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Abstract

Classical structures are a mathematical tool for describing quantum

algorithms and protocols at a more abstract level than that of individual

qubits. This approach is similar to using high-level programming

languages with classical computers. We seek to use these tools to

understand topological quantum computing, a implementation strategy

for quantum computing that stores quantum information in topologically

protected states and manipulates quantum information using robust

topological operations. In this thesis, we identify all classical structures

within the toric code, one of the simplest and best-understood models

of topological quantum computation. After constructing complementary

pairs of classical structures in the toric code (that is, pairs that obey a

useful algebraic property), we discuss applications of these structures to

implementing quantum algorithms and protocols in the toric code.

Thesis Supervisors: Dr. Jamie Vicary and Professor Bob Coecke
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1 INTRODUCTION

The past century has witnessed an exponentially rapid increase in power

and decrease in cost of technologies that enable us to store and manipulate

information. This dramatic trend, often called “Moore’s Law”, has arguably

enabled much of the technological progress we enjoy today. But this increase

in computational power has thus far relied upon a decrease in component size,

and it is unclear how this could continue much further once the components are

at the atomic scale. Will progress in information technology stagnate when this

limit is reached?

Quantum computation is an emerging computational paradigm focused on

exploiting uniquely quantum phenomena for use in information processing that

may enable us to avoid this stagnation. Since quantum phenomena become

increasingly important as length scales of components are decreased, employing

quantum techniques will be necessary even to reach this limit. Furthermore,

quantum information technology seems to allow massive speedup for certain

classical computational problems.

One of the most pressing challenges of experimentally implementing a

quantum computer is the challenge of robust quantum information storage

and manipulation. In even the state-of-the-art physical implementations of

quantum information processors, extensive machinery and fastidious care are

required to prevent the computational system of interest from becoming coupled

to the surrounding laboratory environment. This coupling generally leads

either to errors in the storage or manipulation of quantum information or

to the corruption or destruction of a coherent quantum state in a process

called ‘decoherence.’ No implementation strategy for performing quantum

computation that is currently physically realizable manages to avoid all these

pitfalls.

Theoretical physicist and quantum computer scientist Alexei Kitaev pro-

posed an approach to quantum computation in 1997 that addresses these prob-
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lems in a new way [16]. This approach, called ‘topological quantum computing’,

requires the creation of anyons, which are quasiparticles (collective excitations

of electrons in a solid) confined to a surface that transform according to the

representation of a group when interchanged. The swapping of anyons creates

a braid in spacetime, the topology of which encodes the relevant features of the

quantum state. By creating pairs of anyons from the vacuum state, we may ini-

tialize an initial quantum state upon which to operate. Braiding these particles

in a particular way allows us to perform a computation upon that initial quan-

tum information. Finally, annihilating particles together allows us to measure

the outcome of that computation and obtain its output.

If a topological quantum computer could be created, it would avoid many of

the problems that most implementations of quantum computers suffer. When

the quantum state space depends only upon topology (that is, the quantum

information stored depends only upon the topological configuration of the

constituent anyons), the information these states encode is non-local. Generally,

errors that occur in quantum computations are the result of local processes, so

topological quantum state storage is inherently highly resistant to uncorrectable

errors.

This research is at the interface of computer science, physics, and

mathematics. The previous research that has been done on these problems

is often written using the terminology within one or another of these fields.

The approach taken to understand this topic employs the machinery of modular

tensor categories and graphical calculi.

In this thesis, we categorize indecomposable classes of classical structures

that can be embedded within the toric code. Informally, classical structures

capture the notion of classical bits, embedded within the quantum framework;

speaking more precisely, classical structures are special Frobenius algebra-

coalgebra pairings (‘special’ is used here as a technical term, which will be

defined later). These structures corroborate the fact that classical information

can be copied (represented by the comultiplication operation), unlike quantum
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information, which cannot be copied, as stated in the Quantum No-Cloning

Theorem. There exist non-trivial classical structures in the toric code model,

which corresponds to the quantum double group of Z2.

The next section will introduce the notion of quantum computation and the

promise of the topological quantum computation approach. This is followed

by a brief discussion of the mathematics of topological quantum computers:

structures called ‘unitary modular tensor categories’. Section 4 defines classical

structures and identifies all classical structures in the toric code. Section 5

discusses applications of these classical structures. Section 6 outlines some of

the many possibilities for further research.

2 QUANTUM COMPUTATION

We will first review the motivation for quantum computation in general, then

focus on topological quantum computation.

2.1 Quantum computation in general

A quantum computer is a computer that can use the full range of phenomena

described by quantum theory in its computing processes. Memory states in a

classical, or digital, computer can be written as a string of 0s and 1s. In a

quantum computer, however, states are described by a linear superposition of

(in general) all possible strings of 0s and 1s of some length n. (This is called an

n-qubit state.) This superposition is an element in a 2n-dimensional complex

Hilbert space.

This scheme seems to have much more power than classical computers

because a single state stores an exponential number of complex numbers

(exponential in the number of qubits). However, this is somewhat misleading.

A probability distribution over n bit states is similar, just with real numbers

between 0 and 1 instead of complex numbers. In neither probabilistic nor

quantum computation can each of these numbers be directly accessed, so neither
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of these approaches provide direct access to some kind of free parallel processing

power.

What quantum theory does allow that is an important difference from

probabilistic computation is a type of ‘negative’ probabilities are allowed.

Speaking very roughly and intuitively, these negative probabilities allow

algorithms that first generate a superposition over all possible bit strings, then

by exploiting the structure of the problem in question, subtract probability

amplitude from non-solution bit strings.

The idea of quantum computation was first suggested by Richard Feynman

[13]. The problem he hoped this type of computer could solve is that of the

simulation of quantum systems. This idea was proven to be theoretically sound

by Seth Lloyd [18]. To efficiently simulate a quantum system with n classical

states seems to require a digital computer to store 2n complex numbers (or be

forced to cleverly dissect the system into subunits that do not strongly interact).

In contrast, a quantum computer could simulate this system using n qubits. This

is a titanic difference in storage. To accurately store even a system consisting

of 100 strongly interacting electrons might use O(2100) ≈ O(1030) bytes of

memory, which easily exceeds the storage capacity of all digital computers, ever.

In a quantum memory, only O(100) qubits are required. As challenging as

making functional quantum memory has been for researchers, it seems at least

conceivable that 100 or 1000 qubits could be simultaneously manipulated. The

same cannot be said of a 21000 digital bit memory.

Since Feynman’s initial proposal, the idea of quantum computation has been

explored and refined. The computational model most generally employed has

three steps [12]: initialization, unitary evolution, and measurement. We should

be able to reliably initialize the computer to a known state, which is a ray in the

above-mentioned complex Hilbert space. Physically implementable evolution

(that only involves interactions within the computer and not outside of it) is

described by a unitary matrix operator (which is a function of time). This

unitary matrix rotates the state vector in the Hilbert space. Finally, the result
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of the computation is determined by measuring a physical observable of the final

state.

Other important algorithms exist besides the simulation algorithm. Most

famous is Peter Shor’s factoring algorithm [24], which showed that a quantum

computer can factor large numbers in a polynomial number of standard quantum

operations, or ‘gates’. This result generated intense interest in quantum

computation because of the importance of factoring numbers in the RSA public

key cryptography algorithm, which is widely used for secure commincation on

the Internet. The RSA algorithm is only effective because there is no known

classical algorithm for factoring a large composite number into its two prime

factors – A quantum computer with a few hundred qubits could defeat the this

cryptosystem.

