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Abstract

The Distributional Model of Meaning is a promissing new way to represent
and understand language and linguistics using tools developed for Quantum
Computer Science. Representing words whose meaning depends on the sen-
tence (such as 'WHICH', 'TO', 'BUT', etc) requires more work within this
model; in particular coordination has already been studied by Dimitri Kart-
saklis with ideas for representing 'AND' using GHZ-spiders, but more work is
required on the subject. This thesis will focus on the representation of 'AND'
and 'OR' and in particular the use of GHZ and W spiders to represent each
of them respectively. The use of W-spiders to represent 'OR' comes naturally
when knowing Dr Kartsaklis' idea for 'AND' as there are distributivity laws
between GHZ and W spiders similar to those that exist between 'AND' and
'OR'. Some caveats regarding Dr Kartsaklis's approach have been found and
�xed syntactically and a partial solution to the representation of 'OR' has
been found as well in the vector space Rel.
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Introduction

Natural language processing is an on going topic of research with various at-
tempts at making computers better understand natural language, notably in
order to have better performing software for speech recognition. While a lot
of modern research focuses on machine learning and neural networks to anal-
yse natural language, this thesis will look at a more mathematical approach.
A general grammar already exists, known as the Categorical Compositional
Distributional Model of Meaning, which will be presented in chapter 2. But
this grammar isn't complete. The purpose of this thesis is to �nd ways
to speci�cally represent the conjunction and disjunction, usually known in
English by 'AND' and 'OR'.

Several recent papers ([1] [2] [3][4][5][6]) have shown that Frobenius alge-
bras o�er additional properties to the categorical grammar that have proved
to be useful to represent relative pronouns and conjunction. We will further
explore this direction, in particular with two kinds of Frobenius algebras
generated by GHZ and W states, two types of tripartite entangled states, as
presented in the �rst chapter.

The �rst two chapters of this thesis focus on background research nec-
essary to understand current work, on ZW-Calculus and on the Categorical
Compositional Distributional Model of Meaning. The third chapter starts
with Kartsaklis' work on conjunction and then we present a few issues that
we have found with this representation as well as potential solutions. Fi-
nally, the fourth and last chapter focuses on our work on disjunction and its
representation by W-spiders. The �rst section of that last chapter presents
Hadzihasanovic's work on generalising the W operator for Qudits, which we
need in order to have models of natural language with more than a two-
dimensional basis.
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Chapter 1

Elements of ZW-Calculus

Multipartite quantum states and entanglement are two major elements of
quantum physics. Categorical quantum mechanics (CQM) is a branch of
quantum computing that combines these features with algebraic notions such
as Commutative Frobenius Algebras (CFA) to better understand singular
quantum e�ects. ZW-Calculus [7] aims at studying how two speci�c laws of
such algebras, namely the GHZ spider and the W spider, interact with each
other. The goal of this chapter is to remind the reader of a result that shows
that a GHZ state and a W state, which are tripartite entangled quantum
states, can be developed into Frobenius laws and used to build a complex
graphical calculus. It is on such calculus that the interpretation of sentences
presented in this thesis is based.

1.1 Introduction

Entanglement is a special feature that does not exist in classical physics which
corresponds to a correlation in measurement of spatially seperated compound
quantum systems. Entangled states can be composed of two, three or more
compounds. Bipartite entangled states are used in the quantum teleportation
protocol among others. This thesis will mainly look at tripartite entangled
states and more speci�cally two kinds GHZ and W states - which, as we will
show later, are di�erent from each other. Entanglement remains an on-going
subject of research, there isn't even an agreed upon classi�cation for general
multipartite entangled states for an order superior to three, notably because
there is en in�nite number of 4 (or more)-qubit states that are not SLOCC
(stochastic local operations and classical communications) equivalent. For
three qubits however, SLOCC classi�cation is well understood and there
are two non-degenerated classes that each contain the GHZ and W states
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respectively, and are usually represented by them.

|GHZy � |000y � |111y

|W y � |100y � |010y � |001y
The di�erences between these two states are essentially topological, rela-

tive to how they behave regarding to loops in their area. The �rst approach
is to consider tripartite states as algebraic operations. In the graphical rep-
resentation of states, this corresponds to bending one wire and turn the state
into a process with one input and two outputs. This graphical representation
will be explained in more detail in the next section.

Indeed, the relevant information is the arity (number of inputs + number
of outputs) of the state, and not their precise position thanks to the yanking
rule. This leads to the de�nition of Frobenius states, which lead to the
creation of CFAs, a particularly well-behaved kind of algebra.

The rest of this chapter will brifely explain the graphical representation
used, remind the reader of de�nitions and properties around Commutative
Frobenius Algebras, explain the SLOCC classi�cation and more speci�cally
that of tripartite states, de�ne Frobenius states, remind the reader more
speci�cally about special and anti-special Frobenius algebras and �nally ex-
plain how GHZ and W states can generate Frobenius algebras.

1.2 Graphical notations

This section will quickly go over a few graphical representations of monoidal
categories. Morphisms are depicted as boxes with wires on each side of the
box corresponding to inputs and outpus of the morphism. When types are
ambiguous, these wires will be labelled with the corresponding types.

Sequential composition is simply depicted by connecting wires (that have
to correspond to the same type), and parallel composition by juxtaposing
boxes side by side.

For example, the morphisms:

1A f g � f 1A b 1B f b 1C f b g pf b gq � h

are depicted as follows in a top-down fashion:
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The unit object is represented by 'no wire' with a triangular shape rather
than �at.

For example:

ψ : I Ñ A π : AÑ I π � ψ : I Ñ I

are depicted as:

A

A

π

ψ =π � ψ
ψ

π

A

1.3 Commutative Frobenius Algebra

Let's start by recalling the de�nition of a unital algebra.

De�nition 1.3.1. [7] A unital algebra is a vector space A with a multipli-
cation � that veri�es the following properties:

• p_ �_q is bilinear
• p_ �_q is associative: for every vectors |uy , |vy , |wy :

|uy � p|vy � |wyq � p|uy � |vyq � |wy

• there exists a unit |ηy such that for all |uy in A, |ηy � |uy � |uy � |ηy � |uy
In this thesis, we will assume that A is a �nite-dimensional Hilbert space

H. Therefore, since p_ �_q is bilinear, there exists a unique µ such that:

µp|uy b |vyq � p|uy � |vyq

We then obtain the following de�nition:



De�nition 1.3.2. [7] A unital algebra pH,µ, ηq is a vector space H with
maps µ : H bH Ñ H and η : CÑ H that verify the following equations:

• µp1b µq � µpµb 1q
• µp1b ηq � µpη b 1q � 1

Similarly, we de�ne a counital coalgebra on the dual space H�. In terms
of H:

De�nition 1.3.3. [7] A counital coalgebra pH, δ, εq is a vector space H with
maps δ : H Ñ H bH and ε : H Ñ C that verify the following equations:

• p1b δqδ � pδ b 1qδ
• pεb 1qδ � p1b εqδ � 1

From these de�nitions, we can de�ne a Frobenius algebra:

De�nition 1.3.4. [7] A Frobenius algebra F is a vector space H with maps
µ, η, δ, ε such that:

• pH,µ, ηq is a unital algebra

• pH, δ, εq is a counital coalgebra

• pµb 1qp1b δq � p1b µqpδ b 1q � δµ (Frobenius identity)

Graphically, we can depict µ ,δ ,η ,ε as:

Therefore, graphically the de�nition of the Frobenius algebra is:

De�nition 1.3.5. [7] Frobenius algebra is a a vector space H with maps

such that:

• � ; � �



• � ; ��

• �

Let σA,B be the swap map. Then a unital algebra (resp counital coalgebra)
is commutative (resp cocoummtative) i� µ � µσH,H (resp δ � σH,Hδ).

