
!-Logic

First-Order Reasoning for Families of Non-Commutative String Diagrams

David Quick

University College

University of Oxford

A thesis submitted for the degree of

Doctor of Philosophy

Trinity 2015

Acknowledgements

Firstly, I would like to thank Carmel College Darlington, in particular Dr Janice Gorlach,

for sparking my interest in Mathematics and inspiring me to study it further. I would

like to thank Dr Andrew Ker and Professor Peter Howell for giving me the opportunity

not only to study but also teach Mathematics at the University of Oxford. Without their

continued support I doubt I would have completed my undergraduate degree.

I would like to thank Professor Bob Coecke and Professor Samson Abramsky for giving

me the opportunity to continue my education in the form of a DPhil at this amazing

university. Being able to work with such incredible academics has been an absolute

privilege. To Dr Aleks Kissinger, who supervised the final years of my DPhil, I cannot

express the gratitude I feel. Not only did Aleks pave the way for my research, but he

also gave me invaluable advice at every stage along the way.

This thesis would not have been possible without funding from the Engineering and

Physical Sciences Research Council. I would also like to thank the administrative staff

at both University College and the Department of Computer Science, in particular Julie

Sheppard, for helping me navigate the bureaucratic paperwork.

I would like to thank my friends, both in and out of Oxford, without whom I would have

surely finished much sooner. Thank you for the many distractions and for those still to

come.

Finally, I would like to thank my family. To my parents, I cannot portray the immense

debt of gratitude I have for everything you have given me over the past 26 years. Without

you I would literally not exist. To my sisters, without whom I would not wish to exist,

I thank you for the endless support and encouragement. I can only hope to have given

you as much joy as you have given me.

Abstract

Equational reasoning with string diagrams provides an intuitive method for proving

equations between morphisms in various forms of monoidal category. !-Graphs were

introduced with the intention of reasoning with infinite families of string diagrams by

allowing repetition of sub-diagrams. However, their combinatoric nature only allows

commutative nodes. The aim of this thesis is to extend the !-graph formalism to remove

the restriction of commutativity and replace the notion of equational reasoning with a

natural deduction system based on first order logic.

The first major contribution is the syntactic !-tensor formalism, which enriches Penrose’s

abstract tensor notation to allow repeated structure via !-boxes. This will allow us to

work with many noncommutative theories such as bialgebras, Frobenius algebras, and

Hopf algebras, which have applications in quantum information theory.

A more subtle consequence of switching to !-tensors is the ability to definitionally extend

a theory. We will demonstrate how noncommutativity allows us to define nodes which

encapsulate entire diagrams, without inherently assuming the diagram is commutative.

This is particularly useful for recursively defining arbitrary arity nodes from fixed arity

nodes. For example, we can construct a !-tensor node representing the family of left

associated trees of multiplications in a monoid.

The ability to recursively define nodes goes hand in hand with proof by induction. This

leads to the second major contribution of this thesis, which is !-Logic (!L). We extend pre-

vious attempts at equational reasoning to a fully fledged natural deduction system based

on positive intuitionistic first order logic, with conjunction, implication, and universal

quantification over !-boxes. The key component of !L is the principle of !-box induction.

We demonstrate its application by proving how we can transition from fixed to arbitrary

arity theories for monoids, antihomomorphisms, bialgebras, and various forms of Frobe-

nius algebras. We also define a semantics for !L, which we use to prove its soundness.

Finally, we reintroduce commutativity as an optional property of a morphism, along with

another property called symmetry, which describes morphisms which are not affected by

cylic permutations of their edges. Implementing these notions in the !-tensor language al-

lows us to more easily describe theories involving symmetric or commutative morphisms,

which we then demonstrate for recursively defined Frobenius algebra nodes.

Contents

1 Introduction 1

2 Background: Reasoning with Diagrams 11

2.1 Monoidal Categories . 11

2.1.1 Symmetric Traced Categories . 13

2.1.2 Compact Closed Categories . 17

2.2 Commutativity and Graph Notation . 18

2.2.1 String Graphs . 20

2.2.2 Frobenius Algebras . 22

2.3 Families of Diagrams and !-Graphs . 22

2.3.1 !-Boxes . 23

2.3.2 !-Graphs . 25

2.3.3 Z/X-Calculus . 27

2.4 Rewriting . 28

3 !-Tensors 31

3.1 Tensors . 31

3.1.1 Tensor Diagrams . 31

3.1.2 Tensor Notation . 35

3.1.3 Interpretation . 36

3.1.4 Rewriting . 38

3.2 !-Tensors . 40

3.2.1 !-Tensor Diagrams . 40

3.2.2 !-Tensor Expressions . 41

3.2.3 Concatenation . 46

3.3 Working with !-Tensors . 48

3.3.1 Forests . 48

3.3.2 !-Box Operations . 49

v

3.3.3 Instantiation . 58

3.3.4 !-Tensor Equations . 60

3.4 Definitional Extension . 63

3.4.1 Recursive Definitions . 65

3.5 Encoding !-Tensors as !-Graphs . 66

3.5.1 Simple Overlap and Neighbourhood Orders 66

3.5.2 The Encoding Map . 68

4 A Formal Logic 75

4.1 !-Formulas . 75

4.1.1 Quantification . 75

4.1.2 !-Formulas . 77

4.2 The Rules of !L . 81

4.3 Derived Rules . 83

4.4 Induction Examples . 85

4.4.1 Monoid . 85

4.4.2 Antihomomorphism . 89

4.4.3 Bialgebra . 90

4.5 Semantics . 95

4.6 Soundness . 98

5 Node Types 103

5.1 Symmetric Morphisms . 103

5.2 Commutative Morphisms . 109

5.3 Commutative Bialgebra . 113

6 Working Example: Frobenius Algebras 117

6.1 Arbitrary Arity Input/Output Nodes . 117

6.1.1 Induction on Arbitrary Input/Output . 120

6.1.2 Combining Frobenius Nodes . 121

6.2 Symmetric Frobenius Algebras . 123

6.3 Commutative Frobenius Algebras . 129

6.4 Special Frobenius Algebras . 132

7 Conclusions 135

7.1 Future Work . 136

7.1.1 Implementation . 136

7.1.2 Self Dual Objects . 139

vi

7.1.3 Completeness . 139

A Reordering !-Box Operations 141

A.1 Instantiations . 143

A.2 Flip, Drop, and Copy . 145

B Induction on Arbitrary Input/Output 149

Bibliography 151

vii

viii

Chapter 1

Introduction

Many real world processes come with natural notions of sequential and parallel composition, these

are particularly prevalent in Mathematics, Physics, and Computer Science. Having two such or-

thogonal notions suggests we are working with something inherently two dimensional. In such cases,

reasoning using a standard one dimensional term based syntax is often counter-intuitive and hides

the deep underlying structure of the problem. Recently there has been a shift towards equational

reasoning using two dimensional graphical calculi, particularly employing different topologies on

string diagrams to naturally represent a large variety of monoidal categories.

Many algebraic and coalgebraic structures admit representations where the generating morphisms

can have variable arity. For example, an arbitrary arity multiplication operation can be defined to

replace the finite arity generators of a monoid. Reasoning about such morphisms involves describing

infinite families of string diagrams. !-Graphs were introduced as a formalism for dealing with such

families of string diagrams by allowing designated subdiagrams to be repeated. Unfortunately,

the combinatoric architecture underlying !-graphs restricts to only allow theories in which every

morphism is commutative, i.e. independent of the order of wires. Removing this restriction is the

first of the two main goals of this thesis. We expand upon work in [28, 30] presenting !-tensors, a

new formalism still allowing infinite families of diagrams but not making any assumptions about the

effect of permuting the wires of a morphism.

Previous attempts at diagrammatic reasoning have been based on substitution, where a !-graph

is rewritten by finding a subgraph which can be replaced by an equivalent but generally simpler

graph. This form of rewriting can be formalised in category theory as the double pushout graph

rewriting method [15, 34]. While rewriting allows for a large number of proofs to be formalised,

it crucially does not encapsulate proof by induction on !-boxes. Previous attempts at using proof

by induction have been largely ad hoc, with the only attempt to formalise it being in [39] where

the technique of fixing a !-box was introduced. This effectively freezes the !-box, no longer allowing

1

any operations to be applied to it. Fixing was introduced as a temporary measure until a suitable

logic could be developed allowing quantification over !-boxes. This thesis introduces such a formal

logic for !-tensors which we call !-logic (expanding upon work in [29]). !-Logic is based on positive

intuitionistic first order logic [18, 11] and allows conjunction, implication, and crucially universal

quantification over !-boxes. This allows us to formalise the principle of !-box induction, which is

vital if we wish to reason about families of diagrams.

The use of diagrams in physics can be traced back to at least the 1950s. Feynman Diagrams [22]

and diagrammatic representations of abstract tensor notation [40] can both be used as more intuitive

ways to represent spatial/temporal structures than the previous one dimensional term based syntax.

Abstract tensor notation [40] was developed by Roger Penrose as a notation to represent multi-linear

maps in a basis-independent manner. Penrose noted that it was the connectivity that was important

rather than the indices themselves and even introduced a graphical representation. The use of such

graphical notation was often held back by the technology of the time[41]:

The notation has been found very useful in practice as it greatly simplifies the appearance

of complicated tensor or spinor equations, the various interrelations expressed being dis-

cernable at a glance. Unfortunately the notation seems to be of value mainly for private

calculations because it cannot be printed in the normal way. (Spinors and Spacetime

vol. 1)

Advances in technology have resulted in a new excitement over graphical reasoning. The following

shows an example of how a term in abstract tensor notation can be visualised graphically:

a b

c

h

d

e

f

g

φ

ψ

χ

φabacdψ
de
fgχ

cg
h

(1.1)

A term of the form φa1...anb1...bm
, which represents a morphism φ with inputs a1 . . . an and outputs

b1 . . . bm, can be drawn as a box with input wires attached below and output wires attached above

(in their prescribed order).

2

a1

φφa1...an
b1...bm

an

bmb1

. . .

. . .

Contraction of repeated names in the tensor expression syntax is shown diagrammatically by

plugging an output wire into an input wire.