In addition to quantum simulation and the Shor factorization algorithms,

quantum algorithms and protocols exist for quadratically faster search through

unstructured databases (the Grover algorithm), transmission of quantum

information using a fixed number of classical bits (‘quantum teleportation’),

and secure cryptographic key distribution (‘quantum key distribution’), among

others.

An important disclaimer is in order: There is no proof that the quantum

comptuational model is more powerful than the classical model; there is only the

evidence that some faster algorithms have been demonstrated in the quantum

model. Let’s compare the two models: In terms of computability theory, the

functions that can be computed by a quantum computer are exactly the same as

those that can be computed by a classical computer. Now consider complexity

theory: The relevant classes are BPP (bounded-error probabilistic polynomial

time), BQP (bounded-error quantum polynomial time), NP (non-deterministic

polynomial time), and PSPACE (polynomial space). These are defined as follows

[1]:

• BPP: solvable by a probabilistic Turing machine in polynomial time (as

a function of the input length) with error probability of less than 1/3
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(polynomially reducible to arbitrarily small error probability)

• NP: solvable by a non-deterministic Turing machine in polynomial time

• PSPACE: solvable by a Turing machine in polynomial space (as a function

of the input length)

• BQP: solvable by a quantum Turing machine in polynomial time with

error probability of less than 1/3 (polynomially reducible to arbitrarily

small error probability)

We know that BPP ⊆ BQP ⊆ PSPACE ([3] and [1]), but these are

weak constraints. Little has been proven about the complexity hierarchy for

classical computers, and we can say no more for quantum computers. If

BPP = PSPACE, quantum computers may have little or no advantage over

probabilistic classical computers. If this is not true, then quantum computers

might make tractable important problems that are otherwise intractible and

essentially impossible (generally, that means problems outside of BPP ).

One of the primary reasons that a large-scale quantum computer has not yet

been constructed is the high rate of errors that plague any system involving the

creation of coherent quantum states. Consider examples of implementations of

qubits such as ion traps or superconducting Josephson junctions. For states

to remain coherent in these systems, there must be nearly no interaction

between the quantum memories and the environment. Furthermore, the unitary

operations that constitute the computation must be executed at high levels of

precision – If a particular gate is only precise to within 1 part in 1000, then any

computations longer than 1000 of such gates may be unreliable.

How do we deal with errors? Two general strategies exist: Use error-

correcting software (called ‘quantum error-correcting codes’) or error-resistant

hardware. Calderbank, Shor, and Steane developed a quantum error-correcting

code [21]. These codes enable us to successfully perform arbitrarily long

quantum computations when error rates (prior to the use of the error-correcting
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scheme) are less than or on the order of 10−4 to 10−6 per gate [1]. Achieving

this low error rate is unfortunately a formidable experimental obstacle.

Digital computers use a combination of error-resistant hardware (via the

digital abstraction in microprocessor design) and error-correcting software (such

as parity bit checks). Quantum computation may benefit significantly from

advances in error-resistant hardware for qubit storage and manipulation. The

most developed candidate for this error-resistant hardware is to store qubits in

topologically-protected states and use topological operations to execute unitary

operations. This is called ‘topological quantum computation’, and will be the

focus of the rest of this thesis.

2.2 Topological Quantum Computation

Topological quantum computation is a paradigm of quantum computation

where we use topologically non-trivial quantum systems to achieve more robust

quantum information storage and manipulation.

A basic requirement for a working error-resistant quantum computer is that

the state of the system remain in a designated subspace of the whole Hilbert

space of possible states. The stationary states in a quantum system are its

energy eigenstates, that is, the eigenstates of the Hamiltonian. In general,

quantum systems will have an infinite tower of energy eigenstates that they

could be in. We only want the system to be in one of a particular finite subset

of these eigenstates; all other states are considered illegal and are therefore

errors. A necessary quality of an error-resistant quantum system is one for

which transitions out of this legal subset are suppressed.

How do we suppress these transitions? We take the most naive approach:

Construct a system with n degenerate (or very nearly degenerate – that is, much

smaller than the energy corresponding to the timescales on which the computer

will operate) energy eigenstates at the lowest energy (without loss of generality,

we will set this energy to zero). These will be our legal states. The lowest illegal

state will have energy ∆E above the lowest state. If ∆E is large – much larger
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than the energy corresponding to the timescales on which gates are executed –

then transitions out of the legal subspace will be highly suppressed.

Now that we have found a condition that keeps legal states from transitioning

into illegal states, we want to find how to perform stable and robust operations

on our n dimensional legal subspace. This question will be answered by

investigating the type of system we have constructed. If ∆E is sufficiently large,

we may approximate our system as having a Hamiltonian of H = 0, as long

as we only are manipulating states that lie within the ground state subspace.

According to the Schrödinger equation

i~
∂

∂t
|ψ〉 = H|ψ〉,

this means our states will not undergo any continuous evolution. This certainly

seems to lessen the possibility of unwanted transitions between states, but how

do we perform computations?

Since our requirements do not permit continuous evolution of the quantum

system, we consider discrete dynamics. These are possible when there are

identical particles in the ground state that may be interchanged without

changing the overall energy. This can be achieved (to a good approximation) by

moving them adiabatically and keeping them well-separated.

The dynamics of such a system become illuminated when we employ the path

integral formulation instead of the Schrödinger formalism. Then it becomes clear

that the amplitudes only depend upon the topology of the paths of these identical

particles. The action decomposes into components corresponding to distinct

topologies, and these components are otherwise constant. Such a theory is called

a ‘topological quantum field theory.’ Unlike general quantum field theories, a

mathematically precise formulation of topological quantum field theories exists

[26].

For point particles in 3+1 dimensions (meaning 4 dimensions: 3 spatial

dimensions and 1 time dimension) where the only topologically relevant features

are the point particles, there are only two possible operations that can occur

when two identical particles are exchanged. This is because exchanging two

13



identical particles twice is topologically identical to moving a single particle

in a loop that winds around the other particle. This loop can always be

homotopically deformed to a point, which means this interchange is topologically

trivial. Since only topological operations change the action, the action is

invariant under two swaps, so S2 = I, yielding possible eigenvalues ±1.

This yields the familiar result that fundamental particles are either fermions

(whose two-particle wavefunctions receive a multiplicative factor of −1 when

interchanged) or bosons (whose wavefunctions are unchanged; that is, are

multiplied by +1).

This is sufficiently rich to generate some of the most interesting phenomena

in physics, such as the Pauli exclusion principle. However, in 2+1 dimensions,

far richer phenomena result from considering only topological operations: In

2+1 dimensions, the double interchange of two identical particles is no longer

topologically trivial – in fact, they can in gerneral be exchanged an arbitrary

number of times. Adding more identical particles makes the range of possiblities

even richer.

The simplest of these new possibilities is that a complex phase factor eiφ

is acquired when two of these identical particles are interchanged by, say,

counterclockwise adiabatic rotation. This phase can have any value of φ ∈

[0, 2π). Thus m such rotations yields a phase factor of eimφ. Such particles are

called ‘anyons’ – The joke is that a class of such particles can have any phase (not

just ±1) when swapped. This type is labeled ‘Abelian’ because in a collection

of many of these particles, the order of such braiding operations is irrelevant –

The overall phases φ are simply added together to yield the overall phase.