De�nition 1.3.6. [7] A Frobenius algebra pH,µ, δ, η, εq is called commuta-
tive i� the unital algebra pH,µ, ηq is commutative and the counital coalgebra
pH, δ, εq is cocommutative. Graphically:

� ; �

De�nition 1.3.7. [7] For a commutative Frobenius algebra (CFA) F �
pH,µ, δ, η, εq, an F -graph is a graph obtained from 1H , σH,H , µ, δ, η and ε,
combined with composition and tensor product. An F -graph is said to be
connected precisely whan its graphical representation is connected.

A well-known result about CFAs is that any F -graph is entirely deter-
mined by its number of inputs, outputs and loops - where by the number of
loops we mean the maximum number of edges that can be removed without
disconnecting the graph. This result was proven by J. Kock in [8]. As order
doesn't really matter thanks to commutativity and associativity, it is possible
to transform any F -graph in a normal form.

Theorem 1.3.8. [7] Any connected F -graph can be put in a normal form
where loops are in the middle as presented in the following diagram:



...

...

...

(1.1)

A particular instance of this normal form is the case where there are no
loops. In this case, an F -graph is an F -tree and it can be represented as a
spider.

De�nition 1.3.9. [7] A connected F -tree is called a spider. It is uniquely
determined by its number of in-edges and out-edges.

Snm : H b ...bHlooooomooooon
m

Ñ
nhkkkkkikkkkkj

H b ...bH

Snm :�
...

...

nhkkkkikkkkj
4444444

................loooomoooon
m

�
...

...

(1.2)

In particular for spiders without inputs or outputs, we cap o� with η or
ε.

1.4 SLOCC classi�cation

In this section we recall some facts about SLOCC classi�cation as it is the
system in which GHZ- and W-spiders appear as canonical.



De�nition 1.4.1. [7] A state |ψy P H1 b ... b HN can be converted into a
state |φy through Stochastic Local Operations and Classical Communications
(SLOCC) when there exists an N party protocol that succeeds with non-zero
probability at turning |ψy into |φy, where each party pi has access to Hi and
can :

• apply any number of local (quantum) operations O : Hi Ñ Hi

• perform any amount of classical communication with the other parties

If it is the case, then we write |φy ¨ |ψy.
The relation ¨ forms a preorder and the resulting equivalence relation,

called SLOCC-equivalence is written �. From this equivalence relation stems
the notion of SLOCC class.

The following theorem on SLOCC-equivalence has been proven by W.
Dür, G. Vidal and J. I. Cirac in [9].

Theorem 1.4.2. [7] Two states |φy , |ψy P H1 b ... b HN are SLOCC-
equivalent if and only if there exist invertible linear maps Li : Hi Ñ Hi

such that :
|φy � pL1 b ...b LNq |ψy .

We say that a state |φy is SLOCC-maximal if it is maximal with regard
to ¨, that is:

|φy ¨ |ψy ñ |φy � |ψy . (1.3)

For two qubits, there are two SLOCC classes:

|Belly

|φy b |ψy

¨

Where |Belly is the state |00y � |11y commonly known as the Bell state.
Therefore, any entangled state made of two qubits can be derived from the
Bell state using local invertible maps.

For three qubits, there are four SLOCC classes up to qubits permutation,
but the ¨ order is no longer total. The classes interact according to the
following diagram:

|GHZy |W y

|Belly b |ψy

|ψy b |φy b |ρy

¨ ¨

¨



Where |GHZy is the state |000y � |111y and |W y is the state |001y � |010y �
|100y. Therefore, a maximally entangled state made of three qubits can be
in one of the two classes GHZ or W .

However, for a number of qubits superior or equal to 4, there isn't a
�nite number of SLOCC-classes, as proven in [9], so the classi�cation is more
complicated. We will not enter in detail about such classi�cation as it is not
relevant to the rest of this thesis.

1.4.1 SLOCC-maximal entangled states

For any state |φy, it can always be derived from a maxiamally entangled state
and an SLOCC protocol. Graphically, SLOCC-maximality can be reformu-
lated with the following proposition.

Theorem 1.4.3. [7] A bipartite state |φy : H b H is a SLOCC-maximal
entangled state i� there exists a corresponding e�ect xψ| : H bH Ñ C such
that:

|φy
�

xψ|
(1.4)

The proof of this result follows straight-forwardly by map-state duality.

1.5 Frobenius states

As has been alluded previously in this chapter, we are going to look at links
between tripartite entangled states and algebraic structures. We will show
that two properties are su�cient for a tripartite entangled state to generate
such a structure: (a) satisfy a unit law, and (b) be associative, commutative
and Frobenius. Condition (a) corresponds with being highly entangled and
(b) with being highly symmetrical.

In this section, we will look at tripartite states |φy that are both highly
entangled and highly symmetrical, but that also can be generalised into N-
partite states that inherit this property of being able to generate an algebraic
structure. First, we will introduce the notion of strong SLOCC-maximality
and strong symmetry.

De�nition 1.5.1. [7] A tripartite state |φy P HbHbH is said to be strong
SLOCC-maixmal if there exists three e�ects xξi| such that the three following



states are all SLOCC-maximal bipartite states.

xξ1| xξ2| xξ3|

|φy |φy |φy
(1.5)

As proven in [7], strong SLOCC-maximality strictly implies SLOCC-
maximality.

In the case where |φy is symmetric, this condition can be simpli�ed:

Theorem 1.5.2. [7] A symmetric tripartite state |φy is strongly SLOCC-
maximal i� there exists two e�ects xξ| and xψ| such that:

xξ| xψ|

|φy
= (1.6)

The GHZ state satis�es equation 1.6 by �xing xξ| � x�| and xψ| � xBell|.
The W state also satis�es this equation with xξ| � x0| and xψ| � xEPR| :�
x01| � x10|.

As these are the only two SLOCC-maximal entangled tripartite states,
and these are the candidates for representing coordinations in the next chap-
ters, we are going to spend more time on them. They are both symmetric
and they both have an N-partite generalisation :

|GHZNy :� |00...0y � |11...1y (1.7)

|WNy :� |10...0y � |010...0y � ...� |00...01y (1.8)

The N � 1 state can also be built inductively from the N state and
tripartite states.

To inductively build symmetric states it su�ces that the following con-
dition holds.

