:

F1 = F and Fn+1 = F ◦ Fn

The transitive closure can then be defined as the relation:

F(x,y) =
∨

{Fn(x,y) | n > 1}

The ancestor relation A is the transitive closure of the child relation C.
The value A(x,y) is lowest number of child relation “steps” from x

to y, returning∞ when x is not an ancestor of y.
The relative relation R is slightly more complex, we define it using
the transitive closure as follows:

R = P ∪C∪ 1N

R(x,y) is the shortest number of steps between x and y assuming
that we can travel in in either direction, and that we can always reach
ourselves in zero steps.

7.2 proof relevance

In Section 6.3 we interpreted spans as the proof-sensitive counterpart
of relations: A span not only tells us if two elements are related, but
also how related they are. Here we push further these investigations
and, to do this, we need to refine our notation a bit. We denoted
algebraic Q-spans as (X, f,g,χ), that stands for:

X Q

A B

f g

χ

This notation is wonderful when we want to talk about spans in ab-
stract terms to prove categorical properties, but it gets a bit in the
way when we need direct access to elements, for example to identify
“who-is-what” in practical applications as we want to do here. We
solve this problem using the notation Sqx(a,b) to refer to:

x χ(x) = q

f(x) = a g(x) = b
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that is, to say that elements a,b are related by x with strength q.
We moreover proved in Theorem 6.4.8 that also algebraic Q-spans

are enriched over preorders, that are again categories. It makes sense
then to ask what internal monads are in the algebraic Q-span case.
We have the following results: Specializing the definition of internal
monad to the span case, we get that an algebraic Q-span (X, f,g,χ) :
A→ A is an internal monad if:

(X, idX, idX,χk) ⊆ (X, f,g,χ)

(X×A X, f ◦ p1,g ◦ p2,� ◦ χ× χ ◦ 〈p1,p2〉) ⊆ (X, f,g,χ)

We recall that the order relation ⊆ is defined via a E-momorphism
that in order induces a monomorphism of algebraic Q-spans. This is
just a E morphism A→ X for the first line and some ϕ : X×A X→ X

for the second.
Using our new notation we can see how this acts on elements directly:

Skx(a,a) (11)

if Spx(a,b),Sqy(b, c) then ∃r : Sr6p�q
ϕ(x,y) (a, c)

As usual, now we try to understand what this means specializing the
definition to our canonical choices of quantales2:

Example 7.2.1. An internal monad on A in Span(C) is an C-span S :

A → A such that if Spx(a,b) and S
q
y(b, c) we can choose an ele-

ment ϕ(x,y) of the apex such that Srϕ(x,y)(a, c) and p+ q is greater
than r in the usual ordering on the real numbers. Furthermore, we
can do this in a way such that the assignment ϕ is injective.

Example 7.2.2. An internal monad on A in Span(F) is an F-span S :

A → A such that if Spx(a,b) and S
q
y(b, c) we can choose an ele-

ment ϕ(x,y) of the apex such that Srϕ(x,y)(a, c) and max(p,q) is
greater than r in the usual ordering on the real numbers. Further-
more, we can do this in a way such that the assignment ϕ is injective.

So internal C and F-span monads further generalize metric and ul-
trametric spaces to incorporate multiple possible distances, which we
can think of as describing different paths between points.

Example 7.2.3. Note that spans on the Boolean quantale do not make
much sense if we interpret the truth values of B as “connected/not
connected”. A proof witness already tells us that a couple of ele-
ments are connected, so what sense could something like S⊥x (a,b)
have? Things start making much more sense when we consider I, in-
terpreted as the fuzzy version of B.

2 Yes, we just need partially ordered monoids in the algebraic Q-spans case, but as a
matter of fact the four quantales we consistently used as a case study happen to be
the interesting ones also for spans. Clearly we do not rely on their completeness as
join-semilattices since the quantale join is never used when working with spans.
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An internal monad on A in Span(I) is an I-span S : A → A such
that if Spx(a,b) and Sqy(b, c) we can choose an element ϕ(x,y) of the
apex such that Srϕ(x,y)(a, c) and min(p,q) is smaller than r in the
usual ordering on the real numbers. Furthermore, we can do this in
a way such that the assignment ϕ is injective.

We now outline a new practical application of spans in models of
language.

Example 7.2.4 (Semantic Ambiguity via Spans). In natural language,
we often encounter ambiguous situations. For example the word “bank”
can refer to either a “river bank” or a “financial bank”. A compo-
sitional account of semantic ambiguity was presented in [122], us-
ing mathematical models of incomplete information from quantum
theory. The techniques applied implicitly assume meanings are built
upon a vector space model, to which we apply Selinger’s CPM con-
struction [135] to yield a new category of ambiguous meanings. When
it comes to relational semantics it makes sense to try to do the same,
but unfortunately on Rel the CPM construction does not provide the
needed results and hence is not a good way to treat semantic ambi-
guity [103].

Luckily enough, in the spans framework different proof witnesses
can tell us not only how much, but also how words are connected.
In our example, we can consider how the ambiguous word “bank” is
related to the word “water”, and provide different proof witnesses to
address different contexts:

• One proof witness stands for the “river bank” context, where
we would expect a strong relationship between “water” and
“bank”;

• Another proof witness stands for the “financial bank” context,
and in this case we would expect the connection between “wa-
ter” and “bank” to be much lower in intensity.

By choosing our quantale of truth values to be the Lawvere quan-
tale C, we can attach a different choice of distance to each of these
choices. As we compose spans to describe the meanings of phrases
and sentences, the proof witnesses will keep track of the different
possible relationships in play.

Example 7.2.5 (Proof Relevant Family Trees). We return to the family
tree Example 7.1.15, this time formalizing our semantics in Span(N).

The intuition for such a span (N
f←− X g−→ N,χ) is that an element x ∈ X

witnesses a path from f(x) to g(x) of length χ(x). For example, we
can introduce a span C describing the child relationship, admitting
a path from a to b of length 1 if and only if a is a child of b. The
parent span P is the converse of the child span, given by reversing
its legs. A composite of two spans encodes composites of compatible
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paths and the sum of their corresponding lengths. The sibling span
is the composite P ◦C, illustrated in Figure 13. If a and b are siblings,

a c b

c
a

c
b

a b

c

Figure 13: Interpretation of pullbacks as composition of paths.

they must have some common parent c, resulting in a length two
path a → c → b, as illustrated in Figure 13. If the pair a and b have
two different common parents, in contrast to the case of relations
where this information is lost, the composite span will record two
distinct paths between them.

Similarly, if we generalize the ancestor relation to a span, it would
witness every possible way of relating two members of the family
tree, and record the corresponding path length. In this way, we would
explicitly record that Bird is related to Kelly in two distinct ways,
directly in one step, and via Street in two steps.

Clearly, if one were to drop the definition of the span category in
terms of isomorphism classes of spans and go for a bicategorical for-
malization, we would be able to distinguish between actual paths: In
fact, more than reasoning with paths, at the moment we are reason-
ing with kinds of paths, that is, we consider two isomorphic paths to be
the same. This amounts to say that we are grouping group witnesses
in classes, and we are not considering them singularly. This more pre-
cise (and probably more satisfying) approach will surely be object of
future work, also because the formalization of spans is naturally bi-
categorical, and mathematically more pleasing, albeit more involved:
Categorically, modelling spans as bicategories just feels like the right
thing to do.

7.3 variable contexts

Finally we further explore our last axis of variation, namely the choice
of universe of discourse, represented by a topos. Following the con-
vention already introduced in Chapter 6 we will write RelE(Σ,E)(Q)

and SpanE
(Σ,E)(Q) for the categories of spans and relations, to make

the choice of topos E explicit. There are, obviously, some toposes
that are more interesting than others with respect to what we aim to
model, Set being probably the most evident example. But are there
other choice that it makes sense to consider? Well, if this were not the
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case all the hassle to formalize things in such general terms would
have been for nothing. The first natural alternative to take into con-
sideration is given by presheaf categories.

Definition 7.3.1. Let C be a small category. A presheaf on C is a functor
of type Cop → Set. Presheaves and natural transformations between
them form a topos, denoted SetC

op

. For presheaf X over a preorder,
we will write Xi for the set in the image under X of element i of the
preorder, and Xi,j for the image of j 6 i under X.

Presheaves are not only a logical, but also a conceptual direct general-
ization of sets since they can be interpreted as sets varying with context.
This is exactly the perspective we shall adopt in our examples. It is
useful to give a pictorial depiction of what presheaves are to make
our intuition more precise.

Example 7.3.2. (Trivial presheaf) The simplest case we can think about
is the one with C = 1, the category consisting of one object and one
identity arrow. We will denote the only object of 1 with •. Set1op

has
then as objects functors F : 1 → Set, that is, functors that pick one
object, namely F(•), in Set, along with their identity arrow. It is clear
that objects of Set1op

are just sets. Morphisms are natural transforma-
tions between such functors, that is, arrows that make this diagram
commute:

F(•) G(•)

F(•) G(•)
τ•

τ•

So, since F(•),G(•) are just sets and the commutative diagram is triv-
ial, the only requirement we are asking for is that τ• has to be a mor-
phism in Set, hence a function. This means that Set1op

is isomorphic
to Set as one would expect.

Example 7.3.3. (Multiple copies) This time, we pick C to be 1n, the
category with n objects in which the only morphisms are the identity
arrows for every object.

•1 •2 . . . •n

id•1 id•2 id•3

As one would expect, a functor from 1n
op

to Set just picks n different
sets, hence we can identify it with a sequence (X1, . . . ,Xn). A natural
transformation between two functors F,G is determined by functions
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τ•1 , . . . , τ•n such that the following diagram commutes, for every i
and f:

F(•i) G(•i)

F(•i) G(•i)

F(f)

τ•i

τ•i

G(f)

Note, however, that the only f allowed in the diagram above are iden-
tities, since 1n does not possess any other arrow. This means that,
again, the only requirement for every τ•i is to be a function. A nat-
ural transformation between F and G is then a set of functions such
that (X1, . . . Xn)

τ•1×···×τ•n−−−−−−−−→ (Y1, . . . , Yn), showing that Set1n
op

is just
Setn. We represent this pictorially as in Figure 14. In this figure, we
have three functors and two natural transformations between them.
Every sequence of images through a functor (eg. F(•1) . . . F(•n)) is an
object in Set1n

op

and every natural transformation (τ, as an instance)
is a morphism in Set1n

op

.

F(•1)

G(•1)

H(•1)

τ•1

θ•1

F(•2)

G(•2)

H(•2)

τ•1

θ•1

F(•n)

G(•n)

H(•n)

τ•1

θ•1

Figure 14: Morphisms in Set1n
op

.

Example 7.3.4. The straightforward generalisation of what we did is
considering presheaves on a little more complicated category, namely
· → ·. This category has two objects, again called •1 and •2, and three
morphisms, of which only one is non-trivial, the arrow •1 → •2 that
we will call f. The pictorial representation of a couple of morphisms
in Set(·→·)

op

is then just as in Figure 15, where the naturality of τ,σ
guarantees that the parallelograms in the picture commute. We can
interpret presheaves on (•1 → •2) as sets varying over time: •2 repre-
sents the state “before” while •1 the state “after”.

Example 7.3.5. Generalizing a little more, we consider presheaves on
(· → · → ·). In this case the non trivial arrows are three, the one
from •1 to •2 (call it f), the one from •2 to •3 (call it g) and their
composition, see again Figure 15.



7.3 variable contexts 127

F(•2)

G(•2)

H(•2)

τ•2

θ•2

F(•1)

G(•1)

H(•1)

τ•1

θ•1

F(f)

G(f)

H(f)

F(•3)

H(•3)

θ•3

τ•2

θ•2

F(•1)

G(•1)

H(•1)

τ•1

θ•1

F(g)

H(g)

F(f)

G(f)

H(f)

F(g ◦ f)

G(g ◦ f)

H(g ◦ f)

Figure 15: A couple of morphisms in Set(·→·)
op

and in Set(·→·→·)
op

,
respectively.

Now that we can visualize what a presheaf is we can go back to our
models. To continue, though, a question must be answered: How do
algebras, internal commutative partially ordered monoids and inter-
nal quantales look in a presheaf topos? Yes, from the point of view of
the internal language they look exactly as they do in Set, but this is
not what we need to put this stuff to good use! An object in a presheaf
topos is a functor C → Set, so what does it mean, for example, that
a given presheaf is an internal quantale? How do we put a quantale
structure on a functor?! The idea would be to select a presheaf that
somehow represents something we are interested in, such as a truth
values structure, and then prove that this is indeed an internal quan-
tale/commutative partially ordered monoid in the internal language,
allowing us to use it as we normally would in the Set case. Solving
this problem amounts to connect the internal and external description
of an object, and in general it is not an easy task: Working externally
or in the internal logic separatedly is manageable, but working with
both at the same time is a bit of a mess, since topos theory was in fact
conceived with the idea that “if you have the internal language you
work with it and forget about the external description of things”.

The most important result we will use here can be found in [84,
Theorem D1.2.14], and says that

Theorem 7.3.6. If T is a geometric theory, then the categories:

ModT([C
op, Set]) and [Cop, ModT(Set)]

Are isomorphic.

Where we used the alternative notation [Cop, Set] for SetC
op

. What
this theorem says is that if T is a “sufficiently well-behaved” theory
then a model of the theory in the presheaf category can be seen as a
presheaf on the models of T in Set. It doesn’t really matter what a
geometric theory is here, everything we have to know is that:

• Algebras on a finite signature (Σ,E) are geometric theories;

• Commutative partially ordered monoids are geometric theories;
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• Unfortunately, quantales are NOT geometric theories.

At least from the first couple of points above we can get an useful
corollary of Theorem 7.3.6:

Corollary 7.3.7. A commutative partially ordered monoid in a presheaf cat-
egory SetC

op

is a presheaf Q : Cop → Set such that for each C-object x and
C-morphism f, Q(x) is a commutative partially ordered monoid and Q(f) is
a commutative partially ordered monoid morphism in Set.