The categorical foundation for diagrams of this form comes from monoidal categories. Given

a monoidal category (C,⊗), we can choose to represent categorical composition vertically and the

monoidal product horizontally:

φφ : A→ B =

B

A

C

ψ : B → C =

B

ψ

ψ ◦ φ =

B

φ⊗ ψ =

C

B

ψ

A

φ

A

ψ

C

φ

The axioms of a category and a monoidal category can be seen to be trivial topological deforma-

tions of these diagrams. Hence when working pictographically we no longer need concern ourselves

with these axioms as they are inherently built-in to the notation. For example, the fact that identities

act as units for composition and functoriality of ⊗ are seen by:

φ
φ

φ
= =

φ ◦ 1A = φ = 1B ◦ φ

φ
=

ψ ψ′

φ′ φ′

ψ ψ′

φ

(ψ ⊗ ψ′) ◦ (φ⊗ φ′) = (ψ ◦ φ) ⊗ (ψ′ ◦ φ′)

Choosing which kinds of topological deformations are allowed to be applied to diagrams can

give us graphical languages representing a variety of additional structures associated with monoidal

categories. For example, in [20], Joyal and Street proved that a topology on progressive planar

diagrams (box and wire diagrams as in (1.1) except not allowing loops or wires to cross) directly

corresponds to the axioms of a monoidal category. Their proof demonstrates that progressive planar

string diagrams considered up to topological deformations, act as a free monoidal category. Here

the term ‘free’ means that two morphisms are equal if and only if they are equal up to the axioms

of the monoidal category.

3

Joyal and Street next demonstrated that allowing wires to cross, extends the topology to a free

symmetric monoidal category. They also suggested that the topology of non-progressive diagrams

corresponds to either free symmetric traced or compact closed categories, though a proof for this was

not published until [24].

These graphical notations have appeared in fields such as computational linguistics [23], control

theory [2, 3], and perhaps most prevalently in categorical quantum mechanics [1, 4, 5, 6]. For

example, †-special commutative Frobenius algebras (†SCFA) are of particular interest in categorical

quantum mechanics. We can describe their structure diagrammatically using four generators (with

the dagger operation flipping diagrams vertically)()
, , ,

along with nine equalities:

= = = =

==

Monoid Laws Frobenius Law

Comonoid Laws

=

=

Special Law

=

We can then reason with diagrams by rewriting (substituting subgraphs using the axioms):

= =

In the case of a †SCFA, it can be shown that the morphism represented by any connected

network of nodes depends only on the number of input and output wires. For example, the above

three diagrams, each with one input and two outputs, are all equal. This suggests a more concise

representation of a †SCFA, where we quotient over the internal structure of connected networks,

simply drawing them as single nodes with the correct number of inputs and outputs. The axioms

can then be replaced by a rule allowing two connected nodes to be combined, often referred to as a

spider law, along with a rule to simplify the special case of a node with a single input and a single

output:

.

.

=

.

. . .

=. . .

4

!-Graphs were introduced as a formalism to allow working with such families of diagram equations

with repeated structure [14]. A !-graph can contain subgraphs marked by blue boxes (called !-boxes)

which are allowed to be repeated.

represents
,,,,

. . .

A formal semantics for rewriting using graphs with !-boxes was given in [26] (making use of

adhesive categories [35]); this was implemented in the automated proof assistant Quantomatic [27]

(see [32] for details).

!-Graph equations represent families of concrete equations. For example, the following !-graph

equation has as instances all equations allowing two connected gray nodes to be combined to form

one node.

=

The problem with this existing formalism is its combinatoric representation, which has no means

of tracking the order of edges. If we wish to describe noncommutative bialgebras, Hopf algebras,

and Frobenius algebras we will need to introduce a new formalism. The first contribution of this

thesis is the introduction of two new pieces of diagrammatic notation to keep track of the order of

edges. To understand the first, imagine a single fixed arity circular node. We need to order the

node’s edges, in particular noting which is the first. We do this by adding a tick on the node before

the first edge counting clockwise.

a

c b

We can now read the edge labels of the above node in order as a, followed by b, followed by c.

The second notation deals with families of such diagrams. We need to specify where new copies of

edges from a !-box are added. We do this by drawing either clockwise or anticlockwise arrows over

edges entering !-boxes. We refer to these arrows as arcs.

a

c bB

The arc in the above diagram stipulates that when creating a new copy of the !-box B, we create

a new edge anticlockwise from c. To see how ticks and arcs together allow for noncommutative

theories, take the following !-tensor equation:

5

=
B

B

The difference in arc directions dictates the twisting property of this !-tensor equation’s instances:

=== =
,, ,

. . .

Along with the new diagrams we will introduce a new syntactic representation to replace the

combinatoric !-graph formalism. The syntax we introduce is based on Penrose’s abstract tensor

notation but adapted to deal with compact closed categories and to allow !-boxes.

An added advantage of noncommutativity is the ability to define a node to encapsulate an

entire diagram, often useful to reduce the size of large complicated diagrams. Attempting the same

for !-graphs assumes the diagram is commutative on inputs and outputs, which is often not the

case. Perhaps most significantly, these definitional extensions can be used to recursively define

variable arity nodes in terms of fixed arity nodes. As an example, take the following definition of

a family of arbitrarily sized left associated trees of comultiplications, defined in terms of a binary

comultiplication and its counit :

:= :=

We have drawn the arbitrary arity node slightly larger to help distinguish between them. To see

how this definition works we can unfold it on a node with three outputs:

= = = ==

The notion of recursive definition goes hand in hand with proof by induction. We would now

hope to be able to pass from statements about diagrams involving the finite arity nodes to statements

about families of diagrams involving the arbitrary arity nodes. To do this we introduce !-box

induction. Continuing with the comonoid example, suppose we have an additional two equations

describing how the fixed arity generators interact with a new white unit:

= =

6

We see that the white unit is copied by the fixed arity comultiplication, so we might suspect the

same is true of the arbitrary arity comultiplication. The statement of this can be written using the

new !-tensor language:

=

A
A

We might attempt to prove this using an induction principle for !-boxes:

=

A
A

=

A
A

= → =
A

(Induct)

A

Here we have split the problem into a base case with no copies of the !-box and a step case where

n copies implies n+ 1 copies. The base case is precisely one of our axioms; for the step case we use

the inductive hypothesis and the axioms in a rewriting proof:

=

A

=
A

=

A A

IH

Unfortunately, interpreting → as ‘the set of instances on the left implies the set on the right’

we find that this induction is invalid. The step case turns out to be vacuous, as the instances of

the right hand side are a subset of those of the left hand side. This is analogous to trying to apply

induction to first order logic by the rule (∀n.P (n))→ (∀n.P (n+ 1)), which is trivially true for any

proposition P . The reason for this problem is that the current equational reasoning approach takes

a !-tensor equation to mean truth of all instances. This makes it impossible to reason about the

individual instances as is necessary when applying induction. Instead we require the ability to talk

about !-tensor equations before quantifying over them. With this goal in mind we introduce explicit

quantification over !-boxes and use a turnstile symbol, `, to denote that formulas on the left entail

those on the right. We can hence fix our attempt at !-box induction to the following:

=

A
A

= ` =
A

(Induct)

∀A.
A

A

=

A

In this thesis we will present such a logic, called !-logic, allowing conjunction, implication, and

crucially universal quantification over !-boxes. We build !L as a natural deduction system based on

positive intuitionistic first order logic, encompassing !-box induction and prove it to be sound.

7

Throughout the thesis we present a number of purely diagrammatic proofs for algebraic structures

such as monoids, antihomomorphisms, bialgebras, and Frobenius algebras. We often demonstrate a

normal form result by transitioning to arbitrary arity nodes. In particular, the Frobenius algebra

example presents proofs of normal forms for symmetric, commutative, and special Frobenius algebras

which are more elegant than previous versions such as in [37].

In Chapter 2 we summarise the graphical reasoning background material necessary for the re-

mainder of this thesis. We start with the definition of a monoidal category, demonstrating the string

diagram topology corresponding to a free monoidal category. From monoidal categories we add

additional structure to define symmetric traced and compact closed categories, presenting each of

their free graphical languages.

We continue by describing the transition to string graph notation in the commutative case. String

graphs are presented as typed graphs, using dummy vertices to hold wires in place. In section 2.3

we describe how !-boxes allow reasoning with families of string graphs and present the definition of

!-graphs, which incorporates !-boxes in the string graph formalism.

Chapter 3 starts the original content of this thesis by developing a language for working with

families of noncommutative diagrams called !-tensors. We start by adapting the string graph notation

to track edge order by adding ticks to nodes. We then develop a syntax for such diagrams based on

abstract tensor notation. Next we add !-boxes to describe families of such diagrams and extend the

syntax to follow. Since !-boxes are used to add additional copies of a subdiagram, noncommutativity

means it is important to prescribe where new edges should be added, which we draw by either

clockwise or anticlockwise arcs over edges.

To retrieve the concrete diagrams represented by a !-tensor, we define !-box operations allowing us

to create new copies of the contents of !-boxes or remove them entirely. Instantiations are sequences

of such operations resulting in a concrete diagram, or if applied to a !-tensor equation resulting in a

concrete tensor equation.

One of the obvious benefits of !-tensors is the ability to represent theories with noncommutative

nodes such as antihomomorphisms, Frobenius algebras, and Hopf algebras. A much more subtle

benefit is the ability to definitionally extend a theory. Suppose we wish to define a new node to rep-

resent some diagram; even if each node in the diagram is commutative, there is no reason to believe

the combined diagram is. Hence defining such a node in the !-graph formalism makes an assumption

about its structure. Having fixed edge orders mean !-tensors allow such definitions, including re-

cursively defined arbitrary arity nodes. We demonstrate this process for trees of (co)multiplications

in a number of (co)algebraic structures in section 3.4.1 and see a particularly interesting case for

Frobenius algebras in chapter 6.

We conclude chapter 3 by demonstrating how !-tensors can be encoded as !-graphs with some

additional data (first seen in [43]). This is of particular importance in adapting the current graphical

8

proof assistant Quantomatic [27] to allow for noncommutativity. Implementing !-tensor reasoning

in this way would allow us to leverage the existing features of Quantomatic, including conjecture

synthesis, simplification procedures, and the exporting of diagrammatic proofs as LaTeX code.

