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Abstract

The aim of this dissertation is to explore two different forms of intuitionistic
quantum logic, one due to Isham, Butterfield and Döring, and the second due
to Coecke. The two schemes have very different philosophical and physical
motivations, and we explore how this leads to differences in the lattice extensions
that they introduce.

Isham, Butterfield and Döring suggested the so-called topos approach in
which projections on a Hilbert space, or more generally in a von Neumann al-
gebra, are mapped into a frame of subobjects of a particular presheaf by a map
called daseinisation. Here, we present a factorization of the daseinisation em-
bedding via an intermediate frame. The known properties of daseinisation are
then recovered from this factorization. The relationship between our factoriza-
tion of daseinisation and a free lattice construction is also considered. We also
show that the frame generated by the codomain of daseinisation is in general
strictly smaller than the frame of clopen subobjects considered to represent the
quantum logic in this construction.

Central to the Coecke approach is the injective hull of a meet semilattice,
originally described by Bruns and Lakser, and key to this construction are sets
within a meet semilattice with distributive joins. The properties of these sets are
analyzed in detail, primarily from a geometric perspective. We give a geometric
characterization of sets with distributive joins in the lattice of projections on
an arbitrary Hilbert space. By abstracting to an order theoretic viewpoint, this
result is then extended to a characterization of such sets in a large class of
complete lattices, in terms of their completely join irreducible elements.

Exploiting our factorization of daseinisation, we show the Coecke construc-
tion relates to the so called “inner daseinisation” of the topos approach, and
symmetrically, daseinisation is related to the order theoretic dual of the Coecke
construction. In the case of finite lattices, the topos construction is shown to be
larger in size than the lattice of the Coecke approach. The question of universal
properties for both schemes is also investigated, and a variety of adjunctions
involving the two embeddings are described.
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Chapter 1

Introduction

This dissertation considers two different intuitionistic logics for describing propo-
sitions about systems governed by the laws of quantum physics. To introduce
the concept of a logic of propositions for a general physical system, we consider
some examples of the types of propositions we might wish to be able to model:

“Spin along the z-axis is up”

“Velocity is positive”

“Position is in the plane π”

In general these atomic propositions are statements about physical quantities
taking values in certain sets of real numbers. Following [Döring and Isham,
2010], we represent the proposition “Physical quantity A has value in ∆” with
the notation:

“Aε∆” (1.1)

A logic should provide ways to construct new propositions from old, by forming
disjunctions:

“Position is in plane π” or “Velocity is positive”

conjunctions:

“Position is in plane π” and “Spin along the z-axis is up”

and negations:

not “Spin along the z-axis is up”

in some natural way. The objective of such a logic is to find suitable mathe-
matical representatives of these propositions, consistent with the physical laws
considered appropriate.
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1.1 A logic of propositions for systems in classi-
cal physics

To construct a logic for systems governed by the the laws of classical physics,
a mapping J Kcl taking propositions to their mathematical representatives is
required. A system is considered to have a set of possible states, Σ, and each
physical quantity A is represented by a function φA : Σ → R, mapping each
state of the system to the value of the physical quantity taken in that state.

To represent an atomic proposition about physical quantity A of the sys-
tem, the idea is to choose the set of states that lead to values in the desired
(measurable) set, by considering the inverse image:

JAε∆Kcl := φ−1
A (∆) (1.2)

To represent conjunctions of propositions, intuitively the appropriate states are
those in which both conjuncts are satisfied. If p and q are propositions:

Jp and qKcl := JpKcl ∩ JqKcl (1.3)

Dually, to represent disjunctions of propositions, the appropriate states are those
in which either disjunct is satisfied. If p and q are propositions:

Jp or qKcl := JpKcl ∪ JqKcl (1.4)

Finally we can represent the negation of a proposition p, we require the set of
all states in which p does not hold, so we use the set theoretic complement:

Jnot pKcl := Σ \ JpKcl (1.5)

In this way, we have constructed a logic of propositions about the classical
system. If we order the sets with the obvious inclusion order, we have a Boolean
σ-algebra of subsets of Σ, and so we get a classical logic with which to reason
about the system.

1.2 Standard quantum logic

If the same approach is to be used to construct a logic for quantum systems,
some modifications will be needed. Now a mapping J Kqu taking propositions to
mathematical representatives consistent with the standard Hilbert space model
of quantum systems is required. The Hilbert space model of quantum the-
ory is fundamentally linear in nature, so a logic for a system governed by the
laws of quantum physics cannot adopt arbitrary sets as the representatives of
propositions. Instead, the natural representatives are closed subspaces of some
Hilbert space, as described in the classic paper [Birkhoff and von Neumann,
1936]. Therefore, for atomic propositions we have:

JAε∆Kqu := σ (1.6)
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where σ is some closed subspace that is obtained via the spectral theorem from
the self-adjoint operator Â representing the physical quantity A. The conjunc-
tion of two propositions p and q is given as in the classical case by:

Jp and qKqu := JpKqu ∩ JqKqu (1.7)

This is a well defined operation as the intersection of two closed subspaces is
another closed subspace. The negation of a proposition p is equally straightfor-
ward, the orthogonal complement of the closed subspace corresponding to p is
the natural candidate:

Jnot pKqu := JpK′qu (1.8)

Note that the orthogonal complement in a Hilbert space is not equivalent to
the set-theoretic complement. Disjunction is more problematic, for the union
of two closed subspaces is not in general another closed subspace. Therefore, as
described by Birkhoff and von Neumann, we can take the representative of the
disjunction of p and q as the least closed subspace containing the subspaces of
the two disjuncts, given by the closure of their linear span:

Jp or qKqu := cl(lin(JpKqu, JqKqu)) (1.9)

If we order these subspaces by inclusion, again we have constructed a lattice
of representatives of propositions about a physical system, but this lattice is
not a Boolean algebra, in fact it is an orthomodular lattice. This structure will
be referred to as standard quantum logic. As each closed subspace has a corre-
sponding projection and vice versa, instead of the lattice of closed subspaces, we
can equivalently consider the lattice of projection operators. This is generally
more convenient, and is the approach adopted in this dissertation.

Whereas a Boolean algebra corresponds to classical logic, an orthomodular
lattice does not have particularly good properties as a logic. For example,
consider the distributive law:

∀x, y, z.[x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z)] (1.10)

This law holds in a Boolean algebra, but is not true in general for an orthomodu-
lar lattice, which leads to awkward logical characteristics. As standard quantum
logic has poor properties as a logical system, many attempts have been made
to find other mathematical structures to provide a more satisfactory form of
quantum logic. A detailed discussion of the characteristics and weaknesses of
standard quantum logic can be found in [Chiara and Giuntini, 2002].

1.3 Intuitionistic quantum logics

1.3.1 Intuitionistic logic

The key idea of intuitionistic logic is to consider proofs as the central concept.
Atomic propositions are associated with an abstract “proof object” establishing
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their correctness. If p and q are propositions, the conjunction:

p ∧ q (1.11)

is associated with a pair, containing both a proof of p and a proof of q. Similarly,
for p and q again propositions, the disjunction:

p ∨ q (1.12)

is associated with a discriminated union, containing either a labelled proof of p
or a labelled proof of q. For p and q as before, the implication:

p⇒ q (1.13)

is represented by a function mapping proofs of p to proofs of q. The contradiction
⊥ is the proposition with no proof. With ⊥, and implication, we can encode
the negation of proposition p as:

¬p := p⇒ ⊥ (1.14)

In classical logic we can reason by contradiction, using the law of the excluded
middle. For proposition p:

` p ∨ ¬p (1.15)

Clearly this law cannot hold in the intuitionistic setting, as it would require a
method for manufacturing, for arbitrary proposition p, a proof of either p or its
negation.

Despite, or possibly because of, the absence of the law of the excluded middle,
intuitionistic logic has excellent properties as a logical system, as witnessed by
applications such as the well known Curry Howard isomorphism.

1.3.2 The logics under consideration

This dissertation will consider two different approaches to constructing an in-
tuitionistic quantum logic. The first scheme, due to Isham, Butterfield and
Döring, is described in [Döring, 2010b], [Isham, 2010] and [Döring and Isham,
2010], and will be referred to as the topos approach. The second scheme, due
to Coecke, is described in [Coecke, 2002], and will be referred to as the Coecke
construction.

L
η // X(L)

Figure 1.1: Abstract form of the constructions

The two approaches have different physical and philosophical motivations,
leading to very different mathematical properties. Abstractly though, both
have the same simple form, as illustrated in figure 1.1. They both take some
lattice L, representing properties of a physical system, and embed this lattice
into an extension X(L) which is a complete Heyting algebra. The focus of this
dissertation will be:
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• To explore some mathematical properties of the two approaches individu-
ally. This will involve analysis of the properties of the extension, and the
associated embedding function.

• To relate and contrast the two approaches to each other. Here the exten-
sions will be compared in terms of size and structure, and the associated
embeddings described in relation to each other.

In particular the focus will be upon the lattice structures involved, and the
embeddings into them. Both schemes have features outside of this scope that
will not be considered in detail. The aim will be to provide answers to questions
such as:

• Do the two approaches lead to the same lattice structure?

• Do the two approaches produce lattices that are dual in some sense?

• Which of the extensions is larger?

• Which morphisms between projection lattices lift to morphisms between
the extensions?

1.4 Outline of the rest of the dissertation

This section describes the structure of the rest of the dissertation. The main
contribution is given in the mathematical results of chapters 3 to 5. These are
new results developed by the author during the project, except where otherwise
indicated.

• Chapter 2 describes standard mathematical background required for later
chapters. The material in this section is all standard, the purpose of this
chapter is primarily to fix notation and definitions, and describe some
examples that will be explored further in later sections.

• Chapter 3 explores the topos approach in detail. A factorization of the
embedding used in this scheme is explored in some detail. The known
properties of the embedding are then recovered from this factorization.
The chapter then explores questions relating to the image of the embed-
ding, and related frames.

• Chapter 4 explores the Coecke construction in detail. Much of the effort
in this chapter is invested in exploring the key issue of distributive joins in
projection lattices. The question of lifting morphisms between projection
lattices to morphisms between their extensions is also investigated.

• Chapter 5 considers the two constructions in relation to each other, draw-
ing on, and adding to results in the previous sections. The relative sizes of
the two constructions are described. Then relationships between the var-
ious lattices involved are explored, and a variety of adjunctions between
them are shown.
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• Chapter 6 outlines some conclusions, and identifies some topics of interest
for further study.
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Chapter 2

Mathematical Background

2.1 Order Theory

This section contains an outline of the order theoretic material required in later
sections, primarily with the intention of fixing notation and terminology. For
a more detailed account of this material, there are many good references, such
as [Davey and Priestley, 2002] and [Birkhoff, 1967]. Much of the notation used
in this dissertation will parallel that adopted in [Davey and Priestley, 2002].
The naming conventions relating to locales and frames are influenced by the
presentation in in [Johnstone, 1982].

2.1.1 Posets

Definition 2.1.1. If P is a set, a partial order on P is a reflexive, transitive,
antisymmetric binary relation on P .

Definition 2.1.2. Let P be a set, and ≤ a partial order on P . Then the pair
(P,≤) is a partially ordered set or poset. If the partial order can be inferred
from the context, then we will often denote the poset simply as P .

Definition 2.1.3. Let (P,≤) and (Q,v) be partial orders. A function f : P →
Q is said to be monotone if for all x, y ∈ P :

x ≤ y ⇒ f(x) v f(y) (2.1)

Definition 2.1.4. Let (P,≤) be a poset. Two elements x, y ∈ P are uncom-
parable, written x ‖ y, if x 6≤ y and y 66≤ x.

Definition 2.1.5. For a poset (P,≤), we say that y ∈ P covers x ∈ P , written
x≺ y if for all z:

x < y and x ≤ z < y ⇒ x = z (2.2)

Remark 2.1.6. The intuition for the covers relation is that if x≺ y, then y is
“immediately above” x in the partial ordering.
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Definition 2.1.7. Let (P,≤) be a poset. A set A ⊆ P is an upper set if x ∈ A
and x ≤ y implies y ∈ A. Dually, a set A is a lower set if x ∈ A and y ≤ x
implies y ∈ A.

Definition 2.1.8. For a poset (P,≤), we define the sets:

↓x := {y ∈ P | y ≤ x} (2.3)
↑x := {y ∈ P | y ≥ x} (2.4)

A set of the form ↓x is referred to as a principal ideal, and a set of the form
↑x is referred to as a principal filter.

Definition 2.1.9. For a poset P the poset of upper sets of P with the inclusion
order is denoted UP and the poset of lower sets of P with the inclusion order
is denoted DP .

The following straightforward result about upper sets will be used in later
sections.

Lemma 2.1.10. Any upper set can be written as a union of principal filters.
Any lower set can be written as a union of principal ideals.

Proof. If U is upward closed, we immediately have:

U =
⋃
u∈U
↑u (2.5)

The result for lower sets follows dually.

Remark 2.1.11. Clearly, in general an upper (lower) set can be written as a
union of principal filters (ideals) in many different ways.

Definition 2.1.12. For a poset P we denote the poset with the opposite order
as P op. i.e. x ≤ y in P op if and only if y ≤ x in P .

Definition 2.1.13. For a poset (P,≤), for A ⊆ P we define:

• x ∈ P is an upper bound of A if for all a ∈ A, x ≥ a

• x ∈ P is a lower bound of A if for all a ∈ A, x ≤ a

• Au denotes the set of upper bounds of A in P

• Al denotes the set of lower bounds of A in P

Definition 2.1.14. Let (P,≤) be a poset, A ⊆ P , and a ∈ A:

• a ∈ A is a minimal element of A if ∀b ∈ A.a ≤ b.

• a ∈ A is a maximal element of A if ∀b ∈ A.b ≤ a.

• A top for P , written >, if it is exists, is a maximal element of P .

• A bottom for P , written ⊥, if it exists, is a minimal element of P .

• A poset is bounded if it has both > and ⊥.
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2.1.2 Lattices

Definition 2.1.15. Let (P,≤) be a poset. For a set A ⊆ P , if the set Au has a
minimal element, this element is referred to as the least upper bound or join
of A, written

∨
A. Dually, if Al has a maximal element, this element is referred

to as the greatest lower bound or meet of A, written
∧
A.

Remark 2.1.16. If the poset P in which the join of some set S is being evaluated
is potentially unclear, it will be indicated as follows:

P∨
S (2.6)

Similar notation will be used for meets if required.

Definition 2.1.17. Let (P,≤) be a poset, and x, y ∈ P . If
∨
{x, y} exists, it

is referred to as the (binary) join of x and y, written x ∨ y. Dually, if
∧
{x, y}

exists, it is referred to as the (binary) meet of x and y, written x ∧ y.

Remark 2.1.18. To avoid confusion between lattice operations and logical oper-
ators, a conjunction will be written:

x and y (2.7)

and a disjunction as:
x or y (2.8)

Other logical operators will be written in a similar manner.

Definition 2.1.19. Let (L,≤) be a poset. If every pair of elements in L has
a join, and L has a bottom, L is referred to as a join semilattice. Dually, if
every pair of elements in L has a binary meet, and L has a top, L is referred to
as a meet semilattice.

Remark 2.1.20. The literature varies in whether a join/meet semilattice is re-
quired to have a bottom/top element. The lattices considered in this dissertation
are invariably bounded, and so the convention described is most natural.

Definition 2.1.21. A lattice is a poset that is both a meet semilattice and a
join semilattice.

Definition 2.1.22. Let L be a lattice. L is said to be distributive if all
x, y, z ∈ L satisfy the distributive law:

x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z) (2.9)

Definition 2.1.23. Let L be a lattice. L is said to be modular if all x, y, x ∈ L
satisfy the modular law:

x ≥ z ⇒ x ∧ (y ∨ z) = (x ∧ y) ∨ z (2.10)
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Figure 2.1: Lattice M3

Example 2.1.24. The lattice M3, with Hasse diagram shown in figure 2.1, is
a lattice that is modular but not distributive. This lattice will be used in later
examples.

Definition 2.1.25. Let L be a bounded lattice. An orthocomplementation
is an operation ¬ : L→ L satisfying for all x, y ∈ L:

x ∨ ¬x = > (2.11)
x ∧ ¬x = ⊥ (2.12)

x ≤ y ⇒ ¬ y ≤ ¬x (2.13)
¬¬x = x (2.14)

A bounded lattice equipped with an orthocomplement is said to be an ortho-
lattice.

Definition 2.1.26. Let L be a lattice. If L is both a modular lattice and an
ortholattice, L is said to be an orthomodular lattice.

•

oooooooooooooo

�������

@@@@@@@

OOOOOOOOOOOOOO

•

OOOOOOOOOOOOOO •

@@@@@@@ •

�������
•

oooooooooooooo

•

Figure 2.2: Lattice M4

Example 2.1.27. The lattice M3 is not an orthomodular lattice as it does not
have a well defined orthocomplement, in particular there is no orthocomple-
ment satisfying ¬¬x = x for all x ∈M3. The lattice M4, with Hasse diagram
as shown in 2.2, does have (several different ways of defining) a valid orthocom-
plement and is an example of an orthomodular lattice that is not distributive.
This example will be used again in later sections.