A helpful analogy to anyon physics is the Aharonov-Bohm effect. In

an electromagnetic system, when charged particles are passed by a magnetic

solenoid (with negligible magnetic field outside of the solenoid – this can be

thought of as an isolated magnetic charge), they will acquire a path-dependent

phase, part of which is attributable to whether a component of the charged

particle wavefunction passed above or below the solenoid, or wound around the
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solenoid clockwise 17 times, or any other possible topologically distinguishable

configuration. Anyonic phenomena are similar to Aharonov-Bohm phenomena,

but now we consider both particle and solenoid to behave like charged particles

that we may move as we like.

More interesting than Abelian anyons are non-Abelian anyons – These

generally yield a unitary matrix operation on the wavefunction when particles

are braided. These matrices are in general non-commutative, so many possible

matrix operations may result from different orders of braiding operations. If the

resulting set of possible matrix operations is dense in the Lie group U(N), where

N is the number of anyons, then we can approximate (with arbitrary precision)

any unitary matrix operation on the wavefunction of the system by braiding

the anyons in the appropriate way. A quantum computer is universal if it can

perform any unitary operation during its computation, so non-Abelian anyon

systems with this property can be used to perform any quantum computation. In

fact, in anyon models that enable universal quantum computation, it is possible

to keep all anyons but one static and move only a single anyon to execute all

braiding patterns [25].

The mathematics of anyon braiding is encapsulated in the representation

theory of the braid group, which we will now briefly explain. The ‘braid group’

of N strands is defined by combinations of simple braid elements: σi is a group

element that corresponds to switching strand i with strand i + 1 by moving

the first over the second. This corresponds to rotating two neighboring anyons

around each other. The inverse of this operation is switching the strands by

instead moving the second over the first. When these group elements obey the

following relations (the second of which is illustrated in Figure 1)

σiσj = σjσi for |i− j| ≤ 2

σiσi+1σi = σi+1σiσi+1 for all i,

then they define the braid group.

The unitary operations that act on the wavefunctions of anyons when braided
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Figure 1: The non-trivial braid group relation (figure from [20])

are exactly representations of the braid group. One-dimensional representations

of the braid group correspond to Abelian anyons, and higher-dimensional

irreducible representations of the braid group correspond to non-Abelian anyons.

It is important to note that the topological quantum computation paradigm

is neither more nor less powerful than the quantum circuit model (the model

most commonly used to describe standard quantum computation). This means

that a topological quantum computer can efficiently simulate (that is, with at

most a polynomial increase in complexity) a sequence of gates proscribed in

the quantum circuit model [14]. Conversely, a quantum circuit can efficiently

simulate a computation performed by a topological quantum computer. This

means that the complexity classes of topological quantum computers exactly

coincide with those of any other quantum computer.

In our discussion of quantum computation in general, we said that the three

stages of a quantum comptuation are initialize, apply a unitary operation, and

measure part or all of the final state. We now describe how this maps onto

the topological quantum computing paradigm in particular. To initialize a

topological quantum computer, we create anyon quasiparticle–anti-quasiparticle

pairs from the vacuum. To execute unitary operations, we braid the anyons

we have created in a particular way, as discussed earlier. To measure our

result, we might do some combination of bringing some anyons closer together

and measuring how the energy of the system changes, allowing some pairs to

annihilate, and performing anyon interferometry.
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2.3 Topological Phases of Matter

There are no fundamental anyons in nature, but anyons can emerge as

quasiparticle excitations in topological phases of matter. A phase of matter

is labeled ‘topological’ if its low-energy effective field theory is a topological

field theory. Topological phases of matter that can perform topological quantum

computation have not yet been realized in the laboratory, but candidates include

fractional quantum Hall effect materials and frustrated magnetic systems. There

is a lot to say about the experimental realizations of topological phases of matter,

but this is outside the scope of this thesis.

Despite the fact we are investigating topological quantum computation as

a means to mitigate errors in quantum computers using hardware, some types

of errors may still occur. Here are two examples: Fluctuations occur in finite

temperature systems; these fluctuations can lead to anyon pair creation, which

could braid in undesireable ways with our other anyons without our knowledge,

corrupting the calculation. Second, topological charges could become trapped

(unbeknowst to us) on defect or impurity sites within our topological material

– Our other anyons would braid around these charges, again corrupting the

computation. These errors would have to be supressed, avoided, or reliably

detected to achieve working, error-free topological quantum computation.

2.4 Toric code quantum liquid model

Here we will introduce the model that we will use as our primary example

throughout this thesis: the toric code. It is called a ‘code’ because it is a physical

implementation of an error-correcting code. The toric code as a physical model

was first discussed in the context of quantum computation by Kitaev [16]. Our

description here will follow Pachos [22]; see either of these sources for further

details. In the next section on unitary modular tensor categories, we will give a

mathematically precise description of the toric code.

The toric code is a model of a particular type of quantum spin liquid. A
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quantum liquid is a liquid dominated by quantum fluctuations, as opposed

to thermal fluctuations; a quantum spin liquid is a quantum liquid where the

degrees of freedom are spins.

The toric code quantum spin liquid is constructed on a square lattice that lies

on the surface of a torus (hence the name). Spin-1
2

objects lie at the midpoints

of the links between lattice vertices. Each vertex is surrounded by 4 spins.

Similarly, each of the squares defined by the lattice, which we call ‘plaquettes’,

are bordered by spins in a similar manner. (We call the lattice defined by the

centers of these squares the ‘dual’ of the original lattice.) This can all be seen

in Figure 2.

Figure 2: Toric code lattice, including vertices and plaquettes (figure from [22])

The Hamiltonian that defines the toric code is

H = −
∑
v

A(v)−
∑
p

B(p)

where

A(v) = σxv,1σ
x
v,2σ

x
v,3σ

x
v,4

and

B(p) = σzp,1σ
z
p,2σ

z
p,3σ

z
p,4.

The σjv,i denotes the operator that acts upon the ith neighbor of vertex v with

the jth Pauli spin operator and is the identity operator on all other spins. A

similar definition applies to σjp,i for plaquette p. The Pauli spin operators are
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defined as

σx =

 0 1

1 0

 , σy =

 0 −i

i 0

 , σz =

 1 0

0 −1

 .

Let’s find the ground state(s) and excited energy states of this Hamiltonian.

One of the lowest-energy states is given by

|Φ〉 =
∏
v

1√
2

(I + A(v))|00...0〉,

where I is the identity operator. We will identify other states with the same

energy soon. Note that A(v) and B(p) commute with each other for all v and p,

and that |Φ〉 is an eigenstate with eigenvalue 1 of the A(v) and B(p) operators

for each vertex and plaquette.

What are the quasiparticle excitation in the toric code? We say that a state

|Ψe〉 of the toric code system contains a quasiparticle of type e located at vertex

v if

A(v)|Ψe〉 = −|Ψe〉.

Similarly, we say that a state |Ψm〉 of the toric code system contains a

quasiparticle of type m located at plaquette p if

B(p)|Ψm〉 = −|Ψm〉.