Chapter 4 follows up the definition of !-tensors by describing a logic over !-tensor equations.

We explain the need for explicit quantification over !-boxes, which has so far been absent in the

literature. Previous attempts at reasoning with families of diagrams [39] have treated !-boxes in an

ad hoc manner, often relying on the ability to ‘fix’ a !-box so it is no longer allowed to have operations

applied to it. !-Logic rigorously formalises reasoning with families of diagrams by building universal

quantification of !-boxes into the proof language, allowing proofs which were previously unachievable.

We start by recursively defining !-Formulas from !-tensor equations and three connectives: con-

junction, implication, and universal quantification. Then in section 4.2 we introduce !-Logic (!L)

as a positive intuitionistic logic on !-formulas. The key accomplishment of this is formalising the

principle of proof by induction on !-boxes. We demonstrate the newly formalised induction for a few

examples in section 4.4 and again for Frobenius algebras in chapter 6.

In section 4.5 we define a semantics for !-formulas which extends to !-logic. This allows us to

prove soundness of !L by ensuring that each rule preserves truth with respect to the semantics.

Chapter 5 describes two properties which morphisms can possess. The first is symmetry, which

dictates that the morphism is not affected by cyclic permutations of the wires; the second is commu-

tativity, which dictates that the morphism is not affected by any permutation. In each of these cases,

the !-tensor notation obscures this edge order independence. To combat this we extend the !-tensor

formalism to allow morphisms to be tagged as either symmetric or commutative (both graphically

and syntactically) and build in their corresponding equivalences. Finally, we introduce metarules

describing when a morphism can be considered symmetric or commutative.

Chapter 6 consists of a case study to demonstrate the power of !-tensors and !-logic. We start by

presenting the definition of a (non-commutative) Frobenius algebra, which is not possible using !-

graphs. We then use our new ability to recursively define nodes to create an arbitrary arity Frobenius

algebra node. Next we use !-box induction to prove a theorem allowing connected nodes with aligned

ticks to be combined. We continue by introducing symmetric, commutative, and special Frobenius

algebras and using our metarules to transition from arbitrary nodes to symmetric and commutative

nodes. In each case we present purely diagrammatic proofs of spider theorems, allowing connected

networks of nodes to be combined to a single node. This results in a normal form for each kind of

Frobenius algebra.

The final chapter summarises the advancements made in this thesis and then suggests a few topics

for further research, specifically in the areas of extending the graphical formalism, implementing !-

tensors in an automated theorem prover, and proving completeness of !-Logic.

9

10

Chapter 2

Background: Reasoning with

Diagrams

This chapter summarises background knowledge on diagrammatic reasoning required to understand

the original content of this thesis, which will start in chapter 3. We start by taking the definition

of a category and extending it to a monoidal category which adds the notion of spatial composition

(via the tensor product ⊗) to the temporal composition of the category (◦). From here we present

a variety of different types of category, each with its own graphical notation. The key categories

we will be using in future chapters are symmetric traced categories and compact closed categories.

These are the building blocks underlying the graphical language of string diagrams with feedback

loops.

The second part of the chapter summarises !-graphs. This is a formalism for working with families

of diagrams where we assume all morphisms have commutativity of input/output wires. This allows

us to switch to a graph based notation which we represent via string-graphs.

Finally, we give a brief description of graph rewriting, which lets us substitute sections of a

diagram using !-graph equations.

2.1 Monoidal Categories

Definition 2.1.1 (Category). A category C consists of:

• a collection of objects, written ob(C);

• a collection of morphisms φ : A→ B for every pair of objects A,B, written C(A,B);

• a morphism ψ ◦ φ : A→ C called the composite, for every pair of morphisms φ : A→ B, ψ :

B → C with common intermediate object;

11

• a morphism 1A called the identity for each object A.

such that the composition operation (◦) is associative and has identities (1A) as units.

We can already represent morphisms in a category in a diagrammatic way. We draw functions

as boxes with domain object as an input wire below and codomain object as an output wire above.

Composition is then drawn by stacking morphisms vertically and identities are simply bare wires.

φφ : A→ B =

B

A

C

ψ : B → C =

B

ψ

ψ ◦ φ =

A

ψ

C

φ
A

A

1A =

Hence the conditions of associativity and units are implicit in the notation:

φ
φ

φ

= =

φ ◦ 1A = φ = 1B ◦ φ

φ

=ψ

χ ◦ (ψ ◦ φ) = (χ ◦ ψ) ◦ φ

χ

ψ

χ

φ

Definition 2.1.2 (Monoidal Category). A monoidal category C is a category C along with:

• a bifunctor ⊗ : C × C → C, called the tensor product;

• an object I called the tensor unit;

• three natural isomorphisms

αA,B,C : (A⊗B)⊗ C → A⊗ (B ⊗ C)

λA : (I ⊗A)→ A

ρA : (A⊗ I)→ A

such that the following diagrams commute:

αA,I,B

1A ⊗ λBρA ⊗ 1B

(A⊗ I)⊗B A⊗ (I ⊗B)

A⊗B

12

αA,B⊗C,D

1A ⊗ αB,C,DαA,B,C ⊗ 1D

αA⊗B,C,D αA,B,C⊗D

(A⊗ (B ⊗ C))⊗D A⊗ ((B ⊗ C)⊗D)

A⊗ (B ⊗ (C ⊗D))((A⊗B)⊗ C)⊗D

(A⊗B)⊗ (C ⊗D)

We say a monoidal category is strict if all three natural isomorphisms are identities. Maclane’s

coherence theorem [38] tells us that any well-typed equation built from α, λ, ρ, and their inverses

holds. As a result of this we can replace any monoidal category with the strictified version where

the natural isomorphisms act as identities. We can hence drop explicit use of α, λ, ρ, bracketing

and (when possible) units, writing A⊗B ⊗ C rather than (A⊗ (I ⊗B))⊗ C.

Having decided that composition using ◦ should be drawn as vertical placement, we can naturally

set the orthogonal notion of tensor composition as horizontal juxtaposition. Note that the tensor

unit, and identities on it, do not appear in our diagrams as they disappear in tensor products

A⊗ I = A, φ⊗ 1I = φ.

B

φ⊗ ψ =

C

B

ψ

A

φ 1I =

Equations such as the following then become implicit in the graphical notation. The first is

simply sliding morphisms past each other and the second (a consequence of ⊗ being a bifunctor) is

trivial:

φ

ψ φ
=

ψ ψ′

φ′ φ′

ψ ψ′

φ

(ψ ⊗ ψ′) ◦ (φ⊗ φ′) = (ψ ◦ φ) ⊗ (ψ′ ◦ φ′)

φ

ψ
=

(φ⊗ 1B) ◦ (1A ⊗ ψ) = (1B ⊗ ψ) ◦ (φ⊗ 1A)

2.1.1 Symmetric Traced Categories

So far our diagrams do not allow wires to cross (i.e. move left/right past each other) nor pass through

morphisms. We now present some extensions of monoidal categories allowing such flexibility of wires.

Definition 2.1.3 (Braided Monoidal Category). A braided monoidal category C is a monoidal

category C with an additional natural isomorphism called braiding:

σA,B : A⊗B → B ⊗A

such that the following diagrams commute:

13

σA,B⊗C

α−1
A,B,C

σA,B ⊗ 1C

αB,A,C

1B ⊗ σA,C

α−1
B,C,A

A⊗ (B ⊗ C) (B ⊗ C)⊗ A

(A⊗B)⊗ C B ⊗ (C ⊗ A)

(B ⊗ A)⊗ C B ⊗ (A⊗ C)

σA⊗B,C

αA,B,C

1A ⊗ σB,C

α−1
A,C,B

σA,C ⊗ 1B

αC,A,B

(A⊗B)⊗ C C ⊗ (A⊗B)

A⊗ (B ⊗ C) (C ⊗ A)⊗B

A⊗ (C ⊗B) (A⊗ C)⊗B

We draw σA,B and its inverse graphically as one wire crossing ‘over the top’ of the other:

σA,B = σ−1
A,B =

The following diagrams demonstrate that these representations are good choices for satisfying

the inverse property. They also demonstrate graphically that our braidings are not self inverse (by

which we mean σA,B and σB,A are not inverses) as it may have seemed from the definition.

= = 6=

Again many equations between morphisms in a braided monoidal category become implicit in

the graphical notation. We can see that morphisms can now ‘pass behind’ (or in front of) wires and

the Yang-Baxter equation becomes a trivial topological deformation.

=

φ φ
=

14

Definition 2.1.4 (Symmetric Monoidal Category). A symmetric monoidal category C is a braided

monoidal category C in which the braidings satisfy, for all objects A,B:

σ−1
A,B = σB,A

In this case we refer to the braidings as symmetries.

Diagrammatically this enforces the following:

=

Note that this diagram still fits into a spatial isotopy by imagining increasing from the three

dimensions of braided categories, where a wire in front of another cannot pass through it, to a four

dimensional isotopy. This allows us to smoothly deform between the two diagrams above by moving

one wire into the fourth dimension to navigate around the other wire. Hence we have seen that

categories, monoidal categories, braided monoidal categories, and symmetric monoidal categories

are inherently spatial isotopies with the number of dimensions increasing from one to four.

In each of these cases it has been shown that a well-formed equation between morphisms is true

from the axioms if and only if it is true diagrammatically under the prescribed spatial isotopy. This is

formalised in [20] where Joyal and Street defined progressive polarised diagrams. They demonstrated

how up to isomorphism these correspond to symmetric monoidal categories and up to a 3D framed

isotopy they correspond to braided monoidal categories. The former case has since been observed

to be equivalent to a 4D framed isotopy.

Having removed the inability for wires to pass through each other, we no longer have need for

wires passing above/below other wires. Hence to simplify the diagrams we replace the braiding

notation with a graphical version of the symmetry isomorphism.

σA,B = = σ−1
A,B

So far all of our diagrams have been progressive (no loops), but there are many physical systems

involving feedback which we would like to be able to work with. One way to add loops is via a trace

operation.

