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Abstract

Since its inception roughly a decade ago, there has been a flurry of research surrounding
the compositional-distributional approach to natural language processing. This approach
is so named because it combines distributional models of meaning with compositional
theories of grammar and semantics. More concretely, it is based around the composition
of meaning vectors of individual words for the purpose of obtaining the meaning
vector of larger constituents of text. Such an approach to NLP is regarded as a quantum
one - the underlying theory of string diagrams that it heavily relies on was originally
formulated for describing processes in quantum information. As such, in view of the
current progress in quantum computation, this approach is potentially on the cusp of
being realized in large scale experiments.

This thesis focuses on one significant new theoretical development in this area -
the idea of language circuits. It is an ambitious extension of earlier frameworks, and
aims to provide a way to represent the meanings of entire texts. In this thesis, which
consists entirely of theoretical work, we will first provide an extensive coverage of
the background theory behind compositional-distributional NLP. In the second half,
we launch into an exploration of language circuits - much of this exploration will
come in the form of a discussion of ideas. As more concrete contributions, we will
propose two different processes that allow us to take as input some suitable sentence,
and produce as output the language circuit representation of that sentence. One is
based on dependency grammar parsing, and the other is based on providing ‘internal
wirings’.
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Chapter 1

Introduction

Natural language is, broadly speaking, any language that was the mother tongue of a
group of humans [Tra14]. Natural language processing (NLP) is a field in linguistics,
computer science, and artificial intelligence concerned with the interaction between
computers and natural language. The ultimate aim of NLP is to make computers
understand language as well as humans do - whatever that may entail. NLP is the
driving force behind technologies like speech recognition, sentiment analysis, virtual
assistants, machine translation, and so on. While this field has seen impressive progress
in recent years (in particular benefiting from the deep learning revolution), there are still
obvious limitations to modern NLP, with one of the overarching issues being a heavy
reliance on opaque, structure-less statistical machine learning models. Indeed we are
also a long way off from the ultimate aim of achieving human-level understanding of
language.

This thesis focuses on a diagrammatic, ‘compositional-distributional’ (often abbre-
viated to ‘DisCo’) approach to NLP. This is a theoretical framework that, at an applied
level, seeks to provide an alternative to the currently dominant paradigm of black
box statistical models, and at a theoretical level, hopes to yield new insights into lan-
guage itself. In addition, it is an approach that appears to be particularly amenable
to implementation on quantum hardware[CdFMT20]. DisCo-style NLP has its origin
in the 2010 paper [CSC10], which proposed a framework (later named ‘DisCoCat’)
that allows one to obtain the distributional meaning of a sentence by composing the
distributional meanings of its words. Much work has been done on this and related
ideas in the years following. Most recently, a new evolution of this framework was
proposed (the eponymous ‘language circuits’). This new idea gives a way to ‘compose
sentences’ in order to obtain the distributional meaning of entire texts.
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1.1 Structure of the thesis

This thesis aims to provide a thorough exploration of the notion of ‘language circuit’.
The first three chapters following the introduction are mainly expository back-

ground material. In chapter 2 we present the category-theoretic foundations of our
diagrammatic formalism, which serves to make our work mathematically rigorous.
The chapter focuses specifically on monoidal categories and the various useful struc-
tures one can introduce to them - braidings, cups, caps, spiders. In chapter 3, we
present background material on grammar/syntax as it is studied in linguistics. Gram-
mar provides a structural understanding of language, which will be used to inform
how we model language. Chapter 4 provides a broad overview of the theoretical work
thus far in the diagrammatic, DisCo approach to modelling language. This chapter
brings together ideas from the previous two chapters. In particular, we will give a
description of DisCoCat.

Chapter 5 contains a discussion on how to diagrammatically model a certain basic
fragment of English (‘simple sentences’) as language circuits. This essentially amounts
to deciding how to represent different syntactic categories as circuit components. Many
of the design choices here were already made in previous work (e.g. [CW]), but we
attempt to motivate and justify these choices, by drawing on established grammatical
theories. In this chapter we also propose a simple type theory to categorise the circuit
components.

In chapter 6, we propose a concrete ‘algorithm’ that outputs language circuits
corresponding to input text from a certain fragment of English. This algorithm relies on
parsing information from a dependency grammar parser. The fragment of English that
is dealt with largely consists of the ‘simple sentence fragment’ discussed in the previous
chapter, along with some extra ingredients. At the diagrammatic level, the extra
ingredients do not yield new circuit components, but rather they end up corresponding
to new ‘assembly rules’ for the existing simple sentence circuit components.

Finally, in chapter 7, we follow an alternate approach to obtaining language circuits
proposed in [CW]. This approach consists of providing a large catalogue of ‘internal
wirings’, which can be plugged into certain DisCoCat diagrams in order to turn them
into language circuits. While [CW] provided a catalogue of internal wirings that work
with a ‘pregroup grammar’-based DisCoCat, in this chapter we do so for a DisCoCat
based on a ‘combinatory categorial grammar’. Some of the work in [CW] is able to be
translated over, but much of it does not.
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Chapter 2

Categorical background

In this chapter, we present some requisite mathematical background material on cate-
gory theory. This background serves to put the string-diagrammatic calculus we use
later on solid ground.

In particular, this chapter is centred on monoidal categories, which are one of
the main tools of the modern field known as applied category theory[FS19]. We begin
by introducing monoidal categories, and then present specialised versions of these
- braided, symmetric, closed, and finally compact monoidal categories. In the last
section we discuss Frobenius algebras, known more colloquially as ‘spiders’, which
are useful gadgets that live in monoidal categories.

In our exposition, we will assume some basic category theoretic knowledge - i.e.
the kind of material covered in a first course on category theory (basic examples of
categories, commutative diagrams, functors, natural transformations, adjoints). Much
of this assumed background can be found in Appendix A.

2.1 Monoidal categories

Monoidal categories, and specialised versions thereof, form the bread and butter of
applied category theory. They also come with an elegant and rigorous graphical
calculus that can be used for proofs. This section follows closely [HV19].

Definition 2.1.1. A monoidal category is a category C equipped with the following data:

• a tensor product functor ⊗ : C × C → C

• a unit object I ∈ Ob(C)

• an associator natural isomorphism (X ⊗ Y) ⊗ Z
αX,Y,Z
−−−→ X ⊗ (Y ⊗ Z)

3



• a left unitor natural isomorphism I ⊗ X
λX
−→ X

• a right unitor natural isomorphism X ⊗ I
ρX
−→ X.

This data must satisfy the following triangle and pentagon equations for all objects X,Y,Z,W

(X ⊗ I) ⊗ Y X ⊗ (I ⊗ Y)

X ⊗ Y

αX,I,Y

ρX⊗1Y 1X⊗λY

(X ⊗ (Y ⊗ Z)) ⊗W X ⊗ ((Y ⊗ Z) ⊗W)

((X ⊗ Y) ⊗ Z) ⊗W X ⊗ (Y ⊗ (Z ⊗W))

(X ⊗ Y) ⊗ (Z ⊗W)

αX,Y⊗Z,W

1X⊗αY,Z,WαX,Y,Z⊗1W

αX⊗Y,Z,W αX,Y,Z⊗W

The associator and left and right unitors are often referred to as structural isomor-
phisms.

Example. Set is a monoidal category where

• the categorical tensor product is the Cartesian product of sets ×,

• the unit object is a chosen singleton set {•},

• the associators (X×Y)×Z
αX,Y,Z
−−−→ X× (Y×Z) are the functions ((x, y), z) 7→ (x, (y, z)),

• the left (resp. right) unitor {•} × X
λX
−→ X (resp. X × {•}

ρX
−→ X) are the functions

(•, x) 7→ x (resp. (x, •) 7→ x).

Example. Vectk (vector spaces over the field k) is a monoidal category where

• the categorical tensor product⊗ : Vectk×Vectk → Vectk is the usual tensor product
of vector spaces,

• the unit object is the 1-dimensional vector space given by the underlying field k,

• the associators (X⊗Y)⊗Z
αX,Y,Z
−−−→ X⊗ (Y⊗Z) are the unique linear maps satisfying

(x ⊗ y) ⊗ z 7→ x ⊗ (y ⊗ z) for all x ∈ X, y ∈ Y, z ∈ Z,

• the left (resp. right) unitor k ⊗ X
λX
−→ X (resp. X ⊗ k

ρX
−→ X) is the unique linear

map satisfying 1 ⊗ x 7→ x (resp. x ⊗ 1 7→ 1) for all x ∈ X.

4



By restriction, FVectk (finite dimensional k-vector spaces) also forms a monoidal cate-
gory with these structures.

Example. Note that given a categoryC, the monoidal structure may not be unique. For
instance, we can also make Vectk into a monoidal category by taking the categorical
tensor product to be the direct sum of vector spaces ⊕1. However, in this thesis we
will only use Vectk (and FVectk) to refer to the monoidal category where the categorical
tensor product is the vector space tensor product.

Definition 2.1.2. A monoidal category is strict monoidal if all the structural isomorphisms
are all identity natural transformations, i.e.

(X ⊗ Y) ⊗ Z = X ⊗ (Y ⊗ Z)

I ⊗ X = X

X ⊗ I = X

for all X,Y,Z.

We make a remark here on the so-called principle of equivalence in category theory2.
Stating that two objects of a given category are equal, as we do in definition 2.1.2, often
leads to a ‘breaking of equivalence invariance’ and can be problematic. Generally,
one should instead say that objects are isomorphic and then (usually) impose some
coherence relation on the relevant family of isomorphisms. However, in some later
sections (chapter 4, when we construct DisCoCat as a functor from some syntax cate-
gory to FVectR) we will somewhat contravene this rule and assert equality of objects,
by enforcing choices of various objects.

2.1.1 Monoidal functors, strictification, coherence

Here we introduce the notion of monoidal functors, which are functors that respect the
monoidal structure, along with some important results about monoidal categories.

Monoidal functors come in varying levels of strictness and strength, but the kind
we are interested in is the strong monoidal functor.

Definition 2.1.3. A strong monoidal functor F : C → C′ between monoidal categories is a

1Note the direct sum also gives the products (and coproducts) for Vectk, so this construction would
be a ‘Cartesian monoidal category’, i.e. a monoidal category where the monoidal structure is given by
the categorical product.

2See https://ncatlab.org/nlab/show/principle+of+equivalence.
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functor equipped with natural isomorphisms

F0 : I′ � F(I)

(F2)A,B : F(A) ⊗′ F(B) � F(A ⊗ B)

such that the following diagrams commute:

• Associativity:

(F(A) ⊗′ F(B)) ⊗′ F(C) F(A) ⊗′ (F(B) ⊗′ F(C))

F(A ⊗ B) ⊗′ F(C) F(A) ⊗′ F(B ⊗ C)

F((A ⊗ B) ⊗ C) F(A ⊗ (B ⊗ C))

(F2)A,B⊗
′1F(C)

α′F(A),F(B),F(C)

1F(A)⊗
′(F2)B,C

(F2)A⊗B,C (F2)A,B⊗C

F(αA,B,C)

• Unitality:

F(A) ⊗′ I′ F(A) I′ ⊗′ F(A) F(A)

F(A) ⊗′ F(I) F(A ⊗ I) F(I) ⊗′ F(A) F(I ⊗ A)

ρ′F(A)

1F(A)⊗
′F0 F(ρ−1

A )

λ′F(A)

F0⊗
′1F(A) F(λ−1

A )

(F2)A,I (F2)I,A

With monoidal functors, we can then state the following useful theorem.

Theorem 2.1.4 (Strictification theorem, theorem 1.38 [HV19]). Every monoidal category
is monoidally equivalent to a strict monoidal category.

Without going into the precise details of what a ‘monoidal equivalence’ is, it suffices
to say that monoidal equivalences between two monoidal categories witness that the
two monoidal structures are ‘essentially the same’. Thus, the strictification theorem
essentially justifies the usual laxity with which we treat associativity and unit laws in
monoidal categories. That is, we will often write A ⊗ B ⊗ C ⊗ . . . without regard to
parentheses and such, analogously to how we freely write A×B×C× . . . for Cartesian
products of sets.

Another important result about monoidal categories worth noting is the so-called
‘coherence theorem’, due to Mac Lane3.

3See https://ncatlab.org/nlab/show/coherence+theorem+for+monoidal+categories.
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Theorem 2.1.5 (Coherence theorem for monoidal categories). Given the data of a monoidal
category, if the pentagon and triangle equations hold, then any well-typed equation built from
associators, unitors, and their inverses holds.

That is, the triangle and pentagon equations together imply that any possible ‘reorga-
nization’ of two systems via the structural isomorphisms are equal.

2.1.2 Graphical calculus

If we think of a morphism f : X → Y as some kind of abstract process taking us from
state X to state Y, then the tensor product ⊗ can be interpreted as allowing multiple
processes to occur concurrently. This notion is captured in a graphical calculus for
monoidal categories, where we represent morphisms/processes as boxes with input
and output wires corresponding to their domain and codomain. These graphical
depictions of morphisms are called string diagrams, and are the Poincaré dual of the
familiar commutative diagrams4.

Putting inputs at the top and outputs at the bottom, a morphism f : X→ Y would
then be depicted as the following string diagram.

f

X

Y

The tensor product of f : X → Y with g : X′ → Y′ is then depicted by simply placing
two morphisms next to each other.

f

X

Y

g

X′

Y′
f ⊗ g

X ⊗ X′

Y ⊗ Y′
=

Since the graphical calculus is usually for a strict, or strictified version of some monoidal
category (as per theorem 2.1.4), we make no distinction between (X ⊗ Y) ⊗ Z and X ⊗
(Y⊗Z), and additional tensor products are unambiguously depicted as the following5.

f

X

Y

g

X′

Y′
f ⊗ g ⊗ h

X ⊗ X′ ⊗ X′′

Y ⊗ Y′ ⊗ Y′′
= h

X′′

Y′′

4See https://ncatlab.org/nlab/show/string+diagram.
5There are alternate diagrammatic calculi for not necessarily strict monoidal categories, in which one

does keep track of the bracketing, as well as of I objects. We will not consider these alternate systems in
this thesis.
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Identity morphisms are represented by wires with no boxes. Sequential composition
◦ is represented by vertically composing the boxes.

f

Y

Z

g

X

f ◦ g

X

Z

=

The monoidal unit I is usually thought of as a trivial or empty system. Since the
graphical calculus is usually set in a strict monoidal category, the wire for the unit
object I is simply not depicted. Hence the identity morphism on I is depicted as an
‘empty diagram’. There is also a special graphical depiction for states (morphisms that
go I→ X), and effects (morphisms that go X→ I).

state

effect
X

X

We will be particularly interested in states - for our applications, a state on object X
can be rightly viewed as ‘some element of X’.

Example. In Set, states of a set X are functions {•} → X, which correspond exactly to
elements of X by considering the image of •.

Example. Similarly, in Vectk, states of X are linear functions k→ X, which correspond
exactly to vectors in X by considering the image of 1 ∈ k.

Many operations in monoidal categories that look unenlightening in symbols be-
come obvious in the diagrammatic calculus. For instance, an important property of
monoidal categories is that they satisfy the ‘bifunctoriality’ or ‘interchange law’: for
any morphisms f : X→ Y, g : Y→ Z, h : X′ → Y′, j : Y′ → Z′, we have

(g ◦ f ) ⊗ ( j ◦ h) = (g ⊗ j) ◦ ( f ⊗ h). (2.1)

Note this is just one of the two functoriality conditions of ⊗6. In symbols, this law
looks like a somewhat mysterious algebraic identity - but in graphical notation, the
interchange law becomes

6The other functoriality condition is 1X ⊗ 1Y = 1X⊗Y.
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g

Y

Z

f

X

=

j

Y′

Z′

h

X′

g

Y

Z

f

X

j

Y′

Z′

h

X′

where we used brackets to indicate how we are forming the equations on each side.
Dropping the brackets, the two sides will look identical, and we see that in the graphical
calculus, the interchange law is intuitively natural to the point of being trivial. This
illustrates a general theme - in the graphical calculus many algebraic features are are
absorbed into the geometry of the plane, of which humans have an excellent intuitive
understanding.

As we will see later, there are many additional structures one can introduce to
the basic monoidal category which can be represented by encoding further geometric
properties into the string diagram calculus.

For the basic monoidal category without any such additions, the validity of the
grammatical calculus is captured in the following ‘correctness theorem’, which essen-
tially says that the graphical calculus is both sound and complete.

Theorem 2.1.6 (Correctness of the graphical calculus for monoidal categories, theorem
1.8 [HV19]). A well-typed equation between morphisms in a monoidal category follows from
the axioms if and only if it holds in the graphical language up to planar isotopy.

Here two diagrams are considered ‘planar isotopic’ if one can be deformed contin-
uously into another, within some rectangular region of the plane in which the input
and output wires terminate at the top and bottom of the rectangle, and no intersections
are introduced into any of the components.

Below are some example of isotopic and non-isotopic diagrams.

h

f

g

=
iso

f

g

h ,
not iso

h

f

g

2.2 Braided and symmetric monoidal categories

In this section, we introduce some extra structure to the basic monoidal category,
namely a ‘braiding’.

9



Definition 2.2.1. A braided monoidal category is a monoidal category equipped with a
natural isomorphism

X ⊗ Y
σX,Y
−−→ Y ⊗ X

called a braiding, which satisfies the hexagon equations:

X ⊗ (Y ⊗ Z) (Y ⊗ Z) ⊗ X

(X ⊗ Y) ⊗ Z Y ⊗ (Z ⊗ X)

(Y ⊗ X) ⊗ Z Y ⊗ (X ⊗ Z)

σX,Y⊗Z

α−1
X,Y,Z

σX,Y⊗1Z

α−1
Y,Z,X

αY,X,Z

1Y⊗σX,Z

(X ⊗ Y) ⊗ Z Z ⊗ (X ⊗ Y)

X ⊗ (Y ⊗ Z) (Z ⊗ X) ⊗ Y

X ⊗ (Z ⊗ Y) (X ⊗ Z) ⊗ Y

σX⊗Y,Z

αX,Y,Z

1X⊗σY,Z

αZ,X,Y

α−1
X,Z,Y

σX,Z⊗1Y

The braiding morphisms are depicted in the graphical notation as the following

σX,Y : X ⊗ Y→ Y ⊗ X

X Y

Y X
σ−1

X,Y : Y ⊗ X→ X ⊗ Y
X Y

Y X

so that invertibility takes the following intuitive graphical form, mirroring the be-
haviour of strings.

= =

Braided monoidal categories have their own graphical calculus, expressed via the
following correctness theorem. The notion of isotopy used in the calculus is now three-
dimensional (‘spatial isotopy’), as opposed to the two-dimensional planar isotopy for
basic monoidal cateogires. That is, the diagrams for a braided monoidal category are
assumed to lie in a cube, with input wires terminating at the lower face and output
wires terminating at the upper face. These diagrams are then allowed to be deformed
in three-dimensional space.

10



Theorem 2.2.2 (Correctness of graphical calculus for braided monoidal categories,
theorem 1.18 [HV19]). A well-typed equation between morphisms in a braided monoidal
category follows from the axioms if and only if it holds in the graphical language up to spatial
isotopy.

An important special class of braided monoidal categories is the symmetric monoidal
category.

Definition 2.2.3. A symmetric monoidal category is a braided monoidal category in which
the braiding satisfies the symmetry property

σY,X ◦ σX,Y = 1X⊗Y.

In this case we call σ the ‘symmetry’. Graphically, the symmetry property corresponds
to

=
.

Indeed, it is easy to show that in a symmetric monoidal category, σX,Y = σ−1
Y,X

= . (2.2)

So in symmetric monoidal categories there is no distinction made between under- and
over-crossings, and we can simply draw

for a single type of crossing.
Suppose our diagrams now depict curves in four-dimensional space. Then we

can smoothly deform one crossing into the other, in the manner of equation (2.2),
by using the extra dimension. In this sense, symmetric monoidal categories have a
four-dimensional graphical calculus.

Theorem 2.2.4 (Correctness of the graphical calculus for symmetric monoidal cate-
gories, theorem 1.22 [HV19]). A well-typed equation between morphisms in a symmetric
monoidal category follows from the axioms if and only if it holds in the graphical language up
to graphical equivalence.

11



Example. Set has a braiding X × Y
σX,Y
−−→ Y × X given by the function (x, y) 7→ (y, x).

Clearly this braiding is also a symmetry, so that Set is a symmetric monoidal category.

Example. Vectk (and also FVectk) has a braiding, where X ⊗ Y
σX,Y
−−→ Y ⊗X is the unique

linear map extending x⊗ y 7→ y⊗ x for all vectors x ∈ X, y ∈ Y. Clearly this braiding is
a symmetry, so that Vectk (and FVectk) is a symmetric monoidal category.

2.3 Closed monoidal categories

In this section we introduce the notion of closure. The basic idea is that a category is
closed when for any pair of objects X, Y, the collection of morphisms from X to Y can
be regarded as forming an object of C itself. In this case, the object is often denoted
[X,Y] and referred to as the internal hom-object or simply the internal hom. Note
that this differs from the hom-set HomC(X,Y) which in general is an object of Set rather
than of C. The term ‘closed’ in ‘closed monoidal category’ is hence used in the sense
that forming hom-sets does not lead ‘out of the category’.

There are various flavours of closed categories - there are definitions of closed
category that assume no extra structure (in particular no monoidal structure)7, and
there are special varieties like Cartesian closed categories. For a general monoidal
category we have the following formal definitions.

Definition 2.3.1. A monoidal category C is right-closed if for all objects B, the functor
− ⊗ B : C → C has a right adjoint

− ⊗ B a −� B.

Using the hom-set definition of adjoint (definition A.3.1), this means that for any object
B there is a bijection

ΛR
X,B,Y : HomC(X ⊗ B,Y) � HomC(X,Y � B) (2.3)

natural in X,Y. By a result on ‘adjunctions with a parameter’ (theorem A.3.3), we may
assemble the functors − � B : C → C into a bifunctor − � − : C × Cop

→ C such that
the bijection (2.3) is also natural in B8. The operation given by the ΛR

X,B,Y map, which
consists of taking some morphism X⊗B→ Y and producing a morphism X→ Y � B,
is called right-currying.

7See https://ncatlab.org/nlab/show/closed+category.
8See also https://ncatlab.org/nlab/show/internal+hom#properties.
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We have an analogous definition for left-closure.

Definition 2.3.2. A monoidal category C is left-closed if for all objects B, the functor B⊗− :
C → C has a right adjoint

B ⊗ − a B( −.

Analogously to the right-closed case, there is a bijection

ΛL
B,X,Y : HomC(B ⊗ X,Y) � HomC(X,B( Y)

natural in X, Y, and B, where we have extended the B ( − : C → C functors into a
bifunctor −( − : Cop

× C → C. The operation given by ΛL
B,X,Y is called left-currying.

The point here is that for a general monoidal category, there is not necessarily a way
to relate tensoring on the left and tensoring on the right, and hence we will in general
have a separate notion of left- and right-closure.

Definition 2.3.3. If a monoidal category is both left- and right-closed, we call it biclosed.

In a braided monoidal category, the braiding makes A ⊗ B naturally isomorphic
to B ⊗ A, so the distinction between tensoring on the left and tensoring on the right
becomes immaterial. Every right-closed braided monoidal category becomes left-
closed in a canonical way, and vice versa9. That is, a braided monoidal category
will be left-closed if and only if it is right-closed. Thus, we may safely speak of a
‘braided monoidal closed category’, or ‘symmetric monoidal closed category’ without
specifying whether it is left- or right-closed.

In the special case of symmetric monoidal category which we will be interested in,
we have the following definition for closure that subsumes the previous ones10.

Definition 2.3.4. For a symmetric monoidal category C, an internal hom-functor in C is a
functor

[−,−] : Cop
× C → C

such that for every object X of C, we have a pair of adjoint functors − ⊗ X a [X,−] (both
C → C).

If an internal hom-functor exists, we say C is a closed symmetric monoidal category.

As previously mentioned, the object [X,Y] is usually called the internal hom of X and
Y. We have a bijection

HomC(X ⊗ Y,Z) � HomC(X, [Y,Z]) (2.4)
9More concretely, note that for any object B, the braiding can be restricted to give a natural isomor-

phism −⊗B � B⊗−. Then, if a category is right-closed, i.e. −⊗B a −� B, by a result on the uniqueness
of adjoints (lemma A.3.2), this also gives B ⊗ − a −� B, which means the category is also left-closed.