So the e quasiparticles live on the vertices, and the m quasiparticles live on the

plaquettes. If we bring an e and an m quasiparticle together so the e is located

on one of the corners of the plaquette containing the m particle, we may treat

the two as a single excitation of a new type, which we will call an ε quasiparticle.

How do we create excited states from this ground state? We create excited

states by producing pairs of anyon quasiparticles, and we produce pairs by acting

on a ground state spin with a Pauli operator. If we act on a single spin with

a σx operator, we create a pair of e quasiparticles located at the neighboring

vertices (call them v1 and v2), as we see that

A(vi)σ
x
∗ |Φ〉 = −σx∗ |Φ〉
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for i = 1, 2, where by σx∗ we mean an operator that is the identity at every spin

except for the one located between v1 and v2. Analogously, if we act with a σz

operator, we create a pair of m quasiparticles located in the two neighboring

plaquettes. A system with 2 quasiparticles is at a fixed and finite energy above

the ground state energy (specifically, 2 units of energy, as two of the A or B

operators now have eigenvalue −1 instead of 1, and the Hamiltonian is the

negative of the sum of all the As and Bs). It therefore satisfies that necessary

(but not sufficient) requirement for a system to be topological.

Once we have created anyons, we can move them around (see [22] for details).

Creating and moving quasiparticles in the toric code is illustrated in Figure 3.

Figure 3: Creation and movement of e and m quasiparticles (figure from [22]) –

A σx operator at 1 creates a pair of e quasiparticles, and a σz operator creates

a pair of m quasiparticles

Like we can produce pairs of quasiparticles, we can fuse pairs by bringing

them together. For example, when we bring two e quasiparticles onto the

same vertex, they annihilate, leaving no quasiparticles. The rules for how

quasiparticles fuse (‘fusion rules’) are the following:

e⊗ e = m⊗m = ε⊗ ε = I, e⊗m = ε, e⊗ ε = m,m⊗ ε = e,

where I denotes the local state with no particles and ⊗ is a commutative

operation that represents the physical process of bringing two quasiparticles

together.
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If we fuse a pair of e quasiparticles without moving them far from their

initial locations, the system returns to the ground state |Φ〉. However, if we

transport one of the quasiparticles all the way around the torus before fusing,

we obtain a topologically distinct ground state. It is a ground state because

there are no excitations, but it is topologically distinct because the loop created

by the quasiparticle pair is not contractable to a point. We can create two

other ground states in this manner (by making a loop in the other direction,

and by making a loop in each direction), for a total of 4 ground states. It turns

out that loops operators constructed with m or ε quasiparticles can be written

as linear combinations of these 4 loop operators (where we are including the

no-loop operator) [22].

Since we have 4 distinct ground states, we can use this system as a quantum

memory to store 2 qubits: we could call the 4 ground states |00〉, |01〉, |10〉, and

|11〉. It is a robust quantum memory because any errors on a few isolated spins

can be corrected. To cause an error that can’t be detected and corrected, errors

must occur such that they form (or nearly form) a loop. But the probability

of this happening becomes exponentially smaller as the size of the torus is

increased. Therefore if our local error rate is reasonably small and our torus

size can be made large, the toric code can be used as a robust quantum memory.

A higher genus surface can store more quantum information because there are

more possible loop combinations.

It can be shown by straightforward (if long) calculations where we manipulate

the spins that the e and m particles are bosons – by interchanging two by

incrementally moving each particle, we find that the state picks up no phase

factor. In contrast, these same type of calculations show that the ε quasiparticles

are fermions, and that looping an m around an e (or vice versa) also produces a

factor of −1. This demonstrates concretely that 2+1 dimensional anyon models

can have new kinds of particle statistics: Here, the two types of bosons can act

like fermions when brought together or looped around each other, phenomena

that don’t occur in 3+1 dimensional systems.
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The toric code is the simplest non-trivial quantum double model. It is the

quantum double of the group Z2 = {1,−1}×, denoted D(Z2). Quantum double

groups D(G) can be defined for any group G: Each lattice site corresponds

to a superposition over all of the elements of the group G, instead of just

superpositions of 0 and 1 (the elements of Z2). We will focus on the toric

code D(Z2) as our primary example in this thesis, but future work may extend

to more general quantum double groups.

3 UNITARY MODULAR TENSOR CATEGORIES

Unitary modular tensor categories (UMTCs) are mathematical structures that

will help us understand the physics of topological quantum field theories; using

these mathematical structures can help us design better algorithms and protocols

within the topological quantum computing paradigm. Grounding the discussion

of quantum algorithms in categorical language is useful when the underlying

category is that of finite-dimensional Hilbert spaces (called FHilb). We would

like to know whether results extend when considered in the context of modular

tensor categories.

The reason we are interested in unitary modular tensor categories in

particular is because all modular tensor categories leads to a 2+1 dimensional

topological quantum field theory (actually, each modular tensor categories leads

to two 2+1 dimensional topological quantum field theories) [26]; the converse

relationship, that all 2+1 dimensional topological quantum field theories can be

extended uniquely to a compatible modular tensor category, is conjectured [28].

We will employ the graphical calculus described in [7] and [15].

3.1 Basic categorical definitions

A category C is comprised of

• a collection of objects Ob(C)
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• for each A,B in Ob(C), a collection of morphisms C(A,B)

• for each f in C(A,B) and g in C(B,C), a morphism g ◦ f in C(A,C)

• for every A in Ob(C), a morphism idA in C(A,A)

such that h ◦ (g ◦ f) = (h ◦ g) ◦ f and f ◦ idA = idB ◦ f .

As an example, in the category Set, the objects are sets, the morphisms

are functions between sets, the identity morphism on any object is the

identity function on that set, and morphism composition is given by function

composition.

Our primary running example will be FHilb, the category of finite-

dimensional Hilbert spaces. In this category, objects are finite-dimensional

Hilbert spaces, morphisms are bounded linear maps, the identity morphism is

the identity map, and composition is given by composition of linear maps.

The structure of a category contains objects and all the relationships they

share, encoded in the morphisms. The most discussed relationship between

caetories is that of a ‘functor’. Given categories C and D, a functor F : C → D

is defined by the following:

• for each object A ∈ Ob(C), an object F (A) ∈ Ob(D)

• for each morphism f ∈ C(A,B), a morphism F (f) ∈ D(F (A), F (B))

such that F (idA) = idF (A) for every A ∈ Ob(C) and F (g ◦ f) = F (g) ◦ F (f) for

all morphisms f ∈ C(A,B) and g ∈ C(B,C) (given any A, B, C in Ob(C)).

For functors F,G : C → D, a natural transformation α assigns (for each

A ∈ Ob(C)) a morphism αA : F (A) → G(A) such that αB ◦ F (f)(F (A)) =

G(f) ◦ αA(F (A)). If for all A ∈ Ob(C), αA is an isomorphism, then α is called

a ‘natural isomorphism’.