Definition 2.1.28. A complete join semilattice is a poset in which every
subset has a join. Dually, a complete meet semilattice is a poset in which
every subset has a meet.
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Definition 2.1.29. A complete lattice is a poset which is both a complete
join semilattice and a complete meet semilattice.

Remark 2.1.30. It is well known that if a poset has arbitrary meets, it follows
that it has arbitrary joins, and vice versa (proposition 3.5.2 in [Vickers, 1989]).
The terms complete lattice, complete join semilattice and complete meet semi-
lattice primarily serve to identify the correct morphisms to be considered.

Definition 2.1.31. A Boolean algebra is a distributive, orthocomplemented
lattice.

Definition 2.1.32. Let L,M be join semilattices. A function f : L → M is
said to preserve all finite joins if for all x, y ∈ L:

f(x ∨ y) = f(x) ∨ f(y) (2.15)

and
f(⊥) = ⊥ (2.16)

Preservation of all finite meets is defined dually.

Definition 2.1.33. Let L,M be complete join semilattices. A function f : L→
M is said to preserve arbitrary joins if for all A ⊆ L:

f(
∨
A) =

∨
{f(a) | a ∈ A} (2.17)

Preservation of arbitrary meets is defined dually.

Definition 2.1.34. For a poset P with ⊥, we say a ∈ P is an atom if ⊥≺ a.
The set of all atoms is denoted A(P ). P is atomic if for all b ∈ P , b 6= ⊥, there
exists a ∈ A(P ) such that a ≤ b.

Definition 2.1.35. Lattice L is said to be atomistic if every element can be
written as a join of elements from A(L).

Definition 2.1.36. Let L be a complete lattice, and A ⊆ L. A is said to be
join dense in L if every element of L is the join of some subset of A. Dually,
A is said to be meet dense in L if every element of L can be written as the
meet of some subset of A.

Definition 2.1.37. Let P and Q be posets. If function f : P → Q is such that:

x ≤ y iff f(x) ≤ f(y) (2.18)

it is said to be an ordering embedding.

Definition 2.1.38. If P is a poset, L a complete lattice, and φ : P → L an
order embedding, then L is a completion of P .

Definition 2.1.39. A complete lattice L is said to satisfy the infinite dis-
tributive law if for all a ∈ L and B ⊆ L:

a ∧
∨
B =

∨
b∈B

(a ∧ b) (2.19)
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Definition 2.1.40. A complete lattice L which satisfies the infinite distributive
law is called a frame or locale. There is a distinction in terms of the appropriate
morphisms as will be described below.

Definition 2.1.41. A lattice L is a Heyting algebra if it is such that and for
every map a∧ : L→ L, where a ∈ L, there exists a map a⇒ : L→ L, called
the Heyting implication, such that for all x, y ∈ L:

a ∧ x ≤ y ⇐⇒ x ≤ (a⇒ y) (2.20)

Remark 2.1.42. Categorically, the condition above is equivalent to requiring
each functor a ∧ : L→ L to have a right adjoint.

Remark 2.1.43. It is straightforward to show L is a frame/locale if and only if it
is a complete Heyting algebra. (See for example proposition 1.3.2 in [Borceux,
1994]). The different names, frame, locale and complete Heyting algebra, serve
to identify the appropriate type of morphisms to be considered.

Definition 2.1.44. Let L be a complete lattice. L is said to satisfy the com-
plete distributive law if for any doubly indexed family of elements in L,
(xi,j)i∈I,j∈J we have: ∧

i∈I

∨
j∈J

xi,j =
∨

f :I→J

∧
i∈I

xi,f(i) (2.21)

L is then said to be completely distributive.

Remark 2.1.45. The complete distributive law is a stronger form of the previous
types of distributivity encountered. In particular the distributive law and the
infinite distributive law are special cases of complete distributivity. The func-
tions of type I → J are simply a technical expression of the need to “pick all
possible combinations” of indices when calculating the meets and joins.

Definition 2.1.46. A lattice L is called a coframe if Lop is a frame.

Definition 2.1.47. Let L,M be Heyting algebras. A function f : L → M is
said to preserve Heyting implications if for all x, y ∈ L:

f(x⇒ y) = f(x)⇒ f(y) (2.22)

2.2 Category Theory

This dissertation will use some basic category theory, the reader will ideally be
familiar with categories, functors, natural transformations and adjunctions. In
particular, the notion of a free object will be used frequently. The standard
reference is [MacLane, 1971], and many introductory texts exist, suitable for a
variety of different backgrounds.
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2.2.1 Definitions of relevant categories

Definition 2.2.1. We define the following categories of order structures:

• Set, the category with objects sets, and morphisms total functions.

• Frm, the category with objects frames, and morphisms functions that
preserve arbitrary joins including the empty join, which is ⊥, and finite
meets.

• CoFrm, the category with objects coframes, and morphisms functions
that preserve arbitrary meets including the empty meet, which is >, and
finite joins.

• Loc is the category with objects locales. A morphism in Loc corresponds
to a morphism in the opposite direction in Frm, therefore Loc = Frmop.

• cHa, the category with objects complete Heyting algebras, and morphisms
frame morphisms that also preserve the Heyting implication.

• MSLat, the category with objects meet semilattices, and morphisms func-
tions that preserve finite meets.

• JSLat, the category with objects join semilattices, and morphisms func-
tions that preserve finite joins.

• cMSLat, the category with objects complete meet semilattices, and mor-
phisms functions that preserve arbitrary meets.

• cJSLat, the category with objects complete join semilattices, and mor-
phisms functions that preserve arbitrary joins.

2.3 Operators and projections

In our motivating discussion in the introduction, we had focussed on the lattice
of projections on some Hilbert space H. In the remainder of this dissertation we
will consider the more general setting of the projections of some von Neumann
algebra. For details related to von Neumann algebras and their projection lat-
tices, a standard reference is both volumes of [Kadison and Ringrose, 1997a]
and [Kadison and Ringrose, 1997b]. The following definitions will be required
in later sections.

Definition 2.3.1. Let H be a Hilbert space. B(H) denotes the set of all
bounded linear operators on H.

By convention, all Hilbert spaces that we use here are complex.

Definition 2.3.2. If N is a von Neumann algebra, then P(N) is the set of
all projections in N . If H is a Hilbert space, then P(H) denotes the set of all
projections on H.
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Remark 2.3.3. P(N) is a generalization of the orthomodular projection lattice
of standard Birkhoff and von Neumann quantum logic.

Remark 2.3.4. Every von Neumann algebra N is a subalgebra of B(H) for some
Hilbert space H which is closed in the weak-operator topology, see [Kadison and
Ringrose, 1997a]).
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Chapter 3

The topos approach

3.1 Introduction

3.1.1 The topos approach

The topos approach to theoretical physics is a very general framework for de-
scribing physical theories, initiated in the series of papers [Isham, 1997], [Isham
and Butterfield, 1998], [Isham and Butterfield, 1999], [Isham and Butterfield,
2000] and [Isham and Butterfield, 2002]. A comprehensive description of the
scheme is given in [Döring and Isham, 2010].

This is the only section of this dissertation that may require some very basic
understanding of topos theory, although little technical detail is required. A
straightforward introduction with minimal prerequisites is given in [Lawvere and
Rosebrugh, 2003]. Standard references include [MacLane and Moerdijk, 1992]
and the comprehensive [Johnstone, 2002a], [Johnstone, 2002b]. In subsequent
sections we will move to a simplified, but for our purposes equivalent, setting
that does not require the machinery of topos theory.

Central to the topos approach are 3 concepts:

1. Some mathematical object Σ, the state object. This object models repre-
sentations of the states of the system under consideration.

2. Some mathematical object R, the value object. This object models the
values that physical quantities can take.

3. Morphisms of the form f : Σ→ R. These morphisms model the physical
quantities of the sytem, capturing the idea of taking states to values.

The precise choice of these objects depends on the physical system being de-
scribed. In order to enable the description of as broad a range of physical
theories as possible, both [Isham, 2010] and [Döring and Isham, 2010] argue for
a high level of freedom in the choice of suitable objects. For example, outside
the world of classical physics, it is not necessarily reasonable to assume that
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physical quantities can take a continuum of values, and so the value object need
not necessarily be the set of real numbers R. In fact, as hinted at by the lan-
guage above, neither Σ or R need to be sets at all, and may need to be described
by some more general objects, and so the corresponding morphisms need not
be set theoretic functions.

Amongst the many different perspectives that can be taken upon topos the-
ory, it can be viewed as a “generalized set theory”, the correspondence is outlined
in table 3.1. It is this generalization that allows the topos approach to describe
a great variety of physical theories.

Set theory Topos theory
Sets Objects
Cartesian Products Products
Disjoint unions Coproducts
Functions Morphisms
Function Spaces Exponentials
Subsets Subobjects
Elements Global elements

Table 3.1: Generalized set theory

In the topos approach, one then selects an appropriate topos to describe
the physical system in question. For example, a system in classical physics will
simply be modelled using the topos Set, with Σ some set of states, and R
given by the set of real numbers, R, and physical quantities then represented as
functions between the state and value objects.

A different topos is chosen to describe the structure of quantum physics.

Definition 3.1.1. Let C be a category. A presheaf, with base category C,
is a contravariant functor from C to Set. SetC

op

is the functor category with
objects presheaves with base category C, and morphisms natural transforma-
tions.

Remark 3.1.2. Presheaves will be indicated by underlining, for example F .
In one standard formulation of quantum theory, a quantum system is mod-

elled by a von Neumann algebra, with physical quantities corresponding to the
self adjoint operators in the algebra. For a general quantum system, it is well
known that, under some natural conditions, it is impossible to assign values to
all physical quantities at the same time. This is shown by the Kochen-Specker
theorem, described in the context of von Neumann algebras in [Döring, 2005].
Certain families of physical quantities can be assigned values simultaneously,
precisely those corresponding to self adjoint operators which commute with
each other; these families provide different classical perspectives on the system.
Rather than favour a particular perspective, the topos approach uses a category
of presheaves to model all classical perspectives together.

Definition 3.1.3. Let N be a von Neumann algebra, then V(N) is the poset
of all abelian von Neumann subalgebras, or classical perspectives, of N that
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contain the identity operator 1̂, except the trivial algebra C1̂. V(N) has the
obvious inclusion order.

Remark 3.1.4. If H is a Hilbert space, V(H) will be used as shorthand for
V(B(H)).

A quantum system will be modelled in the category SetV(N)op , and can be
understood as a category of sets fibred over the classical perspectives on the
system. Interestingly the value object is not the real number object within the
chosen topos. As the value object is not particularly relevant to later sections,
its details are omitted, a straightforward description can be found in [Döring,
2010b].

Definition 3.1.5. Let V be an abelian C*-algebra. A multiplicative state
is a positive linear functional of norm 1, λ : V → C, such that:

∀Â, B̂ ∈ V : λ(Â)λ(B̂) = λ(ÂB̂) (3.1)

The Gel’fand spectrum of N , ΣV is defined as:

ΣV := {λ : N → C | λ a multiplicative state} (3.2)

The Gel’fand spectrum of an abelian algebra can be viewed as a state space.
In order to provide a state object capturing all classical contexts, these individ-
ual state spaces need to be combined in some coherent manner.

Remark 3.1.6. Every abelian von Neumann algebra also is an abelian C∗-algebra
and therefore has a Gel’fand spectrum.

Definition 3.1.7. Let N be a von Neumann algebra. The spectral presheaf,
Σ : V(N)op → Set is defined on objects as:

V 7→ ΣV (3.3)

The (contravariant) action on arrows is for f : V → V ′ in V(N)op:

fV,V ′ 7→ (λ 7→ λ|V ′) (3.4)

The spectral presheaf, Σ, is chosen as the state object Σ for a quantum
system.

3.1.2 Daseinisation into a topos

Daseinisation is a key feature of the topos approach. It provides a method
for mapping the usual projection lattice of a quantum system into the topos
constructed to model the system. This can be seen as finding the mathematical
representatives of propositions about the quantum system within the topos.
These representatives will be subobjects of the spectral presheaf.
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Definition 3.1.8. Let C be a small category, and T : Cop → Set a contravari-
ant functor. A functor T ′ : Cop → Set is said to be a subfunctor of T if for
each object c of C, T ′c ⊆ Tc, and for each f : A→ B in C, T ′(f) is a restriction
of T (f).

Remark 3.1.9. The subfunctors in a presheaf category correspond to the sub-
objects, in the topos theoretic sense, as described in [MacLane and Moerdijk,
1992].

Attention will be restricted to a particular class of subobjects.

Definition 3.1.10. Let S be a topological space. Let Cl(S) denote the set of
all clopen (closed and open) subsets of S.

Definition 3.1.11. Let V be an abelian von Neumann algebra. As described
in [Döring, 2010b], it can be shown that for every projection P̂ ∈ P(V ) the set
{λ ∈ ΣV | λ(P̂ ) = 1} is a clopen (in the weak* topology) subset of ΣV . Define
the function αV :

αV : P(V )→ Cl(ΣV ) (3.5)

P̂ 7→ {λ ∈ ΣV | λ(P̂ ) = 1} (3.6)

Remark 3.1.12. It is well-known that for an abelian von Neumann algebra V ,
αV gives an isomorphism between the lattice of projections P(V ) and the lattice
of clopen subsets of ΣV , Cl(ΣV ) (see for example [Döring, 2010b]).

Definition 3.1.13. Let N be a von Neumann algebra. A subobject T of Σ is
said to be a clopen subobject if for every V ∈ V(N), TV is a clopen subset of
ΣV . The lattice of all clopen subobjects of Σ is denoted Subcl(Σ).

Remark 3.1.14. Subcl(Σ) is a frame, with meets and joins defined locally at each
subalgebra, and is the lattice that provides the intuitionistic quantum logic of
the topos approach.

With these definitions in place, daseinisation can now be defined.

Definition 3.1.15. Let N be a von Neumann algebra. The daseinisation
function δ : P(N)→ Subcl(Σ) is defined as:

δ : P(N)→ Subcl(Σ) (3.7)

P̂ 7→ δ(P̂ ) = (δ(P̂ )V )V ∈V(N), (3.8)

where, for each abelian subalgebra V ∈ V(N):

δ(P̂ )
V

:= αV (
∧

(↑ P̂ ∩ P(V ))) (3.9)

It is straightforward to check that δ(P̂ ) indeed is a presheaf, and by con-
struction, it is a clopen subobject of Σ.
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Remark 3.1.16. The daseinisation function δ maps each projection (proposition)
in the projection lattice of standard quantum logic into the frame of clopen
subobjects of the spectral presheaf. It implements the idea of “approximation
from above”, finding the nearest weaker projection to the desired projection in
each V ∈ V(N). As the result of daseinisation is a presheaf, it also has an
action on arrows. As a subobject, it must map the inclusion morphism between
abelian subalgebras V ⊂ V ′ ∈ V(N), iV,V ′ : V → V ′ to the appropriate domain
restriction of Σ(iV,V ′). As these morphisms are completely defined by the action
on objects, their description is often left implicit.

3.1.3 Daseinisation outside a topos

Working within a topos leads to undue complexities when considering daseinisa-
tion and the related intuitionistic logic. The topos theoretic formulation given
in the previous section was introduced in order to provide a connection with
the existing literature, and to motivate our interest in the lattice Subcl(Σ). We
observe that Subcl(Σ) already is a set, namely the set of clopen subobjects of
the spectral presheaf. In topos-theoretic terms Subcl(Σ) is a topos-external ob-
ject. In this section, we define in direct set-theoretic terms a lattice isomorphic
to Subcl(Σ), avoiding topos-theoretical concepts altogether. Daseinisation will
then be rephrased in terms of this new lattice, decoupling the analysis of da-
seinisation from the details of topoi. This is the formulation that will then be
used in all later sections.

Definition 3.1.17. Let N be a von Neumann algebra. Then the set:

{f : V(N)op → P(N) | f monotone and ∀V ∈ V(N).fV ∈ P(V )} (3.10)

will be referred to as the set of well typed (contravariant) monotone func-
tions of type V(N)op → P(N). W(N) will refer to the poset of well typed
monotone functions, with the pointwise order. The term well typed refers to
the restriction that each V ∈ V(N) is mapped to a projection in the correspond-
ing P(V ).

Remark 3.1.18. Following the convention adopted for presheaves, the component
of a well typed function f at a given V ∈ V(N) will be written fV to avoid
excessive brackets in the notation.

Lemma 3.1.19. Let N be a von Neumann algebra, then:

W(N) ∼= Subcl(Σ) (3.11)

Proof. Define φ as the function:

φ :W(N)→ Subcl(Σ) (3.12)
∀V ∈ V(N).[φ(f)V := αV (fV )] (3.13)
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Define ψ as the function:

ψ : Subcl(Σ)→W(N) (3.14)

∀V ∈ V(N).[ψ(F )V := α−1
V (FV )] (3.15)

ψ and φ are clearly monotone as α is an order isomorphism. To show ψ ◦ φ =
1W(N), for each V ∈ V(N):

(ψ ◦ φ)(f)V = ψ(φ(f))V (3.16)

= α−1
V (φ(f)V ) definition (3.17)

= α−1
V (αV (fV )) definition (3.18)

= fV (3.19)

To show φ ◦ ψ = 1Subcl(Σ), for each V ∈ V(N):

(φ ◦ ψ)(F )V = φ(ψ(F ))V (3.20)
= αV (ψ(F )V ) definition (3.21)

= αV (α−1
V (FV )) definition (3.22)

= FV (3.23)

Therefore, ψ and φ witness an order isomorphism between Subcl(Σ) and W(N)
as required.