10From https://ncatlab.org/nlab/show/internal+hom.
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natural in all arguments.
Note that definition 2.3.4 reduces correctly with respect to the previous definitions

- a ‘closed symmetric monoidal category’ in the sense of definition 2.3.4 is precisely a
left-/right-/bi-closed monoidal category which is also symmetric11.

Example. The tautological example of a closed monoidal category is Set. Recalling
that the Cartesian product makes Set a symmetric monoidal category, the internal
hom-functor in Set is just the usual hom-functor HomSet(−,−) : Setop

×Set→ Set, with
the natural bijection

HomSet(X × Y,Z) � HomSet(X,HomSet(Y,Z))

provided by the usual currying of functions. That is, the forward operation here is
the following: given an f : X × Y → Z, we can ‘delay the inputs’ to obtain a func-
tion X → HomSet(Y,Z) that maps x 7→ ( f (x,−) : Y → Z). The inverse operation is
referred to as ‘uncurrying’. It takes as input a function f̂ : X→ HomSet(Y,Z) that maps
x 7→ ( fx : Y→ Z) - essentially a family of functions Y→ Z indexed by elements x ∈ X.
Uncurrying means we assemble these into a single function X × Y → Z that maps
(x, y) 7→ fx(y). Verifying the naturality of this bijection is a routine exercise.

Example. Recall that given two vector spaces V and W over the same field k, the
space of k-linear maps from V to W, denoted L(V,W), is itself a vector space over k.
Vectk thus also forms a closed symmetric monoidal category, where the internal hom-
functor is L(−,−) : Vectop

k × Vectk → Vectk. Note this is distinct from the hom-functor
HomVectk(−,−) : Vectop

k ×Vectk → Set. By restriction, FVectk is also a closed symmetric
monoidal category.

2.4 Compact closed categories

We are now able to introduce compact closed categories. Compactness is about the
notion of dual objects, which leads to caps and cups in the graphical calculus.

Definition 2.4.1 (Def 3.1 [HV19]). In a monoidal category, an object X is left dual to an

11In the forward direction, a symmetric monoidal category with internal hom [−,−] : Cop
× C → C

will be right-closed in the sense of definition 2.3.1, by taking −� B = [B,−]. Therefore it is additionally
left-closed (hence biclosed) by the previous discussion, where we may also take B( − = [B,−]. In the
other direction, if C is closed and symmetric, then the − � B functors from right-closure say can then
be assembled into the [−,−] internal hom-functor via theorem A.3.3.
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object Xr, and Xr is right dual to X, written X a Xr, if there are morphisms

ηX : I→ Xr
⊗ X, εX : X ⊗ Xr

→ I

called the unit and counit that satisfy the equations

X ⊗ I X ⊗ (Xr
⊗ X)

X

I ⊗ X (X ⊗ Xr) ⊗ X

1X⊗ηX

α−1
X,Xr ,X

ρ−1
X

λX

εX⊗1X

I ⊗ Xr (Xr
⊗ X) ⊗ Xr

Xr

Xr
⊗ I Xr

⊗ (X ⊗ Xr)

ηX⊗1Xr

αXr ,X,Xr

λ−1
Xr

ρXr

1Xr⊗εX

We will generally use a superscript r to denote the right dual (e.g. X a Xr), and a
superscript l to denote a left dual (e.g. Xl

a X). If we have X a Xr, we say that the
object X is right-dualisable, and Xr is left-dualisable. Graphically, we depict the chosen
unit and counit morphisms as ‘caps’ and ‘cups’ (‘chosen’, since cups and caps are not
necessarily unique).

X Xr

εX : X ⊗ Xr
→ I

XXr

ηX : I→ Xr
⊗ X

The arrows on the wires capture the duality information of the types, and in effect add
orientation to the wires in the graphical calculus. The duality equations then take on
a particularly nice form.

=

X

Xr

X

X

X

=

Xr

X

Xr

Xr

Xr

Because of this graphical form, these equations are sometimes called ‘snake equations’
or ‘yanking equations’.
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A useful result about duals is that they are unique up to isomorphism.

Lemma 2.4.2 (Lem 3.4 [HV19]). In a monoidal category with X a Xr, then X a R if and only
if Xr � R. Similarly, L a Xr if and only if X � L.

For a neat graphical proof, refer to the citation.

Lemma 2.4.3 (Lem 3.7 [HV19]). In a monoidal category, X a Xr and Y a Yr implies
X ⊗ Y a Yr

⊗ Xr.

There is also a neat graphical proof for this (see the citation). Using lemma 2.4.2, this
result is equivalently expressed as (A ⊗ B)r � Br

⊗ Ar, and similarly (A ⊗ B)l � Bl
⊗ Al.

Another property worth noting is that strong monoidal functors preserve duals.

Lemma 2.4.4. Let F : C → C′ be a strong monoidal functor. If X a Xr in C, then F(X) a F(Xr)
in C′.

Put another way, we have F(Al) � F(A)l, and F(Ar) � F(A)r. To see this, note that we
have the following two compositions of morphisms

I′
F0
−→ F(I)

F(ηX)
−−−→ F(Xr

⊗ X)
(F2)−1

Xr ,X
−−−−−→ F(Xr) ⊗′ F(X)

F(X) ⊗′ F(Xr)
(F2)X,Xr
−−−−−→ F(X ⊗ Xr)

F(εX)
−−−→ F(I)

F−1
0
−−→ I′

which we claim are the unit ηF(X) and counit εF(X) witnessing the adjunction F(X) a
F(Xr)[KSPC13].

Monoidal categories with dual objects are called ‘rigid monoidal categories’.

Definition 2.4.5. If every object of a monoidal categoryC has a left dual, we sayC is left-rigid
monoidal category. Analogously, if every object has a right dual we say C is right-rigid. If
every object has both a left and right dual, we simply say that C is a rigid monoidal category12.

A right-rigid monoidal category (i.e. not necessarily braided) will be left-closed, where
we can take the internal hom-functor B( − to be Br

⊗ −.

Lemma 2.4.6. Right-rigid monoidal categories are left-closed, via

B ⊗ − a Br
⊗ −

for any object B.

12These are sometimes also referred to as autonomous monoidal categories.
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The easiest way to prove that this forms an adjunction is to exhibit an isomorphism
HomC(B ⊗ X,Y) � HomC(X,Br

⊗ Y) natural in X, Y (left-currying). This is given by
bending one of the input wires (i.e. attaching a cap):

f

B X

Y
f

Br Y

X
B

This is clearly an isomorphism, since the inverse operation of attaching a cup will undo
it. Naturality is also easy to prove with diagrams.

Similarly, a left-rigid monoidal category will be right-closed, since − ⊗ B a − ⊗ Bl,
via right-currying. That is, we have HomC(X ⊗ B,Y) � HomC(X,Y⊗ Bl) natural in X, Y
via

f

BX

Y
f

BlY

X
B .

So a rigid monoidal category will be biclosed, possessing both left- and right-currying
operations.

It turns out that having dual objects is a strong structure that extends functorially
to morphisms.

Definition 2.4.7. In a monoidal category, for a morphism f : X → Y and chosen dualities
X a Xr, Y a Yr, the right dual or transpose f r : Yr

→ Xr is defined as

Yr

X

Xr
Y

f .

Definition 2.4.8. In a right-rigid monoidal category where every object X has some chosen
right dual Xr, the right dual functor (−)r : C → Cop is defined on objects as (X)r = Xr and on
morphisms as ( f )r = f r.

It is straightforward to check that this definition satisfies the functoriality axioms.
Working in a braided monoidal category allows us to drop the left/right bureaucracy.

Lemma 2.4.9. If a monoidal category is braided, the difference between right/left duals vanishes,
i.e. X a X∗ implies X∗ a X.
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So in a braided monoidal category, we can simply speak of X, X∗ being ‘dual objects’,
rather than left or right dual. The proof of this lemma is to construct the caps and cups
corresponding to X∗ a X using braiding.

X Xr

Xr X

It is easy to see that this proposed cap/cup pair satisfies the yanking equations.
Finally we arrive at the definition of compact closed category13. Essentially, it is a

symmetric rigid monoidal category.

Definition 2.4.10. A compact closed category, or simply a compact category, is a sym-
metric monoidal category in which every object is dualizable14.

Recalling the canonical closed structure arising from duals in lemma 2.4.6, we see that
a compact closed category is in particular a closed symmetric monoidal category, with
the internal hom given by [A,B] � A∗ ⊗ B. More precisely, we take the internal hom to
be the functor

(−)r
⊗ − : Cop

× C → C.

This justifies the name, i.e. it is what the terminology ‘compact closed’ is referring to.

Example. The canonical example of a compact closed category is FVectk
15. Here the

dual object X∗ is the usual dual of the vector space X16. The unit and counit for the
duality V a V∗ is given by

εV : V ⊗ V∗ → k ηV : k→ V∗ ⊗ V

v ⊗ f 7→ f (v) 1 7→
∑

i

fi ⊗ ei

where f : V → k is a functional in the dual space, {ei} is some chosen (finite) basis for
V, and { fi} is the dual basis, i.e. fi(e j) = δi j.

In the special case of FVectR, for any (finite dimensional) vector space V we may
pick a basis and then canonically turn it into a real inner product/Hilbert space by

13An important note: in some literature, the term ‘compact closed’ refers to what we have called
‘rigid’ categories. This usage occurs in much of the DisCoCat literature. We reiterate that our definition
of compact closed includes symmetry.

14This definition is from https://ncatlab.org/nlab/show/compact+closed+category.
15Note that the larger category Vectk is not compact closed, only closed symmetric monoidal.
16See also https://ncatlab.org/nlab/show/finite-dimensional+vector+space#

CompactClosure.
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defining the dot product. Then by the Riesz representation theorem we have V � V∗,
and hence V a V, in which case f (v) is interpreted as simply the dot product ~f · ~v.

2.5 Spiders

In this section, we discuss Frobenius algebras (also referred to as ‘spiders’). These are
a useful algebraic gadget that one can introduce to monoidal categories. They are used
extensively in categorical quantum mechanics [?], and we will make use of them in
our linguistics applications.

2.5.1 Frobenius algebras

Definition 2.5.1. In a monoidal category, a monoid is a triple (X, , ) where X is an object,
and : X ⊗ X→ X and : I→ X are morphisms that satisfy the associativity

=

and unitality

= =

equations. The morphism is called the monoid multiplication, and is called the monoid
unit.

If the monoid additionally satisfies

=
(2.5)

then we say that it is a commutative monoid.

Note that in (2.5) it does not matter which braiding we took, since the condition
would be equivalent to the one with the alternate choice of braiding.

Example. To justify its name, in Set this definition coincides exactly with the classic
definition of monoid. That is, is just the monoid multiplication function sending
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(a, b) 7→ a · b, and is just the monoid identity.

Example. In Vectk a monoid is what is usually called a (unital) algebra. A special
example is that in FVectk, a chosen basis {ei} gives a commutative monoid with mul-
tiplication defined by ei ⊗ e j 7→ δi jei (i.e. componentwise multiplication) and the unit
defined 1 7→

∑
i ei (the vector of 1’s).

Example. The following is an important general example.

Definition 2.5.2 (Lem 4.11 [HV19]). In a monoidal category with a chosen duality A a Ar,
the object Ar

⊗ A has a canonical monoid structure called the pair-of-pants monoid, with
multiplication and unit

Ar Ar

Ar

A A

A

AAr .

Dualising definition 2.5.1, we obtain the definition of comonoid.

Definition 2.5.3. In a monoidal category, a comonoid is a triple (X, , ) where X is an
object, and : X→ X ⊗ X and : X→ I are morphisms that satisfy the coassociativity

=

and counitality

= =

equations. The morphism is called the comonoid comultiplication, and is called the
monoid counit.

If the comonoid additionally satisfies

=
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then we say that it is a cocommutative comonoid.

Example. In Set, every set X has a unique cocommutative comonoid structure, where
is the function x 7→ (x, x), and is the unique function X→ {•}.

Example. In FVectk, any basis {ei} gives a cocommutative comonoid, with defined
by ei 7→ ei ⊗ ei, and defined by ei 7→ 1.

Example. In a monoidal category with chosen duality A a Ar, there is also a pair-of-
pants comonoid on A ⊗ Ar, defined in the obvious way.

Definition 2.5.4. In a monoidal category, a Frobenius structure (X, , , , ) is tuple
such that (X, , ) is a comonoid, (X, , ) is a monoid, and additionally the Frobenius law
is satisfied.

=

We call a Frobenius structure commutative when its monoid is commutative and its
comonoid is cocommutative.

Frobenius structures satisfy an additional equality, which is sometimes unnecessarily
included in the definition.

Lemma 2.5.5 (Extended Frobenius law, lem 5.4 [HV19]). In a monoidal category, a Frobe-
nius structure satisfies

== .

Definition 2.5.6. In a monoidal category, a pair consisting of comonoid (X, , ) and monoid
(X, , ) is special when is a right inverse of ; i.e.

=

. (2.6)
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Thus, we speak of ‘special Frobenius algebras’, which are Frobenius algebras where
the multiplication and comultiplication satisfy (2.6).

Example. In a monoidal category, suppose we have A a Ar and Ar
a A. Then we can

construct the pair of pants monoid and comonoid on A ⊗ Ar say, which together yield
a Frobenius algebra:

ArAr

Ar

AA

A

ArA

A A

A

Ar Ar

Ar

ArA

.

Moreover, if we have the following ‘normalisation condition’17

=

then the pair-of-pants will additionally be a special Frobenius algebra.

Example. In FVectk, a chosen basis {ei} induces a special commutative Frobenius alge-
bra, by combining the commutative monoid and cocommutative comonoid of previous
examples.

2.5.2 Normal forms

In this subsection, we justify the name ‘spider’, and describe the spider fusion rule.

Theorem 2.5.7 (Noncommutative spider theorem, theorem 5.21 [HV19]). In a monoidal
category, let (X, , , , ) be a Frobenius structure. Any connected morphism X⊗m

→ X⊗n

built of finitely many pieces , , , and identities, using ◦ and ⊗, is equal to the following

17That is, the trace of the identity is equal to the empty diagram.
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normal form:
m

n

(2.7)

The dashed lines in the diagram indicate repeated subunits. The condition that the
morphism be ‘connected’ means that it must have a graphical representation that has
a path between any two vertices.

There are specific normal form theorems for specific Frobenius algebras. The fol-
lowing is the version for special Frobenius algebras (not necessarily commutative).

Theorem 2.5.8 (Special noncommutative spider theorem, lem 5.20 [HV19]). In a monoidal
category, let (X, , , , ) be a special Frobenius structure. Any connected morphism
X⊗m
→ X⊗n built of finitely many pieces , , , and identities, using ◦ and ⊗, is equal to

the following normal form:
m

n

(2.8)

This theorem follows directly from the previous one.
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Example. If (X, , , , ) is a special Frobenius algebra in a monoidal category, then
theorem 2.5.8 would tell us that

= .

Normal form results for Frobenius structures like the ones above are called spider
theorems because the normal forms resemble an (m + n)-legged spider. Indeed, we
simplify our graphical notation by representing normal forms like (2.7) (or equivalently
(2.8) in the case of a special Frobenius algebra) as simply:

m

n

 

m

n

.

Indeed, from now on we will simply use white dots in our graphical notation to
represent spiders (and never again use white and black dots to denote monoids and
comonoids). Note that in the non-special case, this notation suppresses information

about the number of components in the normal form - so that two spiders with
the same number of input and output legs may not represent the same morphism

due to having differing numbers of components. However, in our applications,
the spiders will always be special, so this problem does not arise, and our spiders are
uniquely determined by their number of in/out legs.
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With this convention, the spider theorem yields the following graphical rewrite
rule known as ‘spider-fusion’:

. . .

. . . . . .

. . . . . .

=

m

n

m

n

. . .

. . .

i.e. given connected spiders of the same species (i.e. of the same underlying Frobenius
algebra), we simply merge their heads.
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Chapter 3

Grammatical background

This chapter provides background material on grammar, as it might be presented in a
textbook for linguists. This material is important since our approach to NLP heavily
emphasises the incorporation of grammar and the structural insight that it provides.

We begin with by outlining what exactly ‘grammar’ entails, and introduce some
standard grammatical terms and concepts. We will discuss the dominant ‘constituency’
view of grammar, which sees sentence structure in terms of nested, hierarchical units
of varying size. In particular, we will present a number of ‘typelogical grammars’ -
highly formal systems for grammar, which yield constituency structures, and which
form a crucial ingredient in the DisCoCat formalism. In the last section, we introduce
a slightly different view of grammar and sentence structure based on ‘dependency’ - a
perspective that turns out to be useful for our applications, as seen in chapters 5, 6).

3.1 The study of grammar

Roughly speaking, the grammar of a natural language is its set of structural constraints.
In describing the grammar of a language, the central aim is to explain why speakers
recognize certain forms as being ‘correct’ but reject others as being ‘incorrect’ [Kro05].
The term grammar can also refer more broadly to the study of such constraints, which
includes domains like phonology (the study of patterns of sounds), morphology (the
study of word shape), and semantics (the study of meaning, and the relationship
between form and meaning). Of particular interest for us is the study of syntax - the
set of principles that govern sentence structure. Though syntax is generally considered
a subset of grammar, we will sometimes use these terms interchangeably - for instance,
to say that a sentence is ‘grammatical’ is to say that it is ‘syntactically valid’[Tal19].

To give a basic example, one key description of a language’s syntax is the order
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in which the subject (S), verb (V), and object (O) usually appear in sentences1. For
instance, English is an SVO language: consider the sentence “Alice ate cereal”. On the
other hand, Latin is generally SOV: consider the sentence

Servus puellam amat

slave girl loves

i.e. “the slave loves the girl”.
An important note is that the rules of grammar are only concerned with the ac-

ceptability of the form itself, rather than the meaning or function expressed (though
grammatical structure and meaning are often closely intertwined - see for instance the
example of structural ambiguity in section 3.3, in which one sentence can have different
meanings depending on how it is parsed). For instance, at the level of sentences, there
is a clear distinction between syntax and semantics, in that it is possible for a sentence to
be perfectly grammatical (syntactically valid) but have an obscure meaning. A famous
example of such a sentence comes from Chomsky[Cho09]:

“Colourless green ideas sleep furiously.”

Conversely, we can often make sense of a sentence even if it is not grammatically
correct:

“Me Tarzan, you Jane.”

We note that while grammar may feel relatively intuitive for humans, such that we
can learn to speak without ever being consciously aware of the sophisticated grammar
we are using, it is formally very complicated, and is far from being ‘solved’. That is, to
answer the question of ‘which sentences are grammatical’, linguists have come up with
an enormous number of different, sophisticated grammatical theories and formalisms,
all of which provide different answers to this question.

A consequence of this is that the notion of ‘grammatical English’ is a chimera - it
is not well-defined. While there are some sentences that are clearly grammatical and
others that are clearly ungrammatical, on the boundaries there are many sentences that
may or may not be considered grammatical depending on what grammatical theory
one adopts.

1We will explain these terms later.
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3.2 Some basic grammatical units

An important feature of human language is the fact that larger units are composed
of smaller units, and that the arrangement of these smaller units is significant. For
example, a sentence is not just a structure-less string of words. Rather, words cluster
together to form grammatical units of various sizes; these units are referred to as
constituents[Kro05]. In this section, we will discuss important examples of such units,
and also take this opportunity to introduce some other related grammatical concepts.

At the lowest level (that we are interested in), the words of any language can be
classified according to their grammatical properties. These classes are traditionally
referred to as parts of speech (POS) - e.g. noun, verb, etc. Linguists also refer to them
as syntactic categories (though depending on who you ask, the latter term may also
include phrasal categories)[Kro05]. Note these ‘categories’ have no relation to those of
category theory.

Another important grammatical unit is the clause - the smallest grammatical unit
which can express a complete proposition. To be more precise about this, we first
define that the element of meaning which identifies the property or relationship is
called the predicate. For instance, in the examples

“John is hungry.”
“John loves Mary.”

“Mary is slapping John.”

the words “hungry”, “loves”, and “is slapping” express the predicates. The individuals
(participants) of whom the property or relationship is claimed to be true (in these cases,
“John” and ‘Mary”) are called arguments. Note in some languages, predicates may not
require any arguments at all - e.g. in many languages statements like “It is raining” can
be expressed by a single word, a bare predicate with no arguments. With this in mind,
we say then that a clause is a grammatical unit which expresses a single predicate
and its arguments[Kro05]. Some clauses (‘independent clauses’) can stand alone as a
sentence - for instance, the clause “I first met her in Paris” in the sentence

“I first met her in Paris where I lived as a child.”

However, not all clauses will form standalone sentences - in the above, “where I lived as
a child” forms a ‘subordinate clause’, but clearly does not form a standalone sentence.
A sentence may consist of just one clause or it may contain several clauses:

“[My wife told me that [I should introduce her little sister to the captain of the
football team]], but [I assumed that [her sister was too shy]].”[Kro05]
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Another important grammatical unit is the phrase. First, a phrase must be a group
of words which form a constituent. Second, a phrase is lower on the grammatical
hierarchy than clauses (though sometimes clauses may also be considered a kind of
phrase). As a preliminary definition then, let us assume that a phrase is a group of
words which can function as a constituent within a simple clause. Just as words may
be classified into different categories, so too can we categorize phrases into different
phrasal categories. The most ‘important’ word of a phrase is called the head of the
phrase[NG18], and we generally name a phrase by the category of its head. So for
instance,

“that big fish”

is a noun phrase, here the head is the noun “fish”, and

“very beautiful”

is an adjective phrase where the head is the adjective “beautiful”. Note though that En-
glish noun phrases do not always contain a head noun - in certain contexts a previously
mentioned head may be omitted because it is ‘understood’. Consider for instance the
noun phrases in

“[The third little pig] was smarter than [the second ].”

The set of grammatical units sentence, clause, phrase, word, (along with the sub-
word-level unit called morpheme, which we did not discuss) is adequate for most lan-
guages. Each well-formed grammatical unit (e.g. a sentence) is made up of constituents
which are themselves well-formed grammatical units, giving a kind of hierarchy. This
hierarchy is an important aspect of linguistic structure.

3.3 Constituency grammar

Building on the constituent/hierarchical perspective of the previous section leads nat-
urally to the so-called phrase-structure or constituency theories of grammar, which is
one of the most common and basic ways of analyzing sentence structure.

We begin our discussion of constituency grammar by introducing tree diagrams -
the most commonly used method of representing information about constituency and
linear order. Consider a simple constituency-based tree diagram for the sentence “Kim
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bought that book with her first wages”:

S

NP

Kim

VP

V

bought

NP

Det

that

N

book

PP

P

with

NP

Det

her

AP

first

N

wages

(3.1)

The key ideas are the following. The tree is rooted at the top, and grows down
(thus, phrase structure rules are often considered to offer a top-down view of sentence
structure). Each node of the tree is labelled by some category label (S = sentence, NP
= noun phrase, V = verb, Det = determiner etc.), unless it is a terminal node which is
labelled by an actual word. Evidently, higher nodes correspond to larger constituents.

Given a node A that is directly above and connected to a node B by an edge, we say
that A immediately dominates B. A node that immediately dominates a set of nodes
is their mother, and the nodes that are dominated are the daughters. Daughters of the
same mother are sister nodes. If a node A is above node B, and B falls somewhere in the
subtree growing down from A, we say that A dominates B (as opposed to immediately
dominates, though immediate domination also implies domination)[Tal19].

As for how exactly one comes up with a constituency-based tree structure like
(3.1), there are various ‘syntactic tests’ one can perform to check if certain words form
constituents. Most importantly though, in constituency grammars, we usually assert
that our parse trees must be able to be generated by phrase structure rules - rewrite
rules of the following form

A→ B C (3.2)

which say that a node labelled A can be replaced by two nodes labelled B and C respec-
tively, in that order. Each phrase structure rule thus defines a possible combination of
mother and daughter nodes. The fact that there is only one symbol on the left-hand
side of equation (3.2) means that the resulting grammar is context-free.

30



For instance, the rules

S→ NP VP

VP→ V (NP) (PP)

NP→ (Det) (AP) N

PP→ P NP

are sufficient to generate the tree (3.1), where bracketed labels indicate optional argu-
ments.

Note that different phrase structure theories with different rewrite rules will yield
different looking trees for the same sentence. That is, given the sentence “Kim brought
that book with her first wages”, we likely would have produced a somewhat different
looking constituency-based tree to (3.1), if we had adopted a different phrase struc-
ture formalism. For instance, Lexical Functional Grammar (LFG) and the Minimalist
Program (MP) only allow phrase structure rules with strictly binary branching.