We now define a notion of two categories having essentially the same

mathematical structure: An equivalence of categories between two categories

C and D is a pair of functors F : C → D and G : D → C such that F ◦ G is

naturally isomorphic to IdD, and G ◦ F is naturally isomorphic to IdC.
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3.2 Monoidal categories

A monoidal category is a category C along with the following data:

• a functor ⊗ : C × C → C called the tensor product

• a distinguished object I ∈ Ob(C) called the unit object

• a natural isomorphism αA,B,C : (A ⊗ B) ⊗ C → A ⊗ (B ⊗ C) for all

A,B,C ∈ Ob(C)

• a natural isomorphism ρA : A⊗ I → A for all A ∈ Ob(C)

• a natural isomorphism λA : I ⊗ A→ A for all A ∈ Ob(C)

that satisfies the Coherence Property: all well-formed equations constructed

from ◦, ⊗, identity functions, and the above natural isomorphisms and their

inverses are satisfied. A property that involves all well-formed equations may

sound challenging to check, but fortunately the Coherence Theorem due to Mac

Lane greatly simplifies this task [19].

Monoidal, or ‘tensor’, categories are useful for describing combined systems

that can be operated upon in parallel. Morphism composition denotes serial

operations and tensor composition denotes processes that occur in parallel and

systems that are treated as side-by-side.

This sort of description is used all the time in physics, especially in quantum

physics, which is why the paradigm of monoidal categories is useful in this

case. We can naturally give FHilb a monoidal structure: The tensor product

is the Kronecker product ⊗, the unit object is the 1-dimensional Hilbert space

(identical to the complex numbers without 0), α is trivial because the Kronecker

product is associative, and ρ and λ are defined by scalar multiplication.

Unitary modular tensor categories are monoidal categories with additional

structure and properties. For full technical details, see [28]. We will give an

informal summary of these properties:

24



• Braided This provides a swapping (in 3 dimensions, like a braid) between

neighboring objects connected by a tensor product. An R-matrix describes

how a braided pair of systems is related to an unbraided pair. The

symmetric property means that the 3rd dimension is irrelevant (braiding

over is the same as braiding under). FHilb has this property, but the

categories that describe anyons do not.

• Rigid Rigidity means there is a dual object to every object. This allows

us to capture the notion of antiparticles.

• Twisted Introducing a twist structure allows us to incorporate the non-

trivial transformations to the wavefunction that result when a particle is

rotated by 2π.

• Abelian and semisimple This means that there are simple objects

(analogous to irreducible representations, they denote the anyons for our

applications), and every object can be constructed from a finite direct

sum (or biproduct ⊕; see [19]) of simple objects. There are fusion rules

associated with every pair of objects, such as e⊗m = ε.

• Modular This implies that the braiding is non-trivial, in a specific sense.

• Unitary, or † This implies that there is a functor † from the oposite of

the category (see [19]) to the original category. When applied twice, the

† operator gives the identity. In the graphical calculus, it flips a diagram,

bottom-to-top.

3.3 Toric code category

We are specifically interested in quantum double categories D(). The definition

of quantum double categories can also be found in [28]. We will deal with only

D(1) = FHilb (where 1 denotes the trivial group) and D(Z2), which is the toric

code.
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We provide for completeness the full mathematical data that specify the toric

code quantum double unitary modular tensor category (from [23]):

Anyon types: {I, e,m, ε}

Fusion rules: e⊗ e = m⊗m = ε⊗ ε = I, e⊗m = ε, e⊗ ε = m,m⊗ ε = e

Quantum dimensions: {1, 1, 1, 1}

Twists: θ1 = θe = θm = 1, θε = −1

Braidings: Re,e
1 = Rm,m

1 = Re,m
ε = 1, Rε,ε

1 = Re,ε
m = Rm,ε

e = Rm,e
ε = −1

S-matrix: = 1
2


1 1 1 1

1 1 −1 −1

1 −1 1 −1

1 −1 −1 1


F-matrices: F a,b,c

d = (1) for all a, b, c, d

4 CLASSICAL STRUCTURES

We now discuss the motivation for studying classical structures. Most quantum

computation and quantum information science research is discussed at the level

of qubits and general unitary operations on those qubits. This seems analogous

to discussing digital computer code at the level of assembly or machine language

– manipulating individual bits, bytes, words, and registers. But in the case of

digital computers, this level of writing code and thinking about computation

is not scalable to large or interesting programs: It is difficult for humans to

easily write or understand anything but the simplest programs written in such

a language because it is so low-level.

Higher-level programming languages were developed so we could more easily

write, reason about, and debug software. Could a similar move be as useful in

the field of quantum computation? It certainly seems possible. We investigate

classical structures because they are an important part of such a higher-level

apparatus for understanding quantum algorithms and protocols.

Classical structures play the role of classical bits (equivalently copyable
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states, or orthonormal basis states) within the larger space of quantum states.

This is important because even in a quantum computer we generally want to

input and read out classical information from our computations or protocols.

As we will demonstrate, these classical structures are crucial to the quantum

algorithms and protocols that have been discovered so far, including quantum

teleportation and the Deutsch-Jozsa, Grover, and hidden subgroup (including

as a specific case Shor) algorithms.

The Quantum No-Cloning Theorem states that there is no physical process

that can exactly clone all quantum states. However, processes exist that clone

particular quantum states: specifically, a set of basis states. Concretely, in

FHilb such a unitary is defined by U |i〉|0〉 7→ |ii〉 for all basis states |i〉. (Note

that U fails to successfully copy any superposition of basis states.)

We will define general classical structures, then define a relationship between

two classical structures called complementarity. This relationship is useful for

explaining the structure of common algorithms. We then explicitly identify

classical structures and write the condition for complementarity in the toric

code.

4.1 Definition of classical structure

Here we give a mathematically precise definition of a classical structure: (We will

follow [8] and [15], using figures from [27].) In one sentence, a classical structure

in a †-monoidal category is a commutative special †-Frobenius algebra. We’ll

define each of these new technical terms:

Before we can define a Frobenius algebra, we should define monoids and

comonoids in monoidal categories.

A monoid in a monoidal category (C,⊗, I) is a triple (A,m, u) where

A ∈ Ob(C), and m : A⊗ A→ A and u : I → A satisfy

m ◦ (m⊗ idA) = m ◦ (idA ⊗m)
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and

m ◦ (idA ⊗ u) = m ◦ (u⊗ idA) = idA,

If we represent M and u as

then these conditions can be depicted as

and

Analogously, a comonoid in a monoidal category (C,⊗, I) is a triple (A, d, e)

where A ∈ Ob(C), d : A→ A⊗ A, and e : A→ I satisfy

(d⊗ idA) ◦ d = (idA ⊗ d) ◦ d

and

(idA ⊗ e) ◦ d = (e⊗ idA) ◦ d = idA,

We represent d and e as
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respectively. The comonoid conditions are then depicted in the following

diagrams:

and

A monoid (A,m, u) is called commutative when m ◦ swap = m. A

comonoid (A, d, e) is cocommutative when swap ◦ d = d. A Frobenius algebra

is commutative when its monoid and comonoid are both commutative. The

commutativity condition may be depicted in the graphical calculus as

where the swap operation on the left hand side is ambiguous because it does not

matter whether the braid goes over or under for the condition to be satisfied.

Cocommutativity is written analogously:
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A Frobenius algebra (which might be more appropriately called a ‘Frobenius

pair’) in a monoidal category (C,⊗, I) is a monoid and comonoid pair (A,m, u)

and (A, d, e) that satisfy

(m⊗ idA) ◦ (idA ⊗ d) = d ◦m = (idA ⊗m) ◦ (d⊗ idA).

In the graphical calculus:

We call a Frobenius algebra a †-Frobenius algebra when m = d† and u = e†.