De�nition 1.5.3. [7] A state |φy is said to be strongly symmetric, if there
exists a bipartite e�ect xψ| such that:

|φy |φy

xψ|xψ|

|φy |φy
= (1.9)



We have gone through all the necessary de�nitions and can now describe
the states that have highly algebraic properties.

De�nition 1.5.4. [7] A symmetric tripartite state |φy is said to be a Frobe-
nius state if there exists two e�ects xξ| and xψ| such that equations 1.6 and
1.9 hold.

Note that the xψ| satisfying equations 1.6 and 1.9 must be the same e�ect,
which is a stronger condition than having these two equations hold separately
for some xψ| and xψ1|.
Theorem 1.5.5. [7] For any commutative Frobenius algebra , the follow-
ing is a Frobenius state with its two associated e�ects:

|φy
:= ;

xψ|
:=

xξ|
; :=

The fact that it corresponds to de�nition 1.5.4 is a consequence of the-
orem 1.3.8. Also, from a Frobenius state, it is possible to construct the
corresponding Frobenius algebra.

Theorem 1.5.6. [7] For any Frobenius state |φy there exists e�ects xψ| and
xξ| such that the following forms a commutative Frobenius algebra:

|φy |φy

|φy

xψ| xψ|

xψ| xξ|

xξ|xξ|
:= ; :=

:= ; :=

As a result, it is possible to refer to Frobenius algebras either through
their usual maps pµ, δ, η, εq or through the triplet p|φy , xψ| , xξ|q. From a same
state |φy, it is possible to produce several Frobenius algebras by using several
xξ|. However, once, xξ| is �xed, xψ| follows immediately using equation 1.5.2
on strong SLOCC-maximality. This is analogous to the regular de�nition of
Frobenius algebras where �xing the maps µ and ε completely determines the
other two.



1.5.1 Frobenius algebras from |GHZy and |W y

More speci�cally in this thesis, we are interested in the Frobenius algebras
that come from the two states |GHZy and |W y.

In the case of |φy � |GHZy we can �x xξ| � ?
2 x�| which produces the

following CFA that we shall refer to as G :

= |0y x00| � |1y x11| ; =
?
2 |�y := |0y � |1y

= |00y x0| � |11y x1| ; =
?
2 x�| := x0| � x1|

(1.10)

In the case of |φy � |W y we can �x xξ| � x0| which produces the following
CFA that we shall refer to as W :

= |1y x11| � |0y x01| � |0y x10| ; = |1y

=|00y x0| � |01y x1| � |10y x1| ; = x0|

(1.11)

1.6 Special and anti-special Frobenius algebras

The normal form given in the theorem 1.3.8 suggests that loops play a key
role in understanding Frobenius algebras. We will particularly look at two
behaviours that these loops can have : one where they vanish and another
one where they propagate outwards, disconnecting the entire graph. These
behaviours are of interest because they correspond to the behaviours of CFAs
produced from GHZ and W states.

De�nition 1.6.1. [7] A special commutative Frobenius algebra (SCFA) is a
commutative Frobenius algebra where:



=

As proven in [7]:

Theorem 1.6.2. [7] In a SCFA S, a connected S-graph with m inputs and
n outputs is equal to the spider Snm.

De�nition 1.6.3. [7] An anti-special commutative Frobenius algebra (ACFA)
is a commutative Frobenius algebra where:

=

A few properties on ACFAs have been proven in [7].

Theorem 1.6.4. [7] For any ACFA, the following copying rule holds:

=

Contrary to SCFAs, scalars play a key role in characterizing ACFAs,

in particular, the circle - which can be shown to be equal to D, the

dimension of the underlying Hilbert space. Assuming D ¡ 0, let � 1{D.

Thus � 1.



Theorem 1.6.5. [7] For any ACFA � pH,µ, δ, η, εq, either dimpHq � 1

or � 0

The proof is also available in [7].
From this point forward, we will assume that dimpHq ¥ 2.

Theorem 1.6.6. [7] For any ACFA A , any connected A -graph is equal to
one of the following:

• 0

•

•

...

...

• ...

...

...

The proof can be found in [7].

1.7 GHZ and W states as commutative Frobe-

nius algebra

As seen in the previous section, GHZ states and W states are both Frobenius
states and therefore can each generate a commutative Frobenius algebra.
Furthemore, for CFAs on C2 conditions of specialness and anti-specialness
are enough to identify GHZ and W states up to SLOCC-equivalence.

As proven in [7]:

Theorem 1.7.1. [7] For any special commutative Frobenius algebra on C2,
the induced Frobenius state is SLOCC-equivalent to |GHZy. Furthermore,
for any tripartite state |φy that is SLOCC-equivalent to |GHZy, there exists
|ψy , |ξy such that p|φy , |ψy , |ξyq is a special commutative Frobenius algebra.



Similarly, [7] proves that:

Theorem 1.7.2. [7] For any anti-special Frobenius algebra in C2, the in-
duced Frobenius state is SLOCC-equivalent to |W y. Furthermore, for any
tripartite state |φy that is SLOCC-equivalent to |W y, there exists |ψy , |ξy
such that p|φy , |ψy , |ξyq is an anti-special commutative Frobenius algebra.

A direct corollary is that any SLOCC-maximal tripartite state is SLOCC-
equivalent to a Frobenius state.

1.8 Summmary

In this chapter we have introduced the importance of commutative Frobe-
nius algebras and given an alternative de�nition to Frobenius algebras using
tripartite states. Two states in particular play a speci�c role, GHZ and
W states, which induce respectively special and anti-special commutative
Frobenius algebras. We will see later in this thesis that the Frobenius alge-
bras created from these states can be used to represent 'OR' and 'AND' in
a speci�c model of linguistics.



Chapter 2

Distributional Model of Meaning

In this chapter we will introduce a theory developed in [10] that aims at
unifying the distributional model of meaning in terms of vector space models,
and a compositional theory for grammatical types which relies on the algebra
of Pregroups, developed by Lambek. The theory we are using makes it
possible to compute the meaning of a well-typed sentence from the meaning
of the words composing it. Using the fact that Pregroups can be viewed
as a category, type reductions of Pregroups are 'lifted' to morphisms in a
'higher' category. The purpose of this lifting is also that the meanings of
any two well-typed sentences all live in the same space, no matter their
grammatical structure. Therefore, it is possible to compare the meanings
of any two sentences by simply using the inner-product of that space, the
same way meanings of words are compared in the distributional model. The
mathematical structure obtained, as it is inspired from categorical quantum
mechanics, uses the same diagrammatic calculus and therefore exposes how
the information �ows between the words in a sentence; the connexion between
words and how their arrangement produces meaning becomes clear. The
original categorical model developped by Coecke, Sadrzadeh and Clark uses
real vector spaces but it is possible to have a Boolean value for a sentence by
simply changing to the space of relations. Montague-style Booleand-valued
semantics will be the one mostly used in the rest of this thesis.

2.1 Introduction

The two main theories of meaning which pre-existed [10] are a symbolic
[11] and a distributional [12] ones. However these two theories are some-
what orthogonal as the advantages of one is what the other lacks and vice
versa: the former is compositional but only qualitative while the latter is
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non-compositional but quantitative. For a discussion of these two models in
Natural Language Processing see [13].