Definition 2.1.5 (Symmetric Traced Category). A symmetric traced category C is a symmetric

monoidal category C with a function called the trace:

TrXA,B : C(A⊗X,B ⊗X)→ C(A,B)

15

such that the following hold:

1. TrX((χ⊗ 1X) ◦ φ ◦ (ψ ⊗ 1X)) = χ ◦ TrX(φ) ◦ ψ

2. TrX(φ ◦ (1A ⊗ ψ)) = TrY ((1B ⊗ ψ) ◦ φ)

3. TrI(φ) = φ

4. TrX⊗Y (φ) = TrX(TrY (φ))

5. TrX(ψ ⊗ φ) = ψ ⊗ TrX(φ)

6. TrX(γX,X) = 1X

The trace operation has an intuitive notation as a feedback loop connecting the object being

traced out back to itself.

φ

B

A

X

X

XB

A

φTrXA,B :

Then the conditions above become trivial. Conditions 1 and 5 are implicit in the diagrams so

not shown here, 2 and 6 become intuitive sliding and yanking conditions.

φ

B

A

X

ψ

B

ψ
Y

φ

A

=

A

A

A

A

A

=

Conditions 3 and 4 become the following, where for clarity we have drawn a dotted line to

represent the tensor unit (not usually drawn) and the object X ⊗ Y has been drawn as a double

line.

φ

B

A

B

Iφ

A

= φ

B

A

X

B

X ⊗ Yφ

A

= Y

Thus symmetric traced categories are one formalism for adding feedback to planar diagrams.

Another such formalism is compact closed categories which we present now.

16

2.1.2 Compact Closed Categories

Many mathematical concepts come with a notion of duals. We will now show how objects with duals

can be used to allow wires to reverse direction and so lead to planar diagrams with loops.

Definition 2.1.6 (Dual Objects). For A,A∗ objects in a monoidal category, we say that A∗ is the

right dual of A (equivalently A is the left dual of A∗) if there exist morphisms ηA : I → A∗⊗A, εA :

A⊗A∗ → I such that the following diagrams commute:

1A ⊗ ηA

εA ⊗ 1A

1A

A

A⊗ A∗ ⊗ A A

ηA ⊗ 1A∗

1A∗ ⊗ εA1A∗

A∗ A∗ ⊗ A⊗ A∗

A∗

Given an object A which has a right dual A∗ we replace the usual undirected wires with wires

directed upwards for A and downwards for A∗. The morphisms η and ε can then be given intuitive

representations as a cup and cap respectively.

A

A

A

A A

A∗ A

A∗

AA

AA

εA =ηA =

The commutative diagrams then become the following diagrams (aptly named the yanking equa-

tions).

A

A

≡

A

A

AA

A

≡

A

In a braided monoidal category, being the left dual and being the right dual are equivalent, as

we can take a cap and cup for A and construct caps and cups for the dual A∗:

AA

AA

ηA∗ = εA∗ =

It is easy to see diagrammatically that these satisfy the yanking equation. In this case we refer

to A∗ as simply being the dual of A as in the following definition.

17

Definition 2.1.7 (Compact Closed Category). A compact closed category is a symmetric monoidal

category where every object has a dual.

Diagrams in a compact closed category (CCC) can be drawn as planar diagrams (with loops)

where all wires are directed.

φ

ψ

χ

A

A B

C

The cup and cap of a CCC can be used to construct a trace operation TrXA,B(φ) = (1B ⊗ εX) ◦

(φ⊗ 1X∗) ◦ (1A ⊗ σX,X∗) ◦ (1A ⊗ ηX) or graphically:

φ

A

B

X

X

XB

A

φTrXA,B :

The six trace axioms can then be checked diagrammatically.

Joyal and Street proved conversely that any symmetric traced category can be fully and faithfully

embedded in a compact closed category [21]. Hence from now on we will work with planar diagrams

with loops which we assume to represent an underlying CCC.

For a thorough guide to graphical languages for a large variety of monoidal categories see [44].

2.2 Commutativity and Graph Notation

A point is a morphism φ which has the tensor unit as its domain φ : I → X ⊗ . . . ⊗ Z. We have

a special notation for such morphisms taking advantage of the fact that (graphically) they have no

inputs.

φ

. . .
A C

φ

A

. . .
C

18

Given a morphism φ : X → A⊗ . . .⊗ C we can use the cups from our compact closed structure

to replace the domain object X with its dual in the codomain.

φ

A

X

φ

A X∗

=:φ

A X∗C C C

.

More generally we can replace all objects in the domain with their duals in the codomain. Hence

every morphism can be represented as a point. Note that we can return to the original morphism

using caps.

For simplicity let us assume that we are working in a CCC which has only a single generating

object type X, then objects are tensor products of X and X∗ and morphisms are points into these.

Since we have only one object type we can drop labels, with arrows pointing up representing X and

down representing X∗.

φ ψ χ

The notation of these points intrinsically allows us to track wires by position. For example, I can

describe the ‘first’, ‘second’, etc. wire counting from the left, hence assigning a total order on wires.

Definition 2.2.1 (Commutativity). The statement that a point φ is commutative is the imposition

that wire order is unimportant to φ. By this we mean that any well-formed equation of the form

σ ◦ φ = φ, where σ is constructed of symmetries and identities, holds.

φ
φ

σ =

Under the assumption that all points are commutative we can replace points with a graph based

notation removing the total order by drawing wires around a circular node.

φ
(2.1)

φ φ

19

The ordering of wires is completely meaningless in this new graphical notation. Hence the

following are examples of intrinsically equal graphs:

==

This suggests that we are working with something combinatoric in nature. Diagrams come from

a set of nodes and a set of directed edges.

Remark 2.2.2. Commutativity allows us to move edges representing the object X to the top of the

node and those representing X∗ to the bottom. Hence all nodes can be drawn as having input wires

entering from below and output wires exiting above. Similarly, each morphism can be represented

by a codomain of outputs X and a domain of inputs X (outputs of type X∗).

2.2.1 String Graphs

A common definition in graph theory is that of a directed graph, which is made up of a set of

vertices and a set of ordered pairs of vertices called edges. This definition does not allow edges to

be open at the ends as required for our diagrams. To replace the notion of edges with that of wires

(allowing open ends acting as inputs/outputs) we use a form of directed, typed graph called a string

graph ([12, 24]) which uses dummy vertices to encode wires. We refer to these dummy vertices as

wire-vertices and they are assigned a type to represent the object type of that wire. Other vertices

are referred to as node-vertices and are typed by the name of the morphism they represent. We

represent a wire as a chain of wire-vertices. If the start/end of a chain is a wire-vertex then this

represents an open input/output wire.

Typing of graphs is done by a graph morphism mapping vertices/edges to a typegraph which

stores the possible types and restricts which can be connected by edges.

Definition 2.2.3 (Typed-Graphs). A graph G along with a graph morphism τ : G → G is said to

be a G-typed graph.

Example 2.2.4. Take the following typegraph as an example:

G =

This dictates that if a graph G is G-typed then any white node must have two inputs and one output

and any gray node must have one input and two outputs. The following demonstrates a G-typed

string graph encoding of a diagram:

20

Definition 2.2.5 (Monoidal Signature). A (small, strict) monoidal signature is defined to be a 4-

tuple (O,M,dom, cod) where O andM are sets of objects and morphisms respectively and dom, cod :

M → O∗ assign morphism with lists of objects as domain and codomain.

In the commutative case (which we assume to be in for the rest of this section) we need not worry

about the order of elements in the lists and hence can take dom and cod to map into multisets over

O. We generally write φ : [X1, . . . , Xn]→ [Y1, . . . , Ym] for the morphism φ with domain [X1, . . . , Xn]

and codomain [Y1, . . . , Ym].

Definition 2.2.6 (Derived Typegraph). Given a monoidal signature T = (O,M,dom, cod), the

derived typegraph GT has vertices O]M , a self loop for each X ∈ O, an edge X → φ for each

X ∈ dom(φ), and an edge φ→ X for each X ∈ cod(φ).

Example 2.2.7. The monoidal signature T with morphisms φ : [X,X]→ [X] and ψ : [X,Y]→ [X]

has derived typegraph GT of the form:

X

φ ψ
Y

Given monoidal signature T = (O,M,dom, cod), a GT -typed graph (G, τ) has a set W (G) :=

{v ∈ G : τ(v) ∈ O} of wire-vertices and a set N(G) := {v ∈ G : τ(v) ∈M} of node-vertices.

Definition 2.2.8 (String Graph). Given a monoidal signature T , a GT -typed graph (G, τ) is called

a string graph if τ is arity matching for node-vertices (a bijection between the neighbourhoods of v

and τ(v) for each v ∈ N(G)) and each wire-vertex has at most one incoming edge and at most one

outgoing edge.

These restriction ensure that node vertices have their correct arities and wire vertices are con-

nected in chains without ‘splitting’ (since each chain represents a single wire). A wire point with no

incoming edge represents an input to the graph and a wire point with no outgoing edge represents

an output. We refer to the input vertices and output vertices together as the boundary. The set of

wire-vertices in a wire are referred to as the interior of that wire.

Since a chain of wire-vertices is supposed to represent a wire, and we only care about connectivity

of diagrams, the number of wire-vertices in a chain has no meaning. We refer to this equivalence

as wire homeomorphism. Two string graphs are wire homeomorphic if they are equivalent up to the

number of wire vertices in each chain. The following diagram demonstrates two wire homeomorphic

string graphs:

21

2.2.2 Frobenius Algebras

Frobenius algebras are one example of the advantages of switching to a graphical language. They

have been used extensively in the area of categorical quantum mechanics. To define the theory of a

commutative Frobenius algebra we first present the theory of a commutative monoid.