A Frobenius algebra is special when m ◦ d = idA, depicted as

There is an equivalence of categories between commutative †-Frobenius

algebra pairs and 1+1 dimensional topological quantum field theories [17].

We are therefore seeking to categorize (special) 1+1 topological quantum field

theories that are within 2+1 topological quantum field theories.

In FHilb, classical structures are in a one-to-one correspondence with

orthonormal bases [8]. Let {|i〉|1 ≤ i ≤ N} be the orthonormal basis

corresponding a classical structure (H,m, u), where H is a Hilbert space of

(finite) dimension N . Then

m

(∑
i

Di|ii〉+
∑
i 6=j

cij|ij〉

)
=
∑
i

Di|i〉,

which implies

m†

(∑
i

Di|i〉

)
=
∑
i

Di|ii〉
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for any coefficients Di and cij that specify a legal state in H, and

u(·) =
∑
i

|i〉,

where we have disregarded the normalization of states. It is straightforward to

check that these definitions satisfy the definition of a classical structure (up to

normalization of states).

4.2 Complementary bases

The higher-level quantum programming concept of a classical structure captures

the notion of classical bits or basis states. The concept of a ‘complementary

bases’ captures the notion of bases that are (in a particular sense) maximal

superpositions of these basis states. This construct appears frequently in

quantum algorithms, and we formalize it now.

Definition. Two classical structures, denoted by black and white dots, in a

category C over object A ∈ Ob(C) are complementary exactly when the following

equation is satisfied:

(1)

where we define

=

for both the black and white classical structures, and for both ‘cups’ and ‘caps’.

Once again we will use FHilb as an example: Let {|φi〉} and {|ψj〉}

be basis elements of a finite-dimensional Hilbert space H. These bases are
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complementary if and only if

|〈φi|ψj〉|2 =
1

dim(H)

for all basis element indices i, j. A simple example is the pair of bases

{|0〉, |1〉} and {|+〉 =
1√
2

(|0〉+ |1〉) , |−〉 =
1√
2

(|0〉 − |1〉)},

which are complementary because |〈+|0〉|2 = |〈−|0〉|2 = |〈+|1〉|2 = |〈−|1〉|2 = 1
2
.

Theorem 4.1. Two classical structures are complementary if and only if

√
dim(A)× (idA ⊗M2) ◦ (M †

1 ⊗ idA)

is unitary [15].

In graphical notation, this unitary is denoted [15]

In FHilb, if we use classical structures corresponding to the {|0〉, |1〉} and

{|+〉, |−〉} bases, this unitary is the CNOT gate that is frequently used in

quantum algorithms:

CNOT =


1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0


4.3 Classical structures in the toric code

The results presented in these sections are novel calculations. First, we will

explicitly construct 3 isomorphism classes of classical structures in the toric code.

Then we will prove that these are the only indecomposable classical structures.
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4.3.1 Explicit construction of classical structures in the toric code

Let’s look for classical structures over the object I ⊕ e. (As we will later discuss

a bit more, the mathematics of this object will be essentially the same as that

of I ⊕m.) To construct an algebra over this object, we need to identify monoid

morphismsM : (I⊕e)⊗(I⊕e) = (I⊗I)⊕(I⊗e)⊕(e⊗I)⊕(e⊗e) = 2I⊕2e→ I⊕e

and u : I → I ⊕ e.

We want to translate these abstract morphisms to concrete matrices. This

is simplified vastly for the toric code because the associator operations are

trivial; in general, we must use the appropriate F matrices when changing the

associative structure. Transitions between odd and even quasiparticle-number

subspaces are forbidden, so our monoid matrices will have the following form:

M =

 mII 0 0 mee

0 mIe meI 0

 , u =

 uI

0


To satisfy the commutative condition, conditions for (I⊕e,M, u) to be a monoid,

and Frobenius condition for monoid (I ⊕ e,M, u) and comonoid (I ⊕ e,M †, u†),

we have

mII = mIe = meI =
1

uI
.

To further satisfy the specialness condition, we have

|mII | = |mee| =
1√
2
.

A general solution to these equations yields the following monoid:

m =
eiφ√

2

 1 0 0 eiδ

0 1 1 0

 , u =

 e−iφ
√

2

0


This defines a comonoid (I ⊕ e,M †, u†). Together these constitute a general

classical structure in the toric code over the object I ⊕ e.

All of these classical structures are isomporphic to each other, as we will now

demonstrate. Consider two classical structures of the form above with monoids

(I ⊕ e,M, u) and (I ⊕ e,W, n), which are specified by the phases φm,δm and
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φw, δw, respectively. We require that there is a morphism σ : I ⊕ e → I ⊕ e,

which we may write as,

σ =

 s1 0

0 se


(where s1 and se are non-zero) such that

σ ◦M = W ◦ (σ ⊗ σ), σ ◦ u = n

Such a σ is given by

σ =

 exp [i(φm − φw)] 0

0 ± exp
[
i
2
(δm − δw + 2φm − 2φw)

]
 .

Therefore there is an isomorphism between each of these possible classical

structures.

Before considering classical structures over I ⊕m, we mention the following

fact: The e and m objects behave in essentially the same ways. More precisely,

there is a fully faithful functor (where fully faithful means that there is a bijection

between the sets of morphisms; see [19] for a precise definition) F from the toric

code to itself that maps e 7→ m and m 7→ e. This functor allows us to construct

an algebra (I ⊕m,F (µ), F (η)) that has the same properties as (I ⊕ e, µ, η), so

the latter is a classical structure. Furthermore, the classical structures derived

in this way have a one-to-one correspondence with the classical structures over

I ⊕ e. We have therefore also fully characterized the classical structures over

I ⊕m.

Finally, we note the existence of the trivial classical structure on the object

I. We are looking for monoid (I,M0, u0) where M0 : I ⊗ I = I → I and

u0 : I → I. These functions therefore only be complex scalar multiplication.

Call these multiples m and u, respectively. The classical structure conditions

imply

|m|2 = 1 and um = 1,

which has solutions

m = eiθ, u = e−iθ
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for any θ ∈ [0, 2π).

4.3.2 Proof that these are all of the indecomposable classical

structures in the toric code

We say a classical structure (C, µC , ηC) is decomposable if there exist classical

structures (A, µA, ηA) and (B, µB, ηB) (where neither A nor B are the zero

object) such that C = A ⊕ B. A classical structure is indecomposable if such a

decomposition is not possible. If we classify all of the indecomposable classical

structures, then we have by extention classified all classical structures because

the rest can be constructed from the indecomposable classical structures.

Our classification is aided by a theorem below. To state this theorem, we

must first define 2-cocycles:

Definition. Let γ : F×F → C× be a function such that for every f, g, h ∈ F ,

γ(f, g)γ(fg, h) = γ(g, h)γ(f, gh)

This is called a 2-cocycle of F . The set of 2-cycles (over C) is denoted Z2(F,C)

Lemma [2]. Every 2-cocycle (of F ) is equivalent to one with the following

properties:

1. γ(e, k) = γ(k, e) = 1 (This is called a normalized 2-cocycle.)

2. γ(k, k−1) = 1

3. |γ(k, l)| = 1

4. γ(k−1, l−1) = γ(l, k)−1,

for all k, l ∈ F , where e is the identity in F .