Similarly, an internal (Σ,E)-algebra in a presheaf category SetC
op

is a
presheaf A : Cop → Set such that for each C-object x and C-morphism f,
A(x) is a (Σ,E)-algebra and A(f) is a (Σ,E)-algebra homomorphism in Set.

. . . and hence we can model these objects in the presheaf simply as-
sembling them from Set. These ingredients are everything we need
to talk about algebraic Q-spans, while the relational case, because of
the quantale issues, will be trickier to study. For this reason we for
once break our tradition and approach the span case first.

Example 7.3.8 (Temporal dependence). In Example 7.2.4 we mod-
elled ambiguity using multiple proof witnesses to describe differ-
ent interpretations of words. We now investigate the description of
time-dependent ambiguous relationships, by exploiting spans over
presheaves. To do so, we consider presheaves over the partial or-
der N = 0 ← 1 ← 2 ← . . . having objects natural numbers. We
view these presheaves as sets varying in time. We assume our no-

tion of truth is fixed, and so we will consider SpanSetNop

(∅,∅) (C), where C
is the constant presheaf on the pomonoid underlying the Lawvere
quantale. A C-span between presheaves X and Y then consists of
natural transformations p1 : X ⇒ A and p2 : X ⇒ B, and a char-
acteristic natural transformation χ : X ⇒ C. We see naturality as a
consistency condition between the relationships described by proof
witnesses, as they move forward in time. As our pomonoid is con-
stant, χi(x) = χj(Xi,j(x)), so the truth value associated with a proof
witness must be preserved through time. Intuitively, in this model, a
steadily increasing collection of relationships hold over time: As time
increases, we can do at most two things:

• Add proof witnesses, to which arbitrary truth values can be
assigned (compatibly with our requirements for algebras);

• Collapse proof witnesses. We can collapse proof witnesses x,y
at time t to a unique proof witness z at time t+ 1 only if they
have the same truth value p. To do this, though, we must pay
attention to what happens to the elements connected by x,y.
What is required to happen can be easily represented in pic-
tures. Every square made of arrows in Figure 16 has to com-
mute, since a span in our setting is given in terms of natural
transformations and not just morphisms. The consequence of
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t

x

a
b

p
y

a ′
b ′

p
t+ 1

z

a ′′
b ′′

p

Figure 16: Collapsing proof witnesses. Every square of arrows has to
commute.

this is that if we collapse a couple of proof witness we have to
take care also of what happens to the elements they relate. In
Figure 16 collapsing x and y forces us to collapse the couples
a,a ′ and b,b ′ to common elements a ′′,b ′′ as time increases.

Example 7.3.9 (Perspective Dependence). In Example 7.3.8, the truth
object was fixed in all contexts. We now examine a brief example
in which our notion of truth is context-dependent. Consider two
agents. Agent 0 has a binary view of the world, relationships either
hold or they don’t. Agent 1 has a richer view incorporating differ-
ent strengths of relation in the unit interval. Consider presheaves on
the category C with a single non-trivial arrow 0 ← 1. We define an
internal pomonoid Q with Q(0) = B, Q(1) = I and Q0,1 the canoni-
cal pomonoid morphism between the Boolean and interval quantales.
Now if we consider a Q-span between constant presheaves A and B
with apex an arbitrary presheaf X, we can think of it as follows: Each
element of X0 relates two elements a ∈ A and b ∈ B with strength 0
or 1. The structure of X then forces that X1 contains a witness relating
those two elements with the same strength. As X1 encodes the views
of the more powerful agent, it may describe additional relationships,
now with strengths weighted in the interval [0, 1].

Example 7.3.10 (Belief hierarchy). The previous example can be also
interpreted under the light of belief revision. Consider SetC

op

; as we
already saw, if there is an arrow t→ t ′ in C, then given some arbitrary
span the presence of a proof witness at stage t ′ implies the presence
of a proof witness at stage t, in a way such that conditions that relate
their respective truth values hold. On the contrary, at stage t we can
add more proof witnesses in a way that is more or less independent
from what happens at t ′. If we use the span formalism to encode
beliefs (that is, in Srx(a,b) the parameter r represents how much an



130 things we can do - take ii

agent believes a,b are related by x), then we can use the presheaf
model to formalize how much a given belief is important for a given
agent. Having a,b related through x at stage t ′ is stronger that having
them related at stage t, since changing the way they are related at
stage t ′ (revising a belief) automatically implies that we have to revise
also at t.

If we want to consider algebraic Q-relations over an arbitrary topos
things are more delicate since internal quantales cannot be defined
pointwise. Nevertheless there are standard sources of internal com-
mutative quantales, for example:

• If C is a groupoid and Q is a commutative quantale in Set, then
Q can be lifted to an internal commutative quantale in SetC

op

(proof in A.0.3). A presheaf on a groupoid is somehow triv-
ial: It describes contexts that can be arranged into disconnected
blocks, while moving within a given block is a totally fluid op-
eration, being all the morphisms invertible;

• The subobject classifier Ω of a topos is an internal locale, and
therefore an internal commutative quantale. This is particularly
interesting since Ω represents internal truth values structure of
our underlying logic. Choosing Ω in our algebraic Q-relation
construction then is like choosing the booleans to construct re-
lations between sets: In the latter case, we are using “true” and
“false” as the only truth values, according to our intuition in
classical logic (on which set-theory is based). This seems to be
indeed a natural choice, that directly generalizes to Ω in the ar-

bitrary topos case: Using RelSetC
op

(Σ,E) (Ω) elements can be related
only as Ω prescribes, that is, according to the notion of truth
that comes with our choice of universe of discourse.

We conclude by establishing the relationship between our framework
of generalized relations and the standard notion of the category of
relations over a regular category. Given what we just said, it should
be unsurprising that this relationship will involve the internal locale
given by the subobject classifier.

Definition 7.3.11. A category C is regular if it is finitely complete,
every kernel pair has a coequalizer and regular epimorphisms are
stable under pullback.

There is standard construction of a category of relations Rel(C) on a
regular category C, see for Example [26]. For the category Set for ex-
ample, this construction recovers exactly the usual category of binary
relations. As we have been constructing categories of relations up to
this moment, it would be interesting to know how this relates to the
relations on a regular category. Every topos is regular, and in fact for
any algebraic theory (Σ,E), the category of internal (Σ,E)-algebras in
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a regular category [19], meaning we can consider the impact of alge-
braic structure. In fact, the resulting category of relations is equivalent
to the one produced by our construction with the subobject classifier
as the object of truth values.

Theorem 7.3.12. Let E be a topos,Ω its subobject classifier and (Σ,E) an al-
gebraic signature. The category RelE(Σ,E)(Ω) resulting from the algebraic Q-
relations construction is isomorphic to the category of internal relations over
the regular category of internal (Σ,E)-algebras in E.

In this way, we see that relations over suitable regular categories “in
the usual sense” are a special case of our construction.





Part III

D O W N S I D E S

Here we analyze the downsides of our model, drawing
considerations in particular from ancient and/or exotic
languages.





8
C O M P O S I T I O N A L I T Y I N M I D D L E E G Y P T I A N

Et manebant structis molibus litterae Aegyptiae
priorem opulentiam complexae.

— Tacitus, Annales [126, Book II, 60]

Since the moment we highlighted how, in categorical models of mean-
ing, the functorial link between grammar and semantics works, pre-
groups have been often taken for granted, given that they model
well many characteristic features of the English language (that is, of
course, the language on which research efforts are usually focused).
As we observed, less fortunate has been the semantic side of this
paradigm, and the effort to characterize meaning in the most differ-
ent ways, for instance trying to model traditionally “difficult” words
as pronouns or prepositions, has often resulted in the definition of
new compact closed categories to employ as semantics. This second
consideration is, obviously, what prompted the writing of the last
hundred-or-so pages.

If – as it is in our case – our main goal consists in having a bet-
ter understanding of how the mind works, we should then embrace
the cognitive point of view also with regard to the grammatical side
of our framework. In particular it makes sense to ask, hence, if pre-
groups represent a good model for grammars of any language and if
the way “wires are drawn in our heads” really follows pregroup-like
rules.

In this chapter we want to highlight how this is not the case for
languages with a high level of ambiguity that exhibit, nevertheless, a
high level of compositionality. If compositionality makes us think that
the categorical paradigm defined in the previous chapters could pro-
vide a good cognitive model of meaning, the continuous necessity to
disambiguate statements depending on context makes the now famil-
iar “pregroup→ semantics” approach difficult to adopt, for at least a
couple of reasons:

• At the moment, pregroup types represent grammatical entities
motivated from linguistic considerations. Types are defined to
represent nouns, adjectives and verbs, and these entities do not
originate from cognitive considerations. We will not be con-
cerned with this issue, utterly interesting per se, until the next
chapter. We may even suppose, at this point, that this is not a
real problem: One may argue, in fact, that even if our models
for language are based on cognition, we are still trying to assign

135
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meanings to linguistic entities, and for this reason a relation of
sort with grammar cannot be entirely superseeded by a cogni-
tive approach.

• Even if we were to agree with this consideration, a very big
problem remains, and is given by the fact that pregroup reduc-
tions are always linear: Given a string of types, we can only
reduce adjacent elements in the string. This amounts to say that
the wiring prescribed by pregroup reductions does not acco-
modate for wires that cross each other. If this a big but some-
how fixable problem in English, it becomes much worse for
highly non-linear languages, where having words referring to
each other scattered around, requiring consistent wire crossing,
is the norm. An application-oriented approach would not be
shattered at all by this consideration: English is the most used
language on the planet, hence the one that more than any other
needs to be modeled; highly non-linear languages, being totally
marginal for applications, do not constitute a problem on which
one wants to spend time to solve it. But as the goal of this doc-
ument is trying to model the way the mind works, we cannot
be excused: What we are doing should, at least in principle and
with good approximation, work for any language. The aim of
this chapter is to show that this is not the case.

The language we will consider as a case study is Middle Egyptian. We
will briefly describe some of its interesting features in the following
section. Then, we will point out where the real problems arise in
Section 8.2.

8.1 the egyptian language

The Egyptian language, commonly known as Hieroglyphic1, is an afro-
asiatic language used in ancient Egypt for more than four and a half
millennia. Its history is roughly divided in four phases: Old Egyptian
(3000 – 2135 B.C.E.), Middle Egyptian (divided itself into classical and
post-classical, 2135 – 2000 and 2000-1300 B.C.E. respectively), Late
Egyptian (1350 – 715 B.C.E.), Demotic (715 – 470 B.C.E.) and Coptic
(from 3rd to 16th centuries C.E, still spoken in a revived version by the
Coptic Church) [78]. In particular Middle Egyptian, the language we
will focus on in this paper, is considered to be the “classical” Egyptian
language, having defined a literary standard that lasted in the region
until the third century C.E. For this reason, it is often considered the
most interesting by Egyptologists.

Middle Egyptian used two writing scripts: Hieroglyphic, undoubt-
edly the most famous, was mainly used in stone inscriptions. Hieratic,

1 The word Hieroglyphic technically denotes one the scripts used to write Middle Egyp-
tian, and not the language itself.
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that will not be covered in this paper, was developed in parallel with
Hieroglyphic and is closely related to it. This was a cursive writing
system mainly used to write on papyrus, allowing scribes to save
the large amount of time needed to draw complex logograms. It is
believed that written Middle Egyptian resembled closely its spoken
form [78].

The most well known characteristics of Egyptian are the use of
logograms and the rebus principle. Logograms are symbols that repre-
sent words: For instance, (pronounced “pr”) stands for “house”,
and is in fact a stylized drawing of a houseplant. This system al-
lowed for an easy representation of simple concepts, but posed chal-
lenges when less concrete words, like prepositions or abstract nouns
as “justice”, “knowledge” etc. were to be written. The way Egyptian
deals with this issue is called rebus principle. Since vowels were basi-
cally not written, sounding-alike logograms (that is, logograms hav-
ing the same root consonants) were used in the written form. Provid-
ing some context, if (pronounced “r”) was the logogram standing
for “mouth”, it could also be used to represent the preposition “to”.
Usually, a stroke was added to the logogram to distinguish the logo-
graphic interpretation from the phonetic one. In this case, stands
for “mouth” and for the preposition “to”.

The rebus principle, though, was often not enough to represent
many concurring concepts having the same phonetic interpretation
without ambiguity. For this reason, semantic determinatives where
used. For example, if (pronounced “r↪”2) were the root consonants
appearing both in the words “Day” and “Ra”(the Egyptian solar god),
the two were written and (or equivalently ) respectively,
where is the determinative for things related to the sun and the
one used to denote gods and the like ( is the determinative explicitly
related to the god Ra). If one is acquainted with the theory of concep-
tual spaces, it could be argued that conceptual spaces are somehow al-
ready embedded in the language itself in the form of determinatives,
each one denoting in which category of though a group of phonemes
has to be mapped.

Middle Egyptian is, moreover, a highly non-inflected language. It
lacks cases and articles, possesses two genders (masculine and femi-
nine), three persons (singular, plural and dual, albeit the latter one is
quite rare to find in texts) and the verbal constructions are not many

2 There are very few cases in which we know the exact vowels composing the pro-
nunciation of a word, mainly due to transliterations in other languages: This often
happens with names of important people and places. Nearly always, though, we
can be sure only about the consonants. When this happens, an “e” is convention-
ally added between consonants to make the pronunciation easier: For example, ,
meaning “beautiful” and spelled “nfr”, is conventionally pronounced “nefer”. The
real pronunciation could nevertheless have been radically different, as in “nafar”. Re-
costructing pronunciation of words is a big area of research in the study of Egyptian
language.
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compared with the majority of European languages. For this reason,
word order is of the utmost importance for inferring the correct mean-
ing of sentences, in a very similar fashion to what happens in English
with transitive verbs: “John eats the lunch” and “The lunch eats John”
have quite different meanings. This behavior is though pushed to the
extreme, as we will shortly see. The fundamental order of the Egyp-
tian sentence3 is

(iw) + verb + subect [+ modifiers] + object [+ modifiers] +
complements + modifiers of the sentence

Here, the modifiers in square brackets refer to subject and object, re-
spectively. These can be adjectives or even entire sentences, and be-
have like adverbs. Complements are considered modifiers of the verb
itself, and go after the object. Finally, sentences related to the main
one are considered to be modifiers of the sentence itself. The general
rule is then that modifiers, let them be complements, specifications,
adjectives et cetera, get always postponed to the word they modify.
These consideration should highlight how Middle Egyptian is highly
compositional and, up to some extent, “regular” in the way it works.