A commutative monoid is a commutative associative binary operation with a unit. We can

represent it graphically by having two generating morphisms:

,

()

along with three diagrammatic equations:

= = =

Monoid Laws

The theory of a commutative Frobenius algebra can be described by the combination of a com-

mutative monoid and a cocommutative comonoid (similar to a monoid except with all diagrams

flipped upside down) along with the Frobenius law governing their interaction. Hence the signature

and typegraph are:

T =

()
, , , GT =

and we prescribe that they satisfy the axioms:

= =

= =

==

Monoid Laws

Frobenius Law

Comonoid Laws

=

=

2.3 Families of Diagrams and !-Graphs

Looking back at the definition of a monoidal signature we see that there is no restriction that the set

of morphisms be finite. Suppose we have a theory which has infinitely many morphisms, one for each

possible number of input edges and each having one output. We could write these as φ0 : []→ [X],

22

φ1 : [X] → [X], φ2 : [X,X] → [X], . . . where we have indexed them based on number of inputs.

Rather than working with each individually, we would like to be able to make statements covering

all such φi. To do this we augment the graphical language to allow families of diagrams. Given

the infinitely many fixed arity generators we can instead talk about a single variable arity generator

φ. A graphical equation involving φ should then be considered to represent an infinite family of

graphical equations.

Take the definition of a commutative Frobenius algebra (CFA) as above, we see four generating

morphisms and eight equalities. This can actually be replaced by the easier to understand arbitrary

arity version. This involves a single generating node with an arbitrary number of inputs and an

arbitrary number of outputs (so representing a family of nodes) and only two (families of) diagram-

matic equations. The first, often referred to as a spider theorem, allows any two connected nodes to

be combined; the second replaces any node with a single input and a single output with an identity

wire.

. . .

. . .

. . .

.

.

. . .

= =T =

()

This notation better encapsulates the structure of a CFA by demonstrating that any connected

nodes can simply be merged together. However, the ellipisis notation above is clearly not rigorous

enough to be used as it is. Instead !-boxes were introduced in [13] and formalised in [26] to represent

sections of a graph which can occur zero or more times resulting in a family of graphs.

2.3.1 !-Boxes

We annotate a section of a graph which we allow to be repeated by drawing a blue box called a

!-box (pronounced bang-box) around it.

. . .

We refer to graphs with !-boxes as !-graphs. Families of equations can similarly be rewritten as

!-graph equations.

. . .

. . .= =

This equation states that a gray node with a single output wire is copied by our arbitrary arity

white comultiplication. !-Graphs and !-graph equations should represent (probably infinite) families

of concrete graphs and concrete graph equations respectively. To retrieve the concrete instances of

23

a !-graph or equation we require two !-box operations. The first is killing (denoted Kill) which is the

operation removing the !-box and all its contents (including wires entering/leaving the !-box) from

the graph. The second (denoted Exp) is expanding, which creates a new copy of the contents of the

!-box and attaches it to the same surrounding nodes. For example, applying them to a !-graph with

a single !-box around the input leads to the following tree with concrete graphs at the leaves.

ExpKill

ExpKill

ExpKill

Similarly, the !-box equation representing gray nodes being copied by white leads to a tree with

concrete equations at the leaves.

=

=

=

Exp

=

=

=

Kill

ExpKill

ExpKill

For now we take the meaning of such a !-graph equation to be the set of all concrete instances

retrieved by applying !-box operations in any order. Note that !-graphs can have multiple !-boxes

(denoted via upper-case Latin alphabet) and they can interact in a few different ways.

24

A A
B

A

B

B
B

A

In the first case the two !-boxes are in completely separate areas of the diagram, in the second

and third they are said to overlap as they share some content and in the final case B is said to

be nested in A (as indicated by the line between A and B). Nested means that when expanding

the outer !-box a new copy of the inner !-box is created (with a new name). We now give a formal

definition of !-graphs.

2.3.2 !-Graphs

To define !-graphs we must first extend our signature to allow generating nodes with arbitrary arity

and similarly extend our definition of a string-graph to match.

Definition 2.3.1 (Compressed Monoidal Signature). A compressed monoidal signature is a 4-tuple

(O,M,dom, cod) where O and M are sets of objects and morphisms respectively and dom, cod :

M → (O × {•,∞})∗ assign morphism with lists of objects which are either single tagged (•) or

variable tagged (∞).

Definition 2.3.2 (Derived Compressed Typegraph). Given a compressed monoidal signature T =

(O,M,dom, cod), the derived compressed typegraph GT has vertices O] M , a self-loop for every

X ∈ O, and for every φ ∈M :

• one •-edge from X to φ for each (X, •) in dom(φ);

• one •-edge from φ to X for each (X, •) in cod(φ);

• one ∞-edge from X to φ for each (X,∞) in dom(φ);

• one ∞-edge from φ to X for each (X,∞) in cod(φ).

Example 2.3.3. The compressed monoidal signature T with the two morphisms φ : [X∞]→ [X•]

and ψ : [Y •, X•]→ [X•] results in a typegraph GT of the form:

•

•∞

• •

φ
X

ψ Y

We continue to write W (G) for the wire-vertices (those mapped into O) and N(G) for the node-

vertices (those mapped into M). The •-tagged edges represent edges of fixed (single) arity whereas

∞-tagged edges represent edges of variable arity. This is important when we transition to !-graphs

where we need to be careful not to copy single arity edges.

25

Definition 2.3.4 (String Graph). A GT -typed graph (G, τ) is called a string graph if τ is arity-

matching (a bijection between the •-edge neighbourhoods of v and τ(v), for each v ∈ N(G)) and

each wire-vertex in G has at most one incoming edge and at most one outgoing edge.

!-boxes denote subsections of a graph which can be repeated many times but typed graphs do

not have a built in tool for highlighting such sections. We need to come up with a graph based

representation of such a section. We choose to represent a !-box B as a node (of the new type !)

with an edge to each vertex contained in B.

Definition 2.3.5 (Open). A subgraph O of a string graph G is said to be open if it is not adjacent

to any wire-vertices or incident to any fixed-arity edges.

Openness (as described in [39]) encapsulates the property of being able to repeat that part of

a graph an arbitrary number of times. It ensures adjacent edges are copied with nodes; fixed arity

edges are not copied without the adjacent node; and that wires cannot be partially inside a !-box

(to avoid wire splitting).

Definition 2.3.6 (Derived Compressed !-Typegraph). Given a compressed monoidal signature T ,

the derived compressed !-typegraph GT ! is GT with the addition of a vertex ! along with edges from !

to every vertex (including itself).

Example 2.3.7. Our previous example of the compressed monoidal signature T with morphisms

φ : [X∞]→ [X•] and ψ : [Y •, X•]→ [X•] results in a !-typegraph GT ! of the form:

•

•∞

• •

φ
X

ψ Y

If G is GT !-typed, write !(G) for the box-vertices in G (those mapped to !) and U(G) for the full

subgraph of G with all vertices except !(G). Given B ∈!(G) let C(B) be the full subgraph of G with

nodes which have edges from B. So C(B) represents the contents of a !-box B. We use this notation

in the !-graph conditions to ensure !-boxes are well-behaved under !-box operations.

Definition 2.3.8 (!-Graph). A GT !-typed graph G is called a !-graph if the following hold:

BG1. U(G) is a GT -typed string graph;

BG2. the full subgraph with vertices !(G) is posetal;

BG3. ∀B ∈!(G), U(C(B)) is an open subgraph of U(G); and

BG4. ∀B,B′ ∈!(G), if B′ ∈ C(B) then C(B′) ⊆ C(B).

26

Example 2.3.9. As an example, the arbitrary arity signature for a monoid has a single morphism

of type [X∞]→ [X•] and hence the derived !-typegraph is as follows:

∞

•

X

Some examples of valid !-graphs are:

∞

•

∞

•

∞

∞

•

∞

•

∞

•

•

B

A

A B

A

B

We have so far mentioned two !-box operations for a !-box B, namely KillB and ExpB as these

are the only operations needed to get all concrete graphs from a !-graph. More generally there can

be other valid operations to apply to !-boxes. We present four !-box operations by factorising Exp

into the composition of two distinct operations. DropB is the operation removing the !-box B but

leaving its contents and CopyB is the operation creating a new copy of not only the contents of B

but also B itself (with a new name). It follows that ExpB = DropB′ ◦CopyB where B′ is the new

name assigned to the copy of B created during CopyB . Since Exp can be written in terms of the

others we need only give definitions for Copy, Drop and Kill (similarly many theorems only require

proof for this minimal set of operations).

Definition 2.3.10 (!-Box Operations). Our three !-box operations are applied to a GT !-typed graph

by:

• CopyB(G) is defined by a pushout of inclusions in the category of graph morphisms between

GT !-typed graphs:

G\C(B) G

G CopyB(G)

• DropB(G) := G\B

• KillB(G) := G\C(B)

2.3.3 Z/X-Calculus

One particularly prevalent example of the use of !-graphs is in the Z/X-Calculus [5]. We present the

phase-free Z/X-Calculus which starts with two †-special commutative Frobenius algebras (†SCFA’s).

The rules of a †SCFA can be presented using arbitrary arity nodes as:

27

= ==

The first equation, often referred to as a spider diagram, allows us to merge any two connected

nodes; the second replaces nodes with a single input and a single output with an identity edge; and

the third removes loops.

If we draw one †SCFA (called Z) as white nodes and another (called X) as gray nodes and

add some additional rules governing their interaction then we get the phase-free Z/X-calculus. This

represents two complementary observables and has applications in quantum information theory.

The additional rules are the following four along with any vertically flipped and/or colour flipped

versions:

== == =

Other similar examples of graphical theories in the area of quantum information theory are

the trichromatic calculus [36] and the GHZ/W-calculus [9, 10] both of which are also based on

commutative Frobenius algebras. We will work more with Frobenius algebras in chapter 6.

2.4 Rewriting

Reasoning with string-graphs and !-graphs is done via rewriting. If we have an equation L = R then

we can choose a direction and decide that whenever L appears as a section of a diagram it should

be replaced with R.

Example 2.4.1. Using the Z/X-calculus axioms above we can use rewriting to simplify large dia-

grams:

= ==

For string-graph rewriting this substitution is implemented via the double-pushout (DPO) graph

rewriting method [35, 42]. Here we take a rewrite rule to be a span of graphs,

ji
I RL

28

where I is the interface of the rewrite rule (can be thought of as holding the boundary in place

as we remove/replace sections of a diagram). The interpretation is that we want to replace instances

of L with instances of R.