The original paper was inspired by [14] for using tensor spaces and pair
vectors with their grammatical types. Pregroups have been used recently
for natural language but the reason they are particularly interesting in our
context is that they share a common structure with vector spaces and tensor
products. Both can be viewed as categories and these categories are compact
closed. Therefore a compact closed category combining both the meanings
of words as vectors in vector spaces and their grammatical roles as types in
Pregroups will be used to compute the meaning of sentences. And such a
category can be found by taking the tensor product of vector spaces and a
Pregroup, thus creating (meaning, type) pairs.

As we have seen in the previous chapter, categories and their graphical
representation are very convenient for type-checking, the reduction in the
product cateogory will verify the grammatical correctness and assign a vector
in the vector space of meaning to each sentence. The theory obtained is
therefore compositional and the meaning is built from the vectors of meaning
of all the words.

If we restrict vectors to range over B � t0, 1u, a Montague-style Boolean-
valued semantics emerges. Sentences are therefore assigned the meaning
either true or false rather than a more nuanced one on a real vector space.This
simply correponds to using the category of relations rather than the category
of vector spaces as described in [15].

2.2 Two 'camps' within computational linguis-

tics

We brie�y present the two domains of computational lingistics which provide
the linguistic backgroun for this chapter, literature will be given if the reader
is interested in more details.

2.2.1 Vector space models of meaning

The key idea behind the distributional model [12], is that words appear in
a certain context, and that context is key in determining the meaning of a
word. Formally, a context can have several de�nitions but the simplest one
is just an n word window around a word. Two nouns that are always used as
subjects of the same verbs, quali�ed by the same adjectives or objects of the
same actions will, intuitively, be quite similar, for example 'cat' and 'dog'.



They both sleep, run or walk. They can both be small, big or furry. And
they can also be bought, cleaned and stroked.

So the meaning of a word will be represented in a vector space that has a
very high dimension. The orthogonal basis of this vector space will be con-
text words. Once these words have been chosen, it only remains to count how
many times each of these words appear in the same context as a word in a
given text or group of texts. A big advantage of this representation is that it
is easy to measure distance between words as they all live in the same vector
space. Some computational models built along these lines have used up to
tens of thousands of basis vectors and bodies of text of up to a billion words.
The meanings obtained therefore can be very nuanced and cover a large range
of usages. Some thesauri using this method have been built, in particular,
in [16], the top 10 most similar nouns to 'introduction' are: 'launch', 'im-
plementation', 'advent', 'addition', 'adoption', 'arrival', 'absence', 'inclusion'
and 'creation'.

As explained in [10] There are a few advantages of vector-based represen-
tations over hand-built ontologies:

• �they are created objectively and automatically from text;

• they allow representation of gradations of meaning;

• they relate well to experimental evidence indicating that the human
cognitive system is sensitive to distributional information (see [17] and
[18]).�

2.2.2 Algebra of Pregroups as a type-categorial logic

This paragraph will provide a very breif overview of Pregroups, for more
details please refer to [19], [20], [21], [22].

De�nition 2.2.1. [10] A partially ordered monoid pP,¤, �, 1q is a partially
ordered set, equipped with a monoid multiplication p_�_q with unit 1; where
for p, q, r P P , if p ¤ q then we have r � p ¤ r � q and p � r ¤ q � r.
De�nition 2.2.2. [10] A Pregroup pP,¤, �, 1, p�ql, p�qrq is a partially or-
dered monoid whose each element p P P has a left-adjoint pl and a right
adjoint pr, i.e. the following hold:

pl � p ¤ 1 ¤ p.pl and p � pr ¤ 1 ¤ pr � p
Some properties of interest in a Pregroup are [10]:

• Adjoints are unique.



• Adjoints are order reversing: p ¤ q ñ qr ¤ pr and ql ¤ pl.

• The unit is self adjoint: 1l � 1 � 1r.

• Multiplication is self adjoint: pp � qqr � qr � pr and pp � qql � ql � pl.
• Opposite adjoints annihilate each other: pplqr � p � pprql.
• Same adjoints iterate: pllpl ¤ 1 ¤ prprr, plllpll ¤ 1 ¤ prrprrr, ...

The way Pregroups formalise the grammar of natural languages is by �rst
�xing a set of grammatical roles and a partial ordering between them and
then generating a Pregroup with these types. (It has been proven that such
a Pregroup exists). The only types of sentences that will be used in this
thesis are a�rmative and negative (i.e., which contain a negation) transitive
sentences in English, and the coordination of such sentences.

Using the same notation as [10], we �x the following basic types:

n: noun s: declarative statement
j: in�nitive of the verb σ: glueing type

From these basic types, it is possible to form compound types using ad-
joints and juxtaposition. A type (either basic or compound) is assigned to
each word of the dictionary. Just like some verbs can both be transitive or
intransitive, the type of a word may depend on its usage. The type s is the
type to which a sentence has to reduce to be considered grammatical. The
reduction process has been shown to be decidable. For more clarity about
the order of the process, Ñ will be used instea of ¤, and for simplicity the �
between juxtaposed types will be dropped.

One basic example is given in [10]:

John likes Mary
n pnrsnlq n

It is grammatical because of the following reduction:

npnrsnlqnÑ 1snlnÑ 1s1Ñ s

Graphically, this can be represented as:

n nr s nl n



The use of glueing types appears in the negation of the sentence and
comes from the type suggested for �does� and �not� in [23]. [10] preferred
this typing system as it allows for the information to �ow and be acted upon
in the sentence and as such assits in constructing the meaning of the whole
sentence.

2.3 Modeling a language in a concrete category

As already explained, we will use a category-theoretic model of language,
which �ts in the theory developed in the previous chapter. Using categories
brings the following advantages:

• If we want to give quantitative meaning to a sentence that is more
nuanced that simply true or false, it requires a mathematical structure
that can store this additional information while keeping the compo-
sitional structure. Even if Montague semantics will be the approach
mainly used in this thesis, the next step in the research is naturally
to look in vectorial spaces, and the consequences in such a space will
often be given.

• As stated earlier, we consider compact closed categories. Their struc-
tural morphisms will be the basic building blocks to construct the mor-
phism that takes as an input the meaning of words and outputs the
meaning of the sentence formed by the juxtaposition of these words.

• Lifting to categories makes it possible to reason on the grammatical
structure of di�erent sentences. We are able to obtain more information
than just whether a sentence is grammatically correct or not, but how
it is grammatically correct, reason about ambiguities in grammatical
sentences and how these ambiguities gives rise to di�erent meaning
interpretations.

2.3.1 The 'from-meaning-of-words-to-meaning-of-a-sentence'

process

Monoidal categories are a good tool to represent processes between system of
varying types. Our process here is the one that takes the meaning of words
as an input (the number of words can vary) and outputs the meaning of the
sentence as an output, if the sentence is well-typed (that is, gramatically
correct).

Diagrammatically it corresponds to the following process:



sentence

=

word2word1 wordn

S

A B Z

S

process depending on gram-

matical structure

where the triangles represent meanings, both of words and sentences.
The juxtaposition (word 1)...(word n) is the sentence itself, which has

type Ab ...bZ. This becomes a sentence of type S through the grammatical
structure. The concrete manner in which grammatical structure performs
this role will be explained below.