We briefly mentioned the lack of inflection. This is particularly evi-
dent from the absence of a specific construction for comparatives and
superlatives: The formers are obtained with the use of the preposition

, meaning “in comparison to”:

(↪3 t
¯
sm·tn r t

¯
w)

This dog is bigger than you
Literally: Big [is] this dog in comparison to you

The latters are obtained recursively by means of a genitival construc-
tion. Something similar happens also in English in localized instances,
as in “King of kings” when used to denote a great ruler. For ex-
ample, if (pronounced “↪3”) means “big” (the book roll glyph
here is the determinative for abstract concepts), then “biggest” is just

(↪3 ↪3w), literally “big one of the big ones”. Here the
wave logogram between and its plural form, obtained using the
plurality symbol given by three vertical strokes, denotes a genitival
construction that gets translated with the preposition “of” in English.
A more articulated example that provides some context is the follow-
ing passage from the famous tale of the Eloquent Peasant [B53]:

(Imi-r pr wr, nb·i, wr n(y) wrw . . . )
High Steward, my lord, greatest of the greats. . .

Literally: High Steward, lord of mine, great one of [the] great ones. . .

3 Here, we are in particular referring to the most diffused word order in statements of
fact, to which subordinates are attached.
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A very interesting feature of the language is that many constructions
(the huge majority of them, to be honest) are adverbial in nature: Ad-
jectives for example, even if intended to be modifiers of the noun,
get stacked after it into an adverbial construction: In the previous ex-
ample, “my lord” is an adverb modifying “high steward”, and “this”
is an adverb modifying “dog”. Once one becomes familiar with this
way of reasoning, the uselessness of relative pronouns becomes clear
since relative sentences can be used as modifiers of the noun they
refer to. Consider, for instance, the following example, that is a sim-
plified version of a passage of the fourth story[6,26] in the Westcar
papyrus:

(iw rh·n·i nds hmsi·f m D
¯

d-Snfrw . . . )
I have learned of a commoner who lives in Djed-Snofru. . .

Literally: [Statement of fact:] I learned [of a] commoner, lives he in
Djed-Snofru. . .

In the very same way, this system is also applied to whole phrases,
where coordinate sentences are just modifiers of the principal one
and get stacked after it. As a result, the relation between sentences
is not explicit: One sentence just serves as a modifier for another.
It has to be noted that, in fact, Egyptian generally lacked words as
“and”, “or” and the like. This, along with the high propensity to
center-embedding and the lack of punctuation probably makes learn-
ing how to correctly distinguish one sentence from the other the most
difficult task for the translator.

8.2 problems

There are many problems arising when one tries to model Middle
Egyptian using the pregroup framework. Nouns, adjectives and verbs
roughly work as in English, so we will be quite brief about it: Nouns
will typically have type n, adjectives will have type nr · n since they
are postponed to the word they modify as we mentioned in Sec-
tion 8.1, while transitive and intransitive verbs will generally have
types s · nl · nl and s · nl respectively, since they are found at the
beginning of the sentence, in our case immediately following .

The particle is tricky: This is usually employed to denote a state-
ment of fact, and is found at the beginning of the sentence when it
serves this purpose. According to Gardiner though [71] this particle
is originally a verb, and can be modelled as sf · sl (it converts an
unspecified sentence into a statement of fact).

This is, alas, where the “easy part” ends. The following observa-
tions are the ones making Middle Egyptian so problematic as a lan-
guage:
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• There is a nearly-total absence of sentence coordination. Words
like and, or, because do exist, but are seldom used and, in fact,
in translation one has often to provide them to make the trans-
lated sentence understandable. This highlights how for Egyp-
tians correlation between sentences did not play a fundamental
role to assign meaning: Saying “I won’t go to the university (if,
because, since, ...) I am ill” was perfectly acceptable. The total
irrelevance of logical connectives in the language sounds incred-
ible for western researchers, considering how endowing mathe-
matical models with a decent interpretation of such words has
always been considered a central and very hard task by the
research community: Finding out that in some languages and
cultures people can’t be bothered at all even with representing
such words comes as a shock! This “we can’t be bothered at
all” attitude will assume frightening magnitude when we will
analyze peculiarities of the Pirahã language in Chapter 9. This
problem is particularly felt in categorical models of meaning,
where one doesn’t just rely on grammar but wants to actually
link grammatical meaning with a semantic meaning in some
category.

• The previous observation is worsened by the fact that Hiero-
glyphic script lacked any form of punctuation, and as we men-
tioned before coordination must essentially be guessed. This
makes the automatic assignment of meanings from a corpus
of text incredibly hard, since the pregroup grammar won’t have
any way to understand by itself when a sentence is finished and
another is starting. This is a common problem in many models
of grammar, and it is not limited to pregroups;

• Sentence order is not stable, since pronouns tend to stick to the
verb they refer to. For instance, even if the standard order is

+ verb + subect + object, this becomes + verb + object +
subject when the object is a pronoun and the subject is not. This
problem is particularly bad in models of grammar that rely on
a correspondence between words and types, where the types
depend on the position that the word has in the sentence. In
pregroup grammar this is surely the case;

• Meaning-assignment in Egyptian is highly non-linear, and works
backwards. Consider, for instance, the sentence in Figure 17. As
it stands, the following translations are all deemed as accept-
able:

relative The man that makes good things speaks.

fact The man says he makes good things.

fact The man said he made good things.

causal The mans speaks because he makes good things.
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(iw dd
¯

s ir·f nfr·t)
Literally: [Statement of fact:] says [or speaks] [the] man makes he good

[things]

Figure 17: An ambiguous sentence in Middle Egyptian.

temporal The man speaks while he makes good things.

conditional The man that will make good things will speak.

Here we can see three different levels of ambiguity acting at the
same time: First there is a lexical ambiguity, coming from the
fact that both the verbs “to speak” and “to say” are written in
the same way. Second, we do not know if the personal pronoun

refers to the man or stands as it is, referring to another per-
son not mentioned in the sentence. Finally, the Egyptian verbal
system doesn’t allow us to place this sentence into a definite
time: It could be in the past, in the present or in the future,
since the tense system is a relative one: Tenses are expressed
not in an absolute fashion, but in a relative one; it is possible to
understand if some part of the sentence is happening before, at
the same time or after some other part, but there is no way to
collocate the whole sentence in a temporal frame if an explicit
time reference is not given. For example, in the sentence:

(iw dd
¯

s ir·n·f nfr·t)
Literally: [Statement of fact:] says [or speaks] [the]man makes [past]

he good [things]

The verb “to make” has been put at the past tense using the

suffix , and the sentence may be translated as Having made
good things, the man spoke, as The man speaks because he made good
things, or as When the man will have made good things, he will speak.

Middle Egyptian dealt with this high number of degrees of free-
dom by means of context disambiguation. When one starts read-
ing, all the possible meanings of a sentence are assumed to be
valid, and ordered from the most to the least likely. As reading
progresses, some of these meanings are ruled out, until there
is enough certainty to assign one. One has hence to continu-
ously go backwards in the sentence to re-assign meanings to
the previous parts. Pregroups, as context-free grammars in gen-
eral, struggle quite a lot to cope with this level of ambiguity.

• Observing how the sentence structure is defined, it is clear that
in the wiring that defines the grammatical dependencies there
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are a lot of cups that will necessarily have to cross with each
other. If we assume than the man and he are the same person,
then the wiring of the sentence in Figure 17 should look like
this:

Fact: says man makes he good things

Unfortunately, as we said before, we are not allowed to form
such combinations in the pregroup model, in which reduction
rules force the cups not to intersect with each other. One way to
solve the problem would be tweaking with the type structure of
the word makes, changing it to nr · s ·nl ·nl ·n in which the two
outermost types are supposed to be connected by a cap in the
semantics, as follows:

makes
nr · s ·nl ·nl ·n

In this way the reduction is possible, and the only grammatical
one would be the one below:

Fact: says man makes he good things

This tweak is nevertheless very unsatisfactory, because the quan-
tity of different entries in the Lambek dictionary for even simple
words would balloon quickly, having to deal with all the possi-
ble scenarios in which two words that must be connected are
separated by one, two, ten words. Words like makes in our ex-
ample should have one entry in the dictionary for every kind of
context that may surround them, and this is clearly unfeasible.

At the moment, we have no real clue about how to deal with many
of these problems in the pregroup setting. There have been endeav-
ors to generalize the pregroup setting by means of logic modalities
(see, for instance, [50, 111]). Nevertheless, the introduction of modali-
ties could undermine the delicate functorial equilibrium that we have
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between grammar and semantics: Introducing modalities amounts to
change the logical system we are working in, and hence also the cat-
egorical models of the system may have to change accordingly. This
means that, while generalizing pregroups from a logical perspetive
can seem sound from the grammatical point of view, we could end
up loosing the functorial relationship between grammar and hype-
graph categories, and hence our ability to reason diagrammatically.
A similar argument can be given with respect to categorical gram-
mars: Albeit many categorical generalizations of Lambek’s work ex-
ist [112, 113, 115, 116], it is not immediately clear if these new category
representing grammar are directly compatible with our semantics by
means of a functorial relationship. Investigating these links will be
object of future work.

We will try, then, to discuss the above-mentioned issues keeping in
mind that the solution we seek has to be way less disruptive. We will
focus, in particular, on the issue of personal pronouns making some
observations, that are expressed below. Note that we won’t try to
solve this problem once and for all: what follows has to be interpreted
more as a base for future work than as a definitive solution.

The crucial ability to distinguish if a pronoun such as he stands
for its own or refers to some other noun in the sentence is mediated
by the ability to request additional grammatical information when
needed. In detail, we know that he is referring to a noun that is sin-
gular and masculine. Hence, when we see an occurence of he in a
sentence we go back and we “explode” the nouns we encounter un-
til we find one that meets our requirements (namely, it is masculine
and singular). At this point we decide that he stands for that noun,
connecting the two. We could try to model such behaviour with an
algorithmic procedure as follows:

Instead of simple types, we will consider towers of types, that is,
strings of finite length that we will typically write in a vertical fashion.
The bottom type represents the basic grammatical one, while going
up we have different levels of specification. For our example, we use
towers of length two. A noun in this setting may look like this:[

nsm

n

]
The bottom type tells us that this is a noun, while the top type tells us
that the noun is masculine singular. This may, for instance, represent
the man in the sentence of Figure 17.

In our setting verbs will have bottom type v · nl · nl and top type
1, since we do not need to specify any more information for the verb.
The pronoun he, on the contrary, has type:[

(nsm)r ·nsm
n

]
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This means that the pronoun acts as a noun in the sentence, but it is
referring to some other masculine singular noun that appears at some
point at its left. The sentence in Figure 17 is then typed as follows:[

1

sf · sl

]
·

[
1

s · sl ·nl

]
·

[
nsm

n

]
·

[
1

s ·nl ·nl

]
·

[
(nsm)r ·nsm

n

]
·

[
n
p
f

n

]
(12)

Where the verb (to say) has type s · sl · nl because it takes another
sentence as object. We are forced to type the verb in this way if we
want to avoid inserting coordination words like “that”, that as we
pointed out before are not natural in Middle Egyptian. The reduction
goes like this:

• We try to reduce the last row as we usually do with pregroups.
This reduction (called first reduction) gives us the meaning where
he stands on its own, and it is not connected to any other word
in the sentence. We draw all the cups corresponding to this re-
duction (Figure 18, in red), obtaining a result – grammatical or
not – in the standard sense (Figure 19a);

[
1

sf · sl

]
·
[

1

s · sl ·nl

]
·
[
nsm

n

]
·
[

1

s ·nl ·nl

]
·
[
(nsm)r ·nsm

n

]
·
[
n
p
f

n

]

Figure 18: Reductions using towers of types. In blue, first reduction.
In red, second reduction, drawn as caps for clarity.

• Then we have a second reduction. We look at the top row (we
“explode” the types): Every time a type with a (−)l appears,
we look for the closest matching type on the right. When (−)r

appears, we do the same on the left. If we can find one, we draw
a cap between these words. In the case of Equation 12, we see
that there is a (nsm)r in the type standing for he matching the
nsm in the type standing for the man; We draw cups between
these words (Figure 18, in blue);

• To finally obtain the correspondent second reduction, we have
to merge the caps at the bottom level with the ones at the top
one. This is done introducing oriented Frobenius structures (Fig-
ure 19b). The orientation is determined by the presence of ad-
junctions;

• The result of this is the wiring we need to use to assign our
meanings in the semantics. This assignment is not well defined,
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since crossing wires are not allowed in pregroups. This means
we are not working anymore in a pregroup category. If one
wants to keep functoriality, then the wiring can be interpreted
as existing in a suitable free category generated by the types
showing up in the bottom row of the reduction, and the functor
can be applied from there.

Fact: says the man makes he good things

(a) Resulting first reduction.

Fact: says the man makes he good things

(b) Resulting second reduction.

Figure 19: Resulting reductions using towers of types.

Note that if this procedure allows us to interpret personal pronouns
in a meaningful way in the semantics. The interpretation of he, for in-
stance, could be just the Frobenius comonoid counit. This represents
maximum ambiguity, and it is consistent with the idea that a personal
pronoun does not carry any meaning by itself, but it is more like a
pointer referring to some other noun. In this case, applying the usual
Frobenius laws, the spider under the word he in Figure 19b becomes
just a cap, consistent with the interpretation that the meaning of the
man gets copied and plugged in both sentences. On the other hand,
the result of this semantic interpretation in Figure 19a is that the third
slot of the verb makes gets fed with maximum ambiguity, consistent
with the fact that, not knowing who this pronoun is referring to, we
do not have any consistent way to assign meaning to it.