Definition 2.4.2 (String-Graph Matching). Given the above rule, a matching m : L → G is an

embedding of L in G such that we can find a pushout complement for m ◦ i:

m

i
I

D

L

G

Rewriting G to a new string-graph H is then done by an additional pushout:

j

m

i
I R

D H

L

G

from which we conclude G = H.

Here is a graphical representation of such a double pushout demonstrating the second equality

in example 2.4.1:

i

m

j

In [39] a similar method is described for matching, allowing !-boxes where we may have to apply

some !-box operations to the rule before we get a matching.

29

30

Chapter 3

!-Tensors

This chapter presents the first original contribution of this thesis, !-tensors. !-Tensors remove the

restriction of commutativity from the !-graph formalism while still allowing families of diagrams via

!-boxes. We start by defining a language for concrete tensor diagrams which are those without !-boxes

and then extend to allow families of concrete tensors. Along the way we present a few examples

of noncommutative theories and demonstrate how noncommutativity allows for recursively defined

nodes. We conclude the chapter by demonstrating how !-tensors could be encoded as !-graphs by

adding some additional data to the nodes. This is of particular use for implementing !-tensors in

Quantomatic [27].

3.1 Tensors

3.1.1 Tensor Diagrams

We continue to work in a compact closed category C and hence allow planar diagrams with wire

crossing and feedback loops. Recall from Section 2.2 that all morphisms can be written as points

(morphisms from the tensor unit I). Hence morphisms are of the form φ : I → X⊗Y ∗⊗ . . .⊗Y with

the tensor unit as domain and a tensor product over the generating object types and their duals as

codomain.

Recall that a monoidal signature (definition 2.2.5) describes a commutative theory by listing

(possibly infinitely many) morphisms, each with a domain and a codomain as words over the gener-

ating object types. This ability to split inputs/outputs into a domain/codomain respectively relies

on commutativity of the points. For !-tensors to allow noncommutativity, we introduce compact

closed signatures which generalise monoidal signatures. A compact closed signature describes a set

of generating points φ : I → X ⊗ Y ∗ ⊗ . . . ⊗ Y by listing them as pairs (φ,XY ∗ . . . Y) comprising

the morphism name and its codomain written as a word over the generating object types and their

31

duals. We often write such a morphism in the more intuitive function notation. For example, a

binary operation on X is most commonly written µ : X ⊗ X → X but, using dual types, will be

recorded in a compact closed signature as (µ,XX∗X∗).

Definition 3.1.1 (Compact Closed Signature). A compact closed signature Σ consists of a set of

objects O := {X,Y, . . .} and a set M of pairs (φ,W), where W is a word in {X,X∗, Y, Y ∗, . . .},

which we refer to as the morphisms.

Examples 3.1.2. These are the signatures of some of the theories we will revisit throughout this

thesis.

• The compact closed signature for a monoid has a single object type X and two morphisms

(µ,XX∗X∗) and (η,X) which we refer to as the multiplication and unit respectively. These

are more commonly written by the alternative notation:

µ : X ⊗X → X

η : I → X

We favour the latter notation for clarity of reading and continue it, where possible, for the

remainder of this thesis.

• Adding a homomorphism (or antihomomorphism) to a monoid means adding one additional

morphism θ : X → X to the signature.

• A bialgebra on X has signature consisting of multiplication, unit, comultiplication, and counit

morphisms:

µ : X ⊗X → X δ : X → X ⊗X

η : I → X ε : X → I

• Signatures can be infinite. For example, we will later see how the fixed arity signature of

monoids as above can be replaced by one containing a single arbitrary arity generator:

φi : X⊗i → X i ∈ N

Here φ represent a family of morphisms indexed by the number of inputs, each having a single

output. This represents the arbitrary arity version of the multiplication µ seen in the monoid

signature.

Definition 3.1.3 (Valuation). A valuation J−K : Σ→ C is a choice of object in C for each X ∈ O,

and a choice of point JψK : I → X1 ⊗X∗2 ⊗ . . .⊗Xn for each (ψ,X1X
∗
2 . . . Xn) ∈M.

32

Given a signature Σ = (O,M) we work in the free compact closed category Free(Σ) generated

from the objects O and morphismsM along with the building blocks of a compact closed category

(cups, caps, swaps, identities, ⊗, ◦) modulo the compact closed axioms. We can uniquely lift any

valuation J−K : Σ→ C to a functor J−K : Free(Σ)→ C.

For simplicity we will ignore typing of edges, assuming that there is only a single object type X

with dual X∗ in our signature. Hence we can drop types from the diagrams by having objects of

type X drawn as wires leaving a point and objects of type X∗ as wires entering the point.

φφ
:=

X X∗ X∗ X∗

ψ

X∗X

ψ
:=

X X

We hope to imitate the transition seen in (2.1) taking points to their graphical notation of nodes.

However in this case we do not wish to forget the total order on wires. To keep this information we

need to track which wires are considered to be the first, second, etc. We could do this by annotating

wires on nodes with numbers as shown in the following diagram:

ψ

a b

e

d

c

a b c d e

1 2
345

This allows us to commute edges as is possible in the !-graph formalism, so long as we commute

the numbers too. But the notation is difficult to write and it is slow to parse.

=

a b

e

d

c
e c

b

d

6=
a

a

d

b

ce

1 2
345

1
35

2 4
3

21

4 5

A better notation would be to ban edges from passing each other and count off edges starting

from a designated first edges and then following clockwise. We do this by adding a tick to our node,

then counting edges clockwise from the tick as first, second, third, and so on.

c d

φ

d

f

e

f e

c

ψ
φ ψ

baba a b

b a

Note that in the graph case we would usually move the output wire labelled d to the top but

that is no longer a valid deformation as we cannot change the order of edges.

d

e c

ψ

a b b

d

ψ

c

a

e

b

d

ψ

c

a

e

6=6=

33

Plugging of wires works as expected, caps between objects of type X and X∗ connect their

corresponding edges:

c d φ

d

f

e

f

e

c

ψ
φ ψ

(3.1)

We refer to these new diagrams as tensors (for reasons we will see shortly). Note that we need

to name the individual inputs/outputs to distinguish between them (which we do using lower case

letters). We will now drop the point notation and switch to these tensor diagrams.

Examples 3.1.4. We can now specify a theory by a signature and some tensor diagram axioms.

For the signatures from Example 3.1.2 we can specify corresponding laws:

• The multiplication and unit of a monoid can be written graphically as (,). This allows us

to replace the equational axioms µ◦(µ⊗1X) = µ◦(1X⊗µ) and µ◦(η⊗1X) = 1X = µ◦(1X⊗η),

called associativity and unit respectively, with their more intuitive diagrammatic counterparts:

= =

Monoid Laws

=
ΓM =

• Adding to the monoid above we can get either the theory of homomorphisms or antihomo-

morphisms on a monoid depending on which of the following axioms we take:

Antihomomorphism Laws

===

Homomorphism Laws

=

These are θ ◦ η = η and θ ◦ µ = µ ◦ (θ ⊗ θ) for the homomorphism case and θ ◦ η = η and

θ ◦ µ ◦ σX,X = µ ◦ (θ ⊗ θ) for the antihomomorphism case (where σ is the swap map).

• A bialgebra is made up of a monoid (,) and a comonoid (,) along with four axioms

governing their interaction:

34

= =

Bialgebra Laws

Monoid Laws

=

=

Comonoid Laws

= =

= =

= =

3.1.2 Tensor Notation

Clearly the previous !-graph formalism is unsuitable for tensors, as its combinatoric nature does not

store edge order. Instead we will present a syntactic formalism for tensors called tensor expressions

which extend Penrose’s Abstract Tensor Notation [40]. Nodes are written as their type with a

subscript listing edges in clockwise order from the tick. To track whether edges are outputs or

inputs we add a hat to outputs {â, b̂, . . .} and a check to inputs {ǎ, b̌, . . .}.

ψ

d

ce

ba

ψâb̂čd̂ě =

a

φf̂ ǎb̌ =

b

φ

f

To combine two tensors, as seen in (3.1), the two tensor expressions are written next to each

other. Hence the two examples above combine to form:

φf̂ ǎb̌ψâb̂čd̂ě =

f

ψ

φ

c

d

e

The outputs â, b̂ have been plugged into the inputs ǎ, b̌ via contraction of repeated names. Hence a

and b do not appear in the tensor diagram notation as they are implicitly bound. This demonstrates

the fact that tensor expressions are not unique representations of their corresponding diagrams.

After defining tensor expressions we will define an equivalence relation on them which encapsulates

the property of representing the same diagram. For example, the two expressions φf̂ ǎb̌ψâb̂čd̂ě and

φf̂ ǧȟψĝĥčd̂ě are equivalent as they are the same up to renaming bound names (a.k.a. α-conversion).

We need to add a couple of extra generators to our tensor expression language to take care of

some special cases. We will write 1âb̌ for the single wire from input b to output a and 1 for the

empty diagram.

35

Definition 3.1.5 (Tensor Expression). The set of tensor expressions TΣ for a compact closed

signature Σ consists of

• 1

• 1âb̌

• φâ...č (φ,X . . .X∗) ∈ Σ

• GH G,H ∈ TΣ

under the condition that neither â nor ǎ occur more than once for any edge name a.

The condition on φâ...č ensures the arrangement of input/output names matches the possible

arities of φ in Σ. For example, if Σ = {(φ,X), (φ,XX∗X∗)} then φâ and φĉǎb̌ are valid but φǎb̂č is

not as it requires the morphism (φ,X∗XX∗).

Definition 3.1.6 (Tensor Equivalence). Two tensor expressions are equivalent if one can be trans-

formed into the other by any number of α-conversions and identities:

(GH)K ≡ G(HK) GH ≡ HG G1 ≡ G

G1b̂ǎ ≡ G[b̌ 7→ ǎ] H1âb̌ ≡ H[b̂ 7→ â]

The first three are associativity, commutativity, and unit rules for the tensor product. Assume

for the last two identities that b̌ and b̂ are free in G and H, respectively. These two equivalences

demonstrate that plugging an edge into an identity morphism is the same as renaming the edge. We

write G ≡ G′ to mean G and G′ are equivalent tensor expressions.