It is not in general true that for a frame L, Lop is also a frame, but the next
lemma shows this is the case for W(N), and therefore Subcl(Σ).

Lemma 3.1.20. For an arbitrary von Neumann algebra N ,W(N) is a coframe.

Proof. W(N) is a complete lattice as it is a frame. Meets and joins are calcu-
lated locally at each V ∈ V(N), and each P(V ) is a complete Boolean algebra.
Therefore, P(V )op is a frame and so finite joins distribute over arbitrary meets
in each P(V ). It follows that finite joins distribute over arbitrary meets in
W(N).

Definition 3.1.21. Let N be a von Neumann algebra. The function δ :
P(N)→W(N) is defined locally at each V ∈ V(N) as:

δ(P̂ )V :=
∧

(↑ P̂ ∩ P(V )) (3.24)

Remark 3.1.22. This function is (up to isomorphism) equivalent to the original
form of daseinisation, and hence the symbol δ is still used. It has the advantages
that:

• It exists outside of the topos.

• It avoids the complexities of the Gel’fand spectrum by working directly
with the corresponding projections, which generally turns out to be more
convenient.
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3.2 Factoring daseinisation

In this section we analyze the factorization of the daseinisation construction via
an intermediate frame. One possibility would be to factor via the free frame
generated by a complete join semilattice. Unfortunately although this free frame
is known to exist, see for example [Johnstone, 2002b], a concrete representation
is not known. 1

Instead, we will consider another natural factorization, via the frame of up-
ward closed sets. The first half of the factorization is a relatively simple embed-
ding of the original lattice into the upper set lattice. The second component is
a more complex function that handles the approximation part of daseinisation.

A deliberate effort is made in this section not to use the known properties
of daseinisation in the proofs presented. The motivation behind this decision is
to improve understanding of where the properties of the functions come from in
elementary terms, and then to recover the properties of daseinisation from its
components, as will be done in a later section.

Definition 3.2.1. Let N be a von Neumann algebra. We define the function:

F : P(N)→ (UP(N))op (3.25)

P̂ 7→↑ P̂ (3.26)

Remark 3.2.2. If we regard daseinisation as consisting of building a consistent
family of approximations to an element in the original projection lattice, the
function F can be seen as building the collection of all possible approximants,
from above, to the chosen projection.

Definition 3.2.3. Let N be a von Neumann algebra. We define the function
S : (UP(N))op →W(N). S is defined locally at each V ∈ V(N):

S(U)V :=
∧

(U ∩ P(V )) (3.27)

Remark 3.2.4. We can see the function as S as taking the collection of approxi-
mants built by F , and then finding the best approximation for each abelian von
Neumann subalgebra of N .

P(N) F //

δ

&&
(UP(N))op S // W(N)

Figure 3.1: Factoring daseinisation

Lemma 3.2.5. δ = S ◦ F
1Peter Johnstone, private communication.
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Proof. Let N be a von Neumann algebra. We reason locally at an arbitrary
V ∈ V(N):

δ(P̂ )V =
∧

(↑ P̂ ∩ P(V )) (3.28)

=
∧

(F (P̂ ) ∩ P(V )) (3.29)

= S(F (P̂ ))V (3.30)

Remark 3.2.6. The factorization of δ through (UP(N))op is illustrated in figure
3.1.

So the function δ factors through (UP(N))op. Which properties the compo-
nents of the factorization preserve will be examined in the following sections.

3.2.1 Properties of the function F

The next few lemmas capture some basic properties of F . F is a fairly standard
construction, with little that is specific to daseinisation in it apart from its
domain type, but some understanding of its properties will be required to fully
understand the whole factorization.

Lemma 3.2.7. For any von Neumann algebra N , F is monotone.

Proof. Immediate as if P̂ ≤ Q̂ then ↑ Q̂ ⊆↑ P̂ , and (UP(N))op has the reverse
inclusion order.

Lemma 3.2.8. F is injective.

Proof. Let N be a a von Neumann algebra. For arbitrary P̂ , Q̂ ∈ P(N):

↑ P̂ =↑Q̂ iff P̂ = Q̂ (3.31)

Lemma 3.2.9. F is not surjective.

Proof. Let N be a von Neumann algebra, and let P̂ , Q̂ ∈ P(N) be such that
P̂ ‖ Q̂, then ↑ P̂∪ ↑Q̂ is not of the form ↑R̂ for some R̂ ∈ P(N).

Lemma 3.2.10. Let P be a poset. (UP )op is a completely distributive lattice.

Proof. UP is a complete lattice of sets, with join and meet given by set theoretic
union and intersection, and is therefore completely distributive. Complete dis-
tributivity is a self dual concept, so (UP )op is also completely distributive.

Corollary 3.2.11. (UP )op is a frame and a coframe.

Proof. This follows as complete distributivity is a self dual concept, and the
infinite distributivity follows from complete distributivity.
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Lemma 3.2.12. F preserves arbitrary joins.

Proof. We note: ∨
i

↑ P̂i =
⋂
i

↑ P̂i =↑
∨
i

P̂i (3.32)

Therefore:

F (
∨
i

P̂i) =↑
∨
i

P̂i definition (3.33)

=
∨
i

↑ P̂i observation above (3.34)

=
∨
i

F (P̂i) definition (3.35)

Corollary 3.2.13. F preserves ⊥.

Lemma 3.2.14. Let N be a von Neumann algebra, then for all x, y ∈ P(N):

F (x ∧ y) ≤ F (x) ∧ F (y) (3.36)

Proof. As x ∧ y is less than x and y, we have:

↑x ⊆↑(x ∧ y) and ↑y ⊆↑(x ∧ y) (3.37)

From the definition of F :

F (x) ⊆ F (x ∧ y) and F (y) ⊆ F (x ∧ y) (3.38)

As the order is the reverse of inclusion order:

F (x ∧ y) ≤ F (x) ∧ F (y) (3.39)

Lemma 3.2.15. Let N be a von Neumann algebra. Then:

F (>) 6= > (3.40)

Proof.
F (>) = F (1̂) = {1̂} 6= ∅ = > (3.41)

Lemmas (3.2.14) and (3.2.15) show that F does not behave well with respect
to finite meets in the original projection lattice, preserving neither binary meets,
nor the empty meet.
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3.2.2 Structure preserved by S

Lemma 3.2.16. S is monotone.

Proof. Let N be a von Neumann algebra. We reason locally at an arbitrary
subalgebra V ∈ V(N). Let U1, U2 ∈ (UP(N))op be such that U1 ⊆ U2, in
the normal inclusion order. Then U1 ∩ P(V ) ⊆ U2 ∩ P(V ), and so, as meet is
antitone in the size of the set, S(U2)V ≤ S(U1)V .

Lemma 3.2.17. S preserves > and ⊥.

Proof. Let N be a von Neumann algebra, and V ∈ V(N). For >:

S(>)V =
∧

(∅ ∩ P(V )) (3.42)

=
∧
∅ (3.43)

= >V (3.44)

For ⊥:

S(⊥)V =
∧

(↑ 0̂ ∩ P(V )) (3.45)

= 0̂ (3.46)
= ⊥V (3.47)

Lemma 3.2.18. S preserves arbitrary meets.

Proof. Let N be a von Neumann algebra , and let (Ui)i∈I be a family of upper
sets. We reason locally: for every V ∈ V(N):

S(
∧
i

Ui)V = S(
⋃
i

Ui)V definition (3.48)

=
∧

((
⋃
i

Ui) ∩ P(V )) definition (3.49)

=
∧ ⋃

i

(Ui ∩ P(V )) (3.50)

=
∧
i

∧
(Ui ∩ P(V )) meet over union (3.51)

=
∧
i

S(Ui)V definition (3.52)

The following simple lemma is a well known result, it is presented here for
convenience as it will be used in subsequent proofs.

Lemma 3.2.19. Let L be a complete lattice, and (ui)i∈I be a family of elements
in L. Then for monotone G,

∨
G(ui) ≤ G(

∨
ui).
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Proof. For all i as G is monotone:

G(ui) ≤ G(
∨
ui) (3.53)

From which, as G(
∨
ui) is an upper bound on the G(ui):∨

G(ui) ≤ G(
∨
ui) (3.54)

The next result shows that arbitrary joins are preserved by S for a particular
restriction of the domain. This lemma is both a technical lemma the for proofs
that follow, and it can also be seen as crucial to the join preservation of δ as
shall be discussed later.

Lemma 3.2.20. Let N be a von Neumann algebra, and (P̂i)i∈I be a family of
projections in P(N). Then: ∨

S(↑ P̂i) ≥ S(
∨
↑ P̂i) (3.55)

Proof. For each V ∈ V(N):

∀i.S(↑ P̂i)V ≥ P̂i ⇒
∨
S(↑ P̂i)V ≥

∨
P̂i (3.56)

⇔
∨
S(↑ P̂i)V ∈↑(

∨
P̂i) ∩ P(V ) (3.57)

⇒
∨
S(↑ P̂i)V ≥

∧
(↑(

∨
P̂i) ∩ P(V )) (3.58)

⇔
∨
S(↑ P̂i)V ≥ S(↑(

∨
P̂i))V (3.59)

⇔
∨
S(↑ P̂i)V ≥ S(

∨
↑ P̂i)V (3.60)

Corollary 3.2.21. ∨
S(↑ P̂i) = S(

∨
↑ P̂i) (3.61)

Proof. Immediate from lemma (3.2.19).

The question of whether S preserves arbitrary joins turns out not to be
entirely straightforward. Therefore, preservation of binary joins is considered
first, as this avoids some of the difficulties of the general case.

Proposition 3.2.22. Let N be a von Neumann algebra. S preserves binary
joins in (UP(N))op.
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Proof. For every V ∈ V(N):

S(U1 ∨ U2)V = S(
⋃
i

↑ P̂i ∩
⋃
j

↑Q̂j)V lemma (2.1.10) (3.62)

= S(
⋃
i

⋃
j

(↑ P̂i∩ ↑Q̂j))V distributivity (3.63)

=
∧

((
⋃
i

⋃
j

(↑ P̂i∩ ↑Q̂j)) ∩ P(V )) definition (3.64)

=
∧ ⋃

i

⋃
j

(↑ P̂i∩ ↑Q̂j ∩ P(V )) distributivity (3.65)

=
∧
i

∧
j

∧
(↑ P̂i∩ ↑Q̂j ∩ P(V )) meet over union (3.66)

=
∧
i

∧
j

S(↑ P̂i∨ ↑Q̂j)V definition (3.67)

=
∧
i

∧
j

(S(↑ P̂i)V ∨ S(↑Q̂j)V ) corollary (3.2.21) (3.68)

= (
∧
i

S(↑ P̂i)V ) ∨ (
∧
j

S(↑Q̂j)V ) each P(V ) ∈ CoFrm (3.69)

= S(
∧
i

↑ P̂i)V ∨ S(
∧
j

↑Q̂j)V lemma (3.2.18) (3.70)

= S(
⋃
i

↑ P̂i)V ∨ S(
⋃
j

↑Q̂j)V definition (3.71)

= S(U1)V ∨ S(U2)V (3.72)

Corollary 3.2.23. S preserves all finite joins.

Whether the projection lattices of all the abelian subalgebras satisfy the
complete distributive law will be a crucial property for join preservation. The
following lemma shows that a large class of von Neumann algebras have this
property.

Lemma 3.2.24. Let Mn(C) be an n-dimensional matrix algebra. Then for
every V ∈ V(Mn(C)), P(V ) is completely distributive.

Proof. As n is finite, and V is abelian, P(V ) can only contain finitely many
commuting projections. Every projection lattice of an abelian von Neumann
algebra is a Boolean algebra, therefore P(V ) is a finite Boolean algebra, and
therefore isomorphic to the powerset lattice of some finite set. It follows that
P(V ) is completely distributive.

Lemma 3.2.25. Let N be a von Neumann algebra. If P(V ) is completely
distributive for each V ∈ V(N), then S preserves arbitrary joins.
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Proof. Firstly, we note that (UP(N))op is completely distributive as it is a
complete lattice of sets. Let (Ui)i∈I be an arbitrary family of upper sets in
(UP(N))op. By lemma (2.1.10), each Ui can be written as a union of principal
filters:

Ui =
⋃
j

↑ P̂i,j (3.73)

We have for each V ∈ V(N):

S(
∨
i

Ui)V = S(
⋂
i

Ui)V definition (3.74)

= S(
⋂
i

⋃
j

↑ P̂i,j)V lemma (2.1.10) (3.75)

= S(
⋃

f :I→J

⋂
i

↑ P̂i,f(i))V UP(N)op compl. dist. (3.76)

=
∧

f :I→J

S(
⋂
i

↑ P̂i,f(i))V lemma (3.2.18) (3.77)

=
∧

f :I→J

∨
i

S(↑ P̂i,f(i))V corollary (3.2.21) (3.78)

=
∨
i

∧
j

S(↑ P̂i,j)V assumption (compl. dist.) (3.79)

=
∨
i

S(
⋃
j

↑ P̂i,j)V lemma (3.2.18) (3.80)

=
∨
i

S(Ui)V (3.81)

Corollary 3.2.26. If N = Mn(C) is a matrix algebra, then S preserves arbi-
trary joins.

The following is a very straightforward property of S that will be required
later. It just clarifies the fact that no approximation is required in subalgebras
that contain the original projection.

Lemma 3.2.27. Let N be a von Neumann algebra, and V ∈ V(N). If P̂ ∈
P(V ), then S(↑ P̂ )V = P̂ .

Proof. Immediate from the definition of S. For the assumptions above:

S(↑ P̂ )V =
∧

(↑ P̂ ∩ P(V )) = P̂ (3.82)

Now we consider the converse of lemma (3.2.25).
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Lemma 3.2.28. Let N be a von Neumann algebra. If S preserves arbitrary
joins, then for each V ∈ V(N), P(V ) is completely distributive.

Proof. We consider an arbitrary family (Ui)i∈I of upper sets. By lemma (2.1.10),
each Ui can be written as a union of principal filters:

Ui =
⋃
j

↑ P̂i,j (3.83)

First we manipulate S(
∨
i Ui)V into a suitable form. For all V ∈ V(N):

S(
∨
i

Ui)V = S(
⋂
i

Ui)V definition (3.84)

= S(
⋂
i

⋃
j

↑ P̂i,j)V Ui as components (3.85)

= S(
⋃

f :I→J

⋂
i

↑ P̂i,f(i))V UP(N)op compl. dist. (3.86)

=
∧

f :I→J

S(
⋂
i

↑ P̂i,f(i))V lemma (3.2.18) (3.87)

=
∧

f :I→J

∨
i

S(↑ P̂i,f(i))V corollary (3.2.21) (3.88)

Now we manipulate
∨
i S(Ui)V . Again for all V ∈ V(N):∨

i

S(Ui)V =
∨
i

S(
⋃
j

↑ P̂i,j)V Ui as components (3.89)

=
∨
i

S(
∧
j

↑ P̂i,j)V definition (3.90)

=
∨
i

∧
j

S(↑ P̂i,j)V meet preservation, lemma (3.2.18) (3.91)

By assumption, from the above calculations, we can conclude that for all V ∈
V(N): ∧

f :I→J

∨
i

S(↑ P̂i,f(i))V =
∨
i

∧
j

S(↑ P̂i,j)V (3.92)

The above holds for an arbitrary family of upper sets, therefore we can fix some
V and choose each Ui to be arbitrary unions of principal filters ↑ P̂i,j where each
P̂i,j ∈ P(V ). Applying lemma (3.2.27):∧

f :I→J

∨
i

P̂i,f(i) =
∨
i

∧
j

P̂i,j (3.93)

So each P(V ) is completely distributive.

Corollary 3.2.29. S preserves arbitrary joins if and only if for each V ∈ V(N),
P(V ) is completely distributive.
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Corollary (3.2.29) shows that complete distributivity is critical for S to pre-
serve arbitrary joins. It is interesting that S is not in general a morphism in
Frm, and even when S does preserve arbitrary joins, it is significantly more
complicated to show than the arbitrary meet preservation. This can be ex-
plained by taking a different perspective on the upper set lattice. It is well
known [Johnstone, 2002b], [Johnstone, 1982] that the free frame generated by
a meet semilattice is its down set lattice. δ is not a MSLat morphism, but it
is a cJSLat, and therefore JSLat morphism. Combined with the observation
that S is a morphism in CoFrm, it is therefore natural to consider the dual of
the free frame generated by a meet semilattice.