Moreover, note how the correctness of first and second reductions
are not related. Is we substitute she to he in our sentence, then only
the first reduction is correct, since she will have type (nsf)

r ·nsf on the
top row and will be looking for a feminine singular noun on its left,
that does not appear in the sentence. So in this case only the first
reduction is grammatical and we conclude that, without doubt, the
pronoun is referring to a person not mentioned in the sentence.
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Clearly this procedure is quite handwavy and not formally satis-
fying, but it is a first start to provide some notion of context in the
grammar, context that pronouns need to act properly. A more formal
way to approach the problem would be trying to employ techniques
borrowed from contextuality to pregroup grammar, viz. recasting the
theory of pregroup in a sheaf-theoretic way. Applications of sheaf
theory to language are not new, see for instance [7]. Another – maybe
easier – approach would be to forget the grammar altogether. After
all, before feeding a sentence to our pregroup reductions we always
suppose that there is some sort of algorithmic procedure able to parse
the grammar of the sentence correctly, assigning the right types to
words. In the same way, we could just suppose the wiring of a sen-
tence to be simply given, maybe resorting to some machine-learning
based algorithm.

The point being made here is that the pregroup grammar by it-
self is not at all essential, and its existence is motivated more on the
ground of finding some common denominator with popular topics in
linguistics that by actual model-theoretical needs. In the next chapter
we will venture through a controversial road, arguing how the pre-
group grammar – and the Chomskian paradigm in general – end up
being counterproductive for what we want to do.



9
T H E K ATA B A S I S O F G R A M M A R

Difficile est longum subito deponere amorem.

— Catullus, Carmina [69, Carmen LXXVI]

In this chapter we will again elaborate on the problem of producing a
cognitive-based model that works well for any language. We will, con-
troversially, argue against the Chomskian approach to grammar and,
more in general, against any kind of approach that wants to impose
some fixed compositional grammar to our model “from above”.

Noam Chomsky can arguably be considered the greatest linguist
ever existed. His seminal work on generative and universal gram-
mars [35] has massively shaped the last fifty years in the field of lin-
guistics and linguistics-related sciences, such as natural language pro-
cessing. Our compositional approach to meaning makes no exception,
since in the way it is pursued it heavily relies on the pregroup formal-
ism for the grammar part. While dealing with pregroups, we gener-
ate a set of strings from some basic types, and we have “grammatical
rules” (the pregroup rules, in our case) to decide which strings are
grammatical and which are not. As proved in [91] this procedure is
moreover decidable, so it always terminates.

Links between pregroups and context-free grammars have been
thoroughly investigated, and in fact pregroups are weakly equiva-
lent to context-free grammars [31]. One of the obvious consequences
of this equivalence is that, adopting the pregroup grammar, we au-
tomatically obtain that the language we are modelling is recursive,
meaning that a sentence is able to refer to its own type.

For instance, the sentence Alice saw that a rabbit was running con-
tains a subsentence, namely a rabbit was running: We are building a
sentence using other sentences as basic blocs. In pregroups this kind
of recursion is always allowed, since once we specify a sentence type
s we can automatically consider triples of types like s · sl · s, that are
by definition grammatically correct. Clearly, iterating this we obtain
strings like s · sl · s · sl · · · · · s · sl · s, of arbitrary finite length. These
strings roughly correspond to sentences that may look like He saw
that she said that she noted . . . that it fell, and we could clearly go on
forever according to our grammatical rules. As a consequence of this,
we obtain that if a language is modeled by a pregroup grammar then
the number of possible sentences that the language can produce is
countable.

Recursion is a basic property shared all Chomsky and Montague-
based generative grammars [34, 109, 120]. In particular, recursion is

147
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implied by one of the basic operations in the minimalist approach to
generative syntax, called Merge, that roughly speaking is the process
with which two syntactic objects are combined to form a new syntac-
tic unit [36]. The concept of Merge is fundamental in the context of
universal grammars [37] and, in particular, the fact that its presence
it has been observed in (nearly, wait for the next section) all the lan-
guages known to men has prompted Chomsky to consider it as one
of the fundamental features that distinguish human language from
animal communication [76].

Before we go further, it is pertinent to give the reader a bit of con-
text: Before the Chomskian revolution stormed the world of linguis-
tics, the phenomenon of language acquisition was characterized by a
behavioral approach: Researchers backing this theory believe that lan-
guage is learned empirically, with a mechanism relying on trial and
error and positive rewarding. All in all, this means that acquisition
of language ultimately relies on the mere imitation of other speakers:
It is the grammatical rules that are derived from the semantics, not
viceversa [9].

Instead, according to the universal grammar (Chomskian) point of
view things are exactly upside-down: The behavioral approach can-
not work, disciples of Chomsky say. One of the most founded motiva-
tions they provide is what is called “Poverty of Stimulus” [127]. This
argument goes more or less like this:

• In the context of language acquisition, we need to separate be-
tween positive and negative evidence. Positive evidence is de-
fined as the set of grammatically correct sentences that the learner
can experience listening or observing other speakers. Negative
evidence is, instead, defined as the evidence that a learner has
access to that proves how some sentences are grammatically
incorrect. For instance, when a learner is corrected, negative ev-
idence that the sentence uttered or written was grammatically
incorrect is acquired;

• When they learn a language, children only get positive evidence:
Native speakers, in fact, are just exposed to sentences that are
grammatical, for example in the act of listening to their parents,
while negative evidence is very limited. Nevertheless, they are
able to learn the language grammar correctly;

• The conclusion is that there is a lack of negative stimulus that
does not justify how people can learn what is grammatically cor-
rect and what is not: Positive rewarding by itself is not enough
to acquire language, disproving the behaviorists theory.

The conclusion drawn is that human beings must have some innate
capacity that allows them to learn language correctly. Chomskian re-
searchers then argue that there must be some set of simple rules (like
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recursion) that is common to all human languages, hardwired in the
human brain, that ultimately allows us to understand how to com-
pose words and derive their meanings.

It is clear how the paradigms mentioned above work in a com-
pletely opposite way: If universal grammar completely justifies our
“grammar → semantics” approach, the behavioral perspective backs
up a “semantics → grammar” interpretation. These radically differ-
ent points of view and all the debate originated defending or attack-
ing both frameworks resulted in what is now informally known as
“linguistics wars” [75, p. 105].

Needless to say, the approach used in categorical models of mean-
ing is by all means Chomskian in spirit.

9.1 a lesson from pirahã language

The Chomskian theory of language has become incredibly popular
since its inception. Sure, many critiques have spawned during the
decades, but nevertheless it remains one of the most important and
central points of view when it comes to language acquisition. As we
said, one of the biggest pieces of evidence backing up the theory of
universal grammar was that some basic grammatical patterns, such
as recursion, have been observed in any language known to man.
But, as we are used to in mathematics, to disprove a statement like
“This feature is common to all languages” we just need to find one
counterexample.

Daniel Everett is a field linguist, particularly experienced in mono-
lingual fieldwork. “Field linguist” roughly means “going into the real
world and trying to understand how a given language works doing
experiments with native speakers in their native environment”, while
“monolingual fieldwork” identifies those mightily skilled individuals
that just dive into a new environment without having any common
language to communicate with the natives (no translators, no noth-
ing), with the goal of understanding how the language spoken by
the people in the environment works. Clearly, this means “learning a
language in the harshest conditions a man can imagine”, and seeing
how this works is damn interesting. Good sources of insight about
this are (among others) a lecture given by Everett himself [61] or, if
you fancy something more informal, this movie [142].

Anyway, Everett worked in particular with some tribes in the Brazil-
ian amazon forest, and is known worldwide for his work on the Pi-
rahã language, which he studied for more or less thirty years [45].
Pirahã is a language with some amazing features, that at the moment
seem to be quite unique. Before going further, it has to be noted that
Everett’s work is considered to be highly controversial at the moment.
This is not necessarily a bad thing, since with criticism comes also un-
usual attention for details: Much of his production about the Pirahã
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language is being audited and, hopefully, at some point we will be
able to say if he was right or not. In any case, according to Everett,
the most peculiar features of Pirahã are:

lack of colors Pirahã does not distinguish between colors, it just
has words roughly corresponding to “light” and “dark”; Other
colors are expressed by means of descriptive terms, such as
blood-like for red [57];

lack of numbers Pirahã has only two words to define the quan-
tity of an object. In the beginning these words have been trans-
lated as the numbers one and two [55], but further research has
shown how a better translation should interpret them as few and
fewer [57]. To validate this, two experiments were made [65]: In
the first, ten spools of thread were placed on a table, one at a
time. Pirahã people used the word one when one spool was on
the table, two when there were two and two again or many when
there were more, backing up the hypothesis that these words
mean one and two, respectively. In the second experiment, ten
spools of thread were placed on a table, and subtracted one at a
time. In this case the word for one began to be used when there
were six (or four, depending on the test subject) spools left, pro-
viding evidence that the Pirahã words for numbers are not to
be interpreted in an absolute sense, backing up the second hy-
pothesis.

Interestingly, Pirahã1 are aware of the fact that this is a limi-
tation, and asked Everett to teach them to count because they
were being constantly cheated in trade with other tribes. Everett
tried to teach them for eight months, until they decided that it
was too difficult and wanted to stop. No Pirahã was able to per-
form simple operations like “1+1” nor to count to ten after the
training session [57, p. 11];

whistling/humming On the other hand, Pirahã has a remark-
ably complex system of tones and accents that allows them to
whistle or hum any sentence [45]. Phonetic syllables have not to
be pronounced to convey meaning. Whistling is used in partic-
ular while they hunt in the jungle;

lack of recursion This is the most controversial point. Everett ar-
gues that Pirahã, as a language, lacks not only recursion, but the
capacity of embedding clauses altogether [57]. This can be seen
as one of the reasons why counting is so difficult for them [58].
In his PhD thesis, Everett argued that recursion in the language
was present [56], but after many more years of study he con-
cluded that this was not the case, and his opinion depended on

1 ”Pirahã” also denotes the Pirahã speakers.
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prejudicial biases [58]. For instance, in Pirahã it would not be
possible to say My cousin’s desk, and the sentence would have to
be split into I have a cousin. This cousin has a desk. The lack of em-
bedding, if true, implies that Pirahã language is finite, meaning
that we could compile a (very long) book with all the possible
sentences appearing in the language.

These considerations – the last in particular – promped Everett to
disbelieve the Chomskian approach to language, of which he was a
disciple before [58, 107]. To further strengthen his argument, Everett
also cites examples of how recursive behavior is frequently observed
also in other species of the animal kindom (see, for instance [23]), and
so it can’t be what separates human language from animal commu-
nication. Recursivity, he then argues, is not a capacity that identifies
uniquely human beings: It is just more developed in humans, and its
expression in language is highly depending on the culture and the
environment [58].

Everett’s argument embittered many linguists (it has to be said that
Chomsky reacted quite badly to Everett’s research, dismissing it all
together and calling him “a charlatain” [128]) and it is considered as
highly controversial. Many recordings of Pirahã language are in the
process of being reviewed by independent researchers, but definitive
evidence proving or disproving Everett’s conclusion still has to be
found. What makes everything more difficult is that many Pirahã are
now involved in initiatives sponsored by the Brazilian government
that aim to teach Portuguese and maths to children. As a result, the
Pirahã tribe will soon stop being monolingual and further field inves-
tigation will inevitably be falsified.

9.2 an alternative theory of language

One may think “Then what? Even if Everett is right, can we really
say that one counterexample disproves a theory that works for more
than six thousand languages?” Practically speaking, the answer is
obviously “no”. It is out of doubt that the Chomskian approach to
language works well more than 99.983% of the times (that is, it works
for nearly 5999 languages out of 6000). This, from an experimental
point of view, means that Chomskian theory of language is a good
theory. But the presence of even only one counterexample tells us
that probably there is something more going on, that the theory may
be incomplete, and that the matter surely requires further investiga-
tion. Anyway, this document is mainly concerned with mathematical
models for language and not with linguistics itself: The reason why
Everett’s studies find a place in this pages is because they may indeed
turn out very useful from a mathematical point of view.

In fact, what is really interesting for us is the alternative theory
of language evolution that Everett proposes. First, it has to be noted
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that Everett’s research backs up the idea that, if cognition shapes lan-
guage, the opposite is also true. Within our framework this means
that imposing a functor from the pregroup grammar to the seman-
tics is missing how the semantics itself may be shaping the language
grammar. In “Language: The Cultural Tool” [60] Everett advances the
idea that language, as any other human tool, is created, shaped and
employed to solve a problem, namely providing a mean of effective
and efficient communication. Putting things in this perspective, the
Pirahã never developed numbers because they are a tribe of hunter/-
gatherers, so they never really needed it. Moreover, the absence of
any cardinal or ordinal numbers in the language must be understood
in cultural terms: One of Everett’ sharpest observations is that Pi-
rahã have the cognitive capability of counting, but choose not to do
so. They could have, in fact, borrowed counting systems from other
tribes, but they deliberately didn’t because they believe their culture
is complete as it is. Borrowing his own words,

«The crucial thing is that the Pirahã have not borrowed
any numbers – and they want to learn to count. They
asked me to give them classes in Brazilian numbers, so for
eight months I spent an hour every night trying to teach
them how to count. And it never got anywhere, except for
a few of the children. Some of the children learned to do
reasonably well, but as soon as anybody started to per-
form well, they were sent away from the classes. It was
just a fun time to eat popcorn and watch me write things
on the board.» [58]

Similarly, they have the capability of expressing semantic recursion,
but they do not need to implement it effectively in their language
to convey recursive meanings. Chomskians argue that, seen in these
terms, the lack of recursion does not falsify the theory of universal
grammar [59, 118]: In fact, universal grammar is about the cognitive
capabilities that allow human beings to learn language, and these ca-
pabilities may be there even if the language used is not recursive. This
may be true, but if Everett is right then it becomes apparent how gen-
erative grammars do not tell us much about language itself, nor they
are really useful to describe its structure: Culture and environment
are the real ones that shape language as it is.