With these ideas in place, we can now propose a more concrete definition of con-
stituent: a constituent is a string of words which are exactly those dominated by
some node[Kro05]. Thus, the node labels indicate the category of the constituent it
dominates.

To illustrate the importance of constituency and sentence structure, consider the
phenomenon of structural ambiguity, which is where multiple different sentence struc-
tures for the same sentence/phrase lead to different interpretations of its meaning. For
instance, the sentence

“The short bishop stole the tall bishop’s hat”

can be parsed as “The short bishop stole the tall [bishop’s hat]” or as “The short bishop
stole the [tall bishop]’s hat”[Kro05].

3.4 Parts of speech

In this section we will discuss in more depth word-level syntactic categories. As
with much of the grammatical theory we have thus far presented, there are varying
approaches which will disagree with each other to some extent. Generally, the list of
syntactic categories for English will roughly resemble the following2.

2In addition to the sources provided, see https://universaldependencies.org/u/pos/index.html
for a useful summary of POS.
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• Open classes: this refers to classes of words to which we can add new words. For
example, the nouns “byte”, “blog”, and “software” are all recent innovations in
English, as are the verbs “breathalyse” and “decoke” (to remove carbon deposits
from an engine)[Tal19].

noun: a part of speech typically denoting a person, place, thing, or idea. A
notable special kind of noun is a proper noun, which is the name of a specific
individual, place, or object - for instance, “Bob”, or “North America”.

(main) verb: words that typically describe events and actions, can constitute
a minimal predicate in a clause, and govern the number and types of other
constituents which may occur in the clause. One of the ways that verbs can
be categorised is via the number and kind of arguments that they take - this
is referred to as the valency of the verb. Intransitive verbs are those that take
one argument, which we refer to as the subject. Examples of intransitive verbs
include “Lee sneezed”, or “The volcano erupted”. Transitive verbs are those that
take two arguments - a subject and an object. In this case, the subject is generally
understood to be the ‘doer’ of the action, whereas the object is the one ‘acted
upon’. Examples include “Lee broke the priceless vase”, and “Alice likes Bob”,
where “Lee” and “Alice” are the subjects, and “the priceless vase” and “Bob”
are the objects. Finally, we have ditransitive verbs, which take three arguments
- a subject, a ‘direct’ object, and an indirect object. Typically, the participants
will be someone performing the action (the subject), an item being acted upon
(the direct object), and a recipient (the indirect object). An example is “Alice
sent flowers to Lee”, where “Alice” is the subject, “flowers” is the direct object,
and “Lee” is the indirect object. Many ditransitive verbs can also be transitive,
when we drop the indirect object: “Alice sent flowers” [Tal19]. Note also that
while the arguments in the above example sentences are noun phrases (NPs),
arguments can in many cases be other categories. For instance, consider “Sam
persuaded us to contribute to the cause” where the object is a verb phrase, or
“That he came late did not surprise us” where the subject is a clause.

adjective: words that typically modify nouns and specify their properties.

adverb: words that typically modify verbs for such categories as time, place,
direction or manner. An example is “Alice ran quickly”, A special class of words
that are generally considered a subset of adverbs are the intensifiers, which
cannot modify verbs but rather modify adjectives or other adverbs. The most
common intensifier is “very”, which can modify both adjectives (“I am very red”)
and adverbs (“I ran very quickly”). Other examples may include “fairly”, “too”,
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and “incredibly”[NG18].

• Closed classes: in contrast to open classes, closed classes contain only a small,
fixed number of words, and new words are added very slowly.

adposition: these are items that occur before (preposition) or after (postposition3)
a noun-phrase-like complement, which form a single structure with the comple-
ment to express its grammatical and semantic relation to another unit within
a clause. Examples include “under the floor”, “towards that conclusion”, and
“outside my house”. In many languages, adpositions can take the form of fixed
multiword expressions, such as “in spite of”, “because of”, “thanks to”.

conjunction: these connect words, phrases, or clauses that are called the
conjuncts of the conjunctions. This definition may overlap with that of other parts
of speech (in particular, with adpositions), so what constitutes a conjunction must
be defined for each language. For instance, “after” is a preposition in “he left
after the fight”, since the complement her is a NP “the fight”. However, “after”
is a conjunction in “he left after they fought”, since the conjunct “they fought” is
not NP-like. Important subclasses here are the coordinating conjunctions that
join items of equal syntactic importance, and subordinating conjunctions that
join constructions by making one of them a constituent of the other.

determiners: a word, phrase, or affix that occurs together with a noun or
noun phrase and serves to express the reference of that noun or noun phrase
in the context. Notable examples include articles (“a”, “the”), demonstratives
(“this”, “that”), and quantifiers (“all”, “some”).

auxiliaries: these are function words, often a verb, that accompany the lexical
verb of a verb phrase and expresses grammatical distinctions not carried by the
lexical verb, such as person, number, tense, mood, aspect, voice or evidentiality.
Some examples include tense auxiliaries (“has done”, “is doing”, “will do”),
passive auxiliaries (“was done”, “got done”), modal auxiliaries (“should do”,
must do”), and verbal copulas (“He is a teacher”).

pronouns: words that substitute for nouns or noun phrases, whose meaning
is recoverable from the context. Pronouns under this definition function like
nouns. Particular subclasses we will be interested in are reflexive pronouns
(those ending in “-self”, e.g. “herself”, “itself”) and relative pronouns (those
that introduce relative clauses, e.g. “a cat who eats fish”).

3It is generally accepted that the only common postposition in English is the word “ago” - hence, in
English we often just use the term preposition to refer to adpositions.
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There are also some other classes that are given their own category. These include
interjections (“oh”, “ouch”, “bravo”), numerals (i.e. numbers), and particles (function
words that must be associated with other words to impart meaning, which do not fall
into other universal parts of speech, like “not”, or the possessive marker “’s”).

In addition to the notion of open classes and closed classes, another useful way
to categorise words is as either a function word or content word. Function words
are those with little semantic content that primarily express grammatical relationships
(some adpositions, some conjunctions, some auxiliaries, articles, etc.). As we can see,
the notion of function words broadly overlaps with the notion of closed class. On the
other hand, content words possess semantic content and contribute to the meaning of
the sentence, and are usually open class words.

3.5 Typelogical grammar

Linguists have developed many frameworks of grammar which aim to give a precise,
scientific theory of syntactic rules. Among these frameworks, we will now discuss the
formal approach provided by the so-called typelogical grammars. These will be of
particular interest for our NLP applications.

Typelogical grammar has its roots in the work of Kazimierz Ajdukiewicz in the 1930s
[Ajd78], and the later work of Yehoshua Bar-Hillel and Jim Lambek. Broadly, the main
aim of this approach is “to obtain an effective rule (or algorithm) for distinguishing
sentences from non-sentences” [Lam58].

To this end, one assigns logical types to constituents, which then combine according
to some fixed set of rules as arguments and functions. The judgement that a sentence is
well-formed or grammatical boils down to performing a deduction proof in a Gentzen-
style sequent calculus [Moo14]. That is, a typelogical grammar has two characteristic
components: 1) a type lexicon, which assigns a set of types to each word, and 2)
some type inference rules, which determine how the type of a string of words follows
from the types of the constituent words. A string of words that can be shown to
have the ‘sentence type’ is considered a valid sentence in this typelogical grammar
framework[Bus18].

Traditionally, such typelogical grammars are sometimes also referred to as catego-
rial grammars - here ‘category’ is used in the sense of ‘type’, or ‘syntactic category’.
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3.5.1 Basic categorial grammar (BCG)

The simplest examples of typelogical grammar are the basic categorial grammars
(BCG), sometimes also called AB-grammars (after Ajdukiewicz and Bar-Hillel)[BH53].

The basic categorial grammar somewhat resembles the simply typed lambda calcu-
lus, though the lambda calculus has only one function type A→ B, whereas a categorial
grammar typically has two function types. These two types correspond to functions
taking the input on the right and on the left respectively. That is, given types A and
B, a simple categorial grammar admits function types B/A and A\B. The former, B/A,
will return a phrase of type B when combined with a phrase of type A to its right. That
is, we have the type inference rule

B/A A
B

The latter, A\B, will return a phrase of type A when combined with a phrase of type B
to its left4 , giving the type inference rule

B A\B
A

In basic categorial grammars, these are the only two inference rules via which types
can combine.

As a matter of convention, when we have higher order types that include several
layers of arguments, we will often drop the brackets and assume that they ‘associate
to the left’. That is, we may write

A\B/C

to mean (A\B)/C.
With the inference rules in place, we now need to specify the type lexicon. Firstly,

we fix some set of primitive types P. These are sometimes also called basic types or
atomic types. Then we freely generate a larger set of types T(P), via the recursive rule
that if X,Y ∈ T(P) then X\Y, X/Y are also in T(P). The additional functor types that are
generated in this way are called complex types, which are disjoint from the primitive
types. We then associate each word with some types in T(P). Note that one word may
be associated with multiple types, since depending on the context, it can serve different
functions - this is the structural ambiguity of words in natural language as discussed

4Note that there is another convention in which A\B represents a type that returns type B when
combined with a type A to its left, i.e.

A A\B
B

We do not use this convention.
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in section 3.3. For instance, the word “and” can connect sentences, or nouns, or verbs,
and so on[Bus18].

We now have a basic categorial grammar. A string of words is then considered
grammatical according to this grammar, if each word in the string can be assigned a
type (as per the lexicon) such that the lexical types of the words in the string can be
combined via the two inference rules to form a constituent.

All this is probably best made clear through an example. A simple BCG system
for English might have the three basic types N (nouns), NP (noun phrases), and S
(sentences). Then an adjective might be assigned the type N/N, since if it is followed
by a noun, it can combine with the noun to give a composite that is also a noun -
e.g. “red” as in “red car”. A determiner like “the” has type NP/N because it forms
a complete noun phrase when followed by a noun, and a transitive verb like “made”
has type (S\NP)/NP, since it absorbs a noun phrase to the right and to the left to return
a completed sentence. In this system, the string “the bad boy made that mess” can be
shown to be a grammatical sentence, via the deduction

the
NP/N

bad
N/N

boy
N

N
NP

made
(S\NP)/NP

that
NP/N

mess
N

NP
S\NP

S

Note that information can also be extracted from the reductions that are made - it
shows that the sentence can be parsed as

“[the [bad boy]] [made [that mess]]”

Categorial grammars of this form (with only function application rules) are equiva-
lent in generative capacity to context-free grammars [BHCS60], a degree of expressive-
ness that is known not to be adequate for natural language. For instance, [BKPZ82] and
[Shi85] have shown that certain syntactical constructions in Dutch and Swiss-German
give rise to cross-serial dependencies and are beyond context-freeness.

3.5.2 Combinatory categorial grammar (CCG)

The CCG framework is an extension of the basic categorial grammar via additional
inference rules which are based on the combinators of combinatory logic [CFC+58].
Refer to [Ste00] for a comprehensive treatment; the PhD thesis [Hoc03]5 also contains

5Accessible at https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.135.8543&rep=
rep1&type=pdf.
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a useful summary. CCG is more expressive than BCG - [VSW94] showed it is a mildly
context-sensitive grammar.

We list the main inference rules of CCG below. Each kind of inference rule comes
in forwards and backwards varieties, which are essentially mirror images. Firstly, the
usual forward and backward application rules are the same as basic CG.

• Forward application

α : X/Y β : Y
>

αβ : X

• Backward application

α : Y β : X\Y
<

αβ : X

In addition, there is composition of functors (also called ‘harmonic function composi-
tion’)

• Forward composition

α : X/Y β : Y/Z
B> αβ : X/Z

• Backward composition

α : Y\Z β : X\Y
B< αβ : X\Z

Type-raising is an unary rule which reverts the role of functor and argument.

• Forward type-raising

α : XT> α : Y/(Y\X)

• Backward type-raising

α : XT< α : Y\(Y/X)
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Composition and type-raising do not affect the grammar’s theoretical power, but
allow additional flexibility in the order of composition. For instance, consider the
sentence “Alice likes Bob”. As per the example BCG system given in subsection 3.5.1,
we assign the type (S\NP)/NP to the ditransitive verb “likes”. In BCG, we would be
forced to contract “likes” with the object noun “Bob” first, and then with the subject
noun “Alice”, but in CCG we can use composition and type-raising to instead have

Alice
NPT> S/(S\NP)

likes
(S\NP)/NP

B> S/NP
Bob
NP

>
S

There is also a ‘crossed’ version of composition, that allows to deal with certain
phenomena in which words are not found at their canonical positions.

• Forward cross composition

α : X/Y β : Y\Z
BX> αβ : X\Z

• Backward cross composition

α : Y/Z β : X\Y
BX< αβ : X/Z

One example that crossed composition allows us to deal with is the so-called ‘heavy
NP-shift’, which roughly speaking involves reordering (shifting) a ‘heavy’ noun phrase
to the right of its canonical position[YK21]. Consider the sentence “John passed suc-
cessfully his exam” - canonically, we would expect the noun phrase “his exam” to sit
in the position “John passed his exam successfully”. Nevertheless, with the backward
cross composition rule, we can have

John
NP

passed
(S\NP)/NP

sucessfully
(S\NP)\(S\NP)

BX< (S\NP)/NP
his exam

NP
>

S\NP
<

S

In English this rule is used in a restricted form - Steedman disallows the use of the
forward version, and only permits the backward version when Y = S\NP [Ste00].

Another extension is the ‘generalized composition’ rule. To state this rule, we first
introduce a new notation - the $ convention defined by Steedman.
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Definition 3.5.1. For a category X, we define {X/$} (resp. {X\$}) as the set containing X and
all leftward functions (resp. rightward functions) into a category in {X/$} (resp. {X\$}).

This recursive definition essential boils down to the following. {X/$} is the set of types
of the form X/Y1/Y2/ . . . /Yn, and {X\$} is the set of types of the form X\Y1\Y2\ . . . \Yn,
and where n ≥ 0 and the Yi’s are possibly complex. We then use unbracketed X/$
(resp. X\$) to schematize over members of the set {X/$} (resp. {X\$}), using subscripts
to distinguish different schematizations. That is, X/$1, X/$2 denote possibly different
types, and Y/$1 takes the same series of arguments on the right as X/$1, though the
former will return Y and the latter will return X.

We now define generalized composition.

• Generalized forward composition:

X/Y (Y/Z)/$1Bn
> (X/Z)/$1

• Generalized backward composition:

(Y\Z)\$1 X\YBn
< (X\Z)\$1

This rule effectively allows us to compose while ‘ignoring the outer arguments’ in one
of the types. Each of these rules actually corresponds to a family of rules - one for each
arity n of the secondary functor. So for instance, for n = 2 we have

(Y\Z1)\Z2 X\Y
B2
< (X\Z1)\Z2

For n = 1 generalised composition reduces to the usual composition: B1
> = B>, B1

< = B<.
The n = 0 case can be viewed as reducing to the application rule. Without any
restriction on the arity n, full context-sensitivity would be obtained. However, there
has not yet been any evidence that this is required to capture natural language syntax.
Therefore, only schemata up to a bounded arity n (Steedman assumes 4 for English)
are allowed in practice [Hoc03]. These generalized composition rules have special
significance, since it is argued to be the reason for the beyond context-free generative
capacity of CCG - see for example [KKS15].

In addition to the five kinds of rules we have thus far defined (application, compo-
sition, type-raising, cross composition, generalized composition), there are some other
rules such as ‘generalized cross composition’, ‘substitution’, and ‘cross substitution’,
which can be introduced to handle additional grammatical phenomena (see section
2.3 of [Hoc03]). However, these are less frequently used (for instance, by parsers, or
in CCGbank), and we will not make use of them. The five kinds of rules we have
presented are the more frequently used and arguably the most important ones.
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3.5.3 Pregroup grammar

Pregroup grammar (PG) is another formalism that belongs in the tradition of type-
logical grammars (though in a sense they are not strictly typelogical grammars due
to there being no known type-theoretic semantics known for them [Bus18]). They
were introduced by Lambek in [Lam97] as a simplification of his original syntactic
calculus, and are efficiently parseable. Pregroup grammars have been proved to be
weakly equivalent to context-free grammars [Bus01]. In other words, they share the
expressive limitations of the original categorial grammars. For an extensive discussion
of pregroup grammar, see [Lam08].

First we will describe the mathematics of pregroups.

Definition 3.5.2. A partially ordered monoid (P,≤, ·, 1) is a partially ordered set (P,≤)
equipped with a monoid multiplication − · − and a monoid unit 1, such that multiplication is
monotone6:

x ≤ y ∧ x′ ≤ y′ =⇒ x · x′ ≤ y · y′ (3.3)

Definition 3.5.3. A pregroup (P ≤, ·, 1, (−)l, (−)r) is a partially ordered monoid where every
element p ∈ P has a left adjoint pl and right adjoint pr such that

pl
· p ≤ 1 ≤ p · pl (3.4a)

p · pr
≤ 1 ≤ pr

· p (3.4b)

From the definition of adjoint it can be verified that the following properties hold
for pregroups:

1l =1 = 1r

xlr =x = xrl

(x · y)l = yl
· xl (x · y)r = yr

· xr

Note the latter property allows us to verify that the adjoint rules extend to products -
for instance, for left adjoints we have

(x · y)l
· (x · y) = yl

· xl
· x · y ≤ yl

· 1 · y = yl
· y ≤ 1. (3.5)

We can also show that adjoints are unique. Suppose that pl, p′ are both left adjoints
of p. Then using (3.4a), we have pl = pl

· 1 ≤ pl
· p · p′ ≤ 1 · p′ = p′. So pl

≤ p′, but by
symmetry we also have p′ ≤ pl, and the antisymmetry property of posets gives pl = p′.

6Equivalently, we could enforce the condition p ≤ q =⇒ r · p · s ≤ r · q · s.
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Another property is that adjoints are order reversing. That is,

p ≤ q =⇒ qr
≤ pr and ql

≤ pl. (3.6)

Starting with p ≤ q and multiplying by pr on the left and qr on the right gives pr
· p · qr

≤

pr
· q · qr, which reduces to qr

≤ pr. Analogously we can show ql
≤ pl.

With the mathematics out of the way, we describe how pregroups can be used to
formalise grammar. Firstly, we presuppose a partially ordered set of basic types. This
is analogous to fixing the set of primitive types in the categorial grammars. We use an
arrow→ instead of ≤ to denote this order, where X → Y is interpreted as saying that
type X can be reduced to type Y. For instance, if our set of primitive types include
the type π for ‘subject’, and π3 for ‘third person singular subject’, then we would have
the reduction π3 → π, since a third person singular subject is a special instance of a
subject. In proper poset notation this would be written π3 ≤ π, which evokes the fact
that π is a ‘larger’ type that includes π3.

A simple pregroup system for English (which we will primarily make use of in this
thesis) can just have two unrelated primitive types n and s, representing nouns and
sentences respectively. This follows the spirit of Lambek’s original categorial grammar
paper [Lam58], which also only has the basic n and s types.

Next, we freely generate a pregroup of these primitive types by taking adjoints and
concatenating - this will constitute of the set of possible types for our lexicon. More con-
cretely, for any primitive type p, we can first construct simple types . . . pll, pl, p, pr, prr . . ..
We posit that the adjoint conditions (3.4) hold - then we will have the following type
reductions (‘contractions’)

pl
· p→ 1 p · pr

→ 1.

That is, we may cancel a type with its left adjoint on its left, or with its right adjoint on
its right. Note that the adjoint conditions (3.4) also yield the following ‘expansions’ :

1→ p · pl 1→ pr
· p.

However, it turns out that for our linguistic application, contractions alone are sufficient
for type reduction proofs, and we may ignore expansions7. The partial order from our
basic types can then be extended to simple types via (3.6).

By ‘compound type’, or just type, we mean a string x1 . . . xn of simple types with
n ≥ 0. We take the monoidal multiplication to be concatenation of strings (henceforth
we omit the monoid multiplication symbols). Thus if n = 0 we have the empty string,

7For more details, refer to the ‘switching lemma’ in chapter 27 of [Lam08].

41



which is our monoidal unit 1 satisfying 1x = x = x1. Mathematically, we have obtained
the free monoid generated by the set of simple types. The adjoint properties (3.4) also hold
for compound types, via (3.5) The partial order can then be extended from simple
types to compound types via (3.3). This completes the construction of the pregroup of
possible types for our lexicon.

As usual, a string of words forms a grammatical sentence if each word in the string
can be assigned a pregroup type as per the type lexicon, such that the concatenation of
the types of all the words in the sentence can be reduced via contractions to the s type.
For instance, in the simple system with primitive types n and s, transitive verbs have
type nrsnl, so the sentence “John likes Mary” has the overall type

John likes Mary
n nrsnl n.

This string can be shown to be a grammatical sentence, via the sequence of reductions

nnrsnln→ 1snln→ snln→ s1→ s. (3.7)

Another way to present a sequence of reductions like the one above is to use ‘under-
links’ that indicate which types were contracted[Lam08]:

n nr s nl n
(3.8)

3.5.4 Relationship between PG and CG

It is worth noting that, given a basic categorial grammar with some generating set S of
basic types, one can translate all the types and BCG proofs into a pregroup grammar
with the same generating set S of basic types. Under this translation, any proof that is
possible in the BCG is possible in the PG. Concretely, the translation of types is done
by recursively applying the rules

p\q 7→ qr
· p (3.9a)

p/q 7→ p · ql. (3.9b)

Indeed, we can check for instance that under this mapping the transitive verb type
(S\N)/N in categorial grammar goes to its usual pregroup type NrSNl. Then, the
usual forward and backward application rules of the BCG are realizable in the PG: for
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example, for instance

X/Y Y

X
 X · Yl

· Y→ X.

Of course, the same does not hold in the opposite direction - certain proofs in this PG
system are not realizable in the original BCG. Indeed, the type-map presented above
is not injective - for instance, both X\Y/Z and X/Z\Y will map to the pregroup type
YrXZl.

Going beyond BCG to CCG, we remark that under this mapping, the forward and
backward composition rules of CCG are also realizable in the PG:

X/Y Y/Z

X/Z
 X · Yl

· Y · Zl
→ X · Zl.

Similarly, the generalised forward and backward composition rules are realizable.
However, the type-raising and cross composition rules are not.

3.6 Dependency grammar

This chapter has thus far has focused on a constituency based viewpoint of grammar.
In particular, the categorial grammars of section 3.5 yield constituency structures, and
pregroup grammar to a lesser extent also reflects a constituent-based view of grammar
via its contraction of adjacent words.

However, an important parallel concept to constituency is that of dependency,
which we now discuss. A dependency is essentially a directed edge between two
words in a sentence, and dependency grammar (DG) is a family of formalisms in
which the syntactic structure of a sentence is described solely in terms of the words
and dependencies between the words. Often, the dependencies will be labelled with a
type, drawn from some fixed inventory of grammatical dependencies - these are called
typed dependency structure. In DG approaches, phrasal constituents and phrase-
structure rules do not play a direct role [JM, Chapter 14].

A typical tree-like structure resulting from dependency analysis is the following.

I prefer the morning flight through Denver

nsubj

dobj

det

nmod

nmod

case

(3.10)
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We can see that some basic examples of dependencies are those between a verb
and its arguments. In (3.10), the verb transitive “prefer” is linked to its subject “I” via
an ‘nsubj’ dependency, and to the root of its object (“flight”) via a ‘dobj’ dependency.
Linguists have, of course, developed taxonomies of relations that go well beyond
the familiar notions of subject and object, some of which we can see in the exam-
ple. The Universal Dependencies project [NDMG+16] provides a useful inventory of
dependency relations that are linguistically motivated, computationally useful, and
cross-linguistically applicable8.

Another characteristic of dependency trees is the one-to-one correspondence be-
tween nodes in the tree and words in the sentence. By contrast, phrase structure trees
are one-to-one-or-more correspondence, which means that, for every element in a sen-
tence, there is one or more nodes in the tree that correspond to that element. The result
of this difference is that dependency structures are minimal compared to their phrase
structure counterparts and tend to contain many fewer nodes.

Additionally, in DG approaches the (finite) verb is taken to be the structural center
of clause structure. Note for instance in (3.10) that the root of the tree is the verb
“prefer”. Indeed, all other words are either directly or indirectly connected to the verb
via a directed path.

A major advantage of dependency grammars is their ability to deal with languages
that have a relatively free word order. Dependency grammar abstracts away from
word order information, representing only the information that is necessary for the
parse.