A correspondence between classical structures and properties of the group G

in D(G) is established in the following theorem, due to Davydov [10]:

Theorem 4.2. Indecomposable special commutative Frobenius algebras in D(G)

correspond to quadruples (H,F, γ, ε), where H is a subgroup of G, F is a normal
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subgroup of H, γ is a 2-cocycle in Z2(F,C), and ε : H × F → C satisfies

εgh(f) = εg(hfh
−1)εh(f), g, h ∈ H, f ∈ F

γ(f, g)εh(fg) = εh(f)εh(g)γ(hfh−1, hgh−1), h ∈ H, f, g ∈ F

γ(f, g) = εf (g)γ(fgf−1, f), f, g ∈ F

Let’s consider what this theorem implies for D(Z2). We see that there are 3

candidates for (H,F ) pairs, where H and F are as specified in the statement of

the theorem: We have (1, 1), (Z2,Z2), and (Z2, 1), where 1 is the trivial group

{e}.

Now we must find which unique γ and ε correspond to each (H,F ) pair.

It turns out that there is only one unique possibility for each pair. For

completeness, we will show the details of this calculation, starting with the

pair (1, 1). By the previous lemma, we may assume that γ is normalized,

so γ(0, 0) = 1. Then the third condition in the theorem implies ε0(0) = 1.

Therefore, our first quadruple is (1, 1, 1, 1).

Moving on to the pair (Z2, 1), we may use the previous lemma again to show

that γ(0, 0) = 1 by the first property. And once again the third condition in the

theorem implies that ε0(0) = 1. By the first and second conditions respectively,

we have ε0(0) = ε1(0)2 and ε1(0) = ε1(0)2, so ε1(0) = 1. Our second quadruple

is thus (Z2, 1, 1, 1).

Finally, we consider perform this calculation for the pair (Z2,Z2). As before,

γ(f, g) = 1 for all f, g ∈ Z2 by the lemma. By the third condition of the theorem,

this means that εf (g) = 1 for all f, g ∈ Z2. Our third and final quadruple is

therefore (Z2,Z2, 1, 1).

We have explicitly constructed 3 indecomposable classical structures in the

toric code. The theorem implies that there should be exactly 3 indecomposable

commutative special Frobenius algebras in the toric code, so therefore at most

3 indecomposable classical structures (which add the requirement of being

†-Frobenius). We have therefore explicitly constructed all indecomposable

classical structures in the toric code.
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4.4 Complementary bases in the toric code

We now search for complementary bases in the classical structures corresponding

to the I ⊕ e object. (Our results will carry over to the classical structures on

the I ⊕ m object.) These must satisfy Equation 1, as discussed previously.

Pick arbitrary parameter values for two classical structures, and determine the

conditions (if any) under which they are complementary:

m =
eiφm√

2

 1 0 0 eiδm

0 1 1 0

 , u =

 e−iφm
√

2

0



w =
eiφw√

2

 1 0 0 eiδw

0 1 1 0

 , n =

 e−iφw
√

2

0


To simplify the calculation, we first calculate this subdiagram (figure from

[15]):

which yields  e2i(φw−φm) 0

0 e2i(φw+δw−φm−δm)


The left side of the complementarity condition in Equation 1 is

ei(φw−φm)

 2 0

0 1 + ei(δw−δm)


and the right side is

ei(φw−φm)

 2 0

0 0

 .

Therefore, the two classical structures are complementary exactly when the

following condition is satisfied:

1 + exp [i(δw − δm)] = 0
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which can be written as

cos

[
δw − δm

2

]
= 0.

If we set φm = φw = 1, then we obtain a pair of complementary classical

structures:

M =
1√
2

 1 0 0 1

0 1 1 0

 , u =
√

2

 1

0

 .

This classical structure copies the states

|+〉 =
1√
2

 1

1

 and |−〉 =
1√
2

 1

−1

 ;

that is,

M †(|+〉) = |+〉 ⊗ |+〉 and M †(|−〉) = |−〉 ⊗ |−〉.

W =
1√
2

 1 0 0 −1

0 1 1 0

 , n =
√

2

 1

0

 .

This classical structure copies the states

| ←〉 =
1√
2

 1

i

 and | →〉 =
1√
2

 1

−i

 ,

so

W †(| ←〉) = | ←〉 ⊗ | ←〉 and W †(| →〉) = | →〉 ⊗ | →〉.

These classical structures copy states corresponding to X and Y directions on the

Bloch sphere. There is no classical structure that copies the state corresponding

to the Z direction because this would violate conservation of anyon charge.

5 APPLICATIONS OF CLASSICAL STRUC-

TURES

Many of the most important quantum algorithms and protocols can be expressed

in a topological form, constructed from classical structures, using the graphical
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calculus [27]. These algorithms and protocols are specified over the category

FHilb. We will begin to explore how they may be generalized to work over

other modular tensor categories by giving some first results for the toric code.

5.1 Quantum teleportation protocol

We will first describe the standard quantum teleportation protocol, then discuss

how an anyonic teleportation protocol might be implemented in the toric code.

5.1.1 Standard teleportation protocol

The standard quantum teleportation protocol allows one party (who we call

Alice) to send a qubit to another party (who we call Bob) by sending two

classical bits. This protocol requires that Alice and Bob share a bipartite (i.e.

two-qubit) state called a ‘Bell state’, which is one of the following 4 states:

|Φ±〉 = |00〉 ± |11〉

|Ψ±〉 = |01〉 ± |10〉

Alice possesses the first qubit and Bob possesses the second. We will assume

that they specifically share the |Ψ〉 state. Note that this state and the other

Bell states are all entangled; that is, they cannot be written as a tensor product

of two single-qubit states. Suppose Alice and Bob measure their state in the

computational basis (i.e. {|0〉, |1〉}): If she measures |0〉, then Bob is guaranteed

to measure |0〉; similarly, if she measures |1〉, then Bob is guaranteed to measure

|0〉.

The following is the quantum teleportation protocol: Alice and Bob share

the Bell state |Ψ〉, and Alice has a qubit |χ〉 that she wishes to transmit to Bob.

First, she performs a projective measurement of her two qubits (|χ〉 and her half

of the Bell state). She gets one of four outcomes. She sends the outcome to

Bob, encoded in two classical bits. Let’s say they have predetermined that

00 means |Φ+〉 was measured, 01 means |Φ−〉 was measured,
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10 means |Ψ+〉 was measured, and 11 means |Ψ−〉 was measured.

When Bob receives this information, he applies the appropriate unitary to his

qubit:

I2 for 00, σz for 01

σx for 10, and iσy for 11

Bob then possesses a qubit in the same state as the one that Alice originally

had (which was destroyed in this processes).

5.1.2 Teleporting toric code anyons

Using the complementary classical structures we have found in the toric code, we

can see that the teleportation protocol, specified in the completely positive map

formalism as described in [5] (using the directed graph conventions from [6]) is

valid. We need to retain the directed graph conventions because the toric code

classical structures form a Y/X calculus and not a Z/X calculus, as mentioned

in Section 4.4. Due to the charge conservation condition, there is no way to

transform one into the other.