L
η //

φ ""FFFFFFFFF (UL)op

φ∗

���
�
�

M

(UL)op

φ∗

���
�
�

M
JSLat CoFrm

Figure 3.2: The free coframe for a join semilattice

Lemma 3.2.30. The forgetful functor CoFrm → JSLat has a left adjoint
whose action on objects is given by the mapping to the corresponding upper set
lattice:

L 7→ (UL)op (3.94)

The unit of the adjunction η is given by:

ηL : L→ (UL)op (3.95)
l 7→↑ l (3.96)

For a morphism φ : L → M in JSLat, the unique extension to a morphism
φ∗ : (UL)op →M in CoFrm is given by:

φ∗ =
∧
{φ(u)|u ∈ U} (3.97)

Proof. Dual of the proof of the left adjoint of the forgetful functor of type
Frm→MSLat given in lemma C1.1.3 of [Johnstone, 2002b].

Remark 3.2.31. Phrased in terms of free objects, (UL)op is the free coframe
generated by the join semilattice L. Note that although η is a morphism in
JSLat, it actually preserves arbitrary joins.

From lemma (3.1.20) we know that W(N) is a coframe. Therefore, we
consider the extension of δ to the free coframe.

Lemma 3.2.32. Let N be a von Neumann algebra. Viewing δ as a JSLat
morphism, and with the notation as in lemma (3.2.30):

δ∗ = S (3.98)
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Proof. Let U ∈ (UP(N))op. As meets are calculated componentwise in δ, for
each V ∈ V(N):

δ∗(U)V =
∧
{δV (u) | u ∈ U} definition (3.99)

=
∧
u∈U

∧
(↑u ∩ P(V )) definition (3.100)

=
∧ ⋃

u∈U
(↑u ∩ P(V )) meet over union (3.101)

=
∧

((
⋃
u∈U
↑u) ∩ P(V )) distributivity (3.102)

=
∧

(U ∩ P(V )) U an upper set (3.103)

= S(U)V definition (3.104)

Lemmas (3.2.30) and (3.2.32) show that the factorization δ = S ◦ F can be
seen as factoring a join semilattice morphism via the free coframe. F is the unit
of the adjunction, and S is the unique extension of δ to the free coframe, and
could have been calculated directly from this definition. Many of the properties
of F and S derived previously are direct consequences of this perspective on the
construction.

We now move on to consider whether S is a morphism in cHa. Firstly a
particular element is identified, with a property that is useful in proving later
claims.

Definition 3.2.33. For a von Neumann algebra N , define:

Ω := P(N) \ {0̂} (3.105)

Remark 3.2.34. Ω is upward closed, as there are no projections beneath 0̂.

Lemma 3.2.35. S(Ω) = ⊥.

Proof. Let N be a von Neumann algebra. As by convention V(N) does not
contain the trivial subalgebra C1̂, every V ∈ V(N) contains at least one pro-
jection not equal to 0̂ or 1̂, and its orthogonal complement. As Ω contains all
projections except 0̂, it follows that for all V ∈ V(N):

S(Ω)V =
∧

(Ω ∩ P(V )) = ⊥ (3.106)

and the claim follows.

The following lemma shows that negation is essentially trivial in the upper
set frame.

Lemma 3.2.36. Let N be a von Neumann algebra, and let U ∈ (UP(N))op,
with U 6= ⊥. Then ¬U = ⊥.
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Proof. ¬U is the greatest element such that:

U ∧ ¬U = ⊥ (3.107)

Which by definition is equivalent to:

U ∪ ¬U = UP(N)op (3.108)

As ⊥ is the only element containing 0̂, and 0̂ 6∈ U , it follows that ¬U = ⊥.

We now exploit the element Ω to demonstrate that S is not a morphism in
cHa.

Lemma 3.2.37. S does not preserve negation.

Proof.

¬S(Ω) = S(Ω)⇒ ⊥ definition (3.109)
= ⊥ ⇒ ⊥ lemma (3.2.35) (3.110)
= > (3.111)
6= ⊥ (3.112)
= S(⊥) lemma (3.2.17) (3.113)
= S(¬Ω) lemma (3.2.36) (3.114)

Corollary 3.2.38. S does not preserve Heyting implication.

Proof. Follows as from lemma (3.2.17):

¬S(Ω) = (S(Ω)⇒ ⊥) = (S(Ω)⇒ S(⊥)) (3.115)

3.2.3 The relationship between W(N) and two free con-
structions

This short section contains two negative results, showing that the lattice of
well typed function is not in general isomorphic to two relevant free frame
constructions.

In the case of the free frame of a complete join semilattice, a concrete rep-
resentation is not known, so we must show W(N) does not have the required
universal property.

Lemma 3.2.39. For a von Neumann algebra N , W(N) is not in general iso-
morphic to the free frame generated by P(N) as a complete join semilattice.
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P(N)
η //

φ
$$IIIIIIIIII
W(N)

φ∗

���
�
�

Q

W(N)

φ∗

���
�
�

Q

cJSLat Frm

Figure 3.3: Assumption W(N) is the free frame

Proof. Let N be the von Neumann algebra {1̂, P̂}′′ for some projection P̂ 6∈
{0̂, 1̂}. In this case P(N) has four elements {0̂, P̂ , 1̂ − P̂ , 1̂}, and W(N) is iso-
morphic to P(N). We assume W(N) is the free frame generated by P(N) as
a complete join semilattice, as illustrated in figure 3.3, and aim to show a con-
tradiction. If we consider factoring the identity function through W(N), we see
the unit of the corresponding adjunction must then be the obvious embedding
of P(N) into W(N). Let φ : P(N) → 2 be the cJSLat morphism mapping
every element in P(N) to ⊥. Now consider factoring φ via W(N). There can
be no lifting of φ to a Frm morphism φ∗ satisfying the universal property of
the free frame, as any such φ∗ must also map every element of W(N) to ⊥, and
therefore does not preserve >. Therefore we have a contradiction.

A concrete representation of the free frame of a meet semilattice is well
known, and so in this case the argument can be more direct.

Lemma 3.2.40. For a von Neumann algebra N , W(N) is not in general iso-
morphic to the free frame generated by P(N) as a meet semilattice.

Proof. Let N be the von Neumann algebra {1̂, P̂}′′ for some projection P̂ 6∈
{0̂, 1̂}. In this case P(N) has four elements {0̂, P̂ , 1̂ − P̂ , 1̂}, and W(N) is iso-
morphic to P(N), and hence has 4 element. The free frame of a meet semilattice
is isomorphic to the corresponding lower set lattice(see for example [Johnstone,
2002b]). This lattice has 6 element, and therefore cannot be isomorphic to
W(N).

Remark 3.2.41. The counterexamples in the previous two lemmas are for a
particular minimal case. Such small cases are sometimes not representative,
for example the important Gleason and Kochen-Specker theorems do not apply
in 2-dimensions. It is possible that an isomorphism may still hold if some
pathological cases are excluded.

3.2.4 Injectivity, surjectivity and related questions

This section considers questions of the injectivity and surjectivity of S. It then
moves into related questions regarding the codomain of S.

It is straightforward to show that S is not fully injective, as an immediate
corollary of some of the results from section 3.2.2.

Lemma 3.2.42. S is not injective.
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Proof. From lemma (3.2.35) and lemma (3.2.17):

S(>) = > = S(Ω) (3.116)

The unusual element Ω is mapped to ⊥ by S; the next lemma shows that
there are no other elements except ⊥ that are mapped onto ⊥.

Lemma 3.2.43. Let N be a von Neumann algebra and U ∈ (UP(N))op. If
there exists projection P̂ ∈ P(N) such that P̂ 6= 0̂ and P̂ 6∈ U , then S(U) 6= ⊥.

Proof. Assume U ∈ (UP(N))op, S(U) = ⊥ and there exists projection P̂ ∈
P(N) such that P̂ 6= 0̂ and P̂ 6∈ U . As S(∅) = >, U cannot be the empty
set. As 1̂ must be in every non empty upper set, P̂ 6= 1̂. 0̂ 6∈ U as otherwise
U must contain every projection. Therefore, we can consider the subalgebra
{1̂, P̂}′′, as 0̂ 6∈ U and P̂ 6∈ U , we have S(U){1̂,P̂}′′ 6= 0̂, and so S(U) 6= ⊥, a
contradiction.

The singleton set {1̂} is not the top element of the upper set lattice, as ∅
is also an upper set. It provides another counterexample to injectivity. Clearly
the previous counterexample was sufficient to disprove injectivity, but under-
standing exactly where injectivity breaks down will provide insight into “how
close” S is to being injective.

Lemma 3.2.44. For a von Neumann algebra N ,

S({1̂}) = > (3.117)

Proof. For every V ∈ V(N):

S({1̂})V =
∧

({1̂} ∩ P(V )) =
∧
{1̂} = >V (3.118)

{1̂} is mapped to > by S. The next lemma shows that there are no other
elements except > that are mapped onto >.

Lemma 3.2.45. Let N be a von Neumann algebra and U ∈ (UP(N))op. If
S(U) = > then U ∈ {∅, {1̂}}.

Proof. Let U ∈ (UP(N))op. Assume S(U) = > and U 6∈ {∅, {1̂}}. Then there
exists P̂ ∈ U with P̂ 6= 1̂. If P̂ = 0̂ then U = ⊥ and S(⊥) 6= >. So P̂ 6∈ {0̂, 1̂}.
Consider the abelian subalgebra V = {1̂, P}′′, we must have:

S(U)V ∈ {0̂, P̂} (3.119)

and so S(U) 6= >, a contradiction.
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The following proposition shows that Ω and {1̂} are actually the only ele-
ments that break injectivity. If the trivial subalgebra {1̂}′′ = C1̂ was added to
V(N), Ω and ⊥ could be distinguished, but > and {1̂} are both still mapped to
>. So lack of injectivity is not an artifact of not having the trivial subalgebra
in V(N).

Proposition 3.2.46. S|(UP(N))op\{>,⊥} is injective.

Proof. Let U1 and U2 be upper sets, U1, U2 ∈ (UP(N))op \ {>,⊥}. Assume
U1 6= U2. Without loss of generality, we can assume there exists projection P̂
such that:

↑ P̂ ⊆ U1 and ↑ P̂ 6⊆ U2 (3.120)

As 1̂ is in every upward closed set except ∅ = >, and the only upward closed set
containing 0̂ is P(N) = ⊥, and {>,⊥} are removed by the restriction, we have:

P̂ 6= 0̂ and P̂ 6= 1̂ (3.121)

We consider V0 ∈ V(N) with P(V0) = {0̂, P̂ , 1̂− P̂ , 1̂}. Then:

U1 ∩ P(V0) = {P̂ , 1̂} or {P̂ , 1̂− P̂ , 1̂} (3.122)

and:
U2 ∩ P(V0) = {1̂− P̂ , 1̂} or {1̂} (3.123)

In each case
∧

(U1 ∩ P(V0)) 6=
∧

(U2 ∩ P(V0)) and so S(U1)V0 6= S(U2)V0 from
which:

S(U1) 6= S(U2) (3.124)

as required.

Corollary 3.2.47. For a von Neumann algebra N , S|F (P(N)) is injective.

Proposition 3.2.48. Let N be a von Neumann algebra, P̂ ∈ P(N) a fixed
projection such that P̂ 6∈ {0̂, 1̂}. Also let F : V(N)op → P(N) be the well typed
function such that:

FV =

{
P̂ if V = {1̂, P̂}′′

0̂ otherwise
(3.125)

Then F ∈ W(N), and:

F ∈ codomain(S) ⇐⇒ (1̂− P̂ ) ∈ A(P(N)) (3.126)

Remark 3.2.49. The condition says that F is in codomain(S) if and only if the
orthocomplement of P̂ is an atom. We note that it may be the case in some
von Neumann algebras that P(N) has no atoms.
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Proof. F is clearly a well typed function. Assume there exists an upper set U
such that S(U) = F . Then as F{1̂,P̂}′′ = P̂ , P̂ ∈ U and 1̂ − P̂ 6∈ U . As for all

R̂ 6= P̂ , 1̂− P̂ , we have F{1̂,R̂}′′ = 0̂, R̂ ∈ U and 1̂− R̂ ∈ U . Any larger abelian

subalgebra will be mapped to 0̂ as it must contain some projection R̂ 6= P̂
and hence also its complement 1̂ − R̂, and U contains R and its complement.
Therefore, if 1̂− P̂ ∈ A(P(N)), U is an upward closed set, otherwise we have a
contradiction, since each R̂ < 1̂ − P̂ would be in the upper set U , while 1̂ − P̂
is not.

Corollary 3.2.50. If the von Neumann algebra N is such that:

P(N) \ ({0̂, 1̂} ∪ A(N)) 6= ∅ (3.127)

then S is not surjective. (In fact, P(N) \ ({0̂, 1̂} ∪ A(N)) = ∅ if and only if
N = M2(C) = B(C2).)

Remark 3.2.51. Informally, the above condition simply requires the existence of
a single non trivial projection in the projection lattice, that is not an atom.

Now that the question of surjectivity has been addressed, we consider the
frames generated by arbitrary joins of finite meets of elements from the codomains
of δ and S.

Definition 3.2.52. Define Frm(δ) as the frame generated by arbitrary joins
of finite meets of elements in codomain(δ). Also define Frm(S) as the frame
generated by elements of codomain(S) in the same way.

Remark 3.2.53. The frame Frm(δ) is of interest as it contains all the logical
combinations (infinite conjunctions are not admitted for the usual reason that
they require infinite effort to affirm them) of elements inserted by daseinisation
into W(N). Frm(S) is of interest primarily as an upper bound for Frm(δ), as
codomain δ ⊆ codomain(S).

Proposition 3.2.54. Let N be a von Neumann algebra, P̂ ∈ P(N) a fixed
projection such that P̂ 6∈ {0̂, 1̂}, and 1̂− P̂ 6∈ A(P(N)). Also let F : V(N)op →
P(N) be the well typed function such that:

FV =

{
P̂ if V = {1̂, P̂}′′

0̂ otherwise
(3.128)

Then F cannot be written as an arbitrary join of finite meets of elements in the
codomain of S.

Proof. As S preserves meets, it is sufficient to show F cannot be written as a
join of elements in codomain(S). Assume T ⊆ codomain(S) is such that∨

T = F (3.129)
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Then as F{1̂,P̂}′′ = P̂ , for every G ∈ T , G{1̂,P̂}′′ ≤ P̂ i.e. G{1̂,P̂}′′ ∈ {P̂ , 0̂}.
Also, as for every other subalgebra V ∈ V(N), FV = 0̂, we have for every G ∈ T ,
GV = 0̂. It follows that every G ∈ T is either S(⊥) or F . If T only contains
elements equal to S(⊥) then the join would not equal F . Therefore, T must
contain an element equal to F , but by proposition (3.2.48), F 6∈ codomain(S),
a contradiction.

Remark 3.2.55. The above lemma shows that Frm(S) is not in general equal
to W(N).

Proposition 3.2.56. Let N be a von Neumann algebra. If P(V ) is completely
distributive for each V ∈ V(N), then codomain(S) is a complete sublattice of
W(N). If N is such that:

P(N) \ ({0̂, 1̂} ∪ A(N)) 6= ∅ (3.130)

i.e., if N 6= M2(C), then the inclusion is strict.

Proof. If each P(V ) is completely distributive, S preserves arbitrary meets by
lemma (3.2.18), and by lemma (3.2.25) it also preserves arbitrary joins. There-
fore, codomain(S) is closed under arbitrary meets and joins, and is therefore a
sublattice of W(N). If N is such that:

P(N) \ ({0̂, 1̂} ∪ A(N)) 6= ∅ (3.131)

then by corollary (3.2.50) there are elements inW(N) which are not in codomain(S),
and therefore the latter is a strict complete sublattice.

Theorem 3.2.57. Let N = B(H) for some Hilbert space with dim(H) ≥ 2.
Then there exists an element of codomain(S) that cannot be written as an ar-
bitrary join of finite meets of elements in codomain(δ).

Proof. Let P̂ψ be a projection onto a ray, and let U = P(N) \ {0̂, P̂ψ}. Clearly,
U is an upper set. Assume there exists a family of finite subsets of codomain(δ),
(Mi)i∈I such that:

S(U) =
∨
i∈I

∧
Mi (3.132)

There must exist some Mi, say M∗, such that:∧
M∗ 6= ⊥ (3.133)

Then ⊥ 6∈M∗. For any projection onto a ray Q̂ ∈ P(N), Q̂ 6= P̂ψ, we have:

S(U){1̂,Q}′′ = 0̂ (3.134)

and therefore we must have:

(
∧
M∗){1̂,Q}′′ = 0̂ (3.135)
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As ⊥ 6∈M∗, this can only be true if there exist F,G ∈M∗ such that:

F{1̂,Q}′′ = Q̂ and G{1̂,Q}′′ = 1̂− Q̂ (3.136)

As, by assumption, Q is a projection onto a ray, Q̂ is the only projection such
that δ(Q){1̂,Q}′′ = Q̂, and so:

δ(Q̂) ∈M∗ (3.137)

There are infinitely many such projections onto rays not equal to P̂ψ for which
this argument can be repeated, and so M∗ cannot have finitely many elements,
a contradiction.