8Refer also to https://universaldependencies.org/ for more information.
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Chapter 4

Diagrammatic NLP background

In this chapter, we give a presentation of the diagrammatic, compositional-distributional
approach to modelling language and performing natural langauge processing, which
will draw upon the background material in the previous two chapters. ‘Compositional-
distributional’ is often abbreviated to DisCo, thus leading to terms like ‘DisCoCat’ and
‘DisCoCirc’. I refer to this approach to natural language processing as ‘diagrammatic
NLP’, since at the theoretical level, the central problem at hand is that of modelling language
with diagrams.

We will begin by saying a few words about the motivation behind the idea of
compositional-distributional NLP. Then, we will present the original DisCoCat frame-
work based on pregroup grammar, that was proposed in 2010. We will also present an
alternate CCG-based DisCoCat framework, which was recently formalised in [YK21]
and offers several advantages over the old pregroup-DisCoCat. Finally, we will devote
some space to discussing my thoughts regarding the relatively new idea of language
circuits - the main object of interest of this thesis. We will also briefly discuss the
concept of ‘internal wiring’ which is the focus of chapter 7.

4.1 Motivation: compositional and distributional seman-

tics

As suggested by its name, the compositional-distributional approach to NLP was
conceived of as a synthesis of two paradigms in semantics. In this section we will
give a rough sketch of these paradigms, their place in NLP, and how they motivate the
DisCo approach. See [Gaz96] for a discussion of these competing paradigms in NLP.

At the level of sentences, the traditional theoretical approach to semantics broadly
followed the syntax-driven, compositional tradition of Montague [JZ21]. An essential
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feature of this approach is the reliance on the systematic relation between syntax and
semantics, as encapsulated in the Principle of Compositionality. It reads, in a formulation
that is standard nowadays:

“The meaning of a compound expression is a function of the meanings of its parts
and of the way they are syntactically combined.”

That is, the meaning of a sentence arises from the way that individual words compose
and interact. Concretely, such theories generally provided a pairing of syntactic anal-
ysis rules paired with a semantic interpretation. Indeed, the Lambek style categorial
grammars discussed in section 3.5, which come with a compositional semantics usually
expressed via lambda calculus, can be viewed as realizing Montague’s compositional-
ity program in an uncompromising way [Moo14].

In the context of NLP, these semantic theories were traditionally applied in a symbolic
approach. ‘Symbolic’ approaches to problems in artificial intelligence are those in
which high-level, human-readable symbols are used to represent entities or concepts
as well as logic in order to create rules for the concrete manipulation of those symbols,
leading to a rule-based system. Put another way, symbolic approaches involve the
explicit embedding of human knowledge into computer programs.

Though they were once the dominant paradigm in artificial intelligence, traditional
symbolic approaches have largely fallen out of fashion, especially with the deep learn-
ing revolution occurring over the last decade or so. In the field of NLP, the modern
standard is ‘distributional semantics’, which is a kind of black-box, statistical approach
that uses vector spaces as a model for meaning. The main idea behind this approach
is captured by Firth’s famous dictum that “you shall know a word by the company it
keeps” [Fir57]. At a practical level, this means the meaning of a word can be learned
from a corpus by looking at what other words occur with it within a certain context.
One then builds co-occurrence vectors for each word, which then allows us to compare
the meanings of words by looking at their vector distance.

Example. To give a simple illustration1, suppose that we are given a real world training
corpus, and want to use it to construct semantic vectors for the words “dog”, “cat”
and “snake”. In a simple model, the basis vectors of our semantic vector space will be
annotated with words from the lexicon. So let us choose a set of context words “furry”,
“pet”, “stroke” which will serve as the labels for our basis vectors. The vector space we
are working in will then be three dimensional. Additionally, we will consider ‘context’

1This example is taken from [Gre13], which can be accessed at https://arxiv.org/pdf/1311.1539.
pdf.
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to mean ‘words occurring in the same sentence as the target word’. So if in our corpus
the word “dog” occurs in the same sentence with the word “furry” twice, and occurs
twice with “pet” and once with “stroke”, we will set its semantic vector to be

~dog = [2 2 1]T.

Similarly, suppose we find that “cat” occurs thrice in the same sentence as “furry”,
once as “pet” and does not occur in the same sentence as “stroke”. Likewise, we note
that “snake” does not occur in the context of ‘furry’, but twice in the context of “pet”
and “stroke”. We will then have the semantic vectors

~cat = [3 1 0]T ~snake = [0 2 2]T

With these semantic vectors we can now do things like compare their similarity by
taking their cosine measure

cos(~v, ~u) =
〈~v, ~u〉
‖~v‖ · ‖~u‖

.

In this case, we would find that “dog” is 10% closer in meaning to “cat” than it is to
“snake”.

These distributional models have been very useful in many natural language tasks
[Cur04, SMR08, Sch98]. However, the same idea does not naturally scale up. For
example, larger constituents of text such as phrases or sentences are much more unique
than words. As such, there is currently no text corpus available that can provide
reliable co-occurrence statistics for anything larger than text segments of more than a
few words[Kar15].

Beyond the practical issue of the immense amount of data that would be required to
scale up a purely distributional approach, there are other reasons that motivate going
this paradigm. The first is that a recent trend within AI is leading back towards more
symbolic approaches, due to their superior understandability/explanability. There is
an increasing recognition of the importance of models that are more transparent and
can be understood by humans, for both ethical and operational reasons[VL20]. Data-
driven, machine learning models however, like the distributional semantic model, are
essentially opaque and incomprehensible to humans.

Furthermore, while distributional semantic models have been very successful at
certain tasks, their opaque nature means that they have done little to advance our
actual understanding of language. To quote [Coe21], “it would be a major mistake to
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only follow the path where empirical success takes us, and ignore that which increases
understanding”2. Despite the current success of data-driven, statistical models, there
remains a need for greater structural understanding of the underlying phenomena -
understanding which, in the long term, may well yield models that outperform purely
data-driven ones.

Finally, the human ability to understand sentences intuitively feels like a composi-
tional mechanism. We can comprehend sentences we have never seen before because
we can generate its meaning from the meaning of its constituent words, of which we
do have prior understanding.

DisCo-style NLP seeks to address these issues. It allows the highly successful vector
space approach to NLP to be used for word meanings, but draws upon from formal
theories of grammar to compose these word meanings and obtain the meaning of the
whole. Through the compositionality, some semblance of structure is imposed, rather
than being purely statistical.

This combination yields models that can feasibly deal with the meanings of sen-
tences and even of entire texts. The way all this works is made concrete in the next
subsection, where we present the details of DisCoCat, which is the first iteration of the
compositional-distributional paradigm.

4.2 DisCoCat (via Pregroup grammar)

The first iteration of diagrammatic NLP program is the DisCoCat model (distributional-
compositional-categorical) based on pregroup grammar[CSC10]. In this section we
give an in depth description of the pregroup-based DisCoCat formalism.

The key insight in the inception of DisCoCat is that pregroup type reduction proofs
(especially when visualised using underlinks like in equation (3.8)) correspond exactly
to string diagrams involving cups and identities in a general category.

n nr s nl n  
John likes Mary“John” “likes” “Mary”
n nr s nl n

Hence, the type reductions of Pregroup grammar can be ‘lifted’ to morphisms in a
general category. If we then interpret the resulting string diagram in the compact-
closed category FVectk, this allows us to make use of the standard NLP practice of
encoding word meanings as vectors. Thus, we propose that the semantic vector of the

2Refer to this paper for an analogy involving Ptolemy’s epicycle model for the movement of celestial
bodies.
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sentence “John likes Mary” is precisely the state expressed by the string diagram when
interpreted in FVectR:

John likes Mary
a semantic vector

for the whole

semantic vectors for
individual words,

obtained via
distributional methods

a linear map
serving to compose
the word vectors,

grammatical theory
obtained from

sentence

N N

S

N N
(4.1)

where N, S are appropriately chosen vector spaces. As promised, this model synthe-
sises distributional and compositional ideas in order to to obtain the meaning of longer
text segments like sentences.

In the rest of this section, we will make this idea precise.

4.2.1 Pregroups as a rigid category

Mathematically, the insight that pregroup proofs map to string diagrams is more
formally expressed by the fact that the pregroups of PG have the structure of a rigid
monoidal category.

Lemma 4.2.1. A pregroup can be viewed as a rigid strict monoidal posetal category, Preg3.

Proof. Firstly, a partially ordered monoid is a (posetal) strict monoidal category, where
the monoid multiplication · acts as the categorical monoidal product ⊗ on objects.
Given morphisms [p ≤ r] and [q ≤ z], their monoidal product is the unique morphism
[p · q ≤ r · z], which exists by the monotonicity of monoid multiplication (3.3). The
associator is then an identity natural transformation, as (p · q) · r = p · (q · r). The monoid
unit 1 acts as the categorical monoidal unit, so that the unitors are also identity natural
transformations: 1 · p = p, p · 1 = p. The triangle and pentagon equations are trivially
satisfied (as is any valid equation between morphisms in posetal categories).

To add in a rigid structure and obtain the category Preg, we use the underlying
pregroup’s adjoints. Specifically, any object p will have a right dual p a pr with cups
and caps given by (3.4b)

ηp = [1 ≤ pr
· p] εp = [p · pr

≤ 1],

3Preg is not compact closed according to our definition, since it has no braiding and so is not symmetric
monoidal. The presence of braiding would imply that the underlying monoid is commutative.
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and left dual pl
a p with cups and caps given by (3.4a)

ηpl = [1 ≤ p · pl] εpl = [pl
· p ≤ 1].

The snake equations are trivially satisfied. That is, our categorical caps η and cups ε
correspond to our ability to perform type expansions contractions of adjoints in the
pregroup. �

While the category Preg is an obvious choice for categorifying our pregroup gram-
mar, the fact that it is posetal means that all possible pregroup derivations between two
given strings of types are identified in a single morphism. This is not desirable, since
we would like to distinguish between different derivations that clearly give semanti-
cally distinct results. For instance, the structurally ambiguous phrase “rotten apples
and oranges” yields two parses

rotten apples and oranges
n nl n nr n nl n

rotten apples and oranges
n nl n nr n nl n

representing “rotten [apples and oranges]” and “[rotten apples] and oranges” respec-
tively.

The solution is to instead use the free rigid category over a poset of basic types
(as described by Preller and Lambek in [PL07], where they use the term ‘compact’
rather than ‘rigid’)4. This category, which we will call CF, is essentially identical to
Preg except that the hom-set between two strings of types is allowed to have multiple
different reductions.

4.2.2 Pregroup→ FVect functor

Now we describe the passage from pregroup reductions to a general string diagram.
Recall our pregroup proof of the grammaticality of the sentence “John likes Mary”
(3.7),

4Much of the DisCoCat literature skips over this point, and simply presents pregroup-based DisCoCat
as a functor Preg→ FVectk. This is a little sloppy and strictly speaking not correct.
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John likes Mary
n nrsnl n

1snln

snln

s1

εn ⊗ 1s ⊗ 1nl ⊗ 1n

1snln

s

1s ⊗ εnl

1s

where we can now interpret each reduction step as a morphism in CF built from cups
and identities. Or, all at once, a morphism witnessing the grammaticality of this
sentence is

εn ⊗ 1s ⊗ εnl : n ⊗ nr
⊗ s ⊗ nl

⊗ n→ s, (4.2)

which diagrammatically is depicted as

n nr n

s

s nl

i.e. essentially the underlink depiction of a pregroup reduction proof (3.8).
But the morphism εn⊗1s⊗εnl (along with the corresponding string diagram), which

encodes the grammatical proof, can be interpreted in any rigid category. As previously
discussed, we choose to interpret it in the category FVectR5. More concretely, this act
of ‘interpretation in another category’ consists of defining a strong monoidal functor6

F : CF → FVectR.

Defining this functor amounts to choosing an appropriate vector space for each atomic
type.

Specifically, given a pregroup grammar with basic types n and s, we choose some
vector spaces N = F(n) and S = F(s). To round off the basic types, we have F(1) = I
for the monoidal unit I. Now, recall that strong monoidal functors preserve duals

5For the purposes of NLP it makes sense to choose the target category of our functor to be FVectR,
but one of the advantages of DisCoCat-type models is that the target category can be any category that
has the appropriate structure. For instance, the category of matrices over the semiring of Booleans also
has a rigid structure. The original paper [CSC10] describes how choosing this to be the target category
results in a Montague-style Boolean-valued semantics.

6In the original paper [CSC10], the unification of grammar and vector spaces was achieved by
working in the product category Preg × FVectk. This was later recast as the functorial passage we
describe here.
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(lemma 2.4.4), and also that in FVectR not only are left and right duals equivalent due
to braiding, but all objects are self dual. Hence we can choose

F(xl) = F(xr) = F(x)∗ = F(x).

As per the requirements of a strong monoidal functor, the object map for F extends to
compound types via

F(x ⊗ y) = F(x) ⊗ F(y).

Example. For instance, the word “likes” is usually typed as a transitive verb: nrsnl.
Under our functor, this pregroup type maps to the vector space

F(nr
⊗ s ⊗ nl) = F(nr) ⊗ F(s) ⊗ F(nl) = F(n) ⊗ F(s) ⊗ F(n) = N ⊗ S ⊗N.

This means that the meaning of “likes” in the sentence will be encoded as a vector in
N ⊗ S ⊗N.

For the morphism map, we simply translate the identities, cups, and caps from CF

to FVectR in the obvious way:

F(1x) = 1F(x) F(εx) = εF(x) F(ηx) = ηF(x).

This fixes the morphism map for all possible morphisms.

Example. The type reduction of the sentence “John likes Mary”, which was captured
by the morphism constructed from identities and cups (4.2), will be mapped under F
to

F(εn ⊗ 1s ⊗ εnl) = εN ⊗ 1S ⊗ εN : N ⊗N ⊗ S ⊗N ⊗N→ S

Finally, the overall meaning of a sentence is concretely calculated by applying the
linear map obtained via the pregroup reduction, to the tensor product of the semantic
vectors of the individual words.

Example. Suppose the words “John”, “likes”, and “Mary” have meanings represented
by the vectors ~John ∈ N, ~likes ∈ N ⊗ S ⊗ N, and ~Mary ∈ N. Then the meaning of the
sentence “John likes Mary” is the vector

F(εn ⊗ 1s ⊗ εnl)( ~John ⊗ ~likes ⊗ ~Mary) = (εN ⊗ 1S ⊗ εN)( ~John ⊗ ~likes ⊗ ~Mary).
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Depicted diagrammatically, this is precisely the state depicted in (4.1).

In the usual case that the domain of our functor is FVectR (or possibly FVectC for
quantum computers!) our finite dimensional vector spaces form Hilbert spaces (i.e.
have an inner product). Now that our sentences all live in the same Hilbert space S, we
can take the inner product of any two sentences (or indeed pairs of smaller constituents
with the same type) and compare them the same way we did with words in the example
in section 4.1.

4.3 CCG-based DisCoCat

While DisCoCat was initially introduced using pregroup grammar as the domain
syntax category, more generally one might define a DisCoCat-type language model to
be any monoidal functor

C → word meaning

where C is a biclosed category that captures the grammar. In particular, as argued in
[CGS13, Gre13], DisCoCat also supports other categorial grammars such as standard
Lambek calculus and Lambek-Grishin calculus. In this section we will examine a
version of DisCoCat based on CCG which was recently formalised in [YK21].

This version of DisCoCat has a number of advantages beyond the original pregroup-
based version. Firstly, as noted in subsection 3.5.3, pregroups are weakly equivalent
to context-free grammars and hence not expressive enough for for natural language,
whereas CCG was shown to be a mildly context-sensitive grammar (3.5.2). Thus
the generative power of our DisCoCat model is increased. Secondly, there are many
robust CCG parsers available which have been used to parse large corpora of real data
- see, for example [CC07]. This is (at the time of writing) not the case for pregroup
grammar. Thus, a CCG-based DisCoCat makes large-scale DisCoCat experiments on
sentences of arbitrary grammatical structures possible for the first time. Indeed, in
[YK21], a standard CCG parser [YNM17] was used to obtain DisCoCat diagrams for
all sentences in the book ‘Alice’s Adventures in Wonderland’. Further, a web-based
tool that allows the conversion of any sentence into a DisCoCat diagram is available at
CQC’s QNLP website7.

The CCG-based DisCoCat model we discuss here comes in the form of a functor

CCG→ FVectR,
7The tool is available at https://qnlp.cambridgequantum.com/generate.html. We will make ex-

tensive use of it in this thesis to generate parses.
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where the domain category CCG is a biclosed monoidal category. Recall that FVectR,
being rigid, has a canonical biclosed structure given by

X( − = Xr
⊗ − � X ⊗ − −� Y = − ⊗ Yl � − ⊗ Y. (4.3)

Fixing a choice of( and� is important, as there are other possible choices (due to the
problem of equivalence) which lead to slightly different results.

4.3.1 CCG as a biclosed category

Given a specific CCG system which uses the five kinds of categorial rules described
in subsection 3.5.2, we may interpret it as a biclosed category CCG in the following
way[Gre13]8. The objects of the category are freely generated from the set of atomic
types. That is,

• for every atomic type A, there is an object A in Ob(CCG),

• for every type of the form A/B (resp. A\B), where A, B are not necessarily atomic,
there is some object A � B (resp. B( A) in Ob(CCG),

• and for each sequence of types A, B permitted by the CCG, there is an object A⊗B
in Ob(CCG).

As previously, the morphisms between types represent type deduction proofs.
The key insight is that many of the basic categorial rules (i.e. all those described
in subsection 3.5.2, except cross composition) exist naturally in any biclosed category
and can emerge solely by currying and uncurrying identity morphisms. Hence any
CCG derivation going from some string of types X to Y (using rules other than cross
composition) exists as a morphism X→ Y in a biclosed category freely generated over
atomic types[YK21].

The morphisms corresponding to application, composition, and type-raising are
shown below.

8This approach follows from the fact that Lambek Grammars can be viewed as biclosed monoidal
categories, a fact observed in original work by Lambek [Lam88].
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A � B

FAA�B

A � B B

A

Forward
application

(ΛR)−1

A( B

BAA(B

A A( B

B

Backward
application

(ΛL)−1

A � B

FAB�C

B � C C

BForward
composition

ΛR

FAA�B

A

FCA�B,B�C

A � B B � C

A � C

B( A

BAC(B

C( BC

BBackward
composition

ΛL

BAB(A

A

BCC(B,B(A

C( B B( A

C( A

BAA(B

A A( B

B

Forward
type-raising

ΛR

FTRA,B

A

B � (A( B)

FAB�A

B � A A

B

Backward
type-raising

ΛL

BTRA,B

A

(B � A)( B

Note that the forward application and backward application morphisms are just the
usual evaluation maps arising from the closed structure.

Obtaining the generalised composition requires a recursive construction9. Recall
that each arity n gives a forward and backward composition rule

X/Y (. . . ((Y/Z1)/Z2) . . .)/ZnBn
> (. . . ((X/Z1)/Z2) . . .)/Zn

(. . . ((Y\Z1)\Z2) . . .)\Zn X\YBn
< (. . . ((X\Z1)\Z2) . . .)\Zn

9The presentation we give here is somewhat original - the presentation in [YK21] of generalised
composition contains errors and is incomplete.
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where the n = 1 base case reduces to the basic forward and backward composition
rules. Then, given the existence of arity n GFC maps

GFCA�B,(...(B�C1)...)�Cn

A � B (. . . (B � C1) . . .) � Cn

(. . . (A � C1) . . .) � Cn

we can obtain arity n + 1 GFC maps (and analogously given arity n GBC maps we
obtain arity n + 1 GBC maps) via:

A � B

FA((B�C1)...)�Cn+1

((B � C1) . . .) � Cn+1
Cn+1

((B � C1) . . .) � Cn

Generalised
forward

ΛR

composition
GFCA�B,((B�C1)...)�Cn

((A � C1) . . .) � Cn

GFCA�B,((B�C1)...)�Cn+1

A � B
((B � C1) . . .) � Cn+1

((A � C1) . . .) � Cn+1

B( A

BACn+1((...(C1(B))

Cn+1 ( (. . . (C1 ( B))
Cn+1

Cn ( (. . . (C1 ( B))
Generalised
backward

ΛL

composition
GBCCn((...(C1(B)),B(A

Cn ( (. . . (C1 ( A))

GBCCn+1((...(C1(B)),B(A

B( A
Cn+1 ( (. . . (C1 ( B))

Cn+1 ( (. . . (C1 ( A))

Unlike these four types of rules, the cross composition rules do not occur naturally
in biclosed setting. Hence, they need to be added to the generating set of the category
as the following morphisms:

FCXA�B,C�B

A � B C( B

C( A

BCXB�C,B(A

B � C B( A

C( A
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4.3.2 CCG→ FVect functor

Now we define a ‘closed monoidal functor’10

CCG→ FVectR

that enables the functorial conversion of CCG rules in a biclosed category into string
diagrams involving caps and cups that can be interpreted in vector spaces. As before,
we assign each basic type some vector space: N = F(n), S = F(s). The monoidal-ness of
the functor imposes F(I) = I and F(x ⊗ y) = F(x) ⊗ F(y) as before. The closedness of the
functor imposes among other conditions, that F respects the internal homs:

F(X( Y) = F(X)r
⊗ F(Y) F(X � Y) = F(X) ⊗ F(Y)l. (4.4)

We note that this is, in essence, (3.9) - the equation that ‘translates’ categorial grammar
types into pregroup grammar types. This essentially means that at the level of DisCo-
Cat diagrams, the types in categorial grammar-based DisCoCat match the types in the
DisCoCat based on the corresponding pregroup grammar.

Further, the closed monoidal condition yields that F respects currying. More con-
cretely, for any diagram d : A ⊗ B→ C,

F(ΛL
A,B,C(d)) = ΛL

F(A),F(B),F(C)(F(d))

F(ΛR
A,B,C(d)) = ΛR

F(A),F(B),F(C)(F(d)).

With these constraints in place, we can see how to convert all the rules (sans cross
composition) into string diagrams in FVectR. For instance, the backward application
rule is mapped in the following way:

F(BAA(B) = F((ΛL
A,A(B,B)−1(1A(B))

= (ΛL
FA,FAr⊗FB,FB)−1(F(1A(B))

= (ΛL
FA,FAr⊗FB,FB)−1(1F(A(B))

= (ΛL
FA,FAr⊗FB,FB)−1(1FAr⊗FB)

= (ΛL
FA,FAr⊗FB,FB)−1(1FAr ⊗ 1FB).

Here we show the translation of all the forward rules into DisCoCat diagrams. The
backwards versions are obtained by simply reflecting the diagrams and replacing left

10We have skipped over the definition of what this exactly means.
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adjoints with right adjoints and vice versa.

FAA�B

A � B B

A

A Bl B

(4.5)

FCA�B,B�C

A � B B � C

A � C

A Bl B Cl

C

Cl

=

A Bl B Cl

(4.6)

FTRA,B

A

B � (A( B)

A

Ar

AB Bl

=

A

B Bl

(4.7)

Note that for FTR, the B � (A( B) object is mapped to B ⊗ (A( B)l = B ⊗ (Ar
⊗ B)l =

B ⊗ Bl
⊗ A11.

GFCA�B,((B�C1)...)�Cn

A � B
((B � C1) . . .) � Cn

((A � C1) . . .) � Cn

A Bl B Cl
1

. . .

Cl
n−1 Cl

n

Cn

Cl
n

=

A Bl B Cl
1

. . .

Cl
n−1 Cl

n

(4.8)

11This is a consequence of our choice of taking (X ⊗ Y)l = Yl
⊗ Xl, as per lemma 2.4.3, along with

X( Y = Xr
⊗ Y, as per (4.3). However dual objects are not necessarily unique, and the fact that FVectR

is braided means we could also have taken (A ⊗ B)l = Al
⊗ Bl (this duality is witnessed by crossed cups

and caps). In this case, in FVectR we would have B � (A( B) = B⊗ (A( B)l = B⊗ (Ar
⊗B)l = B⊗A⊗Bl.

Alternately and even more directly, we could take Vl = Vr = V∗ = V strict in FVectR, which would yield
B � (A ( B) = B ⊗ A ⊗ B. In either such case, the currying operation ΛR

A,A(B,B we use to construct the
FTR morphism would have consisted of attaching some kind of crossed cap, and the FTR morphism
itself would look like

.
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Finally, we deal with cross composition. This rule introduces a crossing between
the involved types. Since DisCoCat diagrams can live in a symmetric monoidal cate-
gory, we can thus use the symmetry and map the cross composition morphism to the
following string diagram:

FCXA�B,C�B

A � B C( B

C( A

A Bl Cr B

Cr A

(4.9)

We note that the use of unrestricted swaps in the semantics category would allow
every possible permutation of words, which defeats the point of grammar and results
in a maximally overgenerating model. However, in the context of DisCoCat and the
syntax-semantic functor, it is the responsibility of the grammar to pose restrictions on
how the semantic form is generated. Thus for our purposes we are only interested in
the morphisms in the semantics category that are mapped onto from morphisms in
the syntax category. We ignore the other morphisms in the semantics category (which
would allow arbitrary permutations).