One of the primary differences in the toric code is that to satisfy conservation

of anyon charges, Alice must have a channel that sends a charge to Bob. But they

don’t need to maintain this charge in a coherent quantum state, only a binary

‘charge / no charge’ channel would be necessary. We can obtain this by bringing

together the two I ⊕ e states at a vertex v and performing a measurement of

charge state A(v). The other classical channel would contain the result of a

measurement of the phase between the two I ⊕ e input channels.

It is not yet clear how to connect the complementary classical structure

formalism with the physical steps of the protocol. Anyon teleportation is

discussed from a different perspective by Bonderson [4].
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5.2 Deutsch-Jozsa algorithm

The Deutsch-Jozsa algorithm [11] was the first quantum algorithm discovered

that was provably better than any possible deterministic classical algorithm. It

solves the Deutsch-Jozsa problem: We are given a function f : {0, 1}n → {0, 1}

which is guaranteed to be either constant (f(x) = a for all x with a ∈ {0, 1}

a constant) or balanced (f outputs 0 for half of all possible inputs and 1 for

the other half). The task is to determine whether the function is constant or

balanced. For a deterministic classical computer, this can only be achieved with

certainty after 2n−1 + 1 evaluations of f . With a quantum computer, only a

single evaluation of f is necessary. See [21] for further details.

We will show here that the Deutsch-Jozsa algorithm cannot be implemented

directly in the toric code because the only permissible functions are balanced

functions. This means the Deutsch-Jozsa problem cannot even be posed in a

non-trivial way because only one answer is possible.

5.2.1 Standard Deutsch-Jozsa algorithm and comonoid homomor-

phisms

Our explanation of the details of the Deutsch-Jozsa algorithm will follow [27]

because the algorithm is presented at a high level, in terms of classical structures.

Functions that are permitted for the Deutsch-Jozsa algorithm must be comonoid

homomorphisms.

Definition. A function f : A⊗n → A, where A⊗n = A ⊗ ... ⊗ A (n times),

is a comonoid homomorphism for a comonoid (A, d, e) if the following equation

holds:

d ◦ f = (f ⊗ f) ◦ Pn ◦ d⊗n (2)

e ◦ f = e⊗n, (3)

where

Pn = (id
⊗(n−1)
A ⊗ swap ⊗ id⊗(n−1)A ) ◦ (id

⊗(n−2)
A ⊗ swap ⊗ swap ⊗ id⊗(n−2)A )◦

... ◦ (idA ⊗ swap⊗(n−1) ⊗ idA).
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This is the graphical form of the conditions for n = 1 (figure from [27]):

The notion of comonoid homomorphism is all that is needed to argue that

the Deutsch-Jozsa problem may become trivial and uninteresting in the toric

code, which we will explain in the next section.

5.2.2 The Deutsch-Jozsa problem in the context of the toric code

In the toric code, the permissible functions for the I⊕e channels are of the form

fn=1 =

 FI 0

0 Fe

 , fn=2 =

 FII 0 0 Fee

0 FIe FeI 0

 ,

fn=3 =

 FIII 0 0 FIee 0 FeIe FeeI 0

0 FIIe FIeI 0 FeII 0 0 Feee

 , ...

To satisfy the second comonoid homomorphism condition (Equation 3), we must

have FI = FII = ... = 1 with all other top-row entries set to 0.

In the cases n = 1, n = 2, and n = 3, the functions that both obey the

comonoid homomorphism property for the classical structures associated with

I⊕e and not violate conservation of anyon number are exactly those that satisfy

f(x)⊕ f(1n⊕ x) = 1 for all x ∈ {0, 1}n. We are abusing notation here: by x we

mean a representation of the bits of x in the natural basis for these functions:

{|+〉, |−〉}. Thus 00...0 corresponds to | + + + ...+〉, 100...0 corresponds to

|−++ ...+〉, etc. We may conjecture that this equation is satisfied for all n-to-1

functions.

For any function f that satisfies f(x) ⊕ f(1n ⊕ x) = 1 for all x, f is a

balanced function. This is because for every x such that f(x) = 0, there is a

distinct y = 1n ⊕ x such that f(y) = 1. If the only legal functions are balanced

42



functions, then the Deutsch-Jozsa problem is trivial and uninteresting for the

toric code: The algorithm will always output the only possible answer.

Though it seems that the Deutsch-Jozsa problem is uninteresting in the

context of the toric code, the Grover search algorithm, Simon’s algorithm, and

hidden subgroup problems in general might still be interesting. Their high-level

forms in terms of classical structures are similar to the Deutsch-Jozsa algorithm

[27], so understanding the toric code form of these algorithms is a logical next

step.

6 SUMMARY OF RESULTS AND DISCUS-

SION OF FUTURE RESEARCH DIREC-

TIONS

In this thesis, we reviewed the motivation for quantum computation in

general and topological quantum computation in particular; we reviewed basic

definitions and results in monoidal category theory and discussed how unitary

modular tensor categories relate to the physics of topological systems; and we

introduced the concept of classical structures and explained how they are useful

in quantum algorithms and protocols. This material is a literature review. The

new results presented were

• the classification of all classical structures in the toric code model

• the construction of all complementary pairs of classical structures in the

toric code model – the fact that complementary pairs exist immediately

means that it may be possible to implement standard quantum algorithms

using anyons in the toric code

• preliminary applications of these tools to implementing quantum algo-

rithms in the framework of the toric code.
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These results are just the beginning of a program to discover classical

structures within topological quantum field theories and use classical structures

to develop new algorithms and protocols that specially take advantage of the

robustness of topological quantum computers. Here are some future directions

to be pursued as a part of that program:

• Determine how other standard quantum algorithms and protocols can be

implemented with classical structures in anyon models. We discussed

teleportation and Deutsch-Jozsa algorithms in the toric code, but

the Grover search and hidden-subgroup algorithms have similar forms

to Deutsch-Jozsa [27]. The quantum key distribution protocol for

cryptography relies primarily on complementary classical structures [9],

so this would be another candidate.

• Search for classical structures and complementary pairs in other low-rank

unitary modular tensor categories, such as the Fibonacci anyon model.

This seems like a promising direction because if classical structures exist,

the simplest may be discoverable by semi-automated brute-force search.

Finding (or failing to find) simple classical structures in other low-rank

unitary modular tensor categories may point to more general conjectures

about the existence of classical structures and complementary pairs.

• Construct classical structures and complementary bases in D(S3). This

model is interesting because S3 is the smallest non-abelian group. Since a

general theorem that categorizes indecomposable classical structures in

quantum double models has already been produced by Davydov [10],

it should be possible to determine when all indecomposable classical

structures have been constructed. It seems possible that these classical

structures will have novel applications because D(S3) has a richer structure

than D(Z2).

• Prove results about classical structures and complementary bases in

quantum double categories in general.
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• Determine how braiding is related to unitaries built from classical

structures. Demonstrations of computational universality in anyon

systems generally rely upon showing that some set of braids generates

a dense subset of a unitary Lie group, implying that these braids

can approximate any gate within that Lie group arbitrarily well. Are

there models for which interesting gates can be implemented exactly by

executing certain braids? Perhaps this question could be approached is

by elucidating relationships between braids and classical structures in

particular models or in general.

Topological quantum computers present the possibility of intrinsically robust

quantum information storage and manipulation. Classical structures point

toward the possibility of a more intuitive language for programming quantum

computers. Using these approaches together, we can hope to develop new, more

effective approaches to quantum computer engineering.
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