Remark 3.2.58. The theorem above shows that in general Frm(δ) 6= Frm(S).
To summarize the previous results, for von Neumann algebra N we have

seen the following inclusions:

Frm(δ) ⊆ Frm(S) ⊆ W(N) (3.138)

As theorem (3.2.57) and proposition (3.2.54) show, the inclusions are in general
strict.

3.3 Recovering the known properties of dasein-
isation

In this section we look at how we can derive all the known properties of dasein-
isation given in [Döring, 2010b], from the properties of F and S. In general the
proofs go through very straightforwardly, requiring little other than application
of results derived previously.

Lemma 3.3.1. Daseinisation preserves arbitrary joins.

Proof. Let N be a von Neumann algebra, and (P̂i)i∈I be an arbitrary family of
projections in P(N).

δ(
∨
i

P̂i) = SF (
∨
i

P̂i) lemma (3.2.5) (3.139)

= S(
∨
i

F (P̂i)) lemma (3.2.12) (3.140)

=
∨
i

(SF (P̂i)) corollary (3.2.21) (3.141)

=
∨
i

δ(P̂i) lemma (3.2.5) (3.142)

Remark 3.3.2. In this proof we see that although arbitrary joins are not pre-
served in general by S, the preservation of joins of the special form in corollary
(3.2.21) allows arbitrary joins in the projection lattice to pass through toW(N).
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Corollary 3.3.3. Daseinisation preserves ⊥.

Lemma 3.3.4.
δ(>) = > (3.143)

Proof.

δ(>) = SF (>) lemma (3.2.5) (3.144)

= S({1̂}) definitions (3.145)
= > lemma (3.2.44) (3.146)

Remark 3.3.5. Recovering preservation of > in this way is slightly awkward,
due to the unusual path taken by the top element, which is not mapped to >
in (UN)op, as shown in lemma (3.2.15).

Lemma 3.3.6. Let N be a von Neumann algebra, V ∈ V(N), and x, y ∈ P(N).
Then:

δ(x ∧ y) ≤ δ(x) ∧ δ(y) (3.147)

Proof. By lemma (3.2.14), for arbitrary x, y ∈ P(N):

F (x ∧ y) ≤ F (x) ∧ F (y) (3.148)

By monotonicity of S (lemma (3.2.16)), for all V ∈ V(N):

SF (x ∧ y)V ≤ S(F (x) ∧ F (y))V (3.149)

As S preserves arbitrary meets (lemma (3.2.18)):

SF (x ∧ y)V ≤ SF (x)V ∧ SF (y)V (3.150)

Finally by lemma (3.2.5):

δ(x ∧ y)V ≤ δ(x)V ∧ δ(y)V (3.151)

Remark 3.3.7. Although we have recovered this result from the properties of
the factorization, it is certainly easier in this case to show this result directly
from the fact δ is monotone.

Lemma 3.3.8. Daseinisation is injective.

Proof. Follows directly from lemma (3.2.8) and corollary (3.2.47).

Lemma 3.3.9. Let N be a von Neumann algebra. For all P̂ , Q̂ ∈ P(N):

P̂ < Q̂⇒ δ(P ) < δ(Q) (3.152)
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Proof. That δ is monotone follows from lemma (3.2.7) and lemma (3.2.16) and
the fact that composition preserves monotonicity. The strictness of the inequal-
ity then follows from lemma (3.3.8).

Lemma 3.3.10. Daseinisation is not surjective.

Proof. Follows immediately from corollary (3.2.50)
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Chapter 4

Properties of the Coecke
construction

4.1 Background

4.1.1 Introduction

This section analyzes another approach to the development of an intuitionistic
quantum logic, as described in the paper [Coecke, 2002]. This paper addresses
quantum logic from an operationalist perspective, leading to a very different
construction to that seen in the topos approach. The operational methodology
views a quantum system from the perspective of the experiments that can be
performed on the system, and the outcomes of those experiments. Therefore,
formal descriptions of experiments and their outcomes are required.

Definition 4.1.1. An experimental project is a specification of:

• An exact experimental procedure that can be performed on a physical
system.

• The precise conditions constituting a positive result for the experiment.

A experimental project is said to be certain in a particular state of the system
if a positive outcome is sure to occur in that state.

Remark 4.1.2. [Coecke, 2002] uses the slightly longer term “definite experimen-
tal project”.

Remark 4.1.3. In this model of experiments, each experiment only has two
possible outcomes, success or failure. An experiment can be seen as a test
whether some criteria are satisfied.

Definition 4.1.4. A partial ordering on experimental projects can be defined.
For projects α and β, α ≤ β if whenever α is certain, β is also certain.
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Definition 4.1.5. Properties of the physical system are identified with the
equivalence classes of definite experiment projects induced by the partial order-
ing, denoted [α].

Definition 4.1.6. Let (αi)i∈I be a family of experimental projects. A product
experimental project Πi∈Iαi is an experimental project in which any one of
the individual αi may be chosen and performed. The property defined by [Πiαi]
is actual if and only if each of the individual αi are actual.

It is clear that equivalence classes of product experimental projects give the
order theoretic meet with respect to the ordering on experimental projects:∧

i∈I
[αi] = [Πi∈Iαi] (4.1)

A standard logical conjunction is true only if each of it’s components is true.
Similarly, given the above definition of meets, the property defined by the meet
of experimental projects is actual if and only if each individual experimental
project is actual. From an operational perspective this suggests meets be con-
sidered as conjunctions, as it done in [Coecke, 2002].
Remark 4.1.7. Product experiments of arbitrary families of experimental projects
are used to define meets. Note that this does not require the implementation
of some “infinite experimental procedure” as only one arbitrarily chosen exper-
iment in the family is chosen to be performed.

As noted previously, if a lattice has arbitrary meets, it also has arbitrary
joins, so the poset of properties is a complete lattice. If L is the lattice of
properties, and ([αi])i∈I a family of properties, join is defined in terms of the
meet as: ∨

i∈I
[αi] =

∧
{[β] ∈ L | ∀i ∈ I.[αi] ≤ [β]} (4.2)

So the joins in this lattice can be seen as an artifact inherited from the
construction of meets from physical and logical considerations. The question
of which joins are desirable from the physical and logical perspective of opera-
tionalism is now considered.

- φ1

6

φ2

�
�
�
�
��

ψ

Figure 4.1: Superpositions

In the standard Hilbert space model, as described in the introduction, prop-
erties of a quantum system are identified with closed subspaces of a Hilbert
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space. The join of two properties is given by the least closed subspace contain-
ing the subspaces of the individual properties. Consider two properties with
corresponding (distinct) subspaces the rays φ1 and φ2. The subspace corre-
sponding to their disjunction is then the plane containing φ1 and φ2. If the
system is in some state ψ in this plane, but not in φ1 or φ2, as shown in figure
4.1, then φ1∨φ2 is actual, without either φ1 or φ2 being actual. To consider the
implications of this phenomenon for a logic of propositions two related concepts
are introduced:

Definition 4.1.8. Let L be the complete lattice of properties, and A ⊆ L.
∨
A

is said to introduce superposition states if there exists a state such that
∨
A

is actual, but no a ∈ A is actual.

Definition 4.1.9. Let L be the complete lattice of properties, and A ⊆ L. Let
c ∈ L and c ≤

∨
A. c is said to be a superposition property introduced by∨

A if there exists a state such that c is actual, but no a ∈ A is actual.

As shown in [Coecke, 2002], if a set A has superposition properties then it
also introduces superposition states. In general the converse does not hold, so
an additional concept is introduced:

Definition 4.1.10. Let L be a property lattice. L is said to be superposi-
tionally faithful if for each A ⊆ L, in every superposition state introduced by∨
A there exists a superposition property introduced by

∨
A, that is actual in

that state.

Definition 4.1.11. Let L be a meet semilattice, and A ⊆ L. A has a dis-
tributive join if

∨
A exists and for every x ∈ L:

x ∧
∨
A =

∨
a∈A

(x ∧ a) (4.3)

Proposition 3 of [Coecke, 2002] then shows that a set of properties introduces
superposition properties if and only if it does not have a distributive join.

From the operationalist perspective taken in the Coecke scheme, a proper
disjunction is actual if and only if one of its components is actual. In the light of
Proposition 3 from the paper, the join of a set of properties represents a proper
disjunction if and only if the set has a distributive join. Via this argument,
based upon physics, and philosophical consideration about the correct nature
of conjunction and disjunction, a specification has been generated. The aim
is then to find a suitable extension of the property lattice, with the following
attributes:

• The embedding preserves meets as these have properties compatible with
this perspective on quantum logic.

• The embedding preserves distributive joins.

• The resulting lattice has new joins added making it a complete Heyting
algebra (frame), so that all joins are distributive, and an intuitionistic
logic results.
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Possibly surprisingly, this physically motivated specification is satisfied by a
construction originally defined from a purely mathematical perspective. The
appropriate construction is the injective hull of a meet semilattice, as described
in [Bruns and Lakser, 1970]. The Coecke scheme is very general, applying to any
complete lattice. In parts of this dissertation we will assume the conventional
Hilbert space model of quantum physics, in which case the lattices of properties
can be identified with the usual projection lattice.

Remark 4.1.12. The Coecke approach also comprises components beyond the
core lattice extension, including an “operational resolution” for mapping propo-
sitions back to the level of properties. As the focus of attention in this disser-
tation is the lattice extensions, these features will not be explored further.

4.1.2 The injective hull of a meet semilattice

The mathematical entity central to the Coecke construction is the injective hull
of a meet semilattice, first described in [Bruns and Lakser, 1970].

It is simpler to introduce the basic definitions in the more abstract setting
of arbitrary algebras and their homomorphisms, and then specialize to the par-
ticular lattices of interest with these ideas in place.

A
φ

��@@@@@@@

⊆
��
B

φ∗
// C

Figure 4.2: Injective extension

Definition 4.1.13. Let A,B,C be algebras, with A a subalgebra of B. Algebra
C is said to be injective if and only if every homomorphism φ : A→ C has an
extension to a homomorphism φ∗ : B → C, as shown in figure 4.2.

Remark 4.1.14. In contrast with many categorical definitions of this type, there
is no uniqueness requirement on φ∗ for a given φ.

A
ψ|A

��@@@@@@@

⊆
��
B

ψ
// C

Figure 4.3: Essential extension

Definition 4.1.15. Let A,B be algebras, with A a subalgebra of B. B is said to
be an essential extension of A if for any third algebra C and homomorphism
ψ : B → C, if ψ restricted to A is injective, then ψ is injective, as shown in 4.3.
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Definition 4.1.16. Let A,B be algebras, A a subalgebra of B. B is said to be
an injective hull of A if it is an essential injective extension of A.

Crucially, Theorem 1 of [Bruns and Lakser, 1970] shows that any injective
extension of a meet semilattice will be a frame, so considering injective exten-
sions of meet semilattices will lead to intuitionistic logics. The paper describes
how every meet semilattice has an injective hull, unique up to isomorphism, and
gives an explicit construction.

Definition 4.1.17. Let L be a meet semilattice, and S ⊆ L. S is an admissible
set if it has a distributive join.

Definition 4.1.18. Let L be a meet semilattice, and S a lower set of L. Then
S is a D-ideal if for every U ⊆ S, if U is an admissible set,

∨
U ∈ S. The set

of all D-ideals of L is denoted DI(L).

Definition 4.1.19. Let L be a meet semilattice. Then we define:

B : L→ DI(L) (4.4)
x 7→↓x (4.5)

As shown in [Bruns and Lakser, 1970], the injective hull of a meet semilattice
is isomorphic to the lattice of D-ideals. The function B injects the original
semilattice into its injective hull.

4.1.3 The MacNeille completion of a poset

For a poset P , the MacNeille completion is the (unique up to isomorphism)
completion of P such that P is both join dense and meet dense in L. A cate-
gorical presentation of the MacNeille completion is described in [Banaschewski
and Bruns, 1967].

Remark 4.1.20. Although the other constructions in this section apply only to
particular types of (semi)lattices, the MacNeille completion is more general in
that it applies to any poset.

Concretely, the MacNeille completion of a poset P is given by the lattice of
all A ⊆ P such that Aul = A, i.e., the sets A which are equal to the collection
of lower bounds of their upper bounds, with the usual inclusion order. P is
embedded into this lattice by the map:

x 7→↓x (4.6)

Remark 4.1.21. Clearly, all sets A ⊆ P such that Aul = A will be lower sets.

4.1.4 The free frame generated by a meet semilattice

As every frame is a meet semilattice, and every Frm morphism is an MSLat
morphism, there is a forgetful functor Frm→MSLat. This functor has a left
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adjoint as described for example in [Joyal and Tierney, 1984]. The action of the
left adjoint on objects is:

L 7→ DL (4.7)

The unit of the adjunction η : 1→ DL is given for an arbitrary meet semilattice
L by:

ηL : L→ DL (4.8)
x 7→↓x (4.9)

η is clearly an order embedding of L into DL.

L
η //

f !!BBBBBBBB DL
f∗

���
�
�

M

DL
f∗

���
�
�

M
MSLat Frm

Figure 4.4: The free frame generated by a meet semilattice

Definition 4.1.22. For a meet semilattice L, the free frame generated by L
is given by DL, and has the universal property that for any other frame M , and
morphism f in MSLat, there exists a unique morphism f∗ : DL→M in Frm
such that:

f = f∗ ◦ ηL (4.10)

as shown in figure 4.4.

Remark 4.1.23. Free objects in category theory are relative to objects and their
respective morphisms in some other category. For example, the free frame we
have defined here in Frm is relative to a meet semilattice in MSLat. There are
other free frame constructions, for example the free frame over a complete join
semilattice in cJSLat. Occasionally, this dissertation will simply refer to “the
free frame” when the categories involved are clear from the context.

4.2 Small concrete examples of the Bruns-Lakser
construction

To develop some intuition for the behaviour of the Bruns-Lakser construction,
we consider the injective hull of some small meet semilattices, and compare
this to the corresponding MacNeille completion and free frame constructions
for those lattices. The lattices encountered in the Coecke scheme will all be
complete, but we start in this slightly more general setting so that we can
contrast the behaviour of the Bruns-Lakser construction with the MacNeille
completion. The lattices considered will be small enough that we can visualize
them using Hasse diagrams. An introduction to Hasse diagrams, if required, is
given in 1.15 of [Davey and Priestley, 2002].
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Example 4.2.1. Ideally, we would consider a small meet semilattice to show
how joins are added by the injective hull construction. Unfortunately, a finite
meet semilattice always has all meets, therefore all joins, and therefore is a join
semilattice as well. So we first consider a poset with binary meets, but no top
element, as shown in figure 4.5, and examine the D-ideal structure:

Lattice MacNeille D-ideals Down sets
• •

•

@@@@@@@

�������

◦

•

�������
•

@@@@@@@

•

@@@@@@@

�������

◦

•

�������
•

@@@@@@@

•

@@@@@@@

�������

◦

•

�������
•

@@@@@@@

•

@@@@@@@

�������

◦

Figure 4.5: Extending a meet semilattice

We see that the D-ideal lattice very efficiently adds only one element to
transform the original lattice to a frame. The down set construction adds an
additional element; generally the free frame will be larger than the injective hull
of a meet semilattice. The MacNeille completion is in this case the same as the
Bruns-Lakser construction. In general we will find that the MacNeille lattice
embeds into the the D-ideal lattice, as will be made mathematically precise in
later sections.

Example 4.2.2. We consider the injective hull of a frame, as shown in figure
4.6.

Semilattice MacNeille Injective Hull Free frame
•

•

�������
•

@@@@@@@

•

@@@@@@@

�������

•

•

�������
•

@@@@@@@

•

@@@@@@@

�������

•

•

�������
•

@@@@@@@

•

@@@@@@@

�������

•

◦

•

�������
•

@@@@@@@

•

@@@@@@@

�������

◦

Figure 4.6: Extending a frame
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Both the MacNeille completion and injective hull are isomorphic to the orig-
inal lattice in this case. Intuitively, both constructions do not need to do any
work as the source lattice is already a frame, and therefore is complete and
satisfies the infinite distributive law. By comparison, the free frame of a frame
viewed as a meet semilattice is always strictly larger than the original. Infor-
mally, we can see this is necessarily so, as any frame is an object in MSLat. It is
easy to find MSLat morphisms between frames that are not frame morphisms,
for example mapping every element to >, and so the free frame requires more
elements to provide the “extra flexibility” needed to define the Frm morphism
satisfying the universal property.

Example 4.2.3. Now we illustrate the action of the various constructions on
the M3 lattice, which is complete, modular, but not distributive.

Meet semilattice MacNeille Injective Hull Free frame
•

�������

@@@@@@@

•

@@@@@@@ • •

�������

•

•

�������

@@@@@@@

•

@@@@@@@ • •

�������

•

•

�������

@@@@@@@

◦

@@@@@@@ ◦

@@@@@@@

�������
◦

�������

•

@@@@@@@ • •

�������

•

•

◦

�������

@@@@@@@

◦

@@@@@@@ ◦

@@@@@@@

�������
◦

�������

•

@@@@@@@ • •

�������

•

◦

Figure 4.7: Extending non distributive lattice M3

In this case the Bruns-Lakser extension needs to “repair distributivity” in
the lattice. The lattice is already complete, so we can see this as meaning the
MacNeille completion has nothing to do. As with the previous examples the
injective hull does this by inserting less elements than the free frame construc-
tion.