Embracing Everett’s considerations, it is easy to realize that the ap-
proach “semantics→ grammar” could be indeed very fruitful to help
us understanding language. Moreover, if all the linguistics wars fuss
is ultimately about how language is learned, it should be learning
itself the central cognitive process we ought to model. Again, if one
sides with Everett in this never-ending diatribe, this cognitive pro-
cess should be modeled in a genuinely semantic way, along with a
formalization of what “context” really means in the semantics. All in
all,the real valueof Everett’s proposal, from our point of view, is that
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it suggests a shift in perspective and a different direction of research
in our quest to find suitable categorical models of meaning, probably
based on modelling cognitive learning directly. This approach has
never been tried in the framework of compositional models of mean-
ing, and it will surely be one of the strongest things to push on in
future work.





C O N C L U S I O N

In this document, we started recalling what compositional models
of meaning are, and reviewed part of what has been done in the
field so far. We went on generalizing the concept of relation in many
different ways, to accommodate desirable features like convexity or
metrics, mainly by means of generalizing truth values in our models.
We showed that this generalization is mathematically well-behaved,
and we moreover proved how, with the majority of categories usually
chosen to interpret word meaning, fixing a grammar also fixes the
functorial interpretation of it in the semantics. What we never did,
though, was to elaborate on a conceptual discussion that implicitly
supports the models given. In practice, this means that we mathemat-
ically described a categorical construction that implements ideas from
generative semantics and the cognitive theory of conceptual spaces,
without really asking if these two theories were the best ones to ac-
tually model language cognitively. We were indeed justified to do so,
since we are no linguists or cognitive scientists, and we felt we did
not have enough technical background nor the confidence to write
about something we do not really know well. All things considered,
we did applied math, that is what computer scientists ultimately have
to do.

In the last couple of chapters, though, we pointed out how many
of the considerations we gave for granted before starting to draft our
model do not represent well language nor meaning in its universality,
and we did this in the most straightforward way a mathematician
knows, by means of counterexamples. In Chapter 8 we used Middle
Egyptian to show how the linearity of the pregroup grammar can be
a problem to model meaning, while in Chapter 9 we questioned the
approach “grammar→ semantics” altogether.

After working for roughly two years on compositional models of
meaning, I feel it is about time to express some personal opinions
about what does work and what does not with our approach, in com-
plete honesty. Again, I do not claim to be a linguist nor a cognitive
behaviorist (since I am not), and the considerations that follow are
mainly based on common sense and experience with compositional
models.

Modelling meaning compositionally is amazing. The magic of see-
ing mathematical structures at work graphically gives us an insight of
what is going on in our models that is in my opinion unrivaled. While
many researchers in the field of natural language modeling and ap-
plied maths in general have to “divine” the parameters of their mod-
els empirically, often without having a real grip on what makes some
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parameters perform better than others and why this happens, we are
ultimately able to rule this large amount of uncertainty out of our
considerations by the means of a beautiful graphical calculus. This,
undoubtedly, gives us the privilege of being concerned only with
what really matters, ignoring all the infamous “background noise”
that makes the understanding of certain phenomena even more com-
plicated than what it already is.

But what is that really matters? In our effort to formalize mean-
ing in cognitive terms, we often assume that our formalization effort
must be directed to issues that are perceived as such in the western
culture. This assumption relies on the unjustified belief that the cen-
trality of these issues can be extended to other languages and consid-
ered universal: If for us it is important to specify and disambiguate
meaning in a certain way, this should after all be true in general, we
think. Alas, on this we are very wrong: The existence of cultures all
around the world that do not put emphasis in the disambiguation of
logical relationships between sentences, the existence of people that
do not feel the need to express any numerical concept or that do
not deem recursion as a strong desiderata when it comes about con-
veying meaning by means of composition of words should make us
think. These people are humans too, and this implies that either our
cognitive principles are culture-dependent, or most likely that we are
still missing something fundamental in our picture.

One of the strongest examples supporting the Conceptual Spaces
model, for instance, comes from the good representation that con-
cepts related with colors have within it. But then again we are con-
fronted with cultures that have no explicit representation of color at
all, and what we should realize, ultimately, is that what really fits in
our model is an idea of color that belongs to the western culture, and
that is surely non-universal.

We should, all things considered, be much more careful on what we
suppose to be true when we start formalizing meaning categorically,
and realize that “what intuitively makes sense for us” is not often a
universal denominator of the human species in its entirety.

In particular, the considerations expressed in the last couple of
chapters led me to believe that imposing some grammatical struc-
ture “from above” does not help us if we want to model language
in cognitive terms. We are acting out of prejudice, presuming how
a given language must or must not be shaped, casting models out
of our own arrogance and often forgetting what really matters: The
culture, the environment, the semantics itself. We have to be humble,
open minded, and more importantly we have to constantly confront
our beliefs with the ones of people coming from environments that
are radically different from ours.

As pointed out in Chapter 9, the effects of this are particularly ev-
ident in all the compositional models of meaning we reviewed and
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defined so far: All of them struggle when it comes to represent logical
connectives (words like “and”, for instance), since we are desperately
looking for a set of rules to over-impose that incidentally happen to
model these connectives well, instead of trying to extract these rules
out from semantics and context. Moreover, and this is my strongest
criticism to the way research in our field has been conducted so far,
there is still no compositional model whatsoever that expresses cru-
cial features as learning, nor any sensible idea about how to do it.
It often looks like this problem is disregarded altogether, considered
as “something we will start doing at some point” in all the research
meetings and seminars I have ever attended to: Presently, what we
do just stays still and doesn’t show any kind of real evolution, nor
dynamics. Now, language is obviously a dynamic process, constantly
evolving, and trying to model it without allowing for structures, con-
structions and relations between words to be elastic, capable of being
updated or changed within the model itself is an approach that, in
my opinion, is doomed to fail.

It is my belief, then, that a true advancement in compositional mod-
els of meaning will be acquired only when the research will be di-
rected to the effort – indeed titanic – of tracing back and modeling
the cognitive roots of learning. The ability to learn is common to all
human beings, is fundamental in the expression of intelligent behav-
ior and, again, many questions should be asked about it, the most
important being “is the way we learn culture-dependent or, instead,
all the human beings process experiences and learn new things by
means of a common cognitive process?”

The undeniable performance advancement in approaches like ma-
chine learning [22, 105, 106, 132] relies, in my opinion, exactly on the
idea of abandoning any prejudice and focusing just on how to model
learning. These approaches, though, follow a straight application-
oriented perspective and do not care too much in understanding why
for us “things work the way they do”. In particular, there is no effort
whatsoever in trying to find a compositional structure in the way
learning happens. It has to be noted that some recent work in the
categorification of machine learning techniques is now being carried
out [64], but this categorical approach deals with a very low-level
definition of learning: Namely, the endeavor is in modelling neural
networks categorically. What we still lack is an high-level categorical
theory of learning, that is, a compositional modelling of how the learn-
ing process happens cognitively (a proposal for a cognitive theory of
learning can be found in [28], but it uses traditional machine learning
techniques and it nor categorical nor compositional).

I do firmly believe – and this is the only presumption that I have
left, I’d say – that learning for humans is indeed compositional: We
have the innate ability of learning something, pack it into a block and
then use this block to build bigger, more complicated processes. This
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is what we do, all of us, all the time, and mathematics, in its totality,
is probably the most brilliant example of this: A tightly connected,
endless chain of inferences in which every result is neatly general-
ized, boxed and stored away, only to be specialized and used again to
prove something bigger later on. Long story short, the compositional
structure behind learning, backed up with an adequate modeling of
the environment in which we learn, is the key to explain the structure
of human cognition itself.

With these considerations in mind, I hope to prompt researchers
to invest energy in doing something that, surely, looks much more
difficult than what are doing now, but that indeed remains the most
fundamental problem yet to solve to unlock the secrets of human
language.

Given such considerations, one may then be tempted to ask: “Has
all this work been for nothing?” The answer is a resounding no, and
for two different reasons. First of all, categories of relations have a
very broad spectrum of applications, and may prove very useful in
fields weakly or even not related at all with categorical models of
meaning. Producing new mathematical objects is never a loss of time,
and the ways to employ some mathematical structure to explain in-
teresting phenomena are countless. All in all, from a purely technical
perspective, we extended the applied mathematician’s toolkit and this
is always a good thing.

With respect to categorical models of meaning, it has to be noted
that the last two chapters of this document are the result of a two year
long journey in the development of the above-mentioned categories
of generalized relations. Clearly, no one is crazy enough to dive into
the formalization of a model based on principles he does not believe
in, and in fact my trust in the “grammar → semantics” philosophy
has not just abruptly vanished into thin air at some point. Instead,
the last two years have been fundamental for me to gather incremen-
tal evidence that the Chomskian approach may not be the right one
to follow when it comes to categorical models of meaning. I had the
opportunity to study many subtleties of natural language and it has
been precisely the endeavor to model those subtleties with compo-
sitional models of meaning to steer me towards the claims made in
the last chapter. From this point of view, the experience developed
in the writing of this document has been invaluable, and gave me a
better insight of which direction of research I should pursue in the
near future.

In particular, at the beginning of my doctorate, I was eager to em-
ploy math to model language and, as it is sadly quite common in
the computer science and maths sector, I disregarded many consid-
erations about the influence that culture and environment have on
language as “philosophers’ stuff”. “We do actual numbers here”, I
thought again and again, and I was perfectly happy with my limited
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knowledge of linguistics and anthropology, all focused on formaliz-
ing language according to principles that “must necessarily be true”.

Two years later, I feel like waking up from a long slumber, real-
izing that humanities matter, anthropology matters, and having a
good understanding about how different cultures represent meaning
is a fundamental step towards a good formalization of language in
mathematical terms. In particular, strict collaboration with specialists
coming from these fields will be invaluable to progress towards this
effort, and finding a common language for communicating among
these different disciplines will be a big challenge. The last part of
this document, then, has not to be seen as a celebration of failure of
our prefixed endeavor, but as an exhortation to extend one’s area of
competence to embrace a more interdisciplinary approach to compo-
sitional models of meaning.

It is not possible anymore, for the computer scientist, to proceed
assuming that some very debated topics in linguistics have trivial so-
lutions, exactly as it is not possible for the linguist to assume that the
mathematical formalization of some linguistic phenomenon will be
easy. This lack of communication can only produce models (on both
sides) based on wrong assumptions, slowing the quest towards a com-
plete, categorical model of meaning just for lack of communication,
that is the most futile reason ever.

This is probably the most important message I wanted to share
in this document, and the one with which I now conclude: Doing
research with people having our very same background, or sharing
with us the way with which they approach reality, that is easy. But, as
Sophocles teaches us in his Antigone, real wisdom often comes from
conflict, from animated discussions, from the uncomfortable feeling
we experience when we face someone that looks at the world from
a completely different point of view. It is only through this struggle
that we will be able to broaden our knowledge enough to see what
language is “from above”, gathering enough insight to draft models
that are not based on naive assumptions. So let us all come out of
our comfort zones, and start working together without discarding
decades of progress in fields we deemed “not important enough” for
too long.





Part IV

A P P E N D I X





A
P R O O F S

proofs from chapter 4

Section 4.1

Proposition 4.1.4. 〈X, {+p}p∈[0,1]〉 is an algebra. Moreover, it satisfies the
equations

zero combinations x+0 y ' y;

idempotency x+p x ' x;

parametrized commutativity x+p y ' y+1−p x;

parametrized associativity (x+p y) +q z ' x+pq (y+q−pq
1−pq

z).

Note that the last three properties represent schemes of equations, since
they have to hold for every p (we cannot quantify on p because the +p are
operations).

Proof. +p carries elements of X to elements of X (since α has codomain
in X) and is clearly functional, so every +p is an operation on X.

To verify that 〈X, {+p}p∈[0,1]〉 satisfies the given equations all we
need to do is to apply properties of multiplication and addition of real
numbers and follow the properties given by the monadic structure.
For instance,

x+p x = α(pη(x) + (1− p)η(x))

= α(p |x〉+ (1− p) |x〉)
= α(|x〉)
= x �

Proposition 4.1.9. The monomorphisms in Convex are exactly the injective
homomorphisms.

Proof. This is a standard property of categories monadic over Set. �

Proposition 4.1.10. In the category Convex the image of a convex mor-
phism h : (A,α) → (B,β) is a convex subalgebra of (B,β). Moreover,
assume h : (A,α)→ (B,β) is a monomorphism in Convex. There is then a
convex morphism imh→ (A,α) given by inverse images.

Proof. This is a direct consequence of the first isomorphism theorem,
that holds in every algebraic variety, so in particular in V. �
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Section 4.1.1

Proposition 4.1.12. (X,α) disregards weights iff the corresponding algebra
in V satisfies the equation ∀x,y ∈ X, x+p y ' x+q y for every couple of
p,q such that p,q , 0, 1.

Proof. Obvious from Definition 4.1.3 and Proposition 4.1.5. �

Proposition 4.1.14. Let Ω be the convex algebra induced by the two el-
ement meet semilattice {⊥,>} with ⊥ 6 >. For a finite set X, there is a
bijective correspondence between Convex-morphisms of type F(X) → Ω

and sub-complexes of F(X), where F(X) denotes the free convex algebra
over X.

Proof. Using the universal property of free algebras, there is a bijec-
tive correspondence between morphisms of type X → UΩ and mor-
phisms of type F(X)→ Ω. We then observe that:∑

i

pi |xi〉

is mapped to true iff each xi is, as convex combinations inΩ are given
by meets. �

Section 4.2

Proposition 4.2.2. Let (X,α) be a convex algebra. (X,α) is coherent.