4.4 Outline of language circuits

In this section we briefly outline the recently introduced notion of language circuits
which are the main object of study of this project. Initially referred to by ‘DisCoCirc’
[Coe21], this framework builds upon the foundation of DisCoCat and represents a
significant advancement of the diagrammatic approach to NLP.

We note that because language circuits are a very new development, many of the
fundamental ideas behind them are still in flux. Indeed, questions regarding what
exactly constitutes a language circuit, or how one arrives at this notion of language
circuit in the first place, are still fairly open. As such, this section will contain mainly
non-precise, philosophical discussion about what language circuits are/ought to be.
More concrete and detailed discussion will be presented in chapter 5, which attempts
to simultaneously motivate and construct the concept of language circuit.

4.4.1 The broad idea

Whereas DisCoCat provided a method for composing words so that we may obtain
the meaning of the sentence they form, language circuits take this to the next level, by
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enabling the composition of sentences so that we may obtain the meaning of the text12

that they form.
The way this is achieved is by viewing sentences as input/output processes that modify

the meanings of certain words. Loosely, a DisCoCat diagram for the sentence “John likes
Mary” will be transformed into the following language circuit:

John likes Mary
 likes

John Mary

Note that in the circuit, the nouns/actors “John” and “Mary” each correspond to a wire
(we call these noun wires). A sentence essentially manifests as a gate that acts upon
and changes the meaning of the noun wires in the circuit. In this case the meaning
of the sentence “John likes Mary” is captured by a single gate corresponding to the
transitive verb “likes”, which acts upon John and Mary. In this way, the meanings of
words that are associated with noun wires are allowed to evolve as we proceed through
the text, rather than remaining static. Furthermore note that the noun wires remain
open at the end of the circuit, in contrast to DisCoCat where the output at the end
of any diagram representing a sentence is always a single S type wire. The fact that
these noun wires remain open at the end of the circuit is what allows for nontrivial
composition with additional sentences.

To give an example, consider the ‘text’ consisting of the following two sentences

“John likes Mary.
Mary dislikes Claire.”

We compose the sentence circuits to form a larger circuit that captures the overall
meaning of the text:

likes

John Mary Claire

dislikes

“John likes Mary”

“Mary dislikes Claire”

(4.10)

Once we have obtained such a circuit that represents the whole text, if we want to
concretely calculate the meaning of the text as say, a semantic vector, we just plug

12For our purposes, we consider a ‘text’ to be a list of sentences.
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‘initial states’ for each of the actors “John”, “Mary”, and “Claire” into the top of the
circuit, at the appropriate noun wires.

likes

John Mary Claire

dislikes

What are the advantages of such a circuit representation of text? Firstly, such cir-
cuits bear some resemblance to quantum circuit diagrams - which is no coincidence
given the string-diagrammatic framework was originally formulated to handle quan-
tum information. A hope then is that language circuits would lend themselves to
implementation on quantum computers, if and when appropriate hardware becomes
available. In fact, DisCoCat was recently successfully implemented on quantum hard-
ware [MTdFC20, LPM+21].

At a more theoretical level though, these circuits provide a ‘higher-dimensional’
representation of meaning which is potentially more natural and universal than the
one-dimensional syntax of human language. That is, humans communicate using
one-dimensional strings of symbols13. To quote [CW], “much of the complexity of
grammar is due to the fact that human language is a one-dimensional vehicle for higher-
dimensional content” - think of the bureaucratic conventions and stylistic features like
SVO-order which vary across different languages. In expressing meaning through
circuits rather than strings, we do away with the complexity and artificiality of these
bookkeeping conventions, and distill meaning down to an essential core14. Indeed, we
would expect the language circuit for “John likes Mary. Mary dislikes Claire” to look
like (4.10) regardless if it the text was written in English or Latin.

4.4.2 Our approach to defining and motivating the concept of lan-

guage circuit

What exactly is a language circuit? The best way to conceive of what we are attempting
to do with language circuits seems to be: we are finding ways to use circuit-like diagrams

13This is true for natural language, but also true of other ‘languages’ like mathematics, much of which
is also expressed through strings of symbols

14An analogy involving mathematics comes from the aforementioned example of the bifunctoriality
condition (2.1), which manifests as a bookkeeping condition in linear symbolic form but is invisible in
string diagrams, since it is already embedded within the logic of diagrams.
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to represent the factual information expressed by sentences. Beyond this, there is as of yet
no precise answer to this question. Historically, the paper [CW] and [Coe21] both
present somewhat ad-hoc paths towards obtaining language circuits. In these papers,
the springboard for the concept of language circuits is the pre-existing pregroup-based
DisCoCat model, along with intuitions derived from previous work on the so-called
‘internal wirings’ (see section 4.5).

While I believe useful insights and intuitions may be garnered from these papers, I
am somewhat sceptical about the strength of their motivations/derivations of language
circuits. While language circuits clearly bear some relation to DisCoCat models, the
concept of a ‘language circuit’ does not canonically ‘fall out of’ or obviously follow
from the DisCoCat framework. While one may argue for a direct correspondence
between, say, the pregroup-based DisCoCat model of section 4.2 and language circuits
for very simple sentences, any such correspondence starts to break down for more
complicated expressions, as I will argue in chapter 5.

The paper [CW] in particular relied heavily on providing internal wirings for words
(which we also do for CCG-DisCoCat in chapter 7) as a means to explicitly construct a
map from a pregroup-DisCoCat model (with a bespoke pregroup grammar system) to
language circuits.

DisCoCat
internal wirings
−−−−−−−−−−→ language circuits

However, I have always been of the opinion the internal wirings in this paper were
derived by working backward from some pre-existing notion of language circuits, rather than
being the thing that motivates language circuits in the first place.

It is my view that we should introduce language circuits by forgetting about DisCo-
Cat and instead, unapologetically assert some basic, loose principles, and seeing what
follows. These basic principles are that a language circuit for a given text consists of

• a collection of noun wires, which are acted on/modified by

• gates, which capture the content of the sentences in the text.

With these principles in mind, we then proceed to address the main question of how to
go about modelling sentences as gates in a circuit, doing so ‘in the spirit of DisCoCat’.
That is, our approach is still compositional-distributional, seeking to compose the
constituents of sentences in ways guided by grammar. Indeed, basic cases will align
closely with DisCoCat, such as the way we model verbs, adjectives, adverbs, etc
(though again, we emphasise that at some point the analogy with existing DisCoCat
models necessarily breaks down or ceases to be useful). The result of this approach
and philosophy is the exposition of language circuits provided by chapter 5.
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4.5 Outline of internal wirings

In this section we discuss the notion of ‘internal wirings’, which predate the idea of
language circuits and have recently been thought of as potentially offering a bridge
between DisCoCat and DisCoCirc. The main idea behind internal wirings is that we
can provide additional internal structure to the word states in DisCoCat, through the use
of wires and spiders. At a theoretical level, the extra structure provided by such internal
wirings gives us more room to play around with our DisCoCat diagrams - though there
may also be practical reasons for breaking down word states by providing additional
internal structure [KS14]. As with the language circuits of the previous section, the
exact role to be played by internal wirings is still unsettled. As such, this section will
also just give a broad sketch of the main ideas. More detailed work can be found in
chapter 7, in which we explicitly provide a catalogue of internal wirings that allows
one to obtain language circuits from a certain CCG system.

The first time internal wirings are introduced for word states is in [SCC13]. Here,
internal structure was provided for ‘subject relative pronouns’ and ‘object relative
pronouns’ in the context of the pregroup-based DisCoCat. As an example of the
former, the pronoun “who” in the phrase “men who love Mary” is a subject relative
pronoun, which receives pregroup type nrnsln. The DisCoCat diagram for this noun
phrase is

n
men

nr n sl n
who

nr s nl
love

n
Mary

n

(4.11)

Recall that in passing to FVectR, we replace the types n, nl, nr with N and s, sl with
S. The paper then proposed that one can replace the “who” state with the following
morphism built with wires and spiders:

who  

NN S N N N S N

(4.12)

This extra structure allows for additional graphical manipulation of the DisCoCat
diagram - plugging (4.12) into the diagram (4.11) and simplifying, we obtain the
following simplified form:
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men
N S N

love
N

Mary

N

While for functional words like the aforementioned subject relative pronoun, the
entire meaning of a word may be satisfactorily captured by wiring alone, we can also
have cases where internal wiring provides extra structure but also retains some ‘black-
boxedness’. For instance, in [Coe21] the following internal structure was proposed for
adjectives

red
 

*red*

Note this wiring essentially turns adjectives into the spider-form we see later (section
5.3).

Many other explorations and ideas involving internal wiring were proposed (see for
instance [SCC14, CLM18, Coe21]. Mostly recently, a systematic catalogue of internal
wirings was proposed in the [CW], where the internal wirings were intnded to provide
a passage from DisCoCat to language circuits.
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Chapter 5

Language circuits for simple sentences

Natural languages like English are devilishly complicated - so to begin with, we first
consider a restricted, basic fragment (corresponding to what we will call ‘simple sen-
tences’). In section 5.1, which forms the meat of this chapter, we will define the simple
sentence fragment, and go about motivating our choices regarding how to model each
item of this fragment as a circuit component. The motivation comes from existing
grammatical frameworks - the previously discussed typelogical grammars, as well as
dependency grammar. In section 5.2 we discuss the behaviour of the circuit compo-
nents we have introduced, and describe a typing system for them. Section 5.3 describes
how these components can be represented in an alternative ‘spider-form’ - this will be
used in our internal wirings in chapter 7.

We note that though this chapter deals solely with the ‘simple sentence fragment’,
in chapters 6 and 7 we will go beyond this fragment with the introduction of some
extra parts.

5.1 Modelling simple sentences

The fragment of English we investigate in this chapter is restricted, but nevertheless in-
corporates many of the key parts of speech and contains much of the open word classes.
Specifically, we consider the fragment built from the following lexical categories:

• nouns (not including pronouns)

• some determiners (e.g. “the” and “a”), which we will essentially ignore and merge
with nouns to form noun phrases. That is, we treat NPs like “the flowers” or “a
cat” as constituting a singular noun state. We will generally avoid quantifiers
(“all”, “some”).
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• verbs that take noun phrases as inputs, i.e. intransitive, transitive, and ditransitive
verbs with arguments restricted to NPs. We generally stay away from ‘linking
verbs’ that take can take adjectival phrases, verbal phrases, or clauses as inputs,
and also ignore auxiliary verbs for now.

• adjectives

• adverbs, which we take to mean words that directly modify verbs

• intensifiers, which we take to be words that modify adverbs or adjectives (though
we noted that traditionally, these are considered to be a kind of adverb).

• adpositions that connect a sentence with a noun phrase. This excludes adpositions
that connect two sentences - “Bob drinks until Alice arrives” - which might better
be classified as a conjunction. This also excludes adpositions that connect two
noun phrases - “the building by the sea”.

A main characteristic of this fragment is that the grammatical ‘complements’ are gener-
ally always noun phrases, rather than clauses or other kinds of phrases1. For instance,
consider the adposition/subordinating conjunction “until”. In our fragment we can
have “Bob drinks beer until dawn”, but not “Bob drinks beer until Alice arrives”, since
in the former sentence “until” joins the main sentence “Bob drinks beer” with a noun
phrase “dawn”, whereas in the latter sentence it joins the main sentence with another
sentence “Alice arrives”. In a similar vein, note our exclusion of copular or linking
verbs that take as a complement something that is not a noun phrase - examples of
forbidden sentences are “Bob is happy about the game”, “Bob dreamt that he won”, “I
like going to the beach”, “the distinction became clear”.

We will roughly define a simple sentence to mean a grammatical sentence that
consists only of the parts of speech we listed in the previous subsection . We will
call the fragment of English we are considering in this chapter the simple sentence
fragment.

A consequence of this definition should be that simple sentences only contain one verb2.
One can argue that a sentence like “I enjoy living in Oxford” 1) falls into this fragment
and 2) seemingly contains two verbs, “enjoy” and “living”. However, there are at least
two ways to counter this claim. Firstly, we could say that “living” here is a noun rather
than a verb (“living” as in “the act of living”), which is a perfectly grammatically valid
answer. Alternately though, if we want to view “living” as a verb, we could argue

1When we expand our fragment beyond simple sentences in section REF by introducing some extra
parts of speech, we will allow a few extra kinds of complements, but still no clausal complements.

2I am unsure how one would prove this is the case, but it seems to hold intuitively.
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that this sentence actually does not fall into the simple fragment, because then the verb
“enjoy” links “I” with a verb phrase complement “living in Oxford”. Recall then that
we excluded such instances of linking verbs from our fragment.

As we proceed with modelling the components of simple sentences and examining
some motivating examples, two points that I want to contend are the following.

Claim 5.1.1. 1. We do not/should not rigorously follow existing typelogical grammar
frameworks to decide how language circuits should look, and

2. if anything, dependency grammar more closely reflects what we are trying to achieve.

Throughout this chapter, we will rely on the previously mentioned CQC web
tool (https://qnlp.cambridgequantum.com/generate.html) to generate CCG parses
of sentences and phrases. Meanwhile, spaCy (specifically, the displaCy visualizer
at https://explosion.ai/demos/displacy with the English-en core web sm v3.1.0
model) will be used to generate dependency parses.

5.1.1 Nouns

In general, nouns will be modelled as states

N

that are plugged into the noun wires.
There is more to this story, however. In fact, I think that one of the fundamental

conceptual questions that is yet to be fully addressed in the theory of language circuits
is:

How do we assign noun wires?

The first thing to note regarding this question, is that noun wires do not really corre-
spond to nouns, but to ‘entities’. Consider for instance:

“Bob drinks at the black bar. Alice drinks at the red bar.”

Here the “black bar” and “red bar” are distinct entities, despite both sharing the same
underlying noun “bar”. It would not make sense for “black bar” and “red bar” to
end up on the same wire labelled by the noun “bar”. To borrow from discourse
representation theory [GBM20] (which shares many similarities with our theory of
language circuits), given a text, what we need is a universe of ‘discourse referents’
which represent the objects under discussion. These ‘objects under discussion’ should
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index our noun wires. So, in the case of the black and red bars, a solution may be to
have two wires - one for the black bar and one for the red bar.

This view of noun wires as representing entities opens up a whole trove of other
questions. Consider, for instance the following tricky scenario, where we initially treat
two discourse referents in the text (e.g. Clark Kent, Superman) as separate entities, but
later find out they are actually the same entity (Clark Kent is Superman in disguise).

Another conundrum revolves around the question ‘which objects/nouns deserve to
be assigned noun wires?’ The simplest answer to this question would be to go with
the obvious choice - all nouns constitute an ‘object under discussion’ and are worthy
of a noun wire. However, recall that noun wires correspond to words with dynamic
meanings that change as the text progresses, in stark contrast to all the other words,
which are gates that are presumably fixed. So, if we are dealing with a sentence like
“Bob likes swimming”, it would be strange for “swimming” to be privileged with
a noun wire. Its meaning is fairly static - indeed we would happily treat the verb
“swims” as a static gate. On the other hand, if our text is an article explaining the act
of swimming - “Swimming is an individual or team racing sport that requires the use
of one’s entire body to move through water . . . ” - it seems sensible for “swimming”
to have a dynamic meaning. As another example, suppose we have a text “Five men
walk along the road” - it does not make sense for the “five men” to constitute one
entity. These examples should show that the simplistic idea that ‘every noun is an
entity’ breaks down in some scenarios.

The discussion in this subsection lays out some of the ambiguities regarding de-
ciding how noun wires ought to work. The examples we have given demonstrate that
there is still some thinking to be done regarding this point. For our current purposes
though, we choose to avoid these complications, and leave sorting them out to future
work. In this thesis, we will limit our noun wires to to clearly defined individual
entities - named people like “Alice” and “Bob”, or physical objects like “the bar” or
“flowers” of which there is a single copy (rather than having both “red bar” and “black
bar”).

5.1.2 Verbs

The simplest sentences we consider consist of a single verb and the nouns that serve
as its arguments. In many ways, a verb forms the basic core of a sentence. Hence, we will
begin our consideration of circuit components proper with verbs.

The key idea here will be that verbs should be modelled as gates that act on some number
of noun wires. We have seen in typelogical grammars (section 3.5) the idea that verbs can
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be viewed as entities that accept some number of nouns as inputs in specific argument
slots and return a well-formed sentence. For instance, recall the CG type of a transitive
verb (S\N)/N, or the pregroup type of nrsnl. The notion that a verb has some fixed set
of noun arguments (subject, direct object etc.) is also reflected in dependency grammar.

These observations motivate the following circuit representations for verbs, which are
distinguished by their valency:

• intransitive verb

IV

• transitive verb

TV

• ditransitive verb

DV

We adopt the convetion that the left-most noun wire always corresponds to the subject
of the verb, the second from the left corresponds to the (direct) object, and the third
wire corresponds to the indirect object (when such wires exist).

For English, the valency of verbs usually stops at n = 3, but in principle there is no
reason to stop here. One may conceive of a race of aliens who can communicate using
verbs of even higher valency.

In support of claim 5.1.1, an attractive feature of dependency grammar is that, as
mentioned in section 3.6, the verb is the structural center of the clause. This seems to
coincide with the privileged position that verbs have in our theory of language circuits
as the core component of a gate.
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5.1.3 Adjectives

Adjectives are also fairly straightforward. A standard CG typing for an adjective like
“red” in “red car” is N/N (or nnl in pregroup form), indicating that it acts on a noun
to return a modified noun. Similarly, in dependency parsing we see that adjectives
simply serve to modify a noun (here via an ‘amod’ dependency).

Hence, adjectives are gates modifying single nouns, and so their circuit components
look like intransitive verbs

adj

It is worth noting that in English, some adjectives are ‘predicative’, meaning they
come after the noun their modify, often linked via a copula: “Jack is handsome”. (The
form in “red car” is called attributive). A CG parsing of this sentence may no longer
assign a ‘noun to noun’ type for the adjective. Nevertheless, in these cases we think
the most natural choice is still to view the adjective as a single noun gate acting on
“Jack”. The copula “is” will simply be made to vanish - refer to the discussion on “is”
in subsection 6.2.1.

5.1.4 Adverbs

Whereas verbs act on and modify nouns, the key idea for adverbs is that an adverb is
something that modifies a verb.

In a typelogical grammar, an adverb for an intransitive verb might be typed
S\N/(S\N), (or nrssln in pregroups), reflecting that it takes in an intransitive verb
(S\N) on the right to return another intransitive verb S\N. The CG/PG proof of a
sentence like “I quietly slept” is captured in the DisCoCat diagram
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n
I

nr s sl n
quietly

nr s
slept

s

If we consider the pregroup/CG cancellation between “quietly” and “slept” to have
occurred first (which is indeed what happens in the CG proof), ignoring for now the
cancellation between “I” and “slept”,

nr

sl n
quietly

nr s
slept

s

then we see that the adverb “quietly” can be viewed as taking in the intransitive verb
“slept” and returning a new intransitive verb “quietly slept” (CG type S\N)3.

Meanwhile, the dependency grammar parse of the sentence “I quietly slept”

(5.1)

also indicates that the adverb “quietly” simply modifies the verb “slept”, and addi-
tionally that “slept” then just acts as the intransitive verb it normally is.

So, based on these observations we posit that adverbs should be a a component that
takes in a verb of valency n as input and return a verb of the same valency as output.
We again distinguish between adverbs based on the valency of the verbs they accept.

• advIV

3So while for the case of verbs, we had to replace the S type with some tensor product of N types to
properly turn them into some kind of language circuit input/output gate, for the case of adverbs we did
not have to make any adjustments. The view of adverbs as endomorphisms on verbs is inherent in the
PG/CG formalism.
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advIV

IV

• advTV

advTV

TV

• advDV

advDV

DV

In circuit jargon these kinds of components are referred to as combs. Their category-
theoretic foundation is explored in [Rom20].

We now note an example in which our above proposal for the shape of adverbs
disagrees with established categorial grammar. This is the first of a number of examples
which support claim 5.1.1. Consider the sentence “Alice deeply likes Bob”, in which
“deeply” is an adverb for a transitive verb, and which has the following CCG parse
(given by the web tool).

n
Alice

nr s sl n
deeply

nr s nl

likes

n
Bob

s

Note that in this DisCoCat diagram, “Bob” is fed directly into the verb “likes”. Topo-
logically, this DisCoCat diagram more closely resembles a circuit with the following
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connectivity4:
A B

likes

deeply

(5.2)

This however, seems somewhat unnatural at a theoretical level - why should the
“deeply” comb only modify Alice’s noun wire? This example (and those in the fol-
lowing subsections 5.1.5, 5.1.6) show that we probably should not faithfully follow
pre-established categorial grammar when designing our theory of language circuits
and circuit components.

The fact that the last input of “likes” remains free here, is an artefact of the fact that
categorial grammars were designed to act as a bookkeeping system for linear word or-
der. More precisely, in this case, the parser has deemed it most efficient/grammatically
natural to merge “likes Bob” into an intransitive verb-like constituent.

By contrast, the spaCy parse for this sentence

looks essentially the same as the parse (5.1), except the intransitive verb has been swapped
out for a transitive one. Both dependency parses reflect the same principle that the
adverb simply modifies the ditransitive verb through an ‘advmod’ dependency.

5.1.5 Intensifiers

For intensifiers, which we defined to be words like “very” that modify adverbs or
adjectives, the natural assertion is that they should be higher-order combs that modify
adjective/adverb combs.

4Especially when replacing the S type in the DisCoCat diagram with N⊗N wrapped up in a wrapping
gadget.
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We can find the following examples to motivate this idea. For the case of intensifiers
that modify adjectives, consider the sentence “Today is a very warm day”, where
“warm” is an adjective that is modified by the intensifier “very”. The web tool gives
the following CCG parse for the noun phrase “a very warm day”:

nl

a

n nlnll nl

very

n nl

warm

n

day

n

We see that the adjective “warm” is fully absorbed by “very” as an input. The composite
“very warm” then acts as an adjective (i.e. it has pregroup type nnl) that takes in the
noun “day” and returns a noun. Meanwhile, the dependency parse for this phrase

(5.3)

indicates also that the intensifier (here tagged as an adverb) simply modifies the adjec-
tive “warm” via an ‘advmod’ dependency.

For examples involving intensifiers acting on intransitive verbs, one can look at
the parses for the sentences “Bob rather quickly ran”, or “Bob ran rather quickly”.
Here one will see something similar, where the intensifier fully absorbs the adverb,
returning a composite that acts again as an adverb.

We thus propose the following circuit components.

• intadj

intadj

adj

• intIV
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intIV

advIV

IV

• intTV

intTV

advTV

TV

• intDV

intDV

advDV

DV

As with adverbs in the previous subsection, the fairly natural proposal for inten-
sifiers above, fails to cohere with categorial grammar for transitive and ditransitive
verbs. Looking at the CCG parse for “Bob very deeply likes Claire”,

n
Bob

nr

sl
nnlslls

l n

very

nr s sl n

deeply

nr s nl

likes
n

Claire

s
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we see a similar issue to the case of adverbs, where the connectivity of the DisCoCat
diagram obtained from a CCG parse does not match our desired connectivity. Here the
verb “likes” is not ‘fully consumed’ by “very” (although “very” does fully consume
“deeply”). This means the composite “very deeply” does not quite match the expected
type of an adverb.

By contrast, dependency parsing once again remains more consistent with our
proposal - “very” just acts on another adverb through an ‘advmod’ dependency just
like in (5.3).

5.1.6 Adpositions

The last ingredient we will include in this simple sentence fragment are adpositions
that connect a sentence with a noun phrase. This kind of adposition can be viewed as
acting on an input verb by increasing its valency by 1. That is, it will be a comb that accepts
a verb on n noun wires and returns a new verb on n + 1 noun wires.

To justify this idea, consider the CCG parse of “Alice plays in the garden”.

n
Alice

nr s

plays

srnrrnrs nl

in

n nl

the
n

garden

s

Here, the adposition “in” absorbs the intransitive very “plays” and returns a transitive
verb “plays in” (pregroup type nrsnl).