4.3 Characterization of admissible sets and D-
ideals

This section concentrates on the characterization of sets which have distributive
joins in various types of lattices. Also included are some results that directly
characterize which sets are D-ideals.
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4.3.1 Basic results

This section covers some basic results that provide straightforward tests for
distributive joins and D-ideals. Firstly, the empty set is never a D-ideal in the
situations relevant to the Coecke construction.

Lemma 4.3.1. For any meet semilattice L with bottom element, the empty set
is an admissible set.

Proof. For an arbitrary x ∈ L:

x ∧
∨
∅ = x ∧ ⊥ = ⊥ =

∨
y∈∅

(x ∧ y) (4.11)

Corollary 4.3.2. Let L be a meet semilattice with a bottom element. Then ∅
is not a D-ideal.

The next result shows that the “MacNeille completion component” of the
D-ideal lattice of a complete lattice will be isomorphic to the original lattice. As
was observed in the earlier examples, the MacNeille completion “does no work”
if a lattice is already complete.

Lemma 4.3.3. Let L be a complete lattice and A ⊆ L. Then Aul = A if and
only if A is a principal ideal.

Proof. If Aul = A, then
∨
A ∈ A, and so A is a principal ideal. Now we assume

A is a principal ideal. In a complete lattice, we have:∧
Au ∈ Aul (4.12)

Also in a complete lattice: ∨
A =

∧
Au =

∨
Aul (4.13)

Therefore as Aul is clearly downward closed, and
∨
Aul ∈ Aul, it follows that

Aul is a principal ideal. As A is also a principal ideal by assumption, and∨
A =

∨
Aul, it must be the case that A = Aul as required.

Corollary 4.3.4. The MacNeille completion of a complete lattice is isomorphic
to the original lattice.

Proof. The claim follows as any poset is isomorphic to its poset of principal
ideals, with the inclusion order.

Remark 4.3.5. All the lattices relevant to the Coecke construction will be com-
plete lattices, the above lemma shows that all the subsets encountered such that
Aul = A will in fact be principal ideals.

For a set to be a D-ideal, two criteria must be evaluated:
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1. Is the set downward closed?

2. Does the join of any admissible set “jump outside” of the set? This is the
more difficult criterion to check directly, as potentially a large number of
sets need to have their admissibility and joins assessed.

The following lemma, and its proof, make explicit why all principal ideals are
D-ideals. This clearly must be true for the Bruns-Lakser construction to work
as specified. From the point of view of the criteria above, the second criterion
becomes vacuous as every join that exists is contained within the original set,
so we need not concern ourselves about admissibility.

Lemma 4.3.6. If L is a meet semilattice, and A ⊆ L a principal ideal, then
for every B ⊆ A, either

∨
B does not exist or

∨
B ∈ A.

Proof. Let A be a principal ideal, and B ⊆ A. Then as A is a principal ideal,∨
A exists and is an upper bound on B, and

∨
A ∈ A. As A is downward closed,

and an upper bound for B is in A, then if
∨
B exists, it is in A.

Corollary 4.3.7. Every principal ideal of a meet semilattice is a D-ideal.

4.3.2 General results about admissible sets

This subsection concentrates on some technical lemmas that reduce the effort
required to identify sets with distributive joins. Firstly, we introduce a small
lemma with a corollary that means we can effectively ignore top and bottom
elements when checking if a set is admissible.

Lemma 4.3.8. Let P be a poset and S ⊆ P such that
∨
S exists. Then for all

a ∈ Su ∪ Sl:
a ∧

∨
S =

∨
s∈S

(s ∧ a) (4.14)

Proof. For a ∈ Su:

a ∧
∨
S =

∨
S a ∈ Su (4.15)

=
∨
s∈S

s (4.16)

=
∨
s∈S

(s ∧ a) a ∈ Su (4.17)

For b ∈ Sl:

b ∧
∨
S = b b ∈ Sl (4.18)

=
∨
s∈S

b (4.19)

=
∨
s∈S

(b ∧ s) b ∈ Sl (4.20)
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Corollary 4.3.9. In a bounded lattice, ⊥ and > always distribute over arbitrary
joins.

The next lemma shows a very large, but somewhat trivial class of distributive
sets exists. This particular class has no impact upon the nature of D-ideals as
the join of a singleton set is its single element, and clearly this will be included
in the original set, so we cannot “jump out” of a set using the join of a singleton
set.

Lemma 4.3.10. For any meet semilattice every singleton set is an admissible
set.

Proof. Immediate from definition, as for arbitrary x and y:

x ∧
∨
{y} = x ∧ y =

∨
y∈{y}

x ∧ y (4.21)

Another trivial example of a set with a distributive join is the entire lattice.
Again this has no impact on the nature of D-ideals as the entire lattice must
contain its own join.

Lemma 4.3.11. For any meet semilattice L, L is an admissible set

Proof. We note L has a top element as it is a meet semilattice. For x ∈ L:

x ∧
∨
L = x ∧ > = x =

∨
y∈L

(x ∧ y) (4.22)

where the last equality holds as clearly x ∈ L, and for all y ∈ L, x ∧ y ≤ x.

Having seen two trivial examples of admissible sets, the question is: are there
actually many interesting admissible sets in lattices that might be of interest
for quantum systems? As shall be seen in later sections, the answer is yes.

The next lemma is particularly useful as given an admissible set, it enables
the construction of large numbers of additional admissible sets, by adding ad-
ditional elements beneath those already contained in the set. Conversely the
lemma can be seen as a mechanism for simplifying a set when checking it for
admissibility, by stripping out elements that are beneath others within the set.

Proposition 4.3.12. For a complete lattice L, A ⊆ L and B ⊆↓A:

• A is an admissible set if and only if A ∪B is an admissible set.

•
∨
A =

∨
A ∪B.
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Proof. Assuming A admissible:

c ∧
∨
A ∪B = c ∧ (

∨
A ∨

∨
B) (4.23)

= c ∧
∨
A (4.24)

=
∨
a∈A

(c ∧ a) A admissible (4.25)

=
∨
a∈A

(c ∧ a) ∨
∨
b∈B

(c ∧ b) (4.26)

=
∨

a∈A∪B
(c ∧ a) (4.27)

and so A admissible implies A ∪ B is admissible. Now if we assume A ∪ B is
admissible:

c ∧
∨
A = c ∧ (

∨
A ∨

∨
B) (4.28)

= c ∧
∨

(A ∪B) (4.29)

=
∨

a∈A∪B
(c ∧ a) A ∪B admissible (4.30)

=
∨
a∈A

(c ∧ a) ∨
∨
b∈B

(c ∧ b) (4.31)

=
∨
a∈A

(c ∧ a) (4.32)

and so A∪B admissible implies A admissible as required. For the second part,
as

∨
A must be an upper bound on B, we have:∨

A =
∨
A ∨

∨
B =

∨
(A ∪B) (4.33)

In general, admissible sets are not closed under union, and so this does not
provide a convenient mechanism for finding new admissible sets from existing
ones. As the following lemma shows with a suitable constraint on the joins of
the sets involved, admissible sets can be built by taking unions.

Lemma 4.3.13. Let L be a complete lattice, let (Pi)i∈I be a family of admissible
subsets of L, and assume there exists P ∈ (Pi)i∈I such that for all Pi,

∨
Pi ≤∨

P , then:

•
⋃
i Pi is admissible.

55



Proof. Let S =
⋃
i Pi, then:∨

s∈S
(r ∧ s) =

∨
i

∨
p∈Pi

(r ∧ p) (4.34)

=
∨
i

(r ∧
∨
Pi) admissibility of each Pi (4.35)

= r ∧
∨
P by assumption (4.36)

= r ∧
∨
i

∨
Pi

∨
i

∨
Pi =

∨
P from assumption (4.37)

= r ∧
∨ ⋃

i

Pi join over union (4.38)

= r ∧
∨
S (4.39)

The next proposition is a special case where admissible sets can be extended
arbitrarily if their join is the top element. It is not an immediate corollary of
the previous result, as it does not require admissibility of the set of elements to
be added.

Proposition 4.3.14. Let L be a complete lattice. If A ⊆ L is an admissible set
with

∨
A = >, and A ⊆ B, then B is an admissible set.

Proof. For arbitrary x ∈ L:

x ∧
∨

(A ∪B) = x ∧ (
∨
A ∨

∨
B) join over union (4.40)

= x ∧ (> ∨
∨
B) assumption (4.41)

= x ∧ > (4.42)
= x (4.43)

= x ∨
∨
b∈B

(b ∧ x) x an u.b. on each b ∧ x (4.44)

= (x ∧
∨
A) ∨

∨
b∈B

(b ∧ x)
∨
A = > (4.45)

=
∨
a∈A

(a ∧ x) ∨
∨
b∈B

(b ∧ x) A admissible (4.46)

=
∨

y∈A∪B
(y ∧ x) join over union (4.47)

4.4 Admissible sets in projection lattices

In this section we explore in some detail the nature of admissible sets, and
therefore distributive joins in the projection lattices of various Hilbert spaces.
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The approach taken is essentially geometric, with the characterization of various
sets given in terms of the geometric nature of their members.

4.4.1 Projections lattices in arbitrary dimensional Hilbert
space

The following lemmas show two different examples of admissible sets. Both
are still relatively simple in structure, but they do have an impact on which
downward closed sets are valid D-ideals, as they do not contain their own join.

Lemma 4.4.1. Let H be an arbitrary Hilbert space. The set of all rank 1
projections in H is an admissible set.

Proof. Let S be the set of all rank 1 projections in some Hilbert space. Then
for an arbitrary projection P̂ :

P̂ ∧
∨
S = P̂ ∧ > = P̂ (4.48)

As S contains all projections onto rays, {Ŝ ∧ P̂ | Ŝ ∈ S} contains all the
projections onto rays in the subspace projected onto by P . Therefore:

P̂ =
∨
Q̂∈S

(Q̂ ∧ P̂ ) (4.49)

Lemma 4.4.2. Let H be an N -dimensional Hilbert space, where N is some
natural number. The set of all rank N − 1 projections in P(H) is an admissible
set.

Proof. Let S be the set of all rank N − 1 projections, and P̂ an arbitrary
projection not equal to 1̂. Then:

P̂ ∧
∨
S = P̂ ∧ > = P̂ =

∨
Ŝ∈S

P̂ (4.50)

As S contains all rank N −1 projections, there must be a projection Ŝ ∈ S such
that P̂ ∧ Ŝ = P̂ , and so: ∨

Ŝ∈S

P̂ =
∨
Ŝ∈S

(P̂ ∧ Ŝ) (4.51)

By corollary (4.3.9), 1̂ also distributes over S, and so S is admissible.

The admissible sets in the previous lemmas have very similar form. As will
be seen in later sections, these lemmas can be generalized greatly.
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4.4.2 Admissible sets in low dimensional Hilbert spaces

The following lemmas further characterize admissible sets, in some low dimen-
sional Hilbert spaces. Both positive and negative results are presented, for a
variety of different forms of set.

Lemma 4.4.3. Let H be a 2-dimensional Hilbert space. Let S be a strict subset
of all the rank 1 projections in P(H), containing two or more projections. Then
S is not an admissible set.

Proof. Let P̂ be a projection onto an arbitrary ray, P̂ 6∈ S.

P̂ ∧
∨
S = P̂ ∧ > (4.52)

= P̂ (4.53)
6= ⊥ (4.54)

=
∨
Q̂∈S

⊥ (4.55)

=
∨
Q̂∈S

(Q̂ ∧ P̂ ) as P̂ 6∈ S (4.56)

Lemma 4.4.4. Let H be a 3-dimensional Hilbert space. Let S be a strict subset
of all the rank 1 projections in P(H) into some plane π, and also let S contain
at least two projections. Then S is not an admissible set.

Proof. Let Sπ be the set of all rank 1 projections into the plane π, and P̂ ∈ Sπ/S.
Let Pπ be the rank 2 projection onto π.

P̂ ∧
∨
S = P̂ ∧ P̂π (4.57)

= P̂ (4.58)
6= ⊥ (4.59)

=
∨
Ŝ∈S

⊥ (4.60)

=
∨
Ŝ∈S

(Ŝ ∧ P̂ ) (4.61)

Lemma 4.4.5. Let H be a 3-dimensional Hilbert space. The set of all rank 1
projections in P(H) into a fixed plane is an admissible set.

Proof. Let Sπ be the set of all rank 1 projections into plane π, and P̂π the
corresponding projection onto the plane. For an arbitrary rank 1 projection P̂
in π:

P̂ ∧
∨
Sπ = P̂ ∧ P̂π = P̂ =

∨
Q̂∈Sπ

(Q̂ ∧ P̂ ) (4.62)
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For an arbitrary rank 1 projection P̂ not in π:

P̂ ∧
∨
Sπ = P̂ ∧ P̂π = ⊥ =

∨
Q̂∈Sπ

(Q̂ ∧ P̂ ) (4.63)

The rank 2 projection onto π is an upper bounds for Sπ and so distributes over∨
Sπ by lemma (4.3.8). For a rank 2 projection P̂ not in π:

P̂ ∧
∨
Sπ = P̂ ∧ P̂π = P̂ψ (4.64)

where P̂ψ is the projection onto the ray in the planes of both projections. Also,
as P̂ψ must be in Sπ:∨

Q̂∈Sπ

(Q̂ ∧ P̂ ) = P̂ψ ∨
∨

Q̂∈Sπ/{P̂ψ}

(Q̂ ∧ P̂ ) = P̂ ∨ ⊥ = P̂ψ (4.65)

The admissible sets described in lemma (4.4.5) have richer structure than
the previous examples, they are more complex than a singleton set, but do
not contain all the projections of a particular rank. Even in just 3-dimensional
Hilbert space, the admissible sets will turn out to have a relatively rich structure.

Lemma 4.4.6. Let H be 3 dimensional Hilbert space. Let Sψ be the set of all
rank 2 projections in P(H) onto planes through the ray ψ. Sψ is an admissible
set.

Proof. For projection onto an arbitrary plane π, P̂π:

P̂π ∧
∨
Sψ = P̂π ∧ > (4.66)

= P̂π (4.67)

=
∨

Q̂∈Sψ

(Q̂ ∧ P̂π) (4.68)

where the last line follows as either P̂π ∈ Sψ or the plane it projects onto
intersects each plane in Sψ at a different ray, and so their join is the whole
plane. For a projection onto an arbitrary ray φ, P̂φ:

P̂φ ∧
∨
Sψ = P̂φ ∧ > (4.69)

= P̂φ (4.70)

=
∨

Q̂∈Sψ

(Q̂ ∧ P̂φ) (4.71)

where the last line follows as the ray projected onto by P̂φ must lie in the plane
projected onto by some P̂ ∈ Sψ. By corollary (4.3.9) this is sufficient to show
admissibility.
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Lemma 4.4.7. Let H be a 3-dimensional Hilbert space. Let S be a strict subset
of all the rank 2 projections in P(H) containing some ray ψ, and let S contain
two or more projections. Then S is not an admissible set.

Proof. Let Sψ be the set of all rank 2 projections containing the ray ψ. We can
choose a rank 2 projection P̂ ∈ Sψ/S. Let P̂ψ be the rank 1 projection onto ray
ψ. Then:

P̂ ∧
∨
S = P̂ ∧ > (4.72)

= P̂ (4.73)

6= P̂ψ (4.74)

=
∨
Ŝ∈S

(Ŝ ∧ P̂ ) (4.75)

Some patterns have emerged in the forms of the admissible sets in the previ-
ous lemmas, they are “complete” in some sense, containing all the projections in
some ray, plane, etc. Similarly, the sets described in the negative results all seem
“incomplete”, there are always projections missing from these sets. This sug-
gests some general rule can be found describing this “completeness” condition,
as will be discussed in the next section.

4.5 A general geometric result about distribu-
tive joins in projection lattices

The lemmas given in the previous sections capture whether many different forms
of sets of projections have a distributive join. Interestingly, even in 3 dimensions,
there are cases still to be considered, as the following example shows.

Example 4.5.1. Let H be 3 dimensional Hilbert space. Let ψ be a ray, and
π a plane containing ψ, with corresponding projection P̂π. Let S be a set of
projections containing only:

• All the rank 2 projections onto planes containing ψ except P̂π.

• All the rank 1 projections onto rays in π.

The set S has a distributive join.

The proof of the claim in the example is omitted, it is similar to lemma
(4.4.6). The example demonstrates that rather complicated sets with distribu-
tive joins can be constructed, even in just 3 dimensions. We need to find some
more abstract property of a set of projections that captures the requirements
of distributivity. An informal algorithmic description of assembling the set S
above is:
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1. Start with the set of all rank 2 projections containing some ray.

2. Remove an arbitrary projection onto a plane.

3. “Fill the gap” left by the missing projection by rank 1 projections.

The idea of “filling the gap” is key to a more general result. In order to construct
a set with a distributive join, we need to completely cover a particular subspace
with projections, so there is no ray in the subspace that is not covered by
some projection. This intuition leads to the following proposition which gives
a complete characterization of which sets of projections have distributive joins,
for an arbitrary Hilbert space.