Proof. Fix any two elements a,b ∈ X and p,p ′ ∈ [0, 1]. Fiddling with
eerie commutativity and associativity we can write, for all k ∈ [0, 1]:

(a+p b) +k (a+p ′ b) = (b+1−p a) +k (a+p ′ b)

= b+(1−p)k (a+k−(1−p)k
1−(1−p)k

(a+p ′ b))

= b+(1−p)k ((a+p ′ b) +1−k−(1−p)k
1−(1−p)k

a)

= b+(1−p)k ((a+p ′ b) + 1−k
1−(1−p)k

a)

= b+(1−p)k ((b+1−p ′ a) + 1−k
1−(1−p)k

a)

= b+(1−p)k (b+ (1−p ′)(1−k)
1−(1−p)k

a)

= (b+ (1−p ′)(1−k)
1−(1−p)k

a) +1−(1−p)k b

= (a+
1−

(1−p ′)(1−k)
1−(1−p)k

b) +1−(1−p)k b

= (a+p ′−p ′k+pk
1−(1−p)k

b) +1−(1−p)k b

= (a+kp+(1−k)p ′
1−(1−p)k

b) +1−(1−p)k b

= a+kp+(1−k)p ′ b

Now, suppose (a+p b) = (a+p ′ b). Then by idempotency (a+p b)+k
(a+p ′ b) = (a+p b) and so (a+kp+(1−k)p ′ b) = (a+p b). Now fix



A.0 proofs from chapter 4 165

q ∈ [p ′,p]. Since k varies over [0, 1] and kp+ (1− k)p ′ is a continuous
function in k from [0, 1] to [p ′,p], by intermediate value theorem it
spans all the values in the interval [p,p ′]. Then there is a k such that
kp+ (1− k)p ′ = q. This means that:

(a+q b) = (a+kp+(1−k)p ′ b) = (a+p b)

as we wanted. �

Lemma 4.2.3. Let (X,α) be a convex algebra. If α does not disregard
weights, then |X| , 2.

Proof. Ex absurdo: By Proposition 4.2.2 (X,α) is coherent. Call a,b
the elements of X. Since α does not disregard weights, there are two
distinct convex combinations a +p b,a +q b with p , q such that
a +p b , a +q b. Since |X| = 2, then it is either a +p b = b and
a+q b = a or the opposite. Without loss of generality suppose it is
the former possibility that happens. Coherence of α then forces the
algebra to be defined as:a+p b = b For each p 6 x,

a+p b = a For each p > x.

For some x ∈]0, 1[. We will show such an x cannot exist. Suppose
p 6 x. Then a+p b = b. Since a+p b = b+1−p a, it is also 1− p > x,
and hence p 6 x < 1 − p. Since these inequalities have to hold for
every p, we can pick p = x, obtaining x < 1− x. But we can also pick
p = 1− x, obtaining 1− x < 1− (1− x) = x. Clearly no real number
satisfies both these inequalities, contradiction. �

Lemma 4.2.4. Let (X,α) be a convex algebra. If α doesn’t disregard weights,
then |X| , 3.

Proof. Ex absurdo: By Proposition 4.2.2 (X,α) is coherent. Call a,b, c
the elements of X. Since α does not disregard weights, there are two
distinct convex combinations of say a,b with 0 < p , q < 1 such
that a +p b , a +q b. First of all, for some k ∈ [p,q] it has to be
a +p b , a +q b , a +k b, otherwise the operations of (X,α) re-
stricted to the set {a +p b,a +q b} would define a subalgebra with
cardinality of the support 2, against Lemma 4.2.3. Since X has only
three elements, coherence forces a+n b to be defined in one of the
two following ways (the cases with a and b switched between each
other are analogous):

a+n b :=


a n > x2;

c x1 6 n 6 x2;

b n < x1.

a+n b :=


a n > x2;

c x1 < n < x2;

b n 6 x1.
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for some x1, x2 ∈]0, 1[. In both cases, eerie commutativity forces x2 to
be equal to 1− x1, so:

a+n b :=


a n > 1− x1;

c x1 6 n 6 1− x1;

b n < x1.

a+n b :=


a n > 1− x1;

c x1 < n < 1− x1;

b n 6 x1.

Case on the right: The operations of (X,α) on {a, c} are closed since,
for each k ∈ [0, 1], a+k c = a+k (a+n b) = a+k+(1−k)n b for some
x1 6 n 6 1 − x1, hence a +k c is always equal to a or c. Then for
k < 1−x1−n

1−n we have a+k c = c, while for k > 1−x1−n
1−n it is a+k c = a.

By Lemma 4.2.3 this subalgebra has to disregard weights, implying
1−x1−n
1−n = 1 and hence x1 = 0, contradicting x1 ∈]0, 1[.
Case on the left: Applying the very same argument we obtain

a +k c = a +k (a +x1 b) = a +k+(1−k)x1 b, then for k 6 1−x1−x1
1−x1

we have a+k c = c, while for k > 1−x1−x1
1−x1

it is a+k c = a. Again by
Lemma 4.2.3 it has to be 1−x1−x11−x1

= 0, hence x1 = 1
2 . But then:

b = a+ 2
5
b = (a+ 3

4
b) + 2

5
(a+ 1

3
b) = (b+ 1

4
a) + 2

5
(a+ 1

3
b)

= b+ 1
10

(a+ 1
3
(a+ 1

3
b)) = b+ 1

10
((a+ 3

5
a) + 5

9
b) = b+ 1

10
(a+ 5

9
b)

= b+ 1
10

(b+ 4
9
a) = (b+ 1

5
b) + 1

2
a = b+ 1

2
a = a+ 1

2
b

= c

Violating the hypothesis again. �

Section 4.3

Lemma 4.3.3. Let (X,α) be a convex algebra, and let B be the beetweennes
relation on X. Then B satisfies axioms 1,2,3,4,5,7 of Definition 4.3.1.

Proof. We check that B satisfies the conditions case by case:

1. (a,b, c) ∈ B⇒ a+p c = b⇒ c+1−p a = b⇒ (c,b,a) ∈ B;

2. (a,b,a) ∈ B⇒ a+p a = b⇒ a = b;

3. b = a+0 b⇒ (a,b,b) ∈ B;

4. b = a+0 b⇒ (a,b,b) ∈ B;

5. Suppose b = a +p c,a = b +q c. If q = 1 then a = b = b,
and same can be said if p = 1. Suppose then p,q < 1. Hence
a = ((a +p c) +q c) = a +pq (c +q−pq

1−pq
c) = a +pq c. But then

b = a+p c = a+p−pq
1−pq

(a+pq c) and so (a,b,a) ∈ B. Apply 2 to
get a = b;
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6. Suppose b = a +p d, c = b +q d. Then c = (a +p d) +q d =

(a +pq d). But then b = a +p d = a +p−pq
1−pq

(a +pq d) and so
(a,b, c) ∈ B. �

Lemma 4.3.5. Let (X,α) be a convex algebra and let B be the betweenness
relation on X. Then B satisfies the property

(a,b, c), (a,b ′, c) ∈ B⇒ (a,b,b ′) or (a,b ′,b) ∈ B

Proof. To see this, take b = a+p c,b ′ = a+q c. If p > q it follows
that b = a+p c = a+p−q

1−q
(a+q c) and (a,b,b ′) ∈ B. With the same

reasoning we conclude (a,b ′,b) ∈ B if p 6 q. �
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proofs from chapter 6

Section 6.2

Proposition 6.2.6. [Converse] Let E be a topos, (Σ,E) a variety in E,
and (Q,�,k,

∨
) an internal commutative quantale. There is an identity on

objects strict symmetric monoidal functor:

(−)◦ : Rel(Σ,E)(Q)op → Rel(Σ,E)(Q)

Given by reversing arguments:

R◦(b,a) = R(a,b)

Proof. We first check that taking the converse gives a well defined
relation. For σ ∈ Σ of arity n, we reason:

R◦(a1,b1)� . . .� R◦(an,bn) = R(b1,a1)� . . .� R(bn,an)

6 R(σ(b1, . . . ,bn),σ(a1, . . . ,an))

= R◦(σ(a1, . . . ,an),σ(b1, . . . ,bn))

Next, we must confirm identities are preserved.

id◦A(a1,a2) = idA(a2,a1) =
∨

{k | a2 = a1} = idA(a1,a2)

We confirm also functoriality with respect to composition:

(R ◦ S)◦(a, c) = (R ◦ S)(c,a)

=
∨
b

S(c,b)� R(b,a)

=
∨
b

S◦(b, c)� R◦(a,b)

=
∨
b

R◦(a,b)� S◦(b, c)

= (S◦ ◦ R◦)(a, c)

Finally, we must check that the converse distributes over tensors:

(R◦ ⊗ S◦)(b,b ′,a,a ′) = R◦(b,a)� S◦(b ′,a ′)
= R(a,b)� S(a ′,b ′)
= (R⊗ S)(a,a ′,b,b ′)

= (R⊗ S)◦(b,b ′,a,a ′) �

Proposition 6.2.7. [Graph] Let E be a topos, (Σ,E) a variety in E, and
(Q,�,k,

∨
) an internal commutative quantale. There is an identity on ob-

jects strict symmetric monoidal functor:

(−)◦ : Alg(Σ,E)→ Rel(Σ,E)(Q)
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With action defined on morphism f : A→ B by:

f◦(a,b) =
∨

{k | f(a) = b}

The symmetric monoidal structure on Alg(Σ,E) is the finite product struc-
ture.

Proof. First of all we have to check that the resulting relation respects
the algebraic structure. For σ ∈ Σ:

f◦(a1,b1)� . . .� f◦(an,bn) =

=
[∨

{k | f(a1) = b1}
]
� . . .�

[∨
{k | f(an) = bn}

]
=
∨

{k | f(a1) = b1 ∧ · · ·∧ f(an) = bn}

6
∨

{k | σ(f(a1), . . . , f(an)) = σ(b1, . . . ,bn)}

=
∨

{k | f(σ(a1, . . . ,an)) = σ(b1, . . . ,bn)

= f◦(σ(a1, . . . ,an),σ(b1, . . . ,bn))

Then we confirm this is functorial with respect to identities:

idA◦(a1,a2) =
∨

{k | idA(a1) = a2} =
∨

{k | a1 = a2} = idA(a1,a2)

For functoriality with respect to composition,

(g◦ ◦ f◦)(a, c) =
∨
b

f◦(a,b)� g◦(b, c)

=
∨
b

[∨
{k | f(a) = b}

]
�
[∨

{k | g(b) = c}
]

=
∨

{k | g(f(a)) = c}

= (g ◦ f)◦(a, c)

Finally we prove the preservation of the monoidal structure:

(f× g)◦((a,a ′), (b,b ′)) =
∨

{k | (b,b ′)

= (f× g)(a,a ′)}

=
∨

{k | b = f(a)∧ b ′ = g(a ′)}

=
[∨

{k | b = f(a)}
]
�
[∨

{k | b ′ = g(a ′)}
]

= f◦(a,b)� g◦(a ′,b ′)
= (f◦ ⊗ g◦)((a,a ′), (b,b ′))

We moreover prove a fact used in the proof of Proposition 6.2.5, that
is, if f is an isomorphism in E then (f−1)◦ = (f◦)

◦. This is a simple
check:

(f−1)◦(b,a) =
∨

{k | f−1(b) = a}

=
∨

{k | f(a) = b}

= f◦(a,b)

= (f◦)
◦(b,a) �
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Section 6.3

Lemma A.0.1. Let E be a finitely complete category, and (Q,�,k) an inter-
nal monoid. If

h : (X1, f1,g1,χ1)→ (X2, f2,g2,χ2)

Is a Q-span morphism with an inverse in E, then it is an isomorphism.

Proof. We aim to show that h−1 is the required inverse as a Q-span
morphism. We calculate:

f1 ◦ h−1 = f2 ◦ h ◦ h−1 = f2
g1 ◦ h−1 = g2 ◦ h ◦ h−1 = g2
χ1 ◦ h−1 = χ2 ◦ h ◦ h−1 = χ2 �

Lemma A.0.2. Let E be a topos, (Q,�,k,6) an internal partially ordered
commutative monoid, and (Σ,E) an algebraic signature. If (X1, f1,g1,χ1)
is an algebraic Q-span, and (X2, f2,g2,χ2) is an isomorphic Q-span, then
it is also an algebraic Q-span.

Proof. For the assumptions in the question, with ι denoting the as-
sumed isomorphism and σ ∈ Σ, if

f2(x1) = a1 ∧ g2(x1) = b1 ∧ · · ·∧ f2(xn) = an ∧ g2(xn) = bn

Then using our span isomorphism:

f1(ι
−1(x1)) = a1 ∧ g1(ι

−1(x1)) = b1 ∧ . . .

· · ·∧ f1(ι−1(xn)) = an ∧ g1(ι
−1(xn)) = bn

By assumption that the first span is algebraic, there exists x such that:

f1(x) = σ(a1, . . . ,an)∧ g1(x) = σ(b1, . . . ,bn)∧

∧χ1(ι
−1(x1))� . . .� χ1(ι−1(xn)) 6 χ1(x)

Therefore, using our span isomorphism again:

f2(ι(x)) = σ(a1, . . . ,an)∧ g2(ι(x)) = σ(b1, . . . ,bn)∧

∧χ2(x1)� . . .� χ2(xn) 6 χ2(ι(x)) �

Theorem 6.3.2. Let E be a finitely complete category, and (Q,�,k) an inter-
nal commutative monoid. The category Span(Q) is a hypergraph category.