Remark 3.1.7. We allow equivalent tensor expressions to be substituted for each other in the sense

that if G ≡ H then also GK ≡ HK (assuming both expressions are well-formed).

Definition 3.1.8 (Tensor). From definition 3.1.6 we see that ≡ is an equivalence relation. We

define a tensor to be an ≡-equivalence class of tensor expressions (i.e. a tensor for signature Σ is an

element of TΣ/ ≡).

Definitions 3.1.9 (Free/Bound Edges). For a tensor expression G we write free(G) for the set of

free edges in G (names appearing exactly once in G), we write bound(G) for the set of bound edges

(names appearing as both â and ǎ) and the union of these is edges(G). We naturally extend free(−)

to tensors as it is independent of choice of expression (whereas bound(−) is not well defined for

tensors).

3.1.3 Interpretation

Having defined tensors for a signature Σ, an obvious question is how they relate to morphisms in

Free(Σ). We might hope that each morphism has a unique representation as a tensor, but this is

36

not exactly the case. There is a mismatch between the two formalisms in how they track free wires.

Morphisms in Free(Σ) use position to refer to wires whereas tensors assign names to them. To relate

these different approaches we define the notion of being a canonically named tensor. Let {a1, a2, . . .}

be a fixed infinite set of canonical names.

Definition 3.1.10 (Canonically Named Tensor). A tensor is canonically named if for some n ∈ N

it has free names exactly one of âi or ǎi for each i ≤ n.

Theorem 3.1.11. Canonically-named tensors are in 1-to-1 correspondence with points in Free(C).

Proof. To prove this, we describe the construction depicted in (3.1) in more detail. This technique is

very similar to the one employed in [25] but simpler in the compact closed case. First, we interpret

a tensor expression as a morphism in the free compact closed category.

Start with a (canonically named) tensor expression with free names a1, . . . , an and write b1, . . . , bk

for the bound names. The expression is of the form φ1
...φ

2
... . . . φ

m
... where φ1, . . . , φm are each gener-

ating morphisms, identity wires or the identity tensor. Then, we can interpret the tensor expression

as:

φ1
...φ

2
... . . . φ

m
... (1a1 ⊗ 1a2 ⊗ . . .⊗ 1an ⊗ εX ⊗ εX ⊗ . . .⊗ εX) ◦ σ ◦ (φ1 ⊗ φ2 ⊗ . . .⊗ φm)

where:

1. 1ai is 1X if the expression contains a free output âi and 1X∗ if it contains a free input ǎi,

2. the i-th cap εX corresponds to the bound name bi,

3. φi is either the appropriate generator from Σ, ηX for an identity wire or 1I for the tensor

expression I,

4. σ is the (unique by naturality) map consisting just of symmetries and identities that connects

the inputs/outputs of the φi associated with a given name to the appropriate identity or cap.

We can draw this graphically as:

σ

b1

φm

b2. . .

φ1

bk
. . .

. . .φ2

ana2a1

(3.2)

This shows that a tensor expression uniquely determines a point in the free category. Since a tensor

is an equivalence class of tensor expressions, we need to show that this does not depend on the choice

37

of expression. We can safely ignore bracketing and instances of the empty tensor 1, so if G ≡ H

it must be from a number of the following differences (i) the order of φ1 to φm, (ii) the choice of

bound names, or (iii) the number of identity tensors. In each of these cases, we use the axioms of a

compact category to show that interpretations of G and H are equal.

For (i), we can use naturality of σ to reshuffle the generators at the bottom, without affecting

connectivity. For (ii), we do the same for the caps at the top. For (iii), we can use the compactness

equations:

≡≡

to insert or remove identities, i.e. cups, from the bottom.

Conversely, any expression in the free category can be written in the form of (3.2), at which

point one can read off the tensor expression. First, use bifunctoriality to pull all generators and

cups to the bottom and all caps to the top. Then, use naturality to sort all of the caps to the right

of the output wires. The only freedom is in the order of the generators/cups and the caps, which is

captured by ≡.

Corollary 3.1.12. For any compact closed signature Σ, a valuation J−K : Σ → C lifts uniquely to

an operation which sends canonically named tensors G ∈ TΣ to morphisms JGK in C.

3.1.4 Rewriting

In examples 3.1.4 we have seen diagrammatic theories where we have equations between tensor

diagrams. We would like to formalise these and use the graphical axioms to demonstrate equalities

of more complicated diagrams. To talk about an equality between tensors we need each side to have

the same free names.

Definition 3.1.13 (Tensor Equation). A tensor equation G = H is well-formed if tensors G and

H have the same free inputs and the same free outputs.

For example, the antihomomorphism law can be written as a tensor equations as θâďµd̂b̌č =

µâďěθd̂čθêb̌ as each side has free names {â, b̌, č}. When drawing these out as diagrams we tend to

drop the names in favour of tracking wires by their position:

=

c b

a

b c

a

=

38

We have already seen this in examples 3.1.4 where the input and output wires have not been

named but can be matched between the sides by looking at their position. This is allowed since

names do not inherently store any information other than to keep track of open ended wires. So the

following equations are all considered to mean the same thing:

= =

aa

b b d d

=

cc

We can use axioms to rewrite more complicated diagrams by substituting one side for another.

For example, the axioms of a monoid can be used as in the following rewriting examples:

= = =

= = =

In both cases the diagrams have been rewritten into a normal form of a left associated tree of

multiplications.

Conjecture 3.1.14. Homomorphisms can pass through arbitrarily sized left associated trees of

multiplications. As suggested by the following illustration:

=

. . .

. . .

. . .

Rewriting allows us to prove this for any fixed size:

= =

However, we do not currently have the tools to even state the theorem without resorting to

ellipses. We now present !-boxes, which allow us to talk about such families of diagram equations.

We give the formal statement of the above conjecture in (3.6).

39

3.2 !-Tensors

3.2.1 !-Tensor Diagrams

Now that we have non-commutativity we want to allow families of diagrams by adding !-boxes.

Graphically we add !-boxes (as for !-graphs) by drawing a blue box around the section of a graph

we allow to be repeated. In the syntax we will enclose any nodes inside a !-box B in square brackets

with a superscript B, i.e. [−]B .

φ

B

ψ

a

φâb̌[ψb̂]
B =

However, it turns out that this diagram is ambiguous. Recall from Section 2.3 that we wish

to have an expanding operation which creates a new copy of the contents of B attached to the

same nodes. In the !-graph case this was well defined, since position of edges around a node was

unimportant. In !-tensor diagrams we need to be more precise. Expanding B in the diagram above,

we have options as to where we want the new copy of the bound wire (named b in our expression)

to be attached to φ. To decide where to attach new copies of edges we add arcs either pointing

clockwise or anticlockwise. A clockwise arc means the new copy of b is added to the right in the

subscript so we write this as â[b̌〉B . Similarly, anticlockwise expansion is written â〈b̌]B so that new

copies are added left, i.e. earlier in the clockwise order. Take the following examples of expansion

for a single edge:

φâ[b̌〉B = φ

B

b

a

φ

B

φâ[b̌〉B b̌′ =

a

bb′

ExpB

φâb̌′〈b̌]B [č〉B č′ =

a

φ

c

ExpB
φâ〈b̌]B [č〉B =

bB

a

φ

c
bB

b′

c′

Edges can be grouped so that new copies are expanded together.

b

φ

cc

a

b

φφâb̌′č′〈b̌č]B =
ExpB

φâ〈b̌č]B =

B

a

b′

c′
B

40

Since !-boxes can be nested we may have multiple arcs on an edge.

B

φ

ψ

Aφâ[〈b̌]A〉B [[ψb̂]
A]B =

A

B

We have labelled the arcs to demonstrate which !-boxes each corresponds to, but this is not

necessary by deciding on the convention that arcs for outer !-boxes are always drawn closer to the

node.

A !-box B might not contain any nodes but still contain edges. We decide that this should always

be written explicitly by including [1]B in the expression. This can be seen in the example of a node

taking an arbitrary number of inputs and producing a single output.

φ

B

a

φâ[b̌〉B [1]B

We can immediately take advantage of arcs to describe diagrams involving twisting edges.

φ

B

a

φâ[b̌〉Bψ[b̂〉B [1]B

ψ
ψ

B

a

φ

φâ[b̌〉B b̌′ψ[b̂〉B b̌′ [1]B
ExpB

3.2.2 !-Tensor Expressions

To be precise about !-tensor expressions we will introduce sets of allowed names. We fix disjoint

infinite sets B = {A,B, . . .} and N = {a, b, . . .} of !-box names and edge names respectively. We

often need to refer to directed edge names which we write as N := {â, ǎ : a ∈ N}. Since the

subscripts in !-tensor expressions are more than just lists of inputs and outputs as in the tensor case,

we give them a formal definition and refer to them as edgeterms.

Definition 3.2.1 (Edgeterm). The set E of edgeterms over our fixed names is defined recursively

as:

• ε ∈ E (empty edgeterm)

• â, ǎ ∈ E a ∈ N

• [e〉B , 〈e]B ∈ E e ∈ E, B ∈ B

• ef ∈ E e, f ∈ E

41

Two edgeterms are equivalent if one can be transformed into the other by:

e(fg) ≡ (ef)g εe ≡ e ≡ eε [ε〉B ≡ ε ≡ 〈ε]B (3.3)

The first two represent associativity and identity of the product, with ε as the unit. The last

equivalence says that empty edge groups can be ignored.

Remark 3.2.2. We have seen how ExpB acts on edgeterms in the diagrams of Section 3.2.1. The

other !-box operation we want is KillB which acts as
[
[e〉B 7→ ε, 〈e]B 7→ ε

]
, i.e. removing any edges

entering the !-box B by replacing them with the empty edgeterm. From these we can retrieve all

possible concrete lists of edges. We will write φe ∈ Σ to say that all possible concrete instances of e

have a generator (φ,W) ∈ Σ of the correct type.

To simplify the definition of !-tensor expressions we start by defining !-pretensor expressions which

include ill-formed expressions. We then give the well-formedness conditions in definition 3.2.5.

Definition 3.2.3 (!-Pretensor Expression). The set of !-pretensor expressions T ′Σ! for a signature Σ

is defined recursively as:

• 1 ∈ T ′Σ!