Proposition 4.5.2. Let H be a Hilbert space. Let σ be a closed subspace of H,
with corresponding projection P̂σ. Let S be a set of projections with

∨
S = P̂σ.

Then S has a distributive join in P(H) if and only if for every rank 1 projection
P̂ψ, if P̂ψ ∧ P̂σ = P̂ψ, there exists P̂ ∈ S such that P̂ψ ∧ P̂ = P̂ψ.

Proof. First we assume there exists Pψ such that P̂σ ∧ P̂ψ = P̂ψ, and for all
Ŝ ∈ S, Ŝ ∧ P̂ψ = ⊥. Then:

P̂ψ ∧
∨
S = P̂ψ ∧ P̂σ = P̂ψ (4.76)

and: ∨
Ŝ∈S

(Ŝ ∧ P̂ψ) =
∨
Ŝ∈S

⊥ = ⊥ (4.77)

and so S does not have a distributive join.
Now we assume that for every projection onto a ray Pψ such that P̂σ ∧ P̂ψ =

P̂ψ, there exists Ŝ ∈ S such that Ŝ ∧ P̂ψ = P̂ψ. Let Pτ be a projection onto an
arbitrary subspace τ . Then:

P̂τ ∧
∨
S = P̂τ ∧ P̂σ = P̂τ∩σ (4.78)

For every Ŝ ∈ S:
Ŝ ∧ P̂τ ≤

∨
S = P̂σ (4.79)

Also, for every Ŝ ∈ S:
Ŝ ∧ P̂τ ≤ P̂τ (4.80)

It follows that ∨
Ŝ∈S

(Ŝ ∧ P̂τ ) ≤ P̂τ∩σ (4.81)

Next, for any ray ψ in σ ∩ τ , there exists Ŝ ∈ S such that:

Ŝ ∧ P̂τ ≥ P̂ψ (4.82)

Therefore, we have: ∨
Ŝ∈S

(Ŝ ∧ P̂τ ) ≥ P̂τ∩σ (4.83)
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And so: ∨
Ŝ∈S

(Ŝ ∧ P̂τ ) = P̂τ∩σ (4.84)

Therefore, S has a distributive join.

The geometric results in the previous sections can all be seen as corollaries
of this result. The complicated set in example (4.5.1) can also now easily be
seen to be an admissible set.

4.6 A general result about distributive joins in
complete lattices

The geometric approach adopted so far has lead to a characterization of dis-
tributive joins in the projection lattice of an arbitrary Hilbert space. Although
proposition (4.5.2) nicely captures all the situtations considered so far, it does
not describe distributive joins in any simple finite lattices, or any restrictions of
the full set of projections into a Hilbert space.

In order to extend proposition (4.5.2), the geometric details of the problem
are abstracted away, and we consider the problem from a purely order theoretic
perspective. To do this, note that:

• For a Hilbert space H, P(H) is an atomistic lattice.

• The rank 1 projections are the atoms of P(H).

It is tempting to focus attention on atomistic lattices based on these observa-
tions. Instead, we note that in an atomistic lattice, the completely join irre-
ducible elements are exactly the atoms and the atoms form a join dense subset
of the original lattice. So the geometric characterization of proposition (4.5.2)
can be seen as a characterization in terms of the completely join irreducible
elements of the projection lattice. Now we explore the extension of this point
of view to a characterization of distributive joins in complete lattices where the
set of completely join irreducible elements form a join dense subset.

As atoms and completely join irreducible elements are going to be important
in what follows, we define the following notation, following [Coecke, 2002].

Definition 4.6.1. Let L be a lattice, and x ∈ L. Define:

µ(a) :=↓a ∩ A(L) (4.85)

For A ⊆ L, define:
µ(A) :=

⋃
a∈A

µ(a) (4.86)

Definition 4.6.2. Let L be a complete lattice and x ∈ L. Define:

γ(x) := {y ∈↓x | y completely join irreducible} (4.87)
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For A ⊆ L, define:
γ(A) :=

⋃
a∈A

γ(a) (4.88)

Firstly a couple of technical lemmas capturing basic properties of completely
join irreducible elements will be needed.

Lemma 4.6.3. Let L be a complete lattice in which the completely join irre-
ducible elements are join dense. Let x ∈ L. Then:

x =
∨
γ(x) (4.89)

Proof. x can be written as a join of some A ⊆ γ(x), as the completely join
irreducible elements are join dense in L by assumption. As x is an upper bound
on γ(x), and it is the least upper bound on some subset of γ(x), it must be the
least upper bound on γ(x) as required.

Remark 4.6.4. For an example of a complete lattice in which the completely join
irreducible elements are not join dense, consider the real interval [0, 1], with the
usual ordering. For this interval the only completely join irreducible element is
0.

Lemma 4.6.5. Let L be a complete lattice in which the completely join irre-
ducible elements are join dense. Let x, y ∈ L. Then:

x ∧ y =
∨
γ(x) ∩ γ(y) (4.90)

Proof.

x ∧ y =
∨
γ(x ∧ y) lemma (4.6.3) (4.91)

=
∨
γ(x) ∩ γ(y) (4.92)

With the basic definitions and lemmas in place, we can prove our main result:

Theorem 4.6.6. Let L be a complete lattice in which the completely join irre-
ducible elements are join dense. Also let A ⊆ L. Then A has a distributive join
if and only if:

γ(A) = γ(
∨
A) (4.93)

Proof. Let j ∈ L. By lemma (4.6.5):

j ∧
∨
A =

∨
γ(j) ∩ γ(

∨
A) (4.94)
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Also: ∨
a∈A

(j ∧ a) =
∨
a∈A

∨
(γ(j) ∩ γ(a)) lemma (4.6.5) (4.95)

=
∨ ⋃

a∈A
(γ(j) ∩ γ(a)) join over unions (4.96)

=
∨
γ(j) ∩

⋃
a∈A

γ(a) distributivity (4.97)

=
∨
γ(j) ∩ γ(A) definition (4.98)

Therefore, if γ(A) = γ(
∨
A) then:

j ∧
∨
A =

∨
a∈A

(j ∧ a) (4.99)

It is clear that γ(A) ⊆ γ(
∨
A). Now we assume γ(A) ( γ(

∨
A) and that A has

a distributive join, and aim to show a contradiction. Let j ∈ γ(
∨
A) \ γ(A),

then as j ∈ γ(
∨
A):

j ∧
∨
A =

∨
(γ(j) ∩ γ(

∨
A)) lemma (4.6.5) (4.100)

=
∨
γ(j) j ∈ γ(

∨
A) (4.101)

= j lemma (4.6.3) (4.102)

As A is assumed to have a distributive join, this implies:

j = j ∧
∨
A =

∨
a∈A

(j ∧ a) =
∨
γ(j) ∩ γ(A) (4.103)

Then j can be written as the join of a subset not containing j itself, as by
assumption j 6∈ γ(A), but this contradicts the complete join irreducibility of j,
therefore A is not completely distributive.

Corollary 4.6.7. Let L be a complete atomistic lattice, and A ⊆ L. Then A
has a distributive join if and only if:

µ(A) = µ(
∨
A) (4.104)

Proof. By definition, for an atomistic lattice L, A(L) are the completely join
irreducible elements, and they form a join dense subsets of L.

Corollary 4.6.8. Let L be a complete lattice in which the completely join irre-
ducible elements form a join dense subset. Then the following are equivalent:

• For all A ⊆ L, γ(A) = γ(
∨
A).

• L is a frame.
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Remark 4.6.9. Corollary (4.6.8) gives an interesting characterization of a large
class of frames, without any mention of the infinite distributivity law, or in fact
any direct reference to meets at all.

Corollary 4.6.10. Let L be a finite lattice, and A ⊆ L. Then A has a distribu-
tive join if and only if:

γ(A) = γ(
∨
A) (4.105)

Proof. Every finite lattice is complete. The join irreducible elements of a finite
lattice form a join dense subset (5.1 in [Davey and Priestley, 2002]).

The geometric proposition (4.5.2) follows as a corollary of this much stronger
order theoretic formulation. The simple characterization for all atomistic lattices
covers all complete atomic orthomodular lattices, as they are well known to be
atomistic (see for example [Kalmbach, 1983]). For finite lattices, checking a
subset A for admissibility consists of performing the following simple steps:

1. Find all the join irreducible elements beneath
∨
A. (Complete join irre-

ducibility reduces to join irreducibility for the finite case)

2. If every join irreducible element found above is beneath an element in A,
then A is admissible, otherwise A is not admissible.

>

��������

>>>>>>>>
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???????? b c

��������

d

⊥

Figure 4.8: A non atomistic lattice

The generalization beyond atomistic lattices to lattices where the completely
join irreducible elements form a join dense subset allows the result to be applied
to lattices such as that shown in figure 4.8, which is not atomistic.

4.7 Properties of the injective hull mapping

From [Coecke, 2002] and [Stubbe, 2005], we have the following properties of the
embedding B described in definition (4.1.19):

• B is monotone.
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• B is injective.

• B is not surjective.

• B preserves arbitrary meets.

• B preserves distributive joins.

As atoms and atomicity proved to be important in the characterization of
distributive ideals, the following two lemmas consider questions of the action of
B on atoms.

Lemma 4.7.1. Let L be a complete lattice. Then:

B(A(L)) = A(DI(L)) (4.106)

Proof. Assume a ∈ A(L). Then B(a) = {a,⊥}. Then the only element ofDI(L)
less than B(a) is {⊥}, as ∅ is not a D-ideal for a complete lattice, therefore B(a)
is an atom if a is an atom. If b ∈ DI(L) is an atom, then b must be a principal
ideal of the form {c,⊥}, and therefore the image of some atom c.

Lemma 4.7.2. Let L be a complete atomistic lattice. Then DI(L) is a complete
atomistic lattice.

Proof. DI(L) is complete as it is a frame. By Theorem 2 in [Bruns and Lakser,
1970], B(L) is join dense in DI(L). Every element in B(L) can be written as
B(l) for some l ∈ L. As L is atomistic we have:

l =
∨
µ(l) (4.107)

By corollary (4.6.7), µ(l) has a distributive join, and therefore:

B(l) = B(
∨
µ(l)) =

∨
{B(a) | a ∈ µ(l)} (4.108)

and from lemma (4.7.1), each B(a) is an atom in DI(L). It follows that every
element in DI(L) can be written as a join of elements of A(DI(L)).

Now we consider the action of B on orthocomplemented elements of its
domain.

Lemma 4.7.3. B does not preserve negation.

Proof. Consider the orthomodular lattice M4. The injective hull of this lattice
is a Boolean algebra with 4 atoms. In M4, a is an atom if and only if ¬a is an
atom. For a ∈ A(M4), by lemma (4.7.1), B(¬a) is an atom. Therefore, as the
injective hull is a Boolean algebra, ¬B(a) is not an atom, and so:

¬B(a) 6= B(¬a) (4.109)
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As described in [Johnstone, 2002b], the free frame for a meet semilattice L
is DL, the lattice of lower sets in L, therefore we can factor B through this free
frame. This is convenient to do as it relates the injective hull construction to
DL, the dual of UL that we have previously related the topos construction to.

Definition 4.7.4. For meet semilattice L, define the function F i:

F i : L→ DL (4.110)
x 7→↓x (4.111)

Lemma 4.7.5. Let L be a meet semilattice, then F i is monotone.

Proof. Let x, y ∈ L, x ≤ y. Then ↓x ⊆↓y.

L
F i //

B ""EEEEEEEEE DL

G

���
�
�

DI(L)

DL

G

���
�
�

DI(L)
MSLat Frm

Figure 4.9: Factoring B through the free frame

Definition 4.7.6. For a meet semilattice L, define the function G:

G : DL→ DI(L) (4.112)

U 7→
DI(L)∨

{↓x | x ∈ U} (4.113)

Remark 4.7.7. The form of G is a special case of the construction given for the
proof of Theorem II.1.2 in [Johnstone, 1982]. It follows from that theorem that
G is a morphism in Frm, and B = G ◦ F i, as illustrated in figure 4.9.

As G is a morphism in Frm, it preserves arbitrary joins, and therefore has
a right adjoint, which we now investigate.

Definition 4.7.8. Let L be a meet semilattice. Define the function I : DI(L)→
DL to be the obvious injection.

Lemma 4.7.9.
G a I (4.114)

Proof. Let L be a meet semilattice. I is clearly monotone, and G is monotone
as described in remark (4.7.7). Therefore, it is sufficient to show:

1DL ≤ I ◦G and G ◦ I ≤ 1DI(L) (4.115)
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For arbitrary U ∈ DL:

(I ◦G)(U) =
DI(L)∨

{↓x | x ∈ U} definitions (4.116)

⊇ U U may not be a D-ideal (4.117)

For arbitrary U ∈ DI(L):

(G ◦ I)(U) =
DI(L)∨

{↓x | x ∈ U} definitions (4.118)

= U All D-ideals are lower sets (4.119)

So the right adjoint of G is the obvious embedding of the D-ideals into the
down set lattice.

4.8 Extending meet semilattice morphisms to
frame morphisms

For meet semilattices L, M it is natural to ask for suitable types of morphisms
f : L → M : is there some canonical morphism f∗ : DI(L) → DI(M)? First a
small technical lemma is required. This lemma makes concrete the intuition that
the Bruns-Lakser construction “does no work” if a meet semilattice is already
a frame.

Lemma 4.8.1. Any frame F considered as a meet semilattice is equal to its
injective hull.

Proof. As F is a frame, it is an injective extension of itself by Theorem 1 in
[Bruns and Lakser, 1970]. It is also obviously join-dense in itself, and distributive
joins are trivially preserved by the identity function, therefore it is an essential
extension by Theorem 2 in [Bruns and Lakser, 1970].

Now the question of whether two different classes of morphisms can be lifted
to operations between the corresponding injective hulls is investigated.

Lemma 4.8.2. There exist morphisms in MSLat that cannot be lifted to a
morphism in Frm between the corresponding pair of injective hulls.

Proof. We consider the following MSLat morphism φ:

φ : 2→ 2 (4.120)
x 7→ > (4.121)

As 2 is a frame, by lemma (4.8.1) it is isomorphic to its own injective hull.
Therefore, there can be no φ∗ : 2→ 2 in Frm as φ is not a frame morphism.
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Frame L4 Frame L5
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Figure 4.10: Meet semilattices L4 and L5

Lemma 4.8.3. There exist morphisms in MSLat that preserve ⊥ that cannot
be lifted to a morphism in Frm between the corresponding pair of injective hulls.

Proof. Consider the frames L4 and L5 shown in figure 4.10. The obvious embed-
ding of L4 into L5 is an MSLat morphism that preserves ⊥, but it is not a frame
morphism, as the join of {a, b} is not preserved. As both lattices are frames,
they are isomorphic to their injective hulls, and so no lifting can exist.

The two negative results in lemma (4.8.2) and lemma (4.8.3) suggest we need
a category of meet semilattices with a more restricted collection of morphisms.

Definition 4.8.4. The category MSLatdis has meet semilattices as objects,
and morphisms meet semilattice homomorphisms that also preserve distributive
joins.

Proposition 2 of [Stubbe, 2005] shows that Frm is a full monoreflective
subcategory of MSLatdis. This is sufficient for there to exist a lifting of any
MSLatdis morphism to a morphism between the corresponding injective hulls.

P
x7→↓x//

φ
""EEEEEEEEE DI(P )

φ∗

���
�
�

Q

DI(P )

φ∗

���
�
�

Q

MSLatdis Frm

Figure 4.11: Frm is a full monoreflective subcategory of MSLatdis

Lemma 4.8.5. Let φ : P → Q be a morphism in MSLatdis, then there exists
a unique φ∗ : DI(P )→ DI(Q) in Frm such that:

φ∗|P = φ (4.122)
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Proof. Let F be the left adjoint of the injection of Frm into MSLatdis, and
η the unit of the adjunction. Then the following diagram commutes by the
naturality of η:

P
ηP //

φ

��

DI(P )

F (φ)

��
Q

ηQ // DI(Q)
By the universal property of the adjunction, F (φ) is the unique such mor-

phism such that the diagram commutes. As η is an injection, it follows that:

φ∗|P := φ∗(ηP (P )) = φ (4.123)

4.9 Final examples

This section applies the results proved previously to explore two examples in-
spired by the literature.

Example 4.9.1. In an example in [Coecke, 2002] it is shown that for any
complete atomistic lattice L, DI(L) is isomorphic to the powerset of A(L).
A proof is given in the paper, but as this possibly a surprising result, that B
produces a Boolean algebra for such a large class of lattices, we explore why this
happens using the tools that have been developed in this dissertation. Firstly
we show every atomistic frame is a complete Boolean algebra.

Lemma 4.9.2. Let L be an atomistic distributive complete lattice. Then L is
a complete Boolean algebra.

Proof. Define for arbitrary x ∈ L:

¬x :=
∨
A(L) \ µ(x) (4.124)

This is a valid orthocomplement, and as L is complete and distributive lattice
with an orthocomplement, it is a complete Boolean algebra.

Corollary 4.9.3. Every atomistic frame is a complete Boolean algebra.