Proof. Special case of Theorem 6.3.7. �

Proposition 6.3.5. [Converse] Let E be a topos, (Σ,E) a variety in E,
and (Q,�,k,6) an internal partially ordered commutative monoid. There
is an identity on objects strict symmetric monoidal functor:

(−)◦ : Span(Σ,E)(Q)op → Span(Σ,E)(Q)

Given by reversing the legs of the underlying span:

(X, f,g,χ)◦ = (X,g, f,χ)
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Proof. First we prove that (−)◦ respects the algebraic structure: just
observe that the condition for a Q-span to be algebraic is symmetrical
in its domain and codomain, and therefore preserved. Now we prove
it is a functor. It clearly preserves identities. We aim to show:

(X, f,g,χ)◦ ◦ (Y,h,k, ξ)◦ = ((Y,h,k, ξ) ◦ (X, f,g,χ))◦

These two spans are given by:

(X, f,g,χ)◦ ◦ (Y,h,k, ξ)◦ = (Y ×B X,k ◦ p1, f ◦ p2,� ◦ 〈ξ ◦ p1,χ ◦ p2〉)
((Y,h,k, ξ) ◦ (X, f,g,χ))◦ = (X×B Y,k ◦ p2, f ◦ p1,� ◦ 〈χ ◦ p1, ξ ◦ p2〉)

The morphisms:

〈p2,p1〉 : X×B Y → Y ×B X 〈p2,p1〉 : Y ×B X→ X×B Y

Witness an isomorphism in E. We first confirm that this gives a span
isomorphism. This follows trivially from elementary properties of
pullbacks. Finally, we must prove that this commutes with charac-
teristic morphisms. This makes essential use of commutativity of �:

�◦ 〈ξ ◦ p1,χ ◦ p2〉 ◦ 〈p2,p1〉 = �◦ 〈ξ ◦ p2,χ ◦ p1〉 = �◦ 〈χ ◦ p1, ξ ◦ p2〉

Proving that the functor is strict symmetric is trivial. �

Proposition 6.3.6. [Graph] Let E be a topos, and (Q,�,k,6) an internal
partially ordered commutative monoid. There is an identity on objects strict
symmetric monoidal functor:

(−)◦ : Alg(Σ,E)→ Span(Σ,E)(Q)

With the action on morphism f : A→ B given by:

f◦ = (A, idA, f,χk)

Proof. We have to check that the graph functor respects the algebraic
structure. As the characteristic morphism is constant, we must simply
confirm the existence of witnesses relating composite terms. If

f(a1) = b1 ∧ · · ·∧ f(an) = bn

Then, as f is a homomorphism:

f(σ(a1, . . . ,an)) = σ(f(a1), . . . , f(an)) = σ(b1, . . . ,bn)

Now we prove it is a functor. Since this construction is well known
for ordinary spans, we must just confirm the interaction with charac-
teristic morphisms behaves appropriately. Firstly we note that:

(idA)◦ = (A, idA, idA,χk)
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And so identities are preserved. For composition, we have an ordi-
nary span isomorphism:

〈idA, f〉 : A→ A×B B

We must confirm this commutes with characteristic morphisms:

�◦ (χk× χk) ◦ 〈p1,p2〉 ◦ 〈idA, f〉 = �◦ 〈χk,χk ◦ f〉 = �◦ 〈χk,χk〉 = χk

Finally we have to prove that graph and converse are symmetric
monoidal functors. For converse this is trivial. For graph, commu-
tativity with tensor has been proved in Proposition 6.3.4. �

Theorem 6.3.7. Let E be a topos, (Σ,E) a variety in E, and (Q,�,k,6) an
internal partially ordered commutative monoid. The category Span(Σ,E)(Q)

is a hypergraph category. The cocommutative comonoid structure is given
by the graphs of the canonical comonoids described in Proposition 6.2.8, and
the monoid structure is given by their converses.

Proof. This is just a straightforward check, very similar in fashion to
the ones already performed to prove Proposition 6.3.4. �

Section 6.4

Proposition 6.4.9. Let E be a topos, and (Σ,E) a variety in E. Converses
respect order structure, in that:

• If (Q,�,k,
∨
) is an internal quantale, the converse functor of Propo-

sition 6.2.6 is a partially ordered functor;

• If (Q,�,k,6) is an internal partially order monoid, the converse func-
tor of Proposition 6.3.5 is a preordered functor.

Proof. For relations this is trivial since the definition of ordering is
symmetric in the relation arguments. For span the same consideration
holds, since the ordering is defined on the span heads and switching
the span legs does not affect this definition. �

Section 6.7

Lemma 6.7.4. Let (Q,�,k,
∨
) be an internal quantale. If for every p,q

the inequality p� q 6 p holds, then every relation is affine. If p 6 p� p
holds then every relation is relevant. Similarly, if (Q,�,k,6) is an internal
partially ordered monoid, if p� q 6 p holds then every span is affine and
if p 6 p� p then every span is relevant.

Proof. This is obvious noting that for every a,b, x, R(a,b) and χ(x) are
elements of Q. We only prove the relational affine case explicitly, all
the rest being similar. For arbitrary a1,a2,b1,b2 consider the product
R(a1,b1)� R(a2,b2). Both R(a1,b1) and R(a2,b2) are elements of Q,
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hence, being Q affine, we can readily infer R(a1,b1) � R(a2,b2) 6
R(a1,b1). Being the variables arbitrarily chosen, we universally quan-
tify on them obtaining the axiom of being affine for R as a valid for-
mula in the ambient topos E. �

Theorem 6.7.11. Let E be a topos and (Q,�,k,6) an internal partially
ordered commutative monoid. Let i : (Σ1,E1) → (Σ2,E2) be a linear inter-
pretation of signatures. There is an identity on morphisms strict monoidal
functor:

i∗ : Spanlin
(Σ2,E2)(Q)→ Spanlin

(Σ1,E1)(Q)

Sending each (Σ2,E2)-algebra to the corresponding (Σ1,E1)-algebra under
the interpretation. The assignment i 7→ i∗ extends to a contravariant functor.
i∗ commutes with graphs and converses, that is, the following diagrams
commute:

Alg(Σ2,E2)

Spanlin
(Σ2,E2)(Q)

Alg(Σ1,E1)

Spanlin
(Σ1,E1)(Q)

(−)◦ (−)◦

i∗

i∗

Spanlin
(Σ2,E2)(Q)op

Spanlin
(Σ2,E2)(Q)

Spanlin
(Σ1,E1)(Q)op

Spanlin
(Σ1,E1)(Q)

(−)◦ (−)◦

(i∗)op

i∗

The bottom functor in the first diagram is the obvious induced functor be-
tween categories of algebras. Similar results hold for affine, relevant and
cartesian interpretations and relations.

Proof. i∗ is defined as in the relational case, sending algebras of type
(Σ2,E2) to their interpretations of type (Σ1,E1). Being it identity on
morphisms by definition (the fact that morphisms of Spanlin

(Σ2,E2)(Q)

are also morphisms of Spanlin
(Σ1,E1)(Q) is a direct consequence of

Proposition 6.7.9) functoriality follows trivially. Noting that i∗ and
î are identity on morphisms and they act on the same way on objects,
where converse and graph are instead identity on objects. Commuta-
tivity of i∗ with converse and graphs then holds trivially. �

Section 6.8

Proposition 6.8.3. With the same assumptions, the induced functor L∗ of
Theorem 6.8.2 commutes with graphs and converses. That is, the following
diagrams commute:
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AlgE(Σ,E)

RelE(Σ,E)(Q)

AlgF(Σ,E)

RelF(Σ,E)(LQ)

(−)◦ (−)◦

L

L∗

RelE(Σ,E)(Q)op

RelE(Σ,E)(Q)

RelF(Σ,E)(LQ)op

RelF(Σ,E)(LQ)

(−)◦ (−)◦

(L∗)op

L∗

Proof. Start noting that the graph functor is identity on objects, so
trivially L∗(A)◦ = L∗A = (L∗A)◦ for every object A. For a morphism
f : A→ B, in E, consider the diagram:

LA× LB L(A×B) L(B×B) L(Q)

LA× LB LB× LB

iso L(f× idEB)

Lf× LidEB

L(idRel
B )

idRel
LB

iso iso

Where idEB is the identity on B in E and idRel
B is the morphism of E cor-

responding to the formula that defines 1B in RelEΣ,E(Q). The top row
of the diagram is just L∗(f)◦, while the bottom one is (L∗f)◦. The left
triangle commutes trivially, the center square commutes because L
preserves products, the right triangle commutes because L preserves
relational identities (previous proposition). Preservation of the con-
verse follows trivially from the fact that any logical functor preserves
products. �

Section 6.9

Theorem 6.9.1. Let E be a topos, h : Q1 → Q2 a morphism of internal
commutative quantales, i : (Σ1,E1) → (Σ2,E2) a linear interpretation and
L : E → F a logical functor. For the induced functors of Theorems 6.6.1,
6.6.3, 6.7.10, 6.7.11, 6.8.2 and 6.8.4, the following diagram commutes (be
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aware that in the hypercube below commutative squares involving L∗ only
commute up to isomorphism. Other squares commute up to equality):

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

L∗

L∗

L∗

L∗

L∗

L∗

L∗

Where the inner cube is:

Spanlin,E
(Σ2,E2)

(Q1) Spanlin,E
(Σ1,E1)

(Q1)

Spanlin,E
(Σ2,E2)

(Q2) Spanlin,E
(Σ1,E1)

(Q2)

Rellin,E
(Σ2,E2)

(Q1) Rellin,E
(Σ1,E1)

(Q1)

Rellin,E
(Σ2,E2)

(Q2) Rellin,E
(Σ1,E1)

(Q2)

i∗

i∗
h∗ h∗

i∗

i∗
h∗ h∗
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And the outer cube is:

Spanlin,F
(Σ2,E2)

(LQ1) Spanlin,F
(Σ1,E1)

(LQ1)

Spanlin,F
(Σ2,E2)

(LQ2) Spanlin,F
(Σ1,E1)

(LQ2)

Rellin,F
(Σ2,E2)

(LQ1) Rellin,F
(Σ1,E1)

(LQ1)

Rellin,F
(Σ2,E2)

(LQ2) Rellin,F
(Σ1,E1)

(LQ2)

i∗

i∗
(Lh)∗ (Lh)∗

i∗

i∗
(Lh)∗ (Lh)∗

In both cases the vertical arrows are the functors of Theorem 6.5.1. Similar di-
agrams commute for affine, relevant and cartesian interpretations, relations
and spans.

Proof. Here the notation A ' B will denote that A and B are isomor-
phic. i∗ trivially commutes with h∗, since the first is identity on mor-
phisms and the second is identity on objects; for the very same reason,
i∗ commutes with V . V commutes with h∗ because the former acts by
postcomposition with a homomorphism of quantales, that commutes
with joins and orders.

To show that L∗i∗ ' i∗L∗, note that for morphisms this is trivial,
being i∗ the identity on them. Let then 〈A,σAj 〉 be an object of, say,
RelE(Σ2,E2)(Q), and consider L∗i∗〈A,σAj 〉. By definition this is equal
to L∗〈A, i(σA)j ′〉, where every i(σA)j ′ is a term derived from the σAj ,
so a composition of σAj (and eventually diagonals and projections,
depending on the interpretation). Being L logical, operations of A get
carried into operations of LA, hence L∗〈A, i(σA)j ′〉 = 〈LA,Li(σA)j ′〉
is an algebra of type (Σ1,E1) in RelF(Σ1,E1)(LQ). But, being i(σA)j ′
a composition of operations, projections and diagonals, and being L
product preserving, it is Li(σA)j ′ ' i(σLA)j ′ . Hence:

L∗i∗〈A,σAj 〉 = 〈LA,Li(σA)j ′〉
' 〈LA, i(σLA)j ′〉
= i∗L∗〈A,σAj 〉

The proof is the same when L∗ and i∗ act on spans.
To prove that L∗V ' V∗L∗, consider the following logical theory:

T = (X,A,B,Q, {σAi }σi∈Σ, {σBi }σi∈Σ, f,g,χ,�,
∨

,k,R)

Where:

• (X,A,B,Q, {σAi }σi∈Σ, {σBi }σi∈Σ, f,g,χ,�,
∨

,k) is the fragment that
states that (Q,�,k,

∨
) is a quantale, that both 〈A, {σAi }σi∈Σ〉 and
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〈B, {σBi }σi∈Σ〉 are algebras of the required signature and that
(X, f,g,χ) is an algebraic Q-span, with all the obvious axioms
required to hold (see proof of Theorems 6.8.2 and 6.8.4 for de-
tails);

• R is a constant of type QA×B together with the axioms that say
it is an algebraic Q-relation (again refer to the relational case in
Theorem 6.8.2);

• The additional axiom:

R(a,b) =
∨

{χ(m) | ∃m.(s(m) = a∧ t(m) = b)}

Is satisfied.

This logical theory expresses exactly the fact that R is a relation com-
ing from a span in the sense of the order functor, so if R = V(X, s, t,χ)
then R and (X, s, t,χ) are a model for T . From this we get an isomor-
phism between LR and V(LX,Lf,Lg,Lχ), and hence:

L∗V(X, f,g,χ) = L∗R ' LR ' V(LX,Lf,Lg,Lχ)

Finally, to verify that L∗h∗ ' h∗L∗, just note that it is possible to state
what a quantale homomorphism is in terms of logical theories. This
guarantees that if h : Q1 → Q2 is a homomorphism of quantales, so
is Lh. Everything then follows from the fact that h∗ acts by postcom-
position and L respects it. �
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proofs from chapter 7

Section 7.1

Proposition 7.1.7. If h : Q1 → Q2 is an injective quantale morphism (in
Set), the induced strict monoidal functor h∗ : Rel(Σ,E)(Q1)→ Rel(Σ,E)(Q)

is faithful.

Proof. The action of the functor is:

R : A×B→ Q1 7→ h ◦ R

Then:
h ◦ R1 = h ◦ R2 ⇒ R1 = R2

As h is monic. �

Proposition 7.1.8. There is a quantale homomorphism from the Boolean
quantale B to the Lawvere quantale L given by:

⊥ 7→∞ > 7→ 0 (10)

Proof. Denote the function defined in the statement with h. We first
note the monoid units of B and L are > and 0 respectively, so the
monoid unit is preserved by h. For preservation of the multiplication,
we check cases, noting we can skip one case by commutativity:

h(⊥�⊥) = h(⊥) =∞ =∞+∞ = h(⊥)� h(⊥)

h(⊥�>) = h(⊥) =∞ = 0+∞ = h(>)� h(⊥)

h(>�>) = h(>) = 0 = 0+ 0 = h(>)� h(>)

Finally, we must check that joins are preserved. h preserves the bot-
tom element, so empty joins are preserved. Singleton joins are trivial,
so the only remaining case it to check the join of the whole of B. We
have:

h
(∨

{⊥,>}
)
= h(>) = 0 =

∨
{∞, 0} =

∨
{h(⊥),h(>)}

Where we recall that the ordering is reversed, so joins are infima. �

Proposition 7.1.9. If U,V ⊆ X and d is an internal monad in Rel(C), the
composite V◦ ◦ d ◦U is the infimum of the distances between elements in U
and V .