From the point of view of dependency grammar, this interpretation of adpositions
is more slightly more tenuous but still supported.
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Here, we see that the adposition serves as a kind of intermediate node that links the
verb “plays” with an additional noun argument, the ‘pobj’ (prepositional object).

Thus we propose the following circuit components.

• adpIV

adpIV

IV

• adpTV

adpTV

TV

• adpDV

adpDV

DV

As with adverbs and intensifiers, our proposal does not match with the categorial
parses for transitive and ditransitive verbs. In the sentence “Alice meets Bob in the
garden”,
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n
Alice

nr s nl
meets

n
Bob

srnrrnrs nl
in

n nl
the

n
garden

s

we get connectivity issues since the adposition “in” does not fully absorb the transitive
verb “meets”. Instead “Bob” is fed directly into “meets”, instead of into “in”.

5.1.7 A word on discrepancies with CCG parses

In subsections 5.1.4, 5.1.5, and 5.1.6, we have given a number of examples to show that
our idea of modelling various grammatical features as ‘functions’ that fully absorb
some input to produce some output, does not always coincide with the CCG typings
provided by the parser. These examples are intended to support claim 5.1.1.

In such cases, as a counterargument to this point, one might provide the following
argument. The statistical aspects of parsers means that for any sentence, there may be a
large number of alternate possible parsings that are not shown, since they are deemed
suboptimal. One of these discarded parsings may match our desired connectivity, and
hence fully support our language circuit theory!

While this is true, I think that if we are picking and choosing the parsings, then at
a methodological level we are not really starting from typelogical grammar to decide what
language circuits look like, but rather using our internal idea of what connectivity we want as
the starting point.

Indeed, if by some method or other we always enforce PG or CG typings for
syntactic categories that matches our language circuit theory, we are not really using the
structure of the typelogical grammar, but rather simply expressing our functional view
of syntactic categories through that type-grammatical formalism. Indeed, this is what
was done in the original internal wiring paper [CW], and what we do in chapter 7 -
we cook up our own PG/CCG typing system that allows us to realize the connectivity
between the components that we desire.

5.2 Comb inputs and typing

Based on the categorisation provided in the previous section, combs seem fairly rigid
in terms of the kinds of inputs they accept. However, one thing to note is that these
combs do not necessarily exactly take in the kinds of inputs that were depicted as
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dashed boxes in the previous diagrams. There is a certain degree of freedom here with
respect to their inputs.

To make this point clearer, consider a few examples.

1. Stacking: intuitively it seems like it should be possible to stack certain combs
together. Consider a sentence with stacked adverbs, like “I truly, deeply love
Mary”. Here “truly” and “deeply” are both adverbs modifying the verb “love”,
which intuitively yields a language circuit like

love

deeply

truly

I Mary

The point being made here is that in the previous diagrams we depicted adverb
combs as accepting a single, bare/unadorned verb, but in this example, the “truly”
adverb comb accepts as input an adverb-verb composite “deeply love”.

As another example of stacking, consider the sentence “Jill often studies very
hard”, which leads to adverbs stacked together with an intensifier. Specifically,
“often” and “hard” are both adverbs modifying “studies”, and “hard” is itself
modified by the intensifier “very”. This intuitively could result in a circuit like

studies

very

hard

often

Jill

where there is an intensifier sandwiched between two adverbs.
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2. Our adpositions provide another clear cut example of combs accepting inputs
that do not exactly follow the dashed boxes in the diagrams. An example of an
adposition that accepts a bare verb would be “Jill plays in the garden”, where
the adposition “in” takes the verb “plays” as input. However, the sentence “Jill
happily plays in the garden” is clearly grammatical, and intuitively gives the
circuit

plays

in

happily

Jill garden

i.e. the adposition “in” accepts a verb-adverb composite “plays happily”.

One way to account for these phenomena is that the dashed boxes in the previous
diagrams just indicated the type of the inputs of a given comb (in the sense of type
theory). At the level of typing, a bare intransitive verb like “plays” and a verb-adverb
composite like “happily plays” both have the type of an intransitive verb, and so both
can fit into the adpIV “in”. Similarly, in the earlier example “Jill often studies very
hard”, the “studies very hard” composite consisting of intensifier-adverb-verb has the
type of an intransitive verb, and so can be inserted into the advIV “often”.

Thus, the observations of this subsection motivate the introduction of a type system
for our circuit components, which serve to more rigorously characterise their behaviour
in terms of the kinds of inputs and outputs they have. The type system essentially has
one basic type N, and × and→ operations. In the notation × takes precedence over→,
i.e. N × N→ N × N = (N × N)→ (N × N).

• nouns
Type: N

• verbs

– intransitive verbs
Type: IV := N→ N
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– transitive verbs
Type: TV := N × N→ N × N

– ditransitive verbs
Type: DV := N × N × N→ N × N × N

• adjectives
Type: adj := N→ N

(Note the type is the same as IV, reflecting the fact that they look the same as
circuit components. This ends up being slightly problematic - see for instance
the intensifier for adjectives listed below.)

• adverbs

– adverbIV

Type: advIV := IV→ IV = (N→ N)→ (N→ N)

– adverbTV

Type: advTV := TV→ TV = (N × N→ N × N)→ (N × N→ N × N)

– adverbDV

Type: advDV := DV→ DV = (N × N × N→ N × N × N)→ (N × N × N→ N × N × N)

• intensifiers

– intensifieradj

Type: intadj := adj → adj = (N → N) → (N → N) (A problem arises here
since adjectives and IVs have same type. Hence, at face value, our type
system suggests that adjective-intensifiers can also take IVs as arguments.
Modification to our type system is probably necessary to account for this
issue.)

– intensifierIV

Type: intIV := advIV → advIV = ((N→ N)→ (N→ N))→ ((N→ N)→ (N→ N))

– intensifierTV

Type: intTV := advTV → advTV = ((N × N → N × N) → (N × N → N × N)) →
((N × N→ N × N)→ (N × N→ N × N))
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– intensifierDV

Type: intDV := advDV → advDV = ((N × N × N → N × N × N) → (N × N × N →
N × N × N))→ ((N × N × N→ N × N × N)→ (N × N × N→ N × N × N))

• adpositions

– adpositionIV

Type: adpIV := IV→ TV = (N→ N)→ (N × N→ N × N)

– adpositionTV

Type: adpTV := TV→ DV = (N × N→ N × N)→ (N × N × N→ N × N × N)

– adpositionDV

Type: adpDV := DV→ (N×N×N×N→ N×N×N×N) = (N×N×N→ N×N×N)→
(N × N × N × N→ N × N × N × N)

We can then extend this type system to composite circuit components. This will
deal with the earlier examples in this section. For instance, the component “deeply
love”

love

deeply

has the type of a TV, since it consists of an advTV = TV → TV “deeply” in which the TV
argument slot has been filled with the TV “love”. This TV-typed composite of “deeply
loves” can then fit into the advTV “truly”, to return a further TV-typed component “truly
deeply love”.

For the second example, the composite “happily plays” has the type IV, and hence
can fit into the argument slot of “in”, which has type adpIV := IV→ TV.

5.3 Spider-form of circuit components

As noted in [CW], we can without loss of generality assume that the circuit components
we have just listed come in a ‘spider-form’, for an appropriate choice of wires and (non-
commutative) spiders.

For standard gates, like our adjectives and verbs, we may without loss of generality
assume that they come in the following spider-form
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. . .

. . .
 

. . .

. . .

. . .

This is achieved by first doubling every wire - i.e. inserting dummy identity wires that
play no role.

. . .

. . .

 

double
each wire

. . .

. . .

new wires

Then we bend the diagram so that the pairs of wires form pair-of-pants spiders (sub-
section 2.5.1).

. . .

. . .

=

. . .

. . .

=

. . .

. . .

. . .

We use the same process to obtain a spider-form for combs that have n input wires and
n output wires inside the comb (i.e. our adverbs and intensifiers)

. . .

. . .

. . .

. . .

 

double
each wire

. . .

=

. . .

. . .

Meanwhile, for our adpositions, which have n + 1 input wires, but only n output wires
inside the comb, we have the following spider-form.

. . .

. . .

. . .

. . .

 

double
each wire

. . .

=

. . .

. . .

. . .

By representing all gates and combs with wires and states, spider-form gives us a
link with DisCoCat framework, where all the words are states.
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Chapter 6

A text-to-circuit algorithm via
dependency parsing

In this chapter, we discuss a process for going from a text in a specific fragment of
English to a language circuit representation of that text, using information from the
aforementioned spaCy dependency grammar parser (https://explosion.ai/demos/
displacy). This algorithm will consist of two parts. The first part, presented in section
6.1, is a text-to-circuit algorithm for simple sentences as discussed in chapter 5. For
the second part, discussed in section 6.2, we expand the fragment of English that is
dealt with by incorporating some extra parts of speech. At the algorithmic/language
circuit level, these extra POS will correspond to circuit assembly rules involving simple
sentences, rather than the introduction of new circuit components.

6.1 Simple sentence algorithm

In this section, we propose an algorithm that takes as input a simple sentence, along
with parsing information, and produces as output a language circuit representation of
that sentence.

Simple sentences (section 5.1) are built up from constituents that each correspond
to some kind of gate or comb. The combs all take a specific kind of input and give a
specific kind of output. Hence, the process of going from a given simple sentence to a
language circuit is just a matter of 1) figuring out the shape of the circuit components
we ought to associate with each word in the sentence, and then 2) figuring out how
these circuit components plug into each other.

To address these questions, we must defer to the information we get from parsing
the sentence according to some grammatical framework. Each of the formalisms we
have mentioned (PG, CG, dependency) could probably be useful. However, I am of
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the view that for simple sentences, dependency grammar should be sufficient by itself
for giving an idea of how to plug components together. Indeed, as noted in claim
5.1.1 I think that dependency grammar captures what we are looking for much more
naturally than typelogical grammars. Supporting this claim, we will see in this chapter
that dependency relations very often exactly match the input/output information we
desire.

There are many readily available dependency parsers. For the purpose of this
project and of this chapter, we have chosen to use the spaCy parser, but if this ap-
proach is to be explored further, it would be well worth experimenting with different
dependency parsers, for instance [CC07].

6.1.1 Firstly, an example

Before we jump into the precise details of how our algorithm works, it is probably
instructive to look at an example that will illustrate the main ideas. Consider the
simple sentence

“Alice throws red flowers fast to Bob.”

Running it through spaCy gives the following POS tags and dependencies.

We want to use this information firstly to associate each word with the correct circuit
component. We know that nouns (including proper nouns) correspond to states, and
adjectives to gates on one noun wire. However, an immediate issue that arises when
we consider verbs, adverbs, and adpositions is that in order to determine the shape of
their circuit component, we need valency information. For instance, to know what kind
of gate we should associate with the verb “throws”, we need to know whether it is
intransitive, transitive, or ditransitive.

We propose that this valency information can be inferred by looking at the dependencies. It
seems reasonable to argue that since “throws” has two noun dependencies (an ‘nsubj’
and a ‘dobj’), it is transitive. Meanwhile, the adverb “fast” acts on “throws”, and it
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seems reasonable to type it as an advTV. Finally, since the adposition “to” acts on “fast”,
it seems reasonable to also type it as adpTV. With this, we can now assign the following
circuit component shapes:

Alice throws red flowers fast to Bob
N TV adj N advTV adpTV N

The first step is thus complete. Now, these components need to fit together some-
how. How we propose to do this is by 1) picking a directed edge in the dependency tree
provided by spaCy, 2) quotienting the endpoints of this edge, which means performing
a graph theoretic edge-contraction on the dependency graph whilst plugging together
the two circuit components at the endpoints, and 3) repeating this process until we are
left with a language circuit. The only caveat is that we have to pick the edges in a good
order - some ‘bad’ choices of edge order will lead to the failure to build a circuit.

To illustrate this process, suppose that for the first step we choose to contract the
‘amod’ edge going from “flowers” to “red” - that means we plug together the circuit
components for “red” and “flowers”, to obtain

Alice throws red(flowers) fast to Bob

nsubj dobj

advmod
prep pobj

Next, let us quotient the ‘advmod’ edge, combining “throws” and “fast” into “throws
fast”:
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Alice fast(throws) red(flowers) to Bob

nsubj dobj

prep

pobj

Now all the remaining edges involve plugging in nouns, except the ‘prep’ edge from
“throws fast” to “to”, so we quotient it next.

Alice to(fast(throws)) red(flowers) Bob

nsubj dobj
pobj

We now basically have a language circuit awaiting noun inputs - all that remains is
to plug in these nouns. Clearly, the three noun wire inputs of the circuit going from
left to right correspond to the ‘nsubj’, ‘dobj’, and ‘pobj’ dependencies respectively.
Performing these edge quotients gives the final circuit

A Bf

throws

fast

to

red

corresponding to the component to(fast(throws))(Alice, red(flowers), Bob).
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To recap, there were a few algorithmic ingredients needed. Firstly, we needed to
know the kind of graphical ‘plugging in’ operation that corresponds to each depen-
dency type - e.g. we had to know that a ‘pobj’ dependency between a preposition
and a noun means we plug the noun into the auxiliary noun input of the preposition
comb. Secondly, we needed to know which order to pick the edges in. In the following
sections, we will make this idea precise.

6.1.2 Preprocessing the spaCy parse, handling exceptions

Certain kinds of sentences will lead to ‘exception cases’, where the grammatical in-
formation provided by the spaCy parse does not quite match with the grammatical
information we desire. In these cases, the spaCy data must first be adjusted on a case-
by-case basis. This is done before we proceed with inferring valency and performing
the component plugging-together.

Below, I give some examples of exceptions that I have discovered, and how to
handle/fix each one.

1. dative dependency of a verb links to an intermediate adposition rather than
directly to the noun:

Usually, spaCy connects a verb with its subject via a ‘nsubj’ dependency, with
its (direct) object via a ‘dobj’ dependency, and what we would call the indirect
object is connected by a ‘dative’ dependency.

However, an example that does not quite follow this rule is the following: “I give
a flower to Bob”.

Here it is fairly clear that if “give” is viewed as a ditransitive verb, then the da-
tive/indirect object should be “Bob”. However, in the spaCy parse the ‘da-
tive’ dependency connects to an intermediate adposition that then connects with
“Bob”.
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Note that the parse we would have expected, based on the way we have thus far been
dealing with adpositions, would have labelled “gives” as a transitive rather than
ditransitive verb. Then the ‘dative’ dependency here would instead be a ‘prep’
dependency. This kind of parse is in fact what spaCy gives for the sentence “I
threw a flower to Bob”.

Nevertheless, the spaCy parse for “I give a flower to Bob” is probably more
natural and correct than our expected parse - the spaCy parse reflects that “I give
a flower to Bob” is semantically equivalent to “I give Bob a flower”, and in the
latter sentence “give” is a ditransitive verb with direct and indirect objects.

As for how we deal with this exception case in our algorithm, the solution is
fairly natural. We refer to the fix as ‘adposition deletion’, and in future will apply
it generally.

Definition 6.1.1. If, in a dependency graph, we have a ditransitive verb where the dative
object is connected via an adposition (e.g. “to”), we perform adposition deletion on the
graph. That is, we delete the adposition, and manually reconnect the dative dependency
to the ‘pobj’.

In the above example, this would look like

I give flower to Bob

nsubj
dobj

dative

pobj

 I give flower Bob

nsubj
dobj

dative

2. noun phrases where the head is not parsed as a noun:

In a sentence like “We honour the dead”, the word “dead” is parsed by spaCy as
an adjective.

89



However, we would (probably) like “the dead” to constitute a noun state. Then
everything else would behave normally. A similar example is “We honour the
fallen”, where “fallen” is labelled a verb.

Building on these examples, consider “We honour the glorious dead”, where
“glorious” is an adjective modifying another adjective. Similarly, “We honour
the glorious fallen”, has an adjective modifying a verb.

Motivated by these examples, a possible fix seems to be that if a noun dependency
of a verb (in these cases the ‘dobj’ dependency) links the verb to an adjective or another
verb instead of a noun, simply relabel the target as a noun.

3. exceptions arising from incorrect parsing:

Statistical parsers will not always be correct 100% of the time - that is, they will
sometimes return parses that are evidently grammatically incorrect. For instance,
in the sentence “I pass Tom the ball”, the verb “pass” somehow ends up with two
‘dobj’ dependencies - “Tom” and “the ball” - rather than a ‘dobj’ and ‘dative’. It
is not generally considered grammatically invalid for a verb to have two direct
objects. Indeed, if we replace “Tom” with “him”, to get “I pass him the ball”,
then “him” is correctly identified as the dative rather than a direct object.
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To fix cases like these, a catalogue of incorrect cases could be built up.

4. there are also several ‘exceptions’ that arise due to the fact that we have not yet
decided how we ought to handle certain grammatical constructions. Specifically,
the parts of speech we included in simple sentences can often combine in other
ways than those that we had considered.

For instance, in the phrase “office chair” both words are parsed as nouns, with a
‘compound’ dependency joining them. We can of course represent “office chair”
with a single noun state, but if we want to include some further substructure
within the state, how we do so will depend on how we decide to deal with
compound nouns - something we have not discussed.

In the noun phrase “moving day”, moving is a verb, and the two are joined via an
‘npadvmod’ dependency. Another example of an ‘npadvmod’ dependency is in
the construction “IBM earned 5 dollars a share”. These ‘npadvmod’ depedencies
have also yet to be discussed.

Of course, there are likely many more exceptions along these lines. Based on these
examples, it appears that these exceptions arise due to either 1) the statistical aspects
of spaCy leading to an incorrect parsing, 2) a correct parsing but one with grammatical
constructions we do not yet know how to deal with, or 3) a correct parsing but one
where the underlying grammar model for spaCy does not match what we want.

For the third case, the hope would be that as we discover more of these ‘true’
exceptions, we can just fix them by adding rules to this initial pre-processing stage of
the algorithm.

6.1.3 Inferring valency

We need to infer the extra valency information for each word from their dependencies.
This is necessary so that we can associate specific circuit components with the words.

A general theme for the order of inference here seems to be infer the valencies of lower
order components first, then those of higher order. For instance, as a comb that sends verbs
to verbs, an adverb is of a higher order than verbs. Our adverb-intensifiers, which are
things that send adverbs to adverbs, are of yet higher order.

1. We begin by inferring the valency of the verbs - this is just a simple matter of
checking the number of subject/object dependencies that each verb has. So a verb
with only an ‘nsubj’ dependency is intransitive, one with ‘nsubj’ and ‘dobj’ is
transitive, and one with ‘nsubj’, ‘dobj’, and ‘dative’ is ditransitive.
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2. Next, we infer the ‘valency’ of words tagged as adverbs1. Firstly, we look at those
that modify a verb via an ‘advmod’ dependency - these are true adverbs by our
definition (section 5.1). Their ‘valency’ is just the valency of the verb that is being
modified.

Next, what we call intensifiers are generally treated by spaCy as adverbs that
modify adjectives or other adverbs. Clearly, an adverb that modifies an adjective
is our intadj (with only one possible valency), whereas the valency of an intensifier
modifying an adverb is just the same as the valency of the adverb.

3. Finally, we infer the valency of adpositions. Again, this consists of following the
‘prep’ dependency to the verb that the adposition is acting on, and taking that to
be the valency. Note that having applied ‘adposition deletion’ in the stage where
we modify the parse data, we have hopefully eliminated any adpositions that do
not have a ‘prep’ dependency.

6.1.4 Order for contracting edges

Once we have the valency information sorted, it remains to perform the necessary de-
pendency edge contractions/plugging in operations. There are two separate questions
here - the question of which order to contract edges, and the question of what graphical
plugging in operations the different dependencies correspond to. In this subsection
we address the former.

Recall that the order of edge contraction matters because certain choices of edge
order will cause the algorithm to fail to produce a circuit, because at some step the
remaining components are unable to plug together. We make the note that at this stage,
there is currently no motivation for specifying some order of edge contraction beyond
this desire to ensure our algorithm works.

As with inferring valency, there is a general theme here based on higher and lower
order components. In this case, we want to go from higher order to lower order - that
is, performing our edge contractions in the order intensifiers → adverbs → verbs →
nouns. This rule seems fairly natural to impose, and seems to give the right outcomes.

Concretely, we propose the following rules regarding the order of edge contraction.

1. contract ‘advmod’ and ‘amod’ edges first, as these correspond to the application
of adjective and adverb (including intensifier) combs. This should not lead to
any clashes - i.e. ‘advmod’ and ‘amod’ dependencies seem like that should apply
to different circuit components.

1This is an abuse of terminology - nevertheless, we will use ‘valency’ to refer to the information
provided by the subscripts in types like adpTV, intIV etc.
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2. contract ‘prep’ edges - i.e., apply adpositions. Note we need to do this after the
combs are applied as an artefact of the way we assign valencies. This is because
applying a preposition to some composite verb-like component will lead to a
change in valency.

3. contract subject/object dependencies (i.e. ‘nsubj’, ‘dobj’, ‘dative’) last, as these
correspond to plugging in noun states into the top of the language circuit.

6.1.5 Dependencies vs graphical circuit operations

Now we address the final question - matching edge contractions with specific graphical
plugging operations.

1. Rules for plugging in nouns (‘nsubj’, ‘dobj’, ‘dative’): given a bare verb, the noun
dependencies correspond to plugging in states at the following wires (if they
exist):

DV

nsubj dobj dative

i.e., we have rules of the following form

V
N

dobj

V

N

When a verb V is modified by an adverb/intensifier comb C to form a composite
verb gate, the valency of the resulting verb does not change. Recalling that
we want these noun dependencies to be contracted last, the new composite
component consisting of V and C will still have the same noun dependencies of
the original verb V. The location that we plug in the corresponding nouns just
gets changed to the inputs of the comb C:
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V

nsubj dobj dative

V

nsubj dobj dative

C

 

2. Applying adverb/intensifier combs (e.g. ‘advmod’, ‘amod’ dependencies): this
should be fairly straightforward, as there is only way way to do this.

3. Prepositions (‘pobj’): the ‘pobj’ dependency of a preposition corresponds to the
new noun input introduced by the preposition, i.e. we have rules of the form

N

pobj

adp adp

N

As a general remark: if we do want to seriously pursue this approach, it would be
useful to delve more deeply into the specific grammar formalism that the English spaCy
model is based on. This way we could more systematically analyse if our algorithm
works, rather than just randomly coming up with example cases and exceptions.
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6.1.6 Pseudocode

Algorithm 1 A simple sentence text-to-circuit algorithm

input: English sentence
obtain spaCy parse of the sentence
preprocessing of spaCy data:

merge trivial determiners with their nouns into a single noun phrase represented
by a noun state
perform adposition deletion on intermediate adpositions
relabel verbs, adjectives that are the target of nsubj, dobj, or dative dependencies
as nouns
more rules here as necessary. . .

infer valency information:
infer valency of verbs by looking at their subject/object dependencies
infer valency of adverbs based on the verbs they modify
infer valency of intensifiers based the adverbs they modify
infer valency of adpositions based on the verbs they modify

associate a specific circuit component shape with each word based on POS tags and
inferred valency
perform edge quotienting/component plugging operations

adv, advmod edges first
other edges. . .
subject/object edges last

return completed language circuit

6.2 Expanded algorithm

Having (hopefully) dealt with simple sentences, the next thing we do is to expand the
kinds of sentences we can deal with, by throwing in some extra parts of speech/lexical
categories into the mix. We pick those that, at the language circuit level, should manifest
not as new types of circuit components involving boxes, but rather as additional
assembly rules (involving wiring and possibly spiders) for our established basic circuit
components. Also, we stay in a fragment of English that excludes more complicated
complements, as per the discussion in section 5.1.

In contrast to the simple sentence algorithm of the previous section, which was
fairly complete and natural, this second part of the algorithm intuitively feels much
more incomplete and ad hoc. It is incomplete, in the sense that we basically have
tacked on a few extra POS to our fragment of English, but are still missing lots of
things. It is more ad hoc, in that the simple sentence algorithm feels very naturally
aligned with dependency parses and required adjustment of the dependency parse
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information only in exceptional cases, whereas the algorithm presented here consists
exclusively of rules for manipulating certain dependency parses.

6.2.1 The copula “is”

We deal with two cases - when “is” links the subject to either a noun phrase or an
adjectival phrase. Note this also includes different forms like “am”, “was”, “were”,
etc.

The following is an example of a noun phrase complement.

We would probably like this sentence to yield the following language circuit.