Now if L is a complete atomistic lattice, by lemma (4.7.2), DI(L) is also
a complete atomistic lattice. It is a frame by [Bruns and Lakser, 1970], and
therefore a complete Boolean algebra by lemma (4.9.2). As every atomistic
boolean algebra is isomorphic to the powerset of its atoms, DI(L) is isomorphic
to the powerset of A(DI(L)). By lemma (4.7.1) and the injectivity of B, it
follows that DI(L) is isomorphic to the powerset of A(L), as shown in the
original paper.
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Figure 4.12: Complete atomistic lattice

Example 4.9.4. In this section we consider a more complex example, the
injective hull of the meet semilattice L shown in figure 4.12. The example was
originally shown in [Heunen et al., 2010], but unfortunately the paper contains
several errors and constructs the incorrect injective hull. By observation, the
lattice is clearly atomistic, applying the result of example (4.9.1), the injective
hull of the lattice will be isomorphic to the powerset of a 5 atom set, and
will therefore have 25 = 32 elements, not the 72 claimed in [Heunen et al.,
2010]. The result of example (4.9.1) is particularly useful in that it provides
a simple checksum for the number of elements in small examples. DI(L) is
characterized up to isomorphism by the previous example, we now explore its
concrete representation in terms of D-ideals, as the lattice is sufficiently complex
that this requires some care.

↓{d,¬d}
↓{d, a} ↓{d, b} ↓{d, c}
↓{¬d, a} ↓{¬d, b} ↓{¬d, c}
↓{d,¬d, a} ↓{d,¬d, b} ↓{d,¬d, c}
↓{d,¬a} ↓{d,¬b} ↓{d,¬c}
↓{¬d,¬a} ↓{¬d,¬b} ↓{¬d,¬c}
↓{d,¬d,¬a} ↓{d,¬d,¬b} ↓{d,¬d,¬c}
↓{¬a,¬b,¬c}
↓{d,¬a,¬b,¬c}
↓{¬d,¬a,¬b,¬c}

Table 4.1: Non principal D-ideals of L

The 10 principal ideals of L are D-ideals by corollary (4.3.7). There are
very many downward closed sets, but many are not D-ideals as they contain
an admissible set and not its corresponding join. It is impossible to give an
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exhaustive discussion of the issues involved, as this would require excessive
space, so only an outline of key points is given.

Theorem (4.6.6) makes reading off admissible sets from the diagram of L
straightforward. The set {a, b} is admissible. It follows that any D-ideal con-
taining a and b must contain ¬c. More subtly, any D-ideal containing ¬a and
¬b will have {a, b} as a subset, and must therefore also contain ¬c. Similarly
any D-ideal containing ¬a and a must also contain ¬c as again {a, b} will be a
subset. There are other symmetrical versions of these ideas, from the symmetry
of the Hasse diagram. There are also more straightforward admissible sets, such
as {d, a, b, c,¬d} and {d,¬a,¬b,¬c,¬d} The remaining 22 D-ideals are given in
table 4.1.

72



73



Chapter 5

A comparison of the two
approaches

5.1 Properties preserved by the constructions

The two constructions preserve very different properties of the original projec-
tion lattice. This can be seen as a trade off, something has to be changed in
order to produce a new lattice with different properties from an old one, so
choices have to made based on the particular aims of the scheme in question.
Daseinisation preserves arbitrary joins, and does not preserve even finite meets,
where as the injective hull construction preserves arbitrary meets and distribu-
tive joins. These differences originate in the differing motivations of the two
approaches. Preservation of joins relates to superpositions, a physically ob-
served phenomenon, and so is desirable to retain from the realist perspective of
the topos approach. It also follows automatically from the “approximation from
above” used in the daseinisation mapping. On the other hand, from an opera-
tionalist perspective, where certainty of of experimental outcomes is the guiding
concept, meets are well behaved, as are distributive joins, but superposition like
behaviour is abandoned as undesirable.

We also see that B preserves the atoms of the original lattice, where as
it is easy to see that daseinisation does not in general preserve atoms, as it is
straightforward to construct an atomic well typed function that is not the result
of daseinisation (consider a well typed function equal to some projection P̂ in
the subalgebra {1̂, P̂}′′ and 0̂ everywhere else). The preservation of atoms by B
can probably be seen as a secondary effect, not part of the physically motivated
construction, but an artifact of the mathematics that results.

Both constructions are injective as they are embeddings, and they are in-
evitably not surjective as “extra elements” are introduced in the resulting lat-
tices to generate the desired complete Heyting algebra.
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5.2 The relative sizes of the constructions

This section considers some bounds on the sizes of the two constructions, for
von Neumann algebras with finite projection lattices. If a von Neumann algebra
only has finitely many projections, it follows that it is abelian [Kadison and
Ringrose, 1997b], so this restriction leads to a greatly simplified situation, as
the projection lattices must be finite Boolean algebras.

Definition 5.2.1. The number of elements in finite set or lattice A will be
denoted #A.

Lemma 5.2.2. Let N be a von Neumann algebra with 2n projections, n ≥ 1.
Then:

#DI(P(N)) = 2n (5.1)

and DI(P(N)) is isomorphic to P(N).

Proof. From lemma (4.8.1), as P(N) is a Boolean algebra, and therefore a frame:

DI(P(N)) ∼= P(N) (5.2)

and the size claim follows directly.

Lemma 5.2.3. Let N be a von Neumann algebra with 2n projections, n ≥ 1.
Then:

#W(N) ≥ 2(2n − 2) (5.3)

Proof. As P(N) is a Boolean algebra with 2n elements, it has 2n−2
2 4 element

Boolean subalgebras. If a well typed function sets all larger algebras to 0̂, the
values taken at each of these 4 element subalgebras can be chosen independently.
Therefore, we have at least:

4
(2n − 2)

2
= 2(2n − 2) (5.4)

different well typed functions in W(N).

If we dismiss the trival algebra {0̂, 1̂}, the previous two lemmas show that
for finite von Neumann algebras, the injective hull is always smaller than or
equal in size to the lattice of well typed functions. Equality occurs only for the
4 element projection lattice, i.e., for abelian von Neumann algebras of the form
CP̂ + C1̂ for some non-trivial projection P . Such a von Neumann algebra has
projections 0̂, P̂ , 1̂ − P̂ and 1̂. As the projection lattice gets larger, the bound
in lemma (5.2.3) becomes weaker, as more Boolean subalgebras will exist, and
the lemma only accounts for the simplest type. For these finite cases, we see
that daseinisation is significantly less efficient than the Bruns-Lakser construc-
tion, this result contradicts a conclusion reached for an equivalent situation in
[Heunen et al., 2010], due to errors in the example considered in that paper.
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5.3 Relationships between the various lattices

We begin with a straightforward relationship between the up and down set
lattices. This can be viewed as a relationship between the lattices of open set
and closed sets of the Alexandrov topology.

Lemma 5.3.1. Let P be a poset.

DP ∼= (UP )op (5.5)

Proof. Define the function φ:

φ : DP → (UP )op (5.6)
U 7→ P \ U (5.7)

If U ∈ DP then P \ U is an upper set as if x ∈ P and x 6∈ U then as U is a
lower set, every y ∈ P such that y ≤ x implies y 6∈ P \ U . So φ is well defined.
φ is monotone as for any U1, U2 ∈ DP ,

U1 ⊆ U2 → (P \ U1) ⊇ (P \ U2) (5.8)

φ is also clearly injective as set theoretic complement is injective. Also define
the function ψ:

ψ : (UP )op → DP (5.9)
U 7→ P \ U (5.10)

ψ is a well defined injective monotone function by the dual of the prior argument
for φ. For arbitrary U ∈ DP :

(ψ ◦ φ)(U) = ψ(P \ U) definition (5.11)
= P \ (P \ U) definition (5.12)
= U properties of complements (5.13)

For arbitrary U ∈ (UP )op:

(φ ◦ ψ)(U) = φ(P \ U) definition (5.14)
= P \ (P \ U) definition (5.15)
= U properties of complements (5.16)

Therefore, φ and ψ witness an isomorphism betweenDP and (UP )op as required.

The following definitions are duals of objects and morphisms already encoun-
tered in the discussion of the two different constructions. They will be required
to provide some symmetry in the relationship between the two constructions.
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Definition 5.3.2. Let N be a von Neumann algebra. Then the set:

{f : V(N)→ P(N) | f monotone and ∀V ∈ V(N).fV ∈ P(V )} (5.17)

will be referred to as the set of well typed (covariant) monotone functions
of type V(N) → P(N). Wi(N) will refer to the poset of well typed covariant
monotone functions, with the pointwise order.

Definition 5.3.3. Let N be a von Neumann algebra. The function δi : P(N)→
Wi(N) is defined locally at each V ∈ V(N) as:

δi(P̂ )V :=
∨

(↓ P̂ ∩ P(V )) (5.18)

Remark 5.3.4. The function δi is considered in the topos scheme, it is referred
to as inner daseinisation. It encodes the unusual idea of “approximation from
below”, finding a more specific approximant to a proposition in each subalgebra.
The full title of the function δ encountered earlier is outer daseinisation, it is
more natural from the contravariant point of view, since it is the mathematical
realisation of the physical concept of coarse-graining. The adjective “outer” is
often dropped. When introducing duals of objects that naturally exist in the
two schemes, the superscripts “i” and “o” will be used to indicated new inner
or outer versions of objects.

Definition 5.3.5. Let N be a von Neumann algebra. We define the function
Si : DP(N)→Wi(N). S is defined locally at each V ∈ V(N):

Si(U)V :=
∨

(U ∩ P(V )) (5.19)

Lemma 5.3.6.
δi = Si ◦ F i (5.20)

Proof. Dual of lemma (3.2.5).

Definition 5.3.7. Let L be a join semilattice. Call A ⊆ L a U-filter if it is a
D-ideal in Lop. Let UF (L) be the lattice of U-filters. By duality, (UF (L))op is
the injective hull of L (as a join semilattice).

Remark 5.3.8. The name U-filter has no particular signficance except it follows
D-ideals in form, and provides some symmetry to the names of the lattices under
consideration.

Definition 5.3.9. Let L be a join semilattice. Define the function Bo:

Bo : L→ (UF (L))op (5.21)
x 7→↑x (5.22)

Remark 5.3.10. Bo is just the dual of the embedding B discussed previously.
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With these dual definitions in place, the relationship between the Coecke
construction and the topos approach can now be explored. Firstly we observe
that δ can be factored through the injective hull of a join semilattice, and
dually, inner daseinisation can be factored through the injective hull of a meet
semilattice. This follows directly from their definitions.

Lemma 5.3.11.

δ = S ◦ Io ◦Bo (5.23)

δi = Si ◦ I ◦B (5.24)

Proof. Let N be a von Neumann algebra, and P̂ ∈ P(N), then for every V ∈
V(N):

S(Io(Bo(P̂ )))V = S(Io(↑ P̂ ))V definition (5.25)

= S(↑ P̂ )V definition (5.26)

=
∧

(↑ P̂ ∩ P(V ))V definition (5.27)

= δ(P̂ )V definition (5.28)

The factorization of δi follows by duality.

The following proposition shows a variety of adjunctions that exist between
the various components of the two schemes, and their duals. The symbol a to
the left/right of a map indicates that this map has a left/right adjoint. For
details, see the following proposition.

(UF (P(N)))op� _

Ioa
��

(UP(N))op aSa // W(N)

P(N)
F`

88ppppppppppp

aF i

&&NNNNNNNNNNN

Boa

@@������������������

aB

��==================

DP(N) aSia // Wi(N)

DI(P(N))
?�

aI

OO

Figure 5.1: Daseinisation and Bruns-Lakser

Proposition 5.3.12. Let N be a von Neumann algebra. We have the following
adjunctions, as shown in figure 5.1.
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• B has a left adjoint, Bo has a right adjoint.

• I has a left adjoint, Io has a right adjoint.

• F has a right adjoint, F i has a left adjoint.

• S has a left adjoint, Si has a right adjoint.

• If and only if for every V ∈ V(N), P(V ) is completely distributive then S
has a right adjoint and Si has a left adjoint.

Proof. By O-3.3 in [Giertz et al., 2003], if a functor between complete lattices
has a left adjoint, it preserves arbitrary meets, and dually. By O-3.4 in [Giertz
et al., 2003], if a functor between complete lattices preserves arbitrary meets, it
has a left adjoint, and dually.

To confirm the claimed adjunctions, we have:

• B preserves arbitrary meets from [Bruns and Lakser, 1970], Bo preserves
arbitrary joins by duality.

• I has a left adjoint by lemma (4.7.9), Io has a right adjoint by duality.

• F preserves arbitrary joins by lemma (3.2.12), F i preserves arbitrary
meets by duality.

• S preserves arbitrary meets by lemma (3.2.18), Si preserves arbitrary joins
by duality.

• If for every V ∈ V(N), P(V ) is completely distributive, then S preserves
arbitrary joins by corollary (3.2.29), Si preserves arbitrary meets under
those conditions by duality.

Remark 5.3.13. A large family of related adjunctions for the topos approach
were shown in [Lal, 2008]. For daseinisation of projections, this result can
be outlined as follows. For von Neumann algebra M , and (not necessarily
abelian) subalgebra N ⊆ M , the injection P(N) → P(M) has both left and
right adjoints. The left adjoint is given by:

δ( )oM,N : P(M)→ P(N) (5.29)

δ(P̂ )oM,N :=
∧
↑ P̂ ∩ P(N) (5.30)

a generalized form of outer daseinisation. Dually, the right adjoint gives a
generalized form of inner daseinistation:

δ( )iM,N : P(M)→ P(N) (5.31)

δ(P̂ )iM,N :=
∨
↓ P̂ ∩ P(N) (5.32)
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5.4 Universal properties

As MSLatdis is a full monoreflective subcategory of Frm [Stubbe, 2005], the
corresponding adjunction gives a universal property for the Coecke construction,
as discussed in section 4.8.

For the topos approach, ideally, some class of morphisms between von Neu-
mann algebras could be lifted canonically to morphisms between the correspond-
ing lattices of clopen subobjects. It is not yet known if the topos approach comes
equiped with such as universal property. Progress in this area is described in
[Döring, 2010a], where the perspective taken is to see the spectral presheaf as a
candidate for a noncommutative extension of the Gel’fand spectrum. This ap-
proach uses a modified base category, removing all subalgebras of the centre of
the given von Neumann algebra such that the construction reduces to ordinary
Gel’fand duality for commutative algebras.
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Chapter 6

Conclusion

6.1 Summary

In this dissertation two alternative approaches to the construction of a quantum
logic were analyzed, the topos approach due to Isham, Butterfield and Döring,
and the Coecke approach.

We analyzed the structure of the topos construction by considering a natural
factorization of the daseinisation function. This factorization and the properties
preserved by its components were investigated in detail, many of these proper-
ties were shown to be a result of it being the factorization via the free coframe
of a join semilattice. The analysis of the factorization was then shown to be
sufficient to recover the known properties of daseinisation. We then moved on
to consider the relationships between various frames related to the codomain
of daseinisation, showing that the frame generated by the codomain of dasein-
isation is in general a strict subframe of the lattice of clopen subobjects of the
spectral presheaf.

The Coecke construction was then considered. Attention was focused on the
nature of sets with distributive joins, as these are key to the underlying Bruns-
Lakser injective hull construction. A geometric characterization of distributive
joins in the lattice of projections into an arbitrary Hilbert space was presented.
This was then extended to a characterization of distributive joins in a large class
of complete lattices, in terms of their completely join irreducible elements.

Finally, the two approaches were related to each other. For finite cases, the
topos approach lattice of clopen subobjects was shown to always be larger than
the injective hull. The prior factorization of daseinisation was exploited to relate
the two constructions. By considering the dual of each embedding, a family of
adjunctions between the various lattices involved was exhibited. It was shown
that the Coecke scheme is actually more closely related to inner daseinisation
than the standard (outer) daseinisation that is considered more physically nat-
ural in the topos approach. Universal properties of the two constructions were
also investigated, the Bruns-Lakser lattice was seen to have a universal prop-
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erty. Currently the question of a universal property for the topos approach is
unresolved.

6.2 Future work

The work in this dissertation has suggested that the following areas may be of
interest for further investigation:

• Can a universal property for the topos approach be found, or a demon-
stration that no reasonable property will exist?

• The standard form of the topos approach is constructed for von Neu-
mann algebra N by using V(N) as the base category. Various other base
categories are worthy of consideration, for example including the trivial
subalgebra, or removing all subalgebras contained within the centre of N .
What is the impact of such decisions on the properties of daseinisation?
Which properties are robust to a wide range of decisions, and which are
sensitive to the precise form of the base category?

• Can a concrete characterization of the frame generated by the codomain
of daseinisation be found? Which is the “correct” frame for the quantum
logic of the topos approach? Do the additional elements in Subcl(Σ) de-
scribe addititional physics, or are they just artifacts of the mathematical
construction?

• The characterization of distributive joins given in theorem (4.6.6) is for a
restricted class of complete lattices. Can this be generalized to arbitrary
complete lattices, or even to meet semilattices, without the completeness
condition?
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