2.3.2 Compact closed categories

De�nition 2.3.1. [10] A monoidal category is compact closed if for each
object A there are also objects Ar and Al, and morphisms

ηl : I Ñ Ab Al, εl : Al b AÑ I, ηr : I Ñ Ar b A, εr : Ab Ar Ñ I

which satisfy:

p1A b εlq � pηl b 1Aq � 1A pεr b 1Aq � p1A b ηrq � 1A
pεl b 1Alq � p1Al b ηlq � 1Al p1Ar b εrq � pηr b 1Arq � 1Ar

A compact closed category is somewhat orthogonal to a Cartesian cat-
egory in the sense that a large triangle A b B cannot be decomposed in
two smaller triangle A and B (which is the case in a cartesian category).
On the contrary, this connectedness encodes meaning as it allows interaction
between the words in the sentence.

Graphically, the morphisms ηl, εl, ηr, εr can be depicted as (read in top-
down fashion):

A Al

Al A

Ar A

A Ar

The axioms of compact closure simplify to �yanking� equations:

A

A
=

A

A

=

=
Ar

Ar
=

Al

Al

A

Al

A

Ar



FVect is a compact-closed category with V l � V r � V � � V . Let t~eiui
be a base of V , then:

ηl � ηr : RÑ V b V :: 1 ÞÑ
¸
i

~ei b ~ei

and
εl � εr : V b V Ñ R ::

¸
ij

cij~vi b ~wj ÞÑ
¸
ij

cijx~vi| ~wjy.

A Pregroup is a a posetal category. We take rp ¤ qs to be the singleton
tp ¤ qu whenever p ¤ q and empty otherwise. Any equational statement
between morphisms in posetal categories is trivially satis�ed, since there is
at most one morphism between two objects. A Pregroup is a compact closed
category for:

ηl � r1 ¤ p � pls εl � rpl � p ¤ 1s
ηr � r1 ¤ pr � ps εr � rp � pr ¤ 1s

For complete explanation on how FVect and Pregroups as compact closed
category, the reader can refer to [10].

2.3.3 Categories representing both grammar and mean-

ing

We have seen earlier in this chapter that vector spaces can be used to as-
sign meaning to words in a language, and Pregroups can be used to assign
grammatical structure to sentences. Both can be consiered as compact closed
categories. A mathematical structure that uni�es both of these aspects of
language is the product FVect � P which naturally has projectors into
FVect and P . For more details on this construction see [10].

2.3.4 Meaning of a sentence as a morphism in FVECT�
P

De�nition 2.3.2. [10] We refer to an object pW, pq of FVect � P as a
meaning space. This consists of a vector space W in which the meaning of a
word ~w P W lives and the grammatical type p of the word.

De�nition 2.3.3. [10] We de�ne the vector ÝÝÝÝÑw1...wn of the meaning of a
string of words w1...wn to be

ÝÝÝÝÑw1...wn :� fp ~w1 b ...b ~wnq
where for pWi, piq meaning space of the word wi, te linear map f is built by
substituting each pi in rp1...pn ¤ xs with Wi.

For a wide range of example on this model, please refer to [10].



2.4 Relations vs Vectors for Montague-style se-

mantics

So far, the category in which the meaning of words existed was FVect and
from this we built matrices with real numbers as entries. If, instead of taking
matrices on pR,�,�q we take matrices on the semiring pR,�,�q then we
also obtain a compact cloase category.

In particular, it is possible to use pB,_,^q in which case we obtain a
category isomorphic to FRel of �nite sets and relations. This category works
as follow: let X be a set txi|1 ¤ i ¤ |X|u and Y be a set tyj|1 ¤ j ¤ |Y |u,
the relation r � X � Y can be represented by an |X| � |Y | matrix where
there is a 1 on the ith line and jth column i� pxi, yjq P r and a 0 otherwise.
It is possible to compose two relations r and s if they share a space, that is
r � X � Y and s � Y � Z and the relation s � r is

tpx, zq|Dy P Y : px, yq P r, py, zq P su.

The composition induces matrix multiplication.
In no way in the previous construction was the choice of FVect impor-

tant, so it can simply be replaced by FRel and the previous construction
still works and we can use the category FRel�P to represent both meaning
and grammar.

2.5 Summary

This chapter shows a linguistic model that combines the advantages of being
both distributional and compositional. However, more work needs to be
done. In particular representing some logical words such as 'not', 'and', 'or',
'if then'. The �rst model that comes to mind for 'or' and 'and', which is
vector sum and product, does not correspond well with the logical functions
as they are not fully distributive. The rest of this thesis will focus more
speci�cally on 'and' and 'or'.



Chapter 3

Perfecting the representation of

'AND'

A main open problem with categorical compositional distributional seman-
tics is the representation of words that do not carry meaning of their own
from a distributional perspective, such as determiners, prepositions, relative
pronouns, coordinators, etc. This thesis deals with the topic of coordination
and more speci�cally in this chapter, on the representation of 'AND'.

Dimitri Kartsaklis has set the �rst stone on the work on coordination and
more speci�cly on 'AND' [1]. He has found that 'AND' can be represented
by GHZ-spiders. While this representation works well in many cases, it also
has a few caveats. In a �rst part we will brie�y present his work before
introducing a couple possible solutions for perfecting this representation.

3.1 Coordination in Categorical Compositional

Distributional Semantis

In the past, researchers have found that Frobenius algebras are useful in
language and can be used to represent linguistic aspects that compact closed
categories do not manage to grasp ([2] [3] [4] [5] [6]).

Frobenius multiplication enforces the two inputs to contribute equally to
the result, which is exactly what coordination is all about. And the Frobenius
co-multiplication allows to duplicate information, which can be necessary for
some compound grammatical types.
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3.1.1 Frobenius algebra over FVect

Kartsaklis' paper introduces a Frobenius algebra over FVect without going
through GHZ or W states. The algebra pFVect, µ, δ, η, εq with a basis t~viu
is as follows:

µ :: ~vi b ~vj ÞÑ δij~vi :�
#
~vi i � j
~0 i � j

η :: 1 ÞÑ °
i

~vi

δ :: ~vi ÞÑ ~vi b ~vi ε :: ~vi ÞÑ 1

But this Frobenius algebra corresponds to the GHZ algebra as it is a
special Frobenius algebra.

3.1.2 Linguistic uses of the Frobenius operators

These Frobenius operations o�er transformations that did not previously ex-
ist in compact closed categories. For example the µ composition corresponds
to element-wise multiplication and avoids the transformational e�ect of reg-
ular composition in a compact closed category (for example, an intransitive
verb is a map that transforms a noun into a sentence). This interaction is
used for example by Sadrzadeh et al [2] [3] on nouns modi�ed by relative
clauses (e.g. �The man who likes Mary�). The construction presented for the
relative pronoun uses µ-composition of the noun (here 'man') with the verb
phrase (here 'likes Mary').

This e�ect is even clearer when using FRel rather than FVect where it
acts as an intersection of the involved sets or relations.