Fido

brown

dog

Note that in the parse, the AUX “is” has ‘nsubj’ (linking to the subject) and ‘attr’
(linking to the attributive noun in the complement) dependencies.
The general rule here is that when we have a dependency parse of the form

. . . NOUN1 . . . AUX1 . . . NOUN2 . . .

nsubj attr

is that 1) we do all the relevant edge contractions for NOUN2, to obtain the circuit
component for that noun phrase, and then 2) attach this noun phrase circuit component
to the NOUN1 wire by means of a spider. Then 3) we parse the remainder of the
sentence.

The following is an example of an adjectival phrase complement.
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Note that the AUX “is” has ‘nsubj’ and ‘acomp’ dependencies. The ‘acomp’ depen-
dency links to the head adjective of the adjectival complement.

We would expect this sentence to yield a circuit equivalent to the noun phrase

This is topologically the same as the first parse, except the AUX and its dependencies
have been deleted, and replaced with an ‘amod’ dependency.
The general rule that we impose, is that when we have a dependency parse of the form

. . . NOUN1 . . . AUX1 . . . ADJ1 . . .

nsubj acomp

we convert this to a parse of the form

. . . NOUN1 . . . ADJ1 . . .

amod

That is, we delete the “is” term/graph vertex, and create an ‘amod’ dependency going
from ADJ1 to the NOUN1. All other edges/vertices of the dependency graph are left
unchanged.

A further interesting example to note in this subsection is the sentence “Alice was
in the room” (or equivalently the inverse copular form ”In the room was Alice”).
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Here the complement is an adpositional phrase “in my room”, so it does not quite fall
within the range of examples we dealt with. However, an alternate possibility is to
treat the AUX “was” as a intransitive verb described by an identity wire.

“Alice is.”  
Alice

In this case the adposition “in” is a special adpIV taking an identity wire input, which
functionally becomes the same as a transitive verb:

“Alice is in the room.”  

A

in

room

=

A room

in

Adopting this idea allows us to deal with the examples above, in which the AUX has
an adpositional complement, where the adposition (as usual) joins to an additional
noun phrase.

6.2.2 Relative pronouns

Consider the sentence “Alice likes the flowers that Bob gives Clare”, with the following
parse.

We want this to yield the circuit equivalent of the two sentences
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“Bob gives Clare the flowers. Alice likes the flowers.”

That is, the following circuit

gives ◦

B f C

likes

A f

=

gives

B f C

likes

A

Note that in the parse, what we call a relative pronoun (“that”) is parsed as a DET.
It acts as the ‘dative’ argument of the verb “gives”, which itself is linked to “flowers”
by a ‘relcl’ (relative clause) dependency.
The general rule is the following - given a parse

. . . NOUN1 . . . relative pronoun1 . . . VERB1 . . .

relcl

x

where there is some dependency ‘x’ between VERB1 and relative pronoun, we modify
this to a parse

. . . NOUN1 . . . NOUN1 . . . VERB1 . . .

x

That is, we change the original dependency graph by 1) deleting the ‘relcl’ dependency,
and 2) replacing the relative pronoun with a copy of the original NOUN1. As usual, all
other edges/vertices of the dependency graph are left unchanged. Note this may cause
the dependency graph to become disconnected (reflecting that we split our original
sentence into two sentences), but nevertheless the resulting dependency graph can be
treated according to our usual methods.

6.2.3 Passive auxiliaries

Passive auxiliaries can introduce a fair bit of complexity. In the most basic form, a
passive auxiliary is used to switch the order of the noun arguments. For instance,

“Alice is bored by the class.”
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is equivalent to

“The class bores Alice.”

and in the latter sentence, “the class” is the subject, whereas Alice is the (direct) object.
The parse for the former sentence is

Note that the ‘nsubjpass’ dependency here corresponds to the direct object argument
of “bored”, and the ‘agent’ dependency points (via an intermediate adposition) to the
subject of “bored”.

The above example involved the reordering of arguments for a transitive verb
(“bored”). Let us have a look at passive auxiliaries applied to the ditransitive verb
“gives”, which yields more possible permutations of arguments.

Consider the sentence “Bob gives Clare flowers”, which is in its simplest, canonical
form. We have two variants where the direct object (“flowers”) comes first:

• “flowers were given to Clare by Bob”

Here, ‘nsubjpass’ direct object, ‘dative’ correctly points to the dative (indirect
object) via an intermediate adposition, and ‘agent’ subject.

• “flowers were given by Bob to Clare”
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This version, where the order of Bob and Clare are reversed, is topologically
similar to the first, except the ‘dative’ dependency is relabelled as ‘prep’. If we
treat “gave” as a transitive verb here instead of ditransitive (based on the number
of non-prep noun arguments it has), and again interpret ‘agent’ subject, which
leaves ‘nsubjpass’ (direct) object, we would end up with a circuit of the form

to

gave

B f C

We also have another variant where the indirect object/dative (“Clare”) comes first:

• “Clare was given flowers by Bob”

Here, ‘dobj’ points correctly to the direct object, ‘agent’ again points to the subject,
leaving ‘nsubjpass’ to point to the dative.

Based on these examples, we will propose a rule for these basic forms of passive
auxiliaries.
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The general rule is essentially the following. We firstly identify a passive voice verb
by its ‘auxpass’ dependency. If necessary, we swap the verb from the passive form to
the active form (e.g. “given” to “gave”). Then, we identify the noun pointed to by
the ‘agent’ dependency as the ‘subject’ of the verb (possibly involving an intermediate
adposition, which will be deleted). Then, we note if there are any ‘dobj’ or ‘dative’
dependencies. Finally, the ‘nsubjpass’ dependency is relabelled as whatever noun
argument remains.
More explicitly, if we have

NOUN1 . . . AUX1 . . . VERB1 . . . ADP1 . . . NOUN2

nsubjpass

auxpass agent pobj

we reason that VERB1 is transitive, since it has ‘agent’ and ‘nsubjpass’ dependencies.
Since the ‘agent’ corresponds to the ‘subject’, the ‘nsubjpass’ must be the (direct) object.
So we delete AUX1 and ADP1, and relabel the dependencies, to get the amended
dependency graph.

. . . NOUN1 . . . active form
of VERB1

. . . NOUN2 . . .

dobj nsubj

In the case of ditransitive verbs we have the following: given

NOUN1 . AUX1 . VERB1 . ADP1 . NOUN2 . ADP1 . NOUN3

nsubjpass

auxpass dative

agent

pobj pobj

(6.1)
we reason that VERB1 is ditransitive, as it has ‘agent’/‘subject’, ‘dative’, and ‘nsubjpass’
dependencies. So here the ‘nsubjpass’ must be the direct object, and the result, after
adposition-deletion and relabelling, is
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. . . NOUN1 . . . active form
of VERB1

. . . NOUN2 . . . NOUN3 . . .

dobj dative

nsubj

In the case where we have the parse (6.1), except with a ‘dobj’ label instead of the
‘dative’ label, then we reason that the ‘nsubjpass’ should be relabelled to ‘dative’.

The examples we have discussed so far simply involve passive auxiliaries with
‘agent’ dependencies, that serve to reorder the arguments of a verb. We do not,
however, introduce passive auxiliaries in their full generality. The issue is that passive
auxiliaries can also be used to suppress certain noun arguments of verbs, and we have
yet to decide how to model these/relate these to their usual form. As an example,
the sentence “The lawn is mown” is roughly semantically equivalent to “(Someone)
mowed the lawn” - i.e. the subject of “mow” is suppressed in the passive form.

6.2.4 Reflexive pronouns

Reflexive pronouns are those ending in “-self”. An example sentence is “himself” in
“Bob buys beers for himself.” Intuitively, reflexive pronouns stand in for some other
noun/entity, and allows us to feed the same noun wire into multiple inputs of a gate.
However, they are problematic for a couple of reasons.

Firstly, parsers (including the spaCy and CCG parser we have been using) do not
identify which noun a relative pronoun is standing in for. So we need information beyond
the parse data from spaCy to deal with these. For instance, this is the spaCy parse for
the example sentence.

Nothing here tells us that “himself” is referring to “Bob”.
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Secondly, it is not clear how we should represent the effect of reflexive pronouns
circuit-diagrammatically. There seem to be a couple of options, each with pros and
cons.

Let us use the example “Snake eats itself” to demonstrate this. “Eats” is a transitive
verb, which takes in the “snake” as both its subject and object. If we use the spider-form
of the transitive verb gate, intuitively the circuit should look something like this:

eats

snake

(6.2)

If we undo the derivation we did to arrive at spider-form in the first place, which
would entail replacing the wires with doubled wires and spider with the pair-of-pants
spider, we find

eats

snake

 =

i.e. this suggests that we ought to deal with reflexive pronouns by using caps and
cups to feed the outputs of a verb back into its inputs. A possible downside of this
approach is that it seemingly disrupts the causality/one-way-flow of our circuits. Such
an approach means that we can have loops in our circuit.

Alternately, another intuitive solution is to use spiders instead of caps and cups, to
copy and merge a single noun wire as required. That is, “snake eats itself” would be
represented as

snake

eats .

A downside of this approach is that the presence of spiders seems to prohibit the
argument we make in section 5.3 for showing that we can without loss of generality
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assume our gates are in spider-form.
However, it is interesting to note that if we replace the gate form with the spider-

form, then both choices reduce to the intuitively expected circuit (6.2). For the first
proposal involving cups and caps, we have:

 

eats

=

eats

eats

For the second proposal, we have:

eats  

eats

=

eats

6.2.5 An example

The following sentence includes both a relative pronoun and the copula “is” (with a
noun phrase complement)

“Bob, who is a drunkard, drank at the black pub”

Bob, who is (a) drunkard, drank at (the) black pub

relcl

nsubj

attr

nsubj

prep

pobj

amod

First, we apply the relative pronoun rule, where we delete the ‘relcl’ dependency and
replace the relative pronoun with the named noun:

Bob Bob is (a) drunkard, drank at (the) black pub

nsubj

attr

nsubj

prep

pobj

amod
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Note this disconnects the graph. Then “Bob is a drunkard” is dealt with using the
proposed rule for “is”, yielding a component

Bob drunkard

The remaining part “Bob drank at the black pub” is just a simple sentence, yielding
the circuit

at

drank

Bob pub

black

Composing, we get the final circuit

at

drank

p

black

B drunkard

.

6.2.6 Concluding remarks

Obviously, there are issues to be worked out regarding the order in which we apply
the rules in the second part of the algorithm. More generally, the specifics of this
algorithm are probably better worked out in tandem with the process of actually
trying to implement it, in that working with real life texts and examples can help
identify problems with our current proposal, which can then be iteratively fixed.
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Chapter 7

CCG-compatible internal wirings

In this chapter, we follow closely the approach of [CW], and provide a large catalogue
of ‘internal wirings’ that are compatible with a specific, purpose-built CCG. As we will
see, these internal wirings allow us to go from DisCoCat diagrams (based this CCG) to
language circuits. Thus, this represents an alternative to chapter 6, as another potential
way to obtain language circuits from text. Note that [CW] provided internal wirings
for a certain pregroup-based DisCoCat model - thus, the wirings provided there and
the wirings in this chapter end up looking somewhat different.

We roughly sketch the idea behind this chapter in section 7.1, and in section 7.2
we argue that although the set of wirings we have come up with in this chapter
was intended to work with a CCG-DisCoCat, they would also feasibly work in an
appropriate pregroup based setting. Section 7.3 is the catalogue of internal wirings,
and forms the bulk of this chapter.

7.1 The overall idea

As previously mentioned, the process can be depicted as

DisCoCat diagram
internal wirings
−−−−−−−−−−→ language circuit (7.1)

In this section, we will not fully describe the process as given [CW], but instead provide
a pregroup-based example to broadly sketch how it works.

Consider the sentence “John likes Mary”, parsed using pregroup grammar, to obtain
the following DisCoCat diagram.

John likes Mary

N Nr

S
Nl N
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The first departure from conventional DisCoCat is that we will work in a version
of pregroup grammar which replaces the usual sentence type S via some bracketed
tensor product of N types. That is, under the hood of any given S type is some
bracketed product of N types [N ⊗ . . . ⊗ N], where the number of N’s may vary for
different instances S. Roughly, what we have done is distinguish sentence types by
how many noun wires are involved in the sentence. In our example, the type of the
transitive verb “likes” will be

NrSNl Nr[NN]Nl,

i.e. the S type here is replaced by [NN]. Note that left and right adjunction can simply
pass inside the brackets:

Sl = [N . . .N]l = [Nl . . .Nl]

etc.
This also leads to some new graphical technicalities. In our diagrams, we denote S

types by thick wires, which can be ‘unwrapped’ to reveal the underlying product of N
types:

John likes Mary

N Nr

S
Nl N

N N N

‘wrapping gadget’

The indicated graphical gadget that does the ‘wrapping’ and ‘unwrapping’ of thick
S wires is referred to as a wrapping gadget. By unfolding, we mean dropping the
restrictions imposed by the wrapping gadget, or in other words revealing the N wires
underlying all the S wires in our graphical calculus:

N N

S = [N . . .N]

unfold
. . .

. . .

N N

Cups (and analogously, caps) carry over to S wires in the following way:

unfold

N N
. . .

N N
. . . . . . . . .

N N N N
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Next, we come up with a large catalogue of internal wirings for various categories
of words, and substitute these into our DisCoCat diagram. These categories will
roughly follow those introduced in 5.1, as well as those discussed in 6.2 - however
for the purposes of this chapter we will often need to fine-grain these into further
subcategories.

Considering again our example sentence, nouns are unchanged, but transitive
verbs form an entry in the catalogue. The internal wiring we provide in this chapter
for transitive verbs such as “likes” is the same as that provided in [CW]:

likeslikes

Nr [NN] Nl

 

Nr [NN] Nl

Thus, performing this substitution/rewrite, the DisCoCat diagram becomes

likesJohn Mary

Finally, unwrapping the sentence wire returns the language circuit we would expect for
the sentence “John likes Mary”, where the verb “likes” is in spider-form:

John Mary

likes .

Thus, the ingredients of this process are

1. a bespoke typelogical grammar systemT (which has been purpose-built for such
a process)

2. a corresponding catalogue of internal wirings, to work with T -based DisCoCat

3. an algorithm (primarily involving plugging in the internal wirings from our
catalogue) that takes us from a T -based DisCocat diagram to a language circuit

We note that in order for everything to work as desired, the PG/CCG T generally
needs to be different from standard PG/CCGs involving N and S types. This difference
arises not only in the replacement of S types with [N . . .N], but also in terms of its
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complexity. That is, T will generally need to contain much longer, unwieldy types than
what would normally appear in more standard PGs/CCGs.

While in the example we gave in section 7.1 (“John likes Mary”) the pregroup type
of our intransitive verb “likes” more or less looks the same as it usually does, this
is not usually the case. For instance, in [CW], the pregroup type given for a certain
subcategory of ‘attributive adverb’ is

NrNNr[N][[NNr][N]]lN,

which is rather more complex than the type of an adverb in any standard pregroup
grammar. Something similar holds for many of the pregroup typings provided in
[CW].

The main reason for the introduction of extra complexity to T is that the extra
complexity is necessary in order to generate additional underlinks (i.e. cups between
words) in the DisCoCat diagrams, such that the connectivity of the T -based DisCoCat
diagrams can more closely resemble the connectivity of the language circuits we hope to ob-
tain. Broadly speaking, standard PG or CCG systems do not yield the right kind of
connectivity between word states that will allow us to recover our desired language
circuits via internal wirings. This ties in with claim 5.1.1, and the related observations
in section 5.1 regarding connectivity (e.g. see (5.2)).

Even more complexity is introduced to T if one wants this bespoke grammatical
system to capture certain grammatical features (such as the stacking of certain pred-
icative adverbs) that may not naturally occur in it. Indeed this is responsible for much
of the additional type-complexity and internal wiring complexity in [CW].

7.2 Applicability to PG-DisCoCat

In this section, we discuss how the typings and internal wirings we provide here, even
though originally intended for a CCG based model, could also work well in the right
pregroup based model. This is why the title of this chapter refers to ‘CCG-compatible’
internal wirings - they are compatible with CCG, but are not exclusive to CCG, and
could also be used with pregroups.

Recall from subsection 3.5.4 that there is a certain degree of inter-operability be-
tween CCG and PG, by mapping CG types to PG types under (3.9). We noted that
the basic application and composition rules of CCG are realizable via pregroup con-
tractions, though type-raising is not. We also recall that once we functorially pass to
DisCoCat diagrams, the types of words in CCG-DisCoCat look the same as the types
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in the corresponding pregroup-DisCoCat, due to (4.4). Indeed, interpreted string-
diagrammatically, the resulting cups/connectivity one obtains from the CCG rules (e.g.
(4.5)) are the same as one would get from the corresponding pregroup contractions.

As it turns out, for the CCG system we devise in this chapter (i.e. in section 7.3),
many of the basic example expressions can be parsed using only 1) application rules,
and 2) type-raising and composition rules in conjunction for the purpose of flexibility
in the order of argument application. In this case, the type-raising-and-composition
combination can be realized in the pregroup grammar, as the overall effect is just that
of a contraction. For instance, the derivation

XT> Z/(Z\X) Z\X/A
B> Z/A

just corresponds to X · XrZAl
→ ZAl in pregroups. Indeed, both the CCG version of

this derivation and the PG version of this derivation leads to the same final DisCoCat
string diagram.

Thus, it seems that although the system we have devised in this chapter would also
work reasonably well in the equivalent PG-DisCoCat. Hence, in our internal wiring
catalogue, in addition to providing the CCG type for a particular internal wiring
diagram, we also provide corresponding pregroup type.

7.3 Catalogue of internal wirings

This section contains a big catalogue of internal wirings, along with their associated
CCG (and pregroup) types. Note the ‘pregroup types’ are essentially the types of
the words in DisCoCat, where we have kept track of left and right duals (though
such accountancy is unnecessary in FVectR). Each internal wiring will come with an
example sentence or phrase.

Many of the wirings provided here (e.g. verbs, adjectives, relative pronouns) are
essentially the same as those in [CW]. However, many of the other wirings differ - in
particular, the ones in this chapter are often simpler. This is likely a result of the fact
that I have not bothered to ensure that certain grammatical behaviours hold in this
system (such as the stacking of certain adverbs). We note also that the internal wiring
system we come up in this chapter is necessarily distinct from the one in [CW], since,
as remarked in subsection 3.5.4, not everything that can be done in pregroups, can be
done in categorial grammar. As such, it was not possible to simply ‘port over’ the
wirings from pregroups to CCG.
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The catalogue provided here is very much incomplete, and is only meant to serve
as a proof of concept. In particular, more subcategories could be introduced to deal
with additional grammatical cases.

7.3.1 Verbs

We separate these into the usual subcategories based on valency (intransitive, transi-
tive, ditransitive). The general theme is that they take in nouns to return sentences.

Intransitive verbs (IV)

*IV*

intransitive verb

CCG: [N]\N
Pregroup: Nr[N]
Example: “Alice runs.”

Alice
N

runs
[N]\N

<
[N]

runsAlice Alice
runs

Transitive verbs (TV)

*TV*

transitive verb

CCG: [NN]\N/N
Pregroup: Nr[NN]Nl

This CCG type is essentially ≈ IV/N.
Example: “Alice likes Bob.”
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Alice
N

likes
[NN]\N/N

Bob
N

>
[NN]\N

<
[NN]

likesAlice Bob Alice Bob

likes

Ditransitive verb (DV)

*DV*

ditransitive verb

CCG: [NNN]\N/N/N
Pregroup: Nr[NNN]NlNl

This CCG type is essentially ≈ TV/N.
Example: “Alice gives Bob flowers.”

Alice
N

gives
[NNN]\N/N/N

Bob
N

>
[NNN]\N/N

flowers
N

>
[NNN]\N

<
[NNN]

givesAlice Bob flowers A f B

gives

7.3.2 Adjectives

These take in a noun and return a noun.

*adj*

adjective
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CCG: N/N
Pregroup: NNl

Example: “red car”

red
N/N

car
N

>
N

red car car

red

7.3.3 Adverbs

We subcategorise these based on both the valency of the input verb, as well as based
on whether the adverb occurs before or after the verb (attributive or predicative).

attr. advIV

*adv*

attributive adverbIV

CCG: [N]\N/([N]\N)
Pregroup: Nr[N][Nl]N
This CCG type is exactly = IV/IV.
Example: “Alice quickly runs.”

Alice
N

quickly
[N]\N/([N]\N)

runs
[N]\N

>
[N]\N

<
[N]

quicklyAlice runs A quickly

runs
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attr. advTV

*adv*

attributive adverbTV

CCG: [NN]\N/N/([NN]\N/N)
Pregroup: Nr[NN]NlNll[NlNl]N
This CCG type is exactly = TV/TV.
Example: “Alice gently washed Fido.”

Alice
N

gently
[NN]\N/N/([NN]\N/N)

washed
[NN]\N/N

>
[NN]\N/N

Fido
N

>
[NN]\N

<
[NN]

gentlyAlice Fidowashed A F
gently

washed

attr. advDV

*adv*

attributive adverbDV

CCG: [NNN]\N/N/N/([NNN]\N/N/N)
Pregroup: Nr[NNN]NlNlNllNll[NlNlNl]N
This CCG type is exactly = DV/DV.
Example: “Alice quickly gives Bob flowers.”

115



Alice
N

quickly
[NNN]\N/N/N/([NNN]\N/N/N)

gives
[NNN]\N/N/N

>
[NNN]\N/N/N

Bob
N

>
[NNN]\N/N

flowers
N

>
[NNN]\N

<
[NNN]

quickly givesAlice Bob flowers

A f B
quickly

gives

pred. advIV

*adv*

predicative adverbIV

CCG: [N]\N\([N]\N)
Pregroup: [Nr]NrrNr[N]
This CCG type is exactly = IV\IV.
Example: “Alice runs quickly.”

Alice
N

runs
[N]\N

quickly
[N]\N\([N]\N)

<
[N]\N

<
[N]
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quicklyAlice runs A quickly

runs

pred. advTV

*adv*

predicative adverbTV

CCG: [NN]\N\([NN]\N/N)\N
Pregroup: NrN[NrNr]NrrNr[NN]
This CCG type is essentially ≈ IV\TV\N.
Example: “Alice likes Bob deeply.”

Alice
N

likes
[NN]\N/N

Bob
N

deeply
[NN]\N\([NN]\N/N)\N

<
[NN]\N\([NN]\N/N)

<
[NN]\N

<
[NN]

deeplylikes BobAlice A B
deeply

likes

pred. advDV

*adv*

predicative adverbDV
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CCG: [NNN]\N\([NNN]\N/N/N)\N\N
Pregroup: NrNrNN[NrNrNr]NrrNr[NNN]
This CCG type is essentially ≈ IV\DV\N\N.
Example: “Alice gives Bob flowers quickly.”

Alice
N

gives
[NNN]\N/N/N

Bob
N

flowers
N

quickly
[NNN]\N\([NNN]\N/N/N)\N\N

<
[NNN]\N\([NNN]\N/N/N)\N

<
[NNN]\N\([NNN]\N/N/N)

<
[NNN]\N

<
[NNN]

quicklyAlice Bob flowersgives

A f B
quickly

gives

Comments

We note that the adverb typings we have provided allow for stacking of attributive
adverbs, and of predicative adverbs in the case of IV valency - e.g. “Alice thoroughly,
gently washed Fido”. It does not seem to allow for stacking of pred. advTV and pred.
advDV.

Also, there is arguably a third obvious subcategory which we did not deal with - the
case where the adverb appears before the sentence, like in “Suddenly, Alice spoke.”
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7.3.4 Intensifiers

As with adverbs, these need to be subcategorised based according to the adverb subcat-
egories. However, there is no further subcategorisation introduced, since intensifiers
generally only appear before the adjective or adverb they modify - i.e. we do not
say “red very”. The general theme is that they take in adjectives/adverbs and return
adjectives/adverbs.

intadj

*int*

intadj

CCG: N/N/(N/N)
Pregroup: NNlNllNl

This CCG type is exactly = adj/adj
Example: “somewhat warm day”

somewhat
N/N/(N/N)

warm
N/N

>
N/N

day
N

> N

somewhat warm day day

warm

somewhat

intattr. IV

*int*

intattr. IV

CCG: [N]\N/([N]\N)/([N]\N/([N]\N))
Pregroup: Nr[N][Nl]NNl[Nll][Nl]N
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This CCG type is exactly = attr. advIV/attr. advIV

Example: “Alice rather quickly runs.”