Proof. We have, by definition, that U(∗,a) =
∨
{k | a ∈ U} and simi-

larly V◦(b, ∗) =
∨
{k | b ∈ V}. Again by definition we have:

(V◦ ◦ d ◦U)(∗, ∗) =
∨
x,y

{∨
{k | x ∈ U}� d(x,y)�

∨
{k | y ∈ U}

}
=
∨
x,y

{k� d(x,y)� k | (x ∈ U)∧ (y ∈ V)}
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And, remembering how
∨

and � are defined in C,

inf
x,y

(0+ d(x,y) + 0 | (x ∈ U)∧ (y ∈ V)) =

= inf
x,y

(d(x,y) | (x ∈ U)∧ (y ∈ V)) �

Proposition 7.1.11. The euclidean distance on Rn respects convexity.

Proof. The only thing to prove is compatibility with taking convex
combinations, meaning that d(x,y)�d(x̃, ỹ) 6C d(x+

p x̃,y+p ỹ). We
rewrite the previous inequation in the equivalent form:

d(x+p x̃,y+p ỹ) 6 d(x,y) + d(x̃, ỹ)

Where addition and order are the usual ones in R (see Figure 20).

y

x

z

y+p z

x+p z

Figure 20: Convexity preservation of euclidean distance, geometri-
cally explained.

First of all, we show that d(x+p z,y+p z) 6 d(x,y) for every triple
of points x,y, z ∈ Rn and p ∈ [0, 1]. We unpack our definition of the
operation +p, obtaining:

d(x+p z,y+p z) = d(px− (1− p)z,py− (1− p)z)

=

√√√√ n∑
i=1

(pxi − (1− p)zi − (pyi − (1− p)zi))2

=

√√√√ n∑
i=1

(pxi − pyi)2

=

√√√√ n∑
i=1

p2(xi − yi)2

= p

√√√√ n∑
i=1

(xi − yi)2

6

√√√√ n∑
i=1

(xi − yi)2 = d(x,y)
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Where the inequality follows from the fact that p ∈ [0, 1] (and hence
p2 ∈ [0, 1] as well).

From this, applying the triangular inequality for distances, we have:

d(x+p x̃,y+p ỹ) 6 d(x+p x̃,y+p x̃) + d(y+p x̃,y+p ỹ)

= d(x+p x̃,y+p x̃) + d(x̃+1−p y, ỹ+1−p y)

6 d(x,y) + d(x̃, ỹ) �

Proposition 7.1.12. Let X1, . . . ,Xn be objects of Rel(Σ,E)(Q) such that we
can choose an internal monad di for every Xi. Then d1 ⊗ . . .⊗ dn is an
internal monad on X1 ⊗ . . .⊗Xn.

Proof. Clearly, if d1, . . . ,dn are internal monads in Rel(Σ,E)(Q) they
are all morphisms of Rel(Σ,E)(Q), and so it is d1 ⊗ . . .⊗ dn. We just
have to verify that d1 ⊗ . . .⊗ dn respects the inequalities in (9). For
identity, we have:

idX1⊗...⊗Xn((a1, . . . an),(b1, . . . ,bn)) =

=
∨

{k | (a1, . . . ,an) = (b1, . . . ,bn)}

=
∨

{k | (a1 = b1)∧ · · ·∧ (an = bn)}

=
∨

{k | (a1 = b1)}� . . .�
∨

{k | (an = bn)}

6 d1(a1,b1)� . . .� dn(an,bn)

= (d1 ⊗ . . .⊗ dn)((a1, . . . an), (b1, . . . ,bn))

With regard to composition:

((d1 ⊗ . . .⊗ dn) ◦ (d1 ⊗ . . .⊗ dn))((a1, . . . an), (c1, . . . , cn)) =

=
∨

x1,...,xn

{(d1 ⊗ . . .⊗ dn)((a1, . . . an), (x1, . . . , xn))�

� (d1 ⊗ . . .⊗ dn)((x1, . . . xn), (c1, . . . , cn))}

=
∨

x1,...,xn

{d1(a1, x1)� . . .� dn(an, xn)�

� d1(x1, c1)� . . .� dn(xn, cn)

=
∨
x1

{d1(a1, x1)� d1(x1, c1)}� . . .�
∨
xn

{dn(an, xn)� dn(xn, cn)}

6 d1(a1, c1)� . . .� dn(an, cn)

= (d1 ⊗ . . .⊗ dn)((a1, . . . an), (c1, . . . , cn))

Note that these proofs make sense in any topos, hence the result still
holds for relations with underlying topos different from Set. �

Section 7.3

Theorem A.0.3. Let C be a groupoid. Every quantale Q in Set can be
canonically lifted to a quantale Q in SetC

op

.
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Proof. If C is a groupoid, then SetC
op

inherits its elementary topos
structure pointwise from Set. This in particular means that if

F : C→ D

is a groupoid functor, then F∗ : SetD
op

→ SetC
op

is logical. For ev-
ery groupoid C there is a trivial groupoid homomorphism F : C → 1,
where 1 is the category having one element and the identity mor-
phism on it. Being Set = Set1 then we obtain a logical functor F∗ :

Set → SetC
op

. We moreover know that a logical functor preserves
models: If T is a logical theory, and we denote with mod T(E) the
models of T in the topos E, the statement above means that every
time we have a logical functor L : E → F, having X ∈ mod T(E) im-
plies LX ∈ mod T(F). The equations defining a quantale clearly form
a logical theory, call it T. In our case this means that if Q is a model
of T in Set (that is, a quantale in the set-theoretic sense), then F∗(Q)

is an internal quantale in SetC
op

, as we wanted. �

Lemma A.0.4. Let E be a topos, and t : 1→ Ω its subobject classifier. Then
RelE(∅,∅)(Ω) is equivalent to Rel(E), the category of relations on E.

Proof. First of all recall that (Ω, sup,∧, t) is an internal locale in every
topos, so we are legitimate to consider RelE(∅,∅)(Ω). Moreover, Rel(E)

has the same objects as E and, as morphisms A R−→ B, subobjects of
A×B. Being E a topos, there is a natural isomorphism:

Sub(A×C) ' hom(A×C,Ω)

and we can then define a functor F : Rel(E) → RelE(∅,∅)(Ω) as being
identity on objects and sending every morphism R to its classifier χR.

This correspondence is clearly bijective on objects and morphisms,
so if we prove functoriality the isomorphism we want to prove will
follow trivially. For composition, we have to prove χS◦R = χS ◦ χR.
The left hand side and the right hand side are the morphisms of type
(A×C)→ Ω defined, respectively, as:

(a, c) ∃b(χR(a,b)∧ χS(b, c))

(a, c) sup({χR(a,b)∧ χS(b, c)|b ∈ B})

χS◦R

χS ◦ χR

We can prove these morphisms to be equal showing that they classify
the same subobject, that is, proving they are equivalent as internal
formulas. We know (see, as an instance, [27, p. 428]) that for every
variable P of type ΩΩ and every variable Z of type Ω,

Z = supP is equivalent to ∀z(z ∈ Z⇔ ∃T(T ∈ P∧ z ∈ T)).

Taking P = {χR(a,b)∧ χS(b, c)|b ∈ B} and Z = sup(P), we substitute
in the previous equivalence. On the left we obtain a tautology, namely
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sup(P) = sup(P). This means that that what we obtain on the right
hand side of the previous equivalence, that is:

∀z(z ∈ sup({χR(a,b)∧ χS(b, c)|b ∈ B})
⇔ ∃T(T ∈ {χR(a,b)∧ χS(b, c)|b ∈ B} ∧ z ∈ T))

Is equivalent to a tautology, and so it is a validity in E. Noting that the
formula T ∈ {χR(a,b)∧ χS(b, c)|b ∈ B} is equivalent to the formula
∃b ′(T = χR(a,b ′)∧ χS(b ′, c)), we can focus on the right hand side of
the equivalence and calculate:

∃T(T ∈ {χR(a,b)∧ χS(b, c)|b ∈ B} ∧ z ∈ T)⇒
⇒ ∃T(∃b ′(T = χR(a,b ′)∧ χS(b ′, c))∧ z ∈ T)
⇒ ∃T(∃b ′((T = χR(a,b ′)∧ χS(b ′, c))∧ (z ∈ T)))
⇒ ∃T∃b ′(z ∈ (χR(a,b ′)∧ χS(b ′, c)))

⇒ ∃b ′(z ∈ (χR(a,b ′)∧ χS(b ′, c)))

And, in the opposite direction,

∃b ′(z ∈ (χR(a,b ′)∧ χS(b ′, c)))⇒
⇒ ∃T(T = (χR(a,b ′)∧ χS(b ′, c))∧ z ∈ T)
⇒ ∃T(∃b ′(T = (χR(a,b ′)∧ χS(b ′, c)))∧ z ∈ T)
⇒ ∃T(T ∈ {χR(a,b)∧ χS(b, c)|b ∈ B} ∧ z ∈ T)

Obtaining an equivalence. Substituting, we get the validity:

∀z(z ∈ sup({χR(a,b)∧ χS(b, c)|b ∈ B})⇔
⇔ ∃b ′(z ∈ (χR(a,b ′)∧ χS(b ′, c)))) (13)

Now, sup({χR(a,b)∧ χS(b, c)|b ∈ B}), as well as χR(a,b ′)∧ χS(b ′, c),
are morphisms of type (A× C) → Ω and, since the writing a ∈ A
is defined only for a of type K → X and A of type K → ΩX (for
some K,X objects of E), it is clear that z has to be a variable of type
1, that is, the unique morphism (A×C) → 1 in E. Then the formula
z ∈ sup({χR(a,b)∧ χS(b, c)|b ∈ B} is the bottom row of the diagram:

A×C 1×Ω Ω

S 1 1

〈z, sup({χR(a,b)∧ χS(b, c)|b ∈ B})〉 ∈

t t

That is clearly equivalent to:

A×C 1×Ω

S 1

sup({χR(a,b)∧ χS(b, c)|b ∈ B})

t
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Hence the formulas in the bottom row classify the same morphism.
We can do the same reasoning for z ∈ (χR(a,b ′) ∧ χS(b ′, c)) and
χR(a,b ′)∧ χS(b ′, c) and substitute everything in Equation 13, obtain-
ing:

∀z(sup({χR(a,b)∧ χS(b, c)|b ∈ B})⇔ ∃b ′(χR(a,b ′)∧ χS(b ′, c)))

Finally, we can drop the quantifier since the variable z does not ap-
pear anymore in its scope, and get:

sup({χR(a,b)∧ χS(b, c)|b ∈ B})⇔ ∃b ′(χR(a,b ′)∧ χS(b ′, c))

Since this formula was equivalent to a validity, it is a validity itself.
This means that it holds for all (a, c) ∈ A× C, proving our functor
respects compositionality. With regard to the identity, just note that,
for k : A → B in RelE(∅,∅)(Ω), k = χR for some R : A → B in Rel(E).
Hence:

F(idA) ◦ k ◦ F(idB) = F(idA) ◦ χR ◦ F(idB)
= F(idA) ◦ F(R) ◦ F(idB)
= F(idA ◦ R ◦ idB)

= F(R) = χR = k

And this concludes the proof. �

Theorem 7.3.12. Let E be a topos,Ω its subobject classifier and (Σ,E) an al-
gebraic signature. The category RelE(Σ,E)(Ω) resulting from the algebraic Q-
relations construction is isomorphic to the category of internal relations over
the regular category of internal (Σ,E)-algebras in E.

Proof. It is a consequence of [19, Thm. 5.11] that, being E regular,
Alg(Σ,E)(E) is regular too, so we can legitimately consider the cat-
egory Rel(Alg(Σ,E)(E)). Note that we can apply [19, Thm. 5.11] be-
cause the categories of algebras we are considering are, as usual, not
internal: The category Rel(Alg(Σ,E)(E)) is just the usual relation con-
struction built on the regular category E. Using the internal language
of E, we can describe morphisms of Alg(Σ,E)(E) as just morphisms of
E that preserve operations in Σ. Now, we define:

F : Rel(Alg(Σ,E)(E))→ RelE(Σ,E)(Ω)

To be identity on objects and as in Lemma A.0.4 on morphisms. If R
is a morphism in Rel(Alg(Σ,E)(E)), it is by definition a subalgebra of
some product, say A× B. This amounts to ask R to be closed with
respect to the operations, hence:

(ai,bi) ∈ R⇒ (σ(a1, . . . ,an),σ(b1, . . . ,bn)) ∈ R

For a1, . . . ,an,b1, . . . ,bn and any operation σ ∈ Σ. The consequent
holds when all the antecedents are satisfied, so we can rewrite it using
the internal language as:

∧i((ai,bi) ∈ R) =⇒ (σA(a1, . . . ,an),σB(b1, . . . ,bn)) ∈ R
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From here and using the fact that Ω is an Heyting algebra we obtain
the following chain of equivalences:

∧i ((ai,bi) ∈ R(ai,bi)) =⇒ (σA(a1, . . . ,an),σB(b1, . . . ,bn)) ∈ R
χ(∧i((ai,bi) ∈ R(ai,bi))) 6 χ((σA(a1, . . . ,an),σB(b1, . . . ,bn)) ∈ R)
∧i χ(((ai,bi) ∈ R(ai,bi)) 6 χR(σA(a1, . . . ,an),σB(b1, . . . ,bn))

∧i χR(ai,bi) 6 χR(σA(a1, . . . ,an),σB(b1, . . . ,bn))

∧i F(R)(ai,bi) 6 F(R)(σA(a1, . . . ,an),σB(b1, . . . ,bn))

Hence R is a morphism in Rel(Alg(Σ,E)(E)) if and only if its image
through F is a morphism in RelE(Σ,E)(Ω), proving that F is well de-
fined. Since there is [19, Thm. 2.1] a functor from Alg(Σ,E)(E) to E

that preserves finite limits and epi-mono factorizations, this means
that morphisms in Rel(Alg(Σ,E)(E)) compose exactly as morphisms
in Rel(E), and the proof of functoriality is can be carried out exactly
as in Lemma A.0.4. �
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