The Frobenius co-multiplication has also been used in previous papers for
linguistic, for example in [4].

3.1.3 Coordination in Categorical Compositional Dis-

tributional Semantics

Merging and copying information seems to be two useful tools when trying to
model coordination. Distributivity is also something that is to be expected.

In the rest of this thesis, we will consider that conjunction happens be-
tween two conjuncts of the same type and produces a result that is again of
that speci�c type. This correspons to X CONJ X Ñ X. Therefore 'and'
is assigned the pregroup type xr � x � xl, where x can either be an atomic or
compound type.

For the detailed construction of how µ-composition can be used instead
of ε-composition, the reader is advised to refer to [10]. Here we will simply



admit that the coordinator morphism can be expressed as follows:

conjX : I
ηrXbη

l
XÝÝÝÝÑ Xr bX bX bX l 1xrbµXb1

XlÝÝÝÝÝÝÝÝÑ Xr bX bX l (3.1)

Coordinationg atomic types

This is a priori the simplest case. We will focus on conjuncts that are either
vectors (such as nouns) or that can be reduced to a vector (such as noun
phrases). Using equation 3.1, coordination over noun phrases looks like:

apples

n

and

nnr nl

oranges

n ÞÑ

apples

n

oranges

n (3.2)

The case of coordinating sentences is very similar and an example can be
found in [10].

Coordinationg compound types

The previous paragraph uses the merging operator of the Frobenius algebra
but not the copying one, the latter will be necessary over compound types.

We recall the following operation on a compound object U b V :

ÞÑ
pU b V qrpU b V q V rU r U V

ÞÑ
pU b V qpU b V ql V U U l V l

Luckily, Frobenius operators also coherently lift to compound object along
the following graphical representation:

ÞÑ

pU b V qpU b V q

pU b V q U V

U V U V

We can therefore apply equation 3.1 to compound structure, for example



with the sentence below:

John

n

sleeps

nr s srnrr slsnr n nr s

snores

ÞÑ

John

n nr s

snoressleeps

nr s

and

nr s

and

(3.3)
We can observe the following actions:

• The subject of both verbs 'John' is copied at the nr input of the con-
junction;

• the coordinator interacts on the left with the verb 'sleeps' and on the
right with the verb 'snores';

• the merging operator of the frobenius algebra turns the s carried by
each verb into the s that forms the �nal sentence, thus returning a
single vector of a well-typed sentence.

This generalises to compounds types of order higher than 2.

Non-standard forms of coordination

[10] considers the following sentence : �John likes Poe, and Lovecraft as
well�, which expands into �John likes Poe, and John likes Lovecraft as well�.
The meaning of this sentence should be the same as �John likes Poe and
Lovecraft�.

Additional wiring is necessary to represent this ellipsis, known as strip-
ping. The following diagram shows how the result is achieved:

John

n

likes

nrsnl

Poe

n nr n sr s sl s nl n sr s

Lovecraft as well
and

(3.4)



3.2 Some caveats in Kartsaklis' model

During my research, I have come across a few issues with the representation
of 'AND' with GHZ-spiders.

An issue appears, for example, in a Montague-style toy model where
'cats' would be represented by |0y, 'dogs' by |1y and where the adjective
funny quali�ed both these animals - therefore funny would be represented by
|0y � |1y.

Kartsaklis's representation of 'AND' works in the sentence 'cats are funny
and dogs are funny' but no longer works in the sentence 'cats and dogs are
funny'. Indeed, the �rst sentence simply corresponds to applying a logical
'AND' to two booleans evaluated as 'true' (each half of the sentence on each
side of the end already has the type S of the sentence); while the second
one performs the 'AND' on two vectors that represent two nouns, and these
vectors being orthogonal, the result is simply the boolean 'false'.

cats funny

are
dogs funny

are

= = 1
nr ns

n nr

nrsnr
n 1 1

cats dogs funny

are

nrsn

n n nrand ÞÑ

funny
are

= 0
0 (3.5)

However, a �rst reader would �nd that both these sentences are typically
considered to have the same meaning in English.

In both cases, we are in the �rst situation described in Kartsaklis' pa-
per where the merging operator of the Frobenius algebra is used. Merging
two sentences that are evaluated as �true� easily corresponds to true, how-
ever merging two nouns that are orthogonal results in the empty set in the
category Rel and therefore the sentence is evaluated as false.

There are three possible responses to this problem.



3.2.1 First �x by non-orthogonality

The �rst idea is that these two vectors should not be orthogonal, indeed 'cats'
and 'dogs' are pretty similar - they are both 'funny' - and a simple way to
cope with this problem is to represent 'cats' by |catzdogy� |catX dogy, simi-
larly 'dogs' by |dogzcaty�|dog X caty, and 'funny' would then be |catX dogy.
This idea works and the sentence 'cats and dogs are funny' with this repre-
sentation holds the truth value 'true' as expected. In the following diagram,
for readability, |0y � |catzdogy, |1y � |catX dogy and |2y � |dogzcaty.

|0y |1y |2y |1y

cats dogs
and

+ +
= 0 +

|1y |1y
= true

x1|

funny

x1|

(3.6)

However, this does not �x the fact that two sentences that should intu-
itively have the same meaning - 'cats are funny and dogs are funny' and 'cats
and dogs are funny' - don't behave the same way in a toy model.

This is not necessarily a problem as the use of 'AND' in these two sen-
tences is somewhat di�erent: while the �rst one is just the logical AND be-
tween two propositions that are true, the second one has a behaviour closer
to 'OR' as it has the same meaning as 'take either a cat or a dog, it is funny'.
Contrary to the case presented in Katarski's paper, the Frobenius operator
that we expect here should be a union and not an intersection. The 'AND'
in the second sentence does not work, and possibly should not work, as there
are no animals that are both cats and dogs. By representing 'cats' and 'dogs'
orthogonally, what this sentence is saying is: 'take an animal that is both a
cat and a dog, it is funny', or 'take an animal that is in the intersection of
the set of cats and the set of dogs, it is funny'. This sentence is not true,
as this would be a Frankenstein murder operation, which is far from being
funny.

What this example says is that there are cases where 'AND' in English
does not behave like an intersection, and therefore GHZ spiders may not be
the best representation.



This issue becomes more complicated when coordinating adjectives. If
we consider the toy model where 'loyal' is represented by |0y, 'furry' by |1y
and 'dogs' by |0y � |1y to mean that dogs are both loyal and furry. Then
the sentence 'dogs are loyal and dogs are furry' evaluates as true if we use a
GHZ spider for 'and', but the sentence 'dogs are loyal and furry' evaluates
as false. It is exactly the same issue as the problem before except this time
the coordination happens on the object and on a compound type nr. This
is the exact same issue as above and we could argue that 'loyal' and 'furry'
should not be orthogonal because they both qualify dogs.