Alice
N

rather
[N]\N/([N]\N)/([N]\N/([N]\N))

quickly
[N]\N/([N]\N)

>
[N]\N/([N]\N)

runs
[N]\N

>
[N]\N

<
[N]

rather quicklyAlice runs A

quickly

runs

rather

intattr. TV

*int*

intattr. TV

CCG: [NN]\N/N/([NN]\N/N)/([NN]\N/N/([NN]\N/N))
Pregroup: Nr[NN]NlNll[NlNl]NNl[NllNll]NlllNll[NlNl]N
This CCG typing is exactly = attr. advTV / attr. advTV
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Exam
ple: “A

lice
very

gently
w

ashed
Fido.”

A
liceN

very

[N
N

]\N
/N
/([N

N
]\N
/N

)/([N
N

]\N
/N
/([N

N
]\N
/N

))

gently

[N
N

]\N
/N
/([N

N
]\N
/N

)

>

[N
N

]\N
/N
/([N

N
]\N
/N

)

w
ashed

[N
N

]\N
/N

>

[N
N

]\N
/N

FidoN

>

[N
N

]\N

<

[N
N

]
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very gentlyAlice Fidowashed

A F

gently

washed

very

intattr. DV

*int*

intattr. DV

CCG: [NNN]\N/N/N/([NNN]\N/N/N)/([NNN]\N/N/N/([NNN]\N/N/N))
Pregroup: Nr[NNN]NlNlNllNll[NlNlNl]NNl[NllNllNll]NlllNlllNllNll[NlNlNl]N
This CCG typing is exactly = attr. advDV / attr. advDV

Example: “Alice very quickly gives Bob flowers.”

122



A
liceN

very

[N
N

N
]\N
/N
/N
/([N

N
N

]\N
/N
/N

)/([N
N

N
]\N
/N
/N
/([N

N
N

]\N
/N
/N

))

quickly

[N
N

N
]\N
/N
/N
/([N

N
N

]\N
/N
/N

)

>

[N
N

N
]\N
/N
/N
/([N

N
N

]\N
/N
/N

)

gives

[N
N

N
]\N
/N
/N

>

[N
N

N
]\N
/N
/N

BobN

>

[N
N

N
]\N
/N

flow
ers

N

>

[N
N

N
]\N

<

[N
N

N
]
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very quickly givesAlice Bob flowers

A f B

quickly

gives

very

Comments

We note that we could have chosen to type attributive intensifiers the same way we
typed attributive adverbs - attributive adverbs are able to stack, and we would have
obtained the correct connectivity with such an approach. However, typing intensifiers
the same way we type adverbs would allow for ungrammatical phrases like “very
runs”. Thus, we opted to differentiate the two.

We note also that there are also obvious intensifier cases for the predicative adverbs,
which we have skipped over:

intpred. IV

“Alice runs too quickly.”

intpred. TV

“Alice likes Bob very deeply.”
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intpred. DV

“Alice gives Bob flowers very quickly.”

We also avoided dealing with cases where the adverb appears before the sentence:
“Rather suddenly, Alice spoke”.

7.3.5 Adpositions

Adpositions are subcategorised based on the valency of the verb they modify. We have
not considered cases where the adpositions appear at the front of the sentence - for
instance, “On Saturday, Alice met Bob”.

adpIV

*adp*

adpositionIV

CCG: [NN]\N/N\([N]\N)
Pregroup: [Nr]NrrNr[NN]Nl

This CCG type is exactly = TV\IV
Example: “Alice plays in the garden.”

Alice
N

plays
[N]\N

in
[NN]\N/N\([N]\N)

<
[NN]\N/N

garden
N

>
[NN]\N

<
[NN]

playsAlice A

plays

in garden g in
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adpTV

*adp*

adpositionTV

CCG: [NNN]\N/N\([NN]\N/N)\N
Pregroup: NrN[NrNr]Nrr[NNN]Nl

This CCG type is essentially ≈ TV\TV\N
Example: “Bob drank beer until dawn.”

Bob
N

drank
[NN]\N/N

beer
N

until
[NNN]\N/N\([NN]\N/N)\N

<
[NNN]\N/N\([NN]\N/N)

<
[NNN]\N/N

dawn
N

>
[NNN]\N

<
[NNN]

drankBob beer B b

drank

until dawn d until

adpDV

*adp*

adpositionDV

CCG: ([NNNN]\N/N)\([NNN]\N/N/N)\N\N
Pregroup: NrNrNN[NrNrNr]NrrNr[NNNN]Nl

This CCG type is essentially TV\DV\N\N
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Exam
ple: “A

lice
m

ails Bob
lem

ons in
the

m
orning.”

A
liceN

m
ails

[N
N

N
]\N
/N
/N

BobN

lem
ons

N

in

([N
N

N
N

]\N
/N

)\([N
N

N
]\N
/N
/N

)\N
\N

<

([N
N

N
N

]\N
/N

)\([N
N

N
]\N
/N
/N

)\N

<

([N
N

N
N

]\N
/N

)\([N
N

N
]\N
/N
/N

)

<

[N
N

N
N

]\N
/N

m
orning

N

>

[N
N

N
N

]\N

<

[N
N

N
N

]
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inmailsAlice Bob lemons

A l B

mails

morning

m in

Comments

A problem with the typings we have come up with thus far is that adpositions do not
interact well with TV and DV predicative adverbs. That is, these types do not seem
to allow us to properly parse a sentence like “Bob drank beer merrily until dawn.”
Problems like these can be resolved by introducing more fine-grained, case-based
subcategories.

7.3.6 Relative pronouns

For this subsection, we note that in the TV and DV cases, the language circuits we
obtain feature noun states that are directly fed into verbs, and do not reappear as open
noun wires. In order to recover the proper set of noun wires, we need to insert a copy
spider on the desired nouns. This step was also discussed in [CW].

sub rel pronIV

sub rel pronIV

CCG: N\N/([N]\N)
Pregroup: NrN[Nl]N
Example: “man who slept”
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man
N

who
N\N/([N]\N)

slept
[N]\N

>
N\N

< N

sleptman

 

man
slept

sub rel pronTV

sub rel pronTV

CCG: N\N/([NN]\N)
Pregroup: NrN[NlNl]N
Example: “man who likes Bob”

man
N

who
N\N/([NN]\N)

likes
[NN]\N/N

Bob
N

>
[NN]\N

>
N\N

< N

likesman Bob man

Boblikes

obj rel pronTV

obj rel pronTV

CCG: N\N/([NN]/N)
Pregroup: NrNNll[NlNl]
Example: “flowers which Alice picked”
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flowers
N

which
N\N/([NN]/N)

Alice
NT> [NN]/([NN]\N)

picked
[NN]\N/N

B> [NN]/N
>

N\N
< N

pickedflowers Alice flowers
Alice picked

sub rel pronDV

sub rel pronDV

CCG: N\N/([NNN]\N)
Pregroup: NrN[NlNlNl]N
Example: “man who gave Bob flowers”

man
N

who
N\N/([NNN]\N)

gave
[NNN]\N/N/N

Bob
N

>
[NNN]\N/N

flowers
N

>
[NNN]\N

>
N\N

< N

gaveman Bob flowers m

fBgave

(dir) obj rel pronDV

dobj rel pronDV
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CCG: N\N/([NNN]/N)
Pregroup: NrNNll[NlNlNl]
Example: “ball which Alice passed Bob”

ball
N

which
N\N/([NNN]/N)

Alice
NT> [NNN]/([NNN]\N)

passed
[NNN]\N/N/N

Bob
N

>
[NNN]\N/N

B> [NNN]/N
>

N\N
< N

passedball Alice Bob b

BA passed

7.3.7 Reflexive pronouns

These take in a verb of valency n and return a verb of valency n − 1. We note that our
wirings differ slightly from those in [CW], as our version contains an extra braid.

ref pronTV

ref pronTV

CCG: [N]\N\([NN]\N/N)
Pregroup: N[NrNr]NrrNr[N]
This CCG typing is exactly = IV\TV
Example: “The snake eats itself.”

snake
N

eats
[NN]\N/N

itself
[N]\N\([NN]\N/N)

<
[N]\N

<
[N]
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eatssnake snake

eats

rel pronDV

ref pronDV

CCG: [NN]\N/N\([NNN]\N/N/N)
Pregroup: NN[NrNrNr]NrrNr[NN]Nl

This CCG typing is exactly = TV\DV
Example: “Bob buys himself flowers.”

Bob
N

buys
[NNN]\N/N/N

himself
[NN]\N/N\([NNN]\N/N/N)

<
[NN]\N/N

flowers
N

>
[NN]\N

<
[NN]

buysBob flowers B f

buys

7.3.8 Copula “is”

We deal with the two cases of “is” discussed in section 6.2 - one that links to a noun,
and one that links to an adjective.
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isNP

isNP

CCG: [N]\N/N
Pregroup: Nl[N]Nr

This CCG typing is exactly = IV/N
Example: “Fido is a dog.”

Fido
N

is
[N]\N/N

a dog
N

>
[N]\N

<
[N]

Alice Fido
dog

dog

isAP

isAP

CCG: [N]\N/(N/N)
Pregroup: Nr[N]NllNl

This CCG type is exactly = IV/adj
Example: “Fido is brown.”

Fido
N

is
[N]\N/(N/N)

brown
N/N

>
[N]\N

<
[N]

brownFido Fido
brown
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Chapter 8

Conclusion and further remarks

To conclude, we list some of the contributions of this thesis.

• We attempted to motivate our theory of language circuits by looking at parses of
example sentences based on established grammatical frameworks like CCG and
DG. Based on these, we contended that the kind of grammatical structures that
arise from our language circuit theory are closer to dependency structures than
constituency structures. The latter places heavy emphasis on grouping together
adjacent words into constituents, whereas our language circuits do not seem to
care much for linear word order.

• We proposed a typing system which helps to formalise the exact behaviour of
the different circuit components corresponding to different syntactic categories.

• We proposed an algorithm for converting (suitable) sentences into language cir-
cuit representations, using information given by the spaCy dependency parser.
The same idea could be and perhaps would be better applied to other dependency
parsers, where we have more knowledge/control over the underlying grammat-
ical model.

• We proposed a catalogue of internal wirings and an associated CCG system,
which can convert DisCoCat diagrams based on that CCG to language circuits.
We noted that this catalogue of internal wirings would also be largely compatible
with an appropriate pregroup-based DisCoCat.

We end on some open questions and speculations regarding language circuits -
some of which have been discussed in the body of the thesis.

• As mentioned in subsection 5.1.1 - how do we assign noun wires? To put the
concern another way, in our theory of language circuits there is a significant
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delineation between active words which receive wires and ‘live on as entities’,
and all other words which seem to be static, one-off components. Yet in normal
language and grammar, there is no clear delineation to be found which can
motivate this. Why then is having noun wires a natural thing to do, and how do
we decide which words to raise to this privileged active status? Perhaps there
is no canonical choice of words to elevate to noun wires, and instead we simply
make the choice on a case by case basis, according to our needs.

• What role exactly do internal wirings play? The approach of [CW] and chapter
7 seems rather unwieldy - we need to come up with fairly complicated, original
PG/CCG systems. Of course, since these are original grammatical systems, there
are no existing parsers, hampering their usefulness at a practical level. Perhaps
for practical applications it would be better to first choose some established
CCG say, and then attempt to provide internal wirings based on it, even if the
resulting connectivity/topology of our language circuits does not quite match the
theoretical ideal of chapter 5.1.

• How do we expand the fragment of English that we can model with diagrams?
Without much effort, one can already see some obvious and intuitive extensions,
which were not included in this thesis only due to constraints on space and time
- for instance, adpositions/conjunctions that link sentences with sentences (“Bob
drank until Alice arrived”). However, there are some other examples (e.g. “Bob
dreamt he saw Alice” - do we need some sort of separate world for Bob’s dream?)
which seem like they will require a fair bit of extra thought.
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Appendix A

Basic category theory

A.1 Basic concepts

Definition A.1.1. A category C consists of

• a collection1 of objects Ob(C). Objects are denoted by X,Y,Z, . . .

• a collection of morphisms Mor(C). Morphisms are denoted f , g, h, . . .

such that

• For each morphism f , there are given objects dom( f ), cod( f ), called the domain and
codomain of f . We write f : A→ B to indicate A = dom( f ), B = cod( f ).

• Given morphisms f : X→ Y and g : Y→ Z, there is a morphism g ◦ f : X→ Z called
the composite of f and g.

• For each object X, there is an identity morphism 1X : X→ X.

These data are required to satisfy two laws:

• Unit: f ◦ 1X = 1Y ◦ f = f for all f : X→ Y.

• Associativity: h ◦ (g ◦ f ) = (h ◦ g) ◦ f for all f : X→ Y, g : Y→ Z, h : Z→W.

Morphisms in a category are also referred to as ‘arrows’ or ‘maps’. Associativity
means we may freely drop the parentheses and unambiguously write h ◦ g ◦ f . Often
we will further drop the composition symbol and just write hg f .

1Russell’s paradox implies that there is no set whose elements are “all sets”, so for instance Ob(Set)
is not itself a set. This is the reason the vague term “collection” is often used in definitions of category.
We will ignore these underlying set-theoretic issues, as most introductory treatments of category theory
do - indeed the search for the most useful set-theoretical foundations for category theory is itself a topic
of research[Rie17].
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Due to the set-theoretic issues discussed in the footnote, it is often useful to introduce
adjectives that explicitly describe the size of a category.

Definition A.1.2. A category is locally small if between any pair of objects, there is only a
set’s worth of morphisms.

Definition A.1.3. Given objects X, Y in a locally small category C, we write

HomC(X,Y)

to denote the set of morphisms going X→ Y2. Such a set is called a hom-set.

There are many different names for morphisms with special properties. The most
important is the notion of an isomorphism.

Definition A.1.4. An isomorphism in a category C is an arrow f : X → Y such that there
exists an arrow h : Y→ X - the inverse of f - satisfying

f ◦ h = 1Y, h ◦ f = 1X.

We usually write f −1 for the inverse of f , and say that X and Y are isomorphic - written
X � Y - if there exists an isomorphism X→ Y.

Example. Many familiar varities of mathematical objects form a category. The most
basic is Set, the category whose objects are sets, and whose morphisms are functions
between sets. Another elementary example is Vectk, the category whose objects are
vector fields over the field k, and whose morphisms are k-linear transformations. We
in particular will be interested in FVectk, the subcategory of finite dimensional vector
spaces over the field k. Note all of these categories are locally small.

Example. Recall that a partial order on a set P is binary relation ≤ such that for all
x, y, z ∈ P,

• x ≤ x (reflexivity)

• x ≤ y ∧ y ≤ z implies x ≤ z (transitivity)

• x ≤ y ∧ y ≤ x implies x = y (antisymmetry).

A poset is set with a partial order. However, an equivalent definition of poset is as a
category such that

2An alternate notation that is used for this hom-set is C(X,Y).
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• for any objects x, y, Mor(C) has at most one element

• if there are morphisms x→ y and y→ x then x = y.

That is, the objects of the posetal category is taken to be the set P, and the presence of
a morphism from x → y indicates that x ≤ y3. So the reflexivity rule is the presence
of identity maps, and transitivity is composition of morphisms. Antisymmetry is cap-
tured by the additional requirement. A useful fact about posetal categories is that any
equational statement between morphisms (e.g. any commutative diagram) is trivially
satisfied, since there can only be one morphism between any two objects.

Definition A.1.5. Given categories C,D, there is a product category C ×D whose

• objects are ordered pairs (X,Y) where X ∈ Ob(C), Y ∈ Ob(D),

• morphisms are ordered pairs ( f , g) : (X,Y)→ (X′,Y′) where f : X→ X′ ∈Mor(C) and
g : Y→ Y′ ∈Mor(D), and

• in which composition and identities are defined component-wise:

( f ′, g′) ◦ ( f , g) = ( f ′ ◦ f , g′ ◦ g)
1(X,Y) = (1X, 1Y).

There is an obvious generalisation to products on n ≥ 3 categories.
An important notion in category theory is that of duality. Given a category C, we

can obtain an opposite or ‘dual’ category by formally ‘reversing the directions of the
morphisms’.

Definition A.1.6. Given a category C, the opposite category Cop has

• the same objects as C, i.e. Ob(Cop) = Ob(C)

• a morphism f op : Y→ X for each morphism f : X→ Y ∈Mor(C), and no others besides,
i.e. HomCop(Y,X) = HomC(X,Y).

Composition and identities are inherited from C, although there is a reversal of order for
composition:

• given f op : Y→ X, gop : Z→ Y, their composite is f op
◦ gop := (g ◦ f )op

• the identity morphism for X in Cop is 1op
X : X→ X.

Essentially, the process of ‘reversing the directions of arrows’, or ‘exchanging the
domains and codomains’ exhibits a syntactical self-duality satisfied by the axioms for
a category.

3We will use this convention, rather than taking x→ y as meaning that x ≥ y.
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A.2 Functors and natural transformations

A key tenet of category theory is that objects should be considered together with an
accompanying notion of structure-preserving morphism. Categories themselves are
mathematical objects, and the structure-preserving morphisms between categories are
functors.

Definition A.2.1. Let C, D be categories. A functor F : C → D consists of an object map
assigning an object FX in Ob(D) to every X in Ob(C), and a morphism map assigning a
morphism F f : FX→ FY in Mor(D) to every morphism f : X→ Y in Mor(C), such that the
functoriality conditions are satisfied:

• F( f g) = F( f )F(g) for all morphisms f : X→ Y, g : Y→ Z in C, and

• F(1X) = 1FX for all X ∈ Ob(C).

That is, a functor preserves domains and codomains, identity morphisms, and com-
position. Note that we use the same symbol to refer to both the object and morphism
map - in practice this will not cause confusion.

Applying again the notion of duality, we note that a functor F : C → D can be
equivalently viewed as a functor F : Cop

→D
op. For the new Cop

→D
op functor, simply

take the same object map as the original, and for morphisms map f op : X→ Y to (F f )op.
Although these functors technically have different domains and codomains and thus
may be considered distinct functors, it is standard to use F to denote both the original
functor F : C → D and the ‘opposite’ functor F : Cop

→D
op.

A bifunctor is just a functor whose domain is a product category. A multifunctor
generalises this notion to a product of n categories.

Definition A.2.2. Given a category C, the bivariant hom-functor

HomC(−,−) : Cop
× C → Set

defined

HomC(−,−)(X,Y) := HomC(X,Y), HomC(−,−)( f op, f ′) := g 7→ f ′ ◦ g ◦ f

This functor is sometimes also just called the ‘hom-functor’.
Next we introduce the notion of naturality.

Definition A.2.3. For functors F,G : C → D, a natural transformation η : F ⇒ G is a

family of maps {ηX : FX→ GX}X∈Ob(C) inD such that for all maps X
f
−→ Y in C, the ‘naturality

square’
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FX GX

FY GY

F f

ηX

G f

ηY

commutes.

To quote from [Rie17], in practice it is often most elegant to define a natural transfor-
mation by making a statement of the form ‘the arrows A are natural’. This means that
the collection of arrows defines the components of a natural transformation, leaving
implicit the correct choices of domain and codomain functors, and source and target
categories. Here A should be a collection of morphisms in a clearly identifiable (target)
category, whose domains and codomains are defined using a common ‘variable’ (an
object of the source category). If this variable is X, one might say ‘the arrows A are
natural in X’ to emphasize the domain object whose component is being described.

Note also that if we have a family of isomorphisms θA,B : F(A,B) → G(A,B) in E
for all (A,B) ∈ C × D, then saying that θA,B is natural in (A,B) together is the same as
saying it is natural in A (for arbitrary fixed B) and separately natural in B (for arbitrary
fixed A). To see this, check the naturality squares.

When every ηX map of a natural transformation is an isomorphism, we call η :
F ⇒ G a natural isomorphism. In this case it is easy to see that we also get a natural
transformation η−1 : G⇒ F. Explicitly writing out the naturality squares for η and η−1

will be essentially the same, except the direction of the η maps will be reversed.
There are two ways to compose natural transformations.

Definition A.2.4. Given functors F,G,H : C → D and natural transformations η : F ⇒ G,
ε : G ⇒ H, the vertical composition ε · η : F ⇒ H is a natural transformation defined by
the morphisms (ε · η)X := εX ◦ ηX

Note then that given a natural isomorphism η : F⇒ G, we indeed have η · η−1 = 1F

and η−1
· η = 1G, where 1F : F⇒ F, 1G : G⇒ G are identity natural transformations.

The second way to compose natural transformations is horizontal composition.

Definition A.2.5. Given a pair of natural transformations

DC Eε η

F H

G K

the horizontal composition is a natural transformation ε ∗ η : HF⇒ KG whose component
at X ∈ Ob(C) is the composite of the following commutative square
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HFX KFX

HGX KGX

ηFX

HεX
(η∗ε)X

KεX

ηGX

It is worth noting that both vertical and horizontal composition preserves isomor-
phism. That is, if ε, η and natural isomorphisms that can be vertically composed, then
evidently the vertical composite ε ·η is also a natural isomorphism. Additionally, if nat-
ural isomorphisms ε, η can be horizontally composed, then the horizontal composite
ε ∗η is also a natural isomorphism (this can be seen from the fact that functors preserve
isomorphisms).

As a special case of horizontal composition we have whiskering - the composition
of a natural transformation with a functor, or more precisely, horizontal composition
in the case when either F = G or H = K. In its the most general form, consider the
functors F,H,K,L and natural transformation ε:

F
H

EεDC F

K

L

Then LεF : LHF ⇒ LKF, with components (LεF)X := LεFX is a natural transformation.
Concretely, the natural transformation LεF is the horizontal composite 1L ∗ ε ∗ 1F.

A.3 Adjunction

There are perhaps three basic (equivalent) definitions on adjoint functor. The one we
will use is the definition in terms of natural isomorphisms.

Definition A.3.1. If we have functors F : C → D, G : D→ C and a family of isomorphisms

HomC(A,G(B)) � HomD(F(A),B)

natural in A and B, we write F a G and say F,G form an adjunction. F is called the left
adjoint and G is called the right adjoint.

That is, there is a natural isomorphism θ : HomC(−,G(−))⇒ HomD(F(−),−), where
the functors go from Cop

×D → Set. Equivalently, for all A ∈ Ob(C), B ∈ Ob(D) there
is an isomorphism of sets

θA,B : HomC(A,G(B))→ HomD(F(A),B)
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such that for all g : A′ → A in C, and h : B→ B′ inD, the following diagram commutes

HomC(A,G(B)) HomD(F(A),B)

HomC(A′,G(B′)) HomD(F(A′),B′)

HomC(g,Gh)

θA,B

HomD(Fg,h)

θA′ ,B′

Starting from the top left and taking any f : A→ G(B) in C, we will have

h ◦ θA,B( f ) ◦ Fg = θA′,B′(Gh ◦ f ◦ g).

The morphisms f : A→ G(B) in C and g : F(A)→ B inDwhich correspond to each
other under θA,B are said to be adjuncts. That is, f is the right-adjunct of g, and g the
left-adjunct of f 4.

The following is a useful technical lemma about the uniqueness of adjoints.

Lemma A.3.2. If we have an adjunction F a G, and there is another functor F that is naturally
isomorphic to F (i.e. F � F′), then we also have F′ a G.

This can be seen from the hom-set definition of adjoint. Suppose we have F : C →
D, and G : D → C. We can extend the natural isomorphism F � F′ to a natural
isomorphism

F × 1D

D
op
×DC

op
×D

F′ × 1D

and then whisker with HomD(−,−) to get a natural isomorphism

F × 1D

D
op
×DC

op
×D

F′ × 1D

Set
HomD(−,−)

Then F a G gives a natural isomorphism HomC(−,G(−))⇒ HomD(F(−),−), with which
we can vertically compose, to get the desired natural isomorphism HomC(−,G(−)) ⇒
HomD(F′(−),−) witnessing the F′ a G adjunction:

4See https://ncatlab.org/nlab/show/adjunct.

142

https://ncatlab.org/nlab/show/adjunct


F × 1D

D
op
×DC

op
×D

F′ × 1D

Set
HomD(−,−)

HomC(−,G(−))

Another useful technical result is the following, which can be found in Mac Lane.

Theorem A.3.3 (Adjunctions with a parameter, theorem 3 p102 [ML13]). Let F : C×D →
E be a bifunctor, and for every object D in D, let FD : C → E denote the functor F(−,D). If
every FD : C → D is left adjoint to a GD : E → C via

φD
C,E : HomC(C,GD(E)) � HomE(FD(C),E)

(which for any D is natural in C, E), then there is a unique bifunctor G : Dop
× E → C such

that GD = G(D,−) and φD
C,E : HomC(C,G(D,E)) � HomE(F(C,D),E) is also natural in D.
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