However, in a real model in FVect that uses real numbers rather than
booleans, it is possible to imagine two adjectives that would never be used
together except for one very odd object - for example 'metallic' and 'smooth'
which can never qualify the same object except for an 'alien spacecraft'.
That is, with a vector basis of say a thousand vectors, the element-wise
multiplication would be 0 except for one coe�cient:

�
����
a1
a2
...
an

�
���d

�
����
b1
b2
...
bn

�
����

�
����
a1 � b1
a2 � b2

...
an � bn

�
����

�
������

0
0
...
0

an � bn

�
�����

Therefore these two adjectives would be almost orthogonal and as a result
the sentence 'alien spacecrafts are metallic and smooth' would have a truth
value very close to 'false'(as most of the coe�cients are 0, the meaning of
the sentence vector would almost be entirely 0 as well) despite being entirely
true. In a more complex Boolean model, this would however work as the
intersection of 'metallic' and 'smooth' woul be exactly 'alien spacecraft' (as
it is the only word quali�ed by both in our model), and the sentence would
then still be true.

3.2.2 Second �x by distributivity

The second idea is that both the sentence 'dogs and cats are funny' and 'dogs
are funny and cats are funny' should have the same meaning and behave in
the same way no matter the model. Therefore, what we want to do is to use
the copying operator of the Frobenius algebra, copy 'are funny' and test each
of the two copies with 'dogs' and 'cats'.

The problem is that the copying operator of the Frobenius algebra only
perfectly copies elements of the basis. If theoretically we are considering a



di�erent approach, mathematically this still corresponds to the same opera-
tion:

cats

n n

and
dogs

s

are funny

nrnr n �

cats

n n

and
dogs

s

are funny

nrnr n

(3.7)
The possible solutions are therefore: limit the use to a base vector for

the corresponding adjective 'funny', or expand the sentence into 'cats are
funny and dogs are funny' before analysing it, though I have not explored
possibilities of doing it computationally.

3.2.3 Third �x by considering union and intersection

As we have seen before, the main issue so far is that this 'AND' seems to
correspond to a union more than an intersection. And as we will see in
the next chapter, a good representation for 'OR', and for the union is the
W-spider, or the multiplication in a anti-special Frobenius algebra. In this
case, using a W-spider to represent 'AND' does give the result 'true' without
modifying the orthogonality of 'cats' and 'dogs' or the grammatical structure
of the sentence.

cats

n n

and

dogs

s

are funny

nrnr n (3.8)

When we compute the result considering the verb 'to be' as the identity,
we obtain:

x010� 011|001� 010� 100y � 1.



The solution could therefore be to see whether the conjunction, no matter
what the English word used, correponds to a union or an intersection and
use the appropriate spider in each case. Again, we have not explored the
possibility for a computer to solve this problem.

3.3 Summary

Frobenius algebras are useful to represent conjunctions and in particular GHZ
spiders can be used to represent intersectionality, which in English usually
translates into 'AND'. However, not all use cases of 'AND' correspond to
an intersection and there are, therefore, a few problems with using the GHZ
spider to blindly represent 'AND'. Three approaches to �x this issue have
been o�ered in this chapter.



Chapter 4

Representing 'OR' using

W-spiders

In this chapter we will focus on the representation of disjunction in coordi-
nation, which is usually represented by 'OR' in English, using W-spiders. In
a �rst part we will look at generalising W-spiers for qudit using the work of
Amar Hadzihasanovic [24] so that it is possible to work with toy models that
have a vector basis bigger than 2. We will then show that W-spiders, with
�xes inspired from the previous section, can be used to represent 'OR'.

4.1 W-spiders in dimensions higher than 2

Hadzihasanovic argues in his DPhil thesis that the W gate for qubits can
be viewed as a fermion oscillator. When generalising to a dimension d P N,
the fermion becomes an abelian anyon [25], that is a particle that, when ex-
changed with another particle, receives a phase q :� e

2iπ
d . The corresponding

unitary operator on Cd b Cd is:

x : |ky b |jy ÞÑ qjk |jy b |ky , j, k � 0, ..., d� 1

with inverse:

x: : |ky b |jy ÞÑ q�jk |jy b |ky , j, k � 0, ..., d� 1

In the case where d � 2, this corresponds to the crossing in ZW calculus.
Hadzihasanovic chooses to keep the canonical self-duality maps:

η :�
d�1̧

j�0

|jy b |jy , ε :�
d�1̧

j�0

xj| b xj| .

Some notions of q-arithmetic are needed to de�ne the algebra obtained.
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De�nition 4.1.1. [24] For all q P C, n P N, the q-integer rnsq is de�ned by

rnsq :�
n�1̧

k�0

qk.

The q-factorial of n is then de�ned by:

rnsq! :�
n¹
k�1

rksq,

and, for k � 0, ..., n the q-binomial coe�cient is�
k

n



q

:� rnsq!
rksq!rn� ksq! .

When q � 1 we obtain the regular integer, factorial and binomial co-
e�cient. When q � e

2iπ
d then we have rdsq � 0, hence rnsq! � 0 for all

n ¥ d.
In particular, the q-binomial coe�cients satisfy the q-Vandermonde iden-

tities: �
k

n



q

�
ķ

i�0

qpj�iqpk�iq
�
i

j



q

�
n� j

k � i



q

.

Fixing again q � e
2iπ
d , Hadzihasanovic de�nes the W map as:

w : |ny ÞÑ
ņ

k�0

�
k

n


 1
2

q

|ky b |n� ky , n � 0, ..., d� 1

With the discard map : v : |0y ÞÑ 1, |ny ÞÑ 0 for n � 1, ..., d� 1.

Theorem 4.1.2. [24] The comonoid pw, vq forms a bialgebra with its trans-
pose monoid, and x as a braiding.

The proof can also be found in [24]. Hadzihasanovic even proves univer-
sality for Qudits of his extended form of ZW-calculus.

As we will be working in Rel rather than real vectors in the rest of this
chapter, we will use the following map for W:

w : |ny ÞÑ
ņ

k�0

|ky b |n� ky , n � 0, ..., d� 1

.



4.2 W-spiders can represent 'OR' in any di-

mension

In this section we will use the representation of W-spiders presented in the
previous section to check on a few examples whether W-spiders would be a
good match for representing 'OR'. Intuitively, as GHZ-spiders can represent
'AND'; because ZW-calculus contains rational arithmetic with the GHZ map
acting as multiplication and the W map acting as addition [26]; and because
of the distributivity between the GHZ and W maps, it seems natural to think
that W spiders would be a good match. As seen in the previous chapter, when
'AND' corresponds to a union, the W map actually gives a more coherent
result than the GHZ map when computing the truth value of the sentence.

4.2.1 Dimension 2

The dimension 2 is the simplest one to work with as the W map's de�nition
on Qubits is commonly known and accepted. Coordination works well but
on some example, it seems to be more coincidental than inherently linked to
the structure.

Coordinating atomic types

The model we use here is: cats are |0y, dogs are |1y and pets are either cats
or dogs and therefore |0y � |1y.

The sentence 'pets are cats or dogs', considering the verb 'to be' as the
indentity and 'OR' as the W operator, evaluates as 'true', which is what we
expected. When doing the maths though, it seems however that this result
is quite coincidental and would not hold true in higher dimension.

Pets are cats dogs

n nsn nlnr
or

Coordinating compound types

As W states are also Frobenius state, the proof presented in chapter 2 that
the Frobenius operators coherently lift to compound objects also holds for



the W map. So for an intransitive verb, we also have:

disjnrbs � p1pnrbqr b wnrbs b 1pnrbsqlq � pwrnrbs b wlnrbsq
� p1sr b 1nrr b wnr b ws b 1sl b 1nq � p1sr b wrnr b xnr,s b wls b 1nq � pwrs b wrnq

We still consider our basis |caty � |0y and |dogy � |1y. Let's say that
'sleep' is an activity that only cats do while 'play' is an activity that both
cats and dogs do. Therefore sleep is going to be represented by the vector�
1
0



and play is going to be represented by the vector

�
1
1



. The sentence

`cats sleep or play' holds true when computing the maths.

cats sleep

n nr s

play

nr ssrnrr nslnr s

or

ÞÑ

cats

n nr s nr s

sleep play
or

nr s

The sentence 'dogs sleep or play' holds true as well. Logically it is true
as they do do either one of these activities but this is not necessarily the
meaning that an English speaker would want using natural language.

We have not looked at non-standard forms of coordination.

4.2.2 Higher dimension and non-orthogonality �x

In dimension two, we were quite limited in the complexity of the sentences
we could write. By using Hadzihasanovic's adapted representation of the W
operator, we can test our intuition on more complex sentences.

Coordinating atomic compounds

Let's slightly extend our �rst example to dimension 3 with cats being repre-
sented by |0y, dogs by |1y and gold�sh by |2y. Pets are this time going to be
|0y � |1y � |2y.

This time the sentence 'pets are cats or dogs or gold�sh' evaluates as
false (the order in which we evaluate the 'or' doesn't matter thanks to as-
sociativity). So our feeling that it was only coincidental in dimension 2 is
veri�ed.



We will try to use the same non-orthogonality technique of chapter 3
where pet is considered to be |catsX dogsX goldfishy � |0y, cats are going to
be represented by |catszpdogsY goldfishqy�|catsX dogsX goldfishy � |1y�
|0y, dogs by |dogszpcatsY goldfishqy�|catsX dog X goldfishy � |2y�|0y and
gold�sh by |goldfishzpcatsY dogsqy � |catsX dogsX goldfishy � |3y � |0y.
The four kinds of vectors are going to be considered the basis vectors.

Pets

n n

n

cats

n

dogs

n

gold�sh

are
nr nl

With this technique the vector |0y for pet is copied onto gold�sh, cats and
dogs and then tested against the vectors for cats, dogs and gold�sh. This
time the truth value of the sentence is true. We notice however that if we
replaced the disjunction with conjunction (that is using a GHZ map instead
of a W map), the sentence would also be true.

This result can easily be generalised to a coordination of n elements. If
we keep on appointing |0y for 'pets', the maths are fairly straightforward as
wp|0yq � |0yb|0y (any other order of the basis vector would lead to the same
result, the maths would simply be a little more complicated to do). As long
as |0y is part of the description of each animal, the sentence will hold as true.

However, if one of the animals is not a pet (for example 'elephants' being
|4y) then the sentence can evaluate as either true or false according to the
numbering of the vector basis. For example, with this numbering, the sen-
tence 'pets are cats or elephants' evaluates as false, however, if pets is |1y,
cats is |2y � |1y and elephants is |0y (with dogs being |3y � |1y and gold�sh
being |4y � |1y) then the sentence is true. This is obviously a problematic
ambiguity. One possible �x is to take the sum of all possible results with all
the possible numbering of the basis vectors, the operation would have a very
costly complexity but would give a deterministic result. In our case, that
would be 'true', thus, like in the previous subsection on dimension 2, having
an evaluation for 'OR' that is rather closer to the logical 'OR' than to that
commonly used in natural language.



Coordinating compound types

We are again going to test this case with a disjunction of intransitive verbs.
We still have our cats |0y, dogs |1y and gold�sh |2y. Cats sleep, play and
eat, dogs play and eat and gold�sh eat and swim. So sleep is represented by�
�1
0
0

�
, play by

�
�1
1
0

�
, eat by

�
�1
1
1

�
 and swim by

�
�0
0
1

�
. As expected the three

sentences 'cats sleep or play or eat', 'dogs play or eat' and 'gold�sh eat or
swim' hold true, and these hold true no matter the ordering of the vector
basis. These would also hold true if a conjunction instead of a disjunction
was used.

However, if we introduce the verb 'bark', represented by

�
�0
1
0

�
 because

only dogs bark, then 'cats or dogs bark' holds as true but 'cats or dogs
sleep' holds as false. Again, this is because the truth value of these sentences
depends on the numbering of the vector basis. The same �x as in the previous
paragraph - taking the sum of all possible meanings - also works and gives
the same result - both these sentences would then be true.

4.2.3 Distributivity of the conjunction and the disjunc-

tion

One major advantage of using the pair GHZ and W spiders to represent
conjunction and disjunction is that there is a good distributivity of one over
the other. Let's take for example the sentence 'cats or dogs play and eat'.
Then according to [27] the following is true:

cats dogs

n n

play eat

nr s nr s

or and

ÞÑ

cats

play eat

dogs

(4.1)
As we can see, this transformation makes sure that both verbs are dis-

tributed onto both subjects and vice versa.



Another example of distributivity can be found in the sentence 'cats and
dogs or gold�sh play' which could be bracketed in two ways, either as '(cats
and dogs) or gold�sh play' or 'cats and (dogs or gold�sh) play'. We will stick
to the former but both could be studied similarly.

In this case distributivity works as follows according to [26]:

cats

n

dogs

n

gold�sh

n

play

nr

and or

ÞÑscalars

gold�sh dogs gold�shcats play

(4.2)

A scalar appears but would only be signi�cant in a study with vectorial
spaces on real numbers and not in Rel. Other than that, the distributivity
is exactly what we would expect should happen in this situation.

4.3 Summary

In summary, W spiders seem to be a good lead to represent disjunction but
there still are a few issues that need to be explored. In particular, it is
necessary to explore more in details the di�erence in usage of 'and' and 'or'
in the natural language as they are more subtle than what pure logic tells
us.



Conclusion and Future Work

As we have seen in this thesis, Frobenius algebras o�er a promising solution
for representing conjunction and disjunction in the Categorical Composi-
tional Distributional Model of Meaning. However, representing the natural
language usage of 'OR' and 'AND' can be quite ambiguous and more work
is needed on how to identify the subtle di�erences between these usages.
Indeed, in some cases it seems that W Frobenius algebras would be better
suited to represent 'AND' and vice versa.

More work is also needed on the representation of 'OR' and the general-
isation of W spiders to Qudits as changing the order of the basis vector can
sometimes radically change the meaning of the sentence, which is very unfor-
tunate. A possible solution would be to take the sum of all the meanings of
the sentence by permutating the numbering of the basis vector, which would
solve this lack of determinism.

But the properties between GHZ and W spiders make the distributivity
of 'OR' and 'AND' with one another correspond very well to what would
actually be expected. The conclusion of this work is therefore quite nuanced
with clear advances but also a few problems.
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