• 1âb̌ ∈ T
′

Σ! a, b ∈ N

• φe ∈ T ′Σ! e ∈ E, φe ∈ Σ

• [G]B ∈ T ′Σ! G ∈ T ′Σ!, B ∈ B

• GH ∈ T ′Σ! G,H ∈ T ′Σ!

In order to write the conditions by which a !-pretensor expression is a !-tensor expression we need

to refer to which !-boxes surround particular directed edges. We refer to this list of !-boxes (ordered

by nesting, inner !-boxes first) as the edge’s context. Contexts come in two forms, edge contexts and

node contexts.

Definition 3.2.4 (Context). Given a directed edge a ∈ N in a !-pretensor expression G nested as

[[φ<<a>E1 ...>En]N1 . . .]Nm where by 〈−〉 we mean either clockwise expansions [−〉 or anticlockwise

expansions 〈−].

We define the edge context, node context, and context of a respectively as:

ectxG(a) := [E1, . . . , En] (edge context)

nctxG(a) := [N1, . . . , Nm] (node context)

ctxG(a) := ectxG(a).nctxG(a) (context)

That is, ectxG(a) lists the !-boxes containing a that occur as part of a’s edgeterm, and nctxG(a)

lists the rest.

42

We will write A ≺G B to mean that the !-box A is nested immediately inside B in G (i.e. without

other !-boxes nested between). The reflexive transitive closure of ≺G is written 4G.

For example, if ectxG(â) = [B, . . .] and nctxG(â) = [A, . . .] then we know that the node containing

â is nested inside A, . . . (and hence so is â) and the edge â additionally enters B,

a
B

A

This does not require B 4G A, as it could be that A and B simply overlap on the edge a:

aB

A

Definition 3.2.5 (!-Tensor Expression). The set of !-tensor expressions TΣ! for a signature Σ is the

set of expressions G ∈ T ′Σ! satisfying the following conditions:

F1. â and ǎ occur at most once for each edge name a

F2. [−]A occurs at most once for each !-box name A

C1. ectxG(a) ∩ nctxG(a) = ∅ for directed edges a ∈ N in G

C2. If ectxG(a) = [B1, . . . , Bn] then B1 ≺G B2 ≺G . . . ≺G Bn and if Bn ≺G C then C ∈ nctxG(a)

C3. For all bound pairs ǎ, â of edge names in G, there exist lists es, bs of !-box names such that:

es.nctxG(ǎ) = ectxG(â).bs and es.nctxG(â) = ectxG(ǎ).bs

The freshness conditions F1 and F2 ensure that we have not used the same name for more than

one (directed) edge or !-box. If a node is in !-box B then any edges attached to it are already in B so

it would not make sense to have B in both the ectx(a) and nctx(a) for a ∈ N ; this is enforced by C1.

C2 ensures that edge contexts are compatible with the !-boxes in the rest of the !-tensor expression.

For example, φ[[â〉B〉A requires B to be nested in A so does not result in a valid expression when

composed with e.g. [[ψb̌]
A]B . Drawing φ as a white node and ψ as a gray node, we do not allow:

a
B

A
A

B

b

C3 ensures that the two ends of bound edges have consistent contexts. For instance, this is al-

lowed: φ[â〉B [ψǎ]B but this is not: φâ[ψǎ]B . !-Boxes can simply overlap on an edge, for example,

[φ[â〉A]B [φ[ǎ〉B]A is perfectly valid.

43

aB

A

The freedom to pick bs, es allows bound pairs of edges to share some common context, e.g.: [φâψǎ]B

(both nodes, and hence the edge, are inside B) or φ[â〉Bψ〈ǎ]B []B (only the edge is inside B).

a

B

B a

In the second example, B occurs in an edge term, so C2 requires the presence of [−]B somewhere

in the !-tensor expression, hence we append the empty !-box []B (actually shorthand for [1]B). In

particular, empty !-boxes are meaningful, unlike empty edge groups [ε〉B .

In this paper when we write a composition GH, unless otherwise stated, we will assume this

forms a well defined !-tensor expression.

We say two !-tensor expressions are equivalent, written G ≡ H, if one can be obtained from

the other by using the usual tensor equivalences from definition 3.1.6 and/or edgeterm equivalences

from (3.2.1). However, we need to generalise the last two tensor equivalences to allow 1b̂ǎ and 1âb̌

to appear inside !-boxes:

G[K1 . . . [Kn1b̂ǎ]Bn . . .]B1 ≡ G[b̌ 7→ ǎ][K1 . . . [Kn]Bn . . .]B1

H[K1 . . . [Kn1âb̌]
Bn . . .]B1 ≡ H[b̂ 7→ â][K1 . . . [Kn]Bn . . .]B1

(3.4)

where b̌ and b̂ are free in G and H respectively. These allow identities connected to nodes outside

of !-boxes to still be simplified. For example:

φ[â〉B [1b̂ǎ]B ≡ φ[b̂〉B []B

Remark 3.2.6. We allow equivalent !-tensor expressions to be substituted for each other in the

sense that G ≡ H implies GK ≡ HK (as with tensor expressions) and [G]A ≡ [H]A. Thus, G ≡ H

implies, for example, that K0[K1 . . . [KnG]Bn . . .]B1 ≡ K0[K1 . . . [KnH]Bn . . .]B1 .

Definition 3.2.7 (!-Tensor). From the definition of !-tensor expression equivalence we can see that

≡ is an equivalence relation. We define a !-tensor to be an ≡-equivalence class of !-tensor expressions

(i.e. a !-tensor for signature Σ is an element of TΣ!/ ≡).

We often switch between talking about !-tensors and !-tensor expressions. This can be done for

any notion which is independent of choice of expression. For example, given a !-tensor, we can always

choose an expression to represent it before applying some procedure, but two equivalent expressions

should give the same result.

44

Definitions 3.2.8 (Free/Bound Edges). As for tensors we write free(G) for the set of free edges in

G, bound(G) for the set of bound edges and edges(G) for the union. We naturally extend free(−) to

!-tensors as this is independent of choice of expression.

It is !-tensors that correspond to diagrams in our !-box graphical notation.

Theorem 3.2.9. Any !-tensor can be represented unambiguously using a !-tensor diagram.

Proof. We show this by providing a general procedure for interpreting a !-tensor diagram as a !-tensor

expression, and vice-versa. For the sake of clarity, we demonstrate each step on a worked example.

Given a !-tensor diagram, we wish to obtain a unique equivalence class of !-tensor expressions under

≡. Begin by choosing fresh names for all interior edges (we have also added arc labels).

φ

ψ
B

A

ψ
C

a

c b

C

A

e

ψ

c

d

φ

a

b

B

ψ

A

B

C

Then, write the !-boxes with nesting as depicted in the diagram:

. . . [. . .]C [. . . [. . .]B]A

Write each node in the diagram in the location it occurs (w.r.t. !-boxes):

φ...[ψ...]
C [[ψ...]

B]A

Finally, add the edges of each node, reading clockwise from the tick. Edges occurring under a

clockwise arrow marked B should be enclosed in [. . . 〉B , and edges under an anti-clockwise arrow

should be enclosed in 〈. . .]B , where the outermost groups are the ones closest to the node in the

diagram.

φâ[〈ě]B〉A〈ď]C [ψd̂č]
C [[ψêb̌]

B]A

The only choices we made in this process were the choice of interior edge names and the order in

which to write the individual tensors. However, up to ≡ these are irrelevant. To show that any

!-tensor can be represented this way, we simply run the above procedure in reverse.

Because of this theorem, we use the terms !-tensor and !-tensor diagram interchangeably, de-

pending on whether we wish to refer to the syntactic vs. graphical notation.

45

3.2.3 Concatenation

Before we present the operations which can be applied to !-tensors we have one additional construc-

tion to define. This relates to the desire to add context to diagrams. One way to do this is by

enclosing G in a !-box B to get [G]B .

B

[−]B

Another way is to add additional structure using open ended wires.

BB

This example can be done trivially by G 7→ FG, with correctly named free edges, but the same

method does not work when F shares some !-boxes with G. Take the following example which we

would like to allow:

B

B

B

As !-tensor expressions we cannot take the product as this will not result in a well-formed

expression. Writing φ for white nodes and ψ for gray nodes we would get [φâb̌čφĉ]
Bψ[ǎ〉B [1]B . The

problem being that we end up with two copies of B, which should instead have concatenated to

form one. To solve this problem we define a concat operation combining two !-tensors and merging

!-boxes where possible.

Definition 3.2.10 (Concat). Take !-tensors G and H, let B1, . . . , Bn be their common top-level

!-boxes. We can write G in the form G0[G1]B1 [G2]B2 . . . [Gn]Bn and similarly H in the form

H0[H1]B1 [H2]B2 . . . [Hn]Bn . Then the concatenation of G and H, written G∗H is defined by:

G∗H := G0H0[G1∗H1]B1 [G2∗H2]B2 . . . [Gn∗Hn]Bn

Remark 3.2.11. In the above definition we chose expressions to represent the !-tensors G and H, so

we should check our definition is independent of the choice. We can make this simpler by not choosing

expressions containing any of G1, eε, εe, [ε〉, or 〈ε] (since they can be simplified to G, e, e, ε and ε

46

respectively) and also requiring that 1b̂ǎ only appears if the expression does not contain b̌ or â (else

by definition 3.4 we remove 1b̂ǎ). Hence the expressions differ only by α-equivalence. Since bound

edges remain bound the resulting concatenation only differs by α-equivalence, so concatenation is

well-defined.

Remark 3.2.12. As with G 7→ GH and G 7→ [G]B , concatenating G 7→ G∗H might not return a

well-formed !-tensor. From now on, unless otherwise stated, whenever we write G∗H we are assuming

that we have a valid !-tensor.

By combining concatenation with addition of !-boxes we can build up !-tensors with added

context:

B B

B

[−]B

The same operation can be used to describe whether a diagram G appears as a sub-diagram of

H, which we refer to as matching. We will say G matches H if there exists some sequence of zero

or more !-boxes B1, . . . , Bn and a !-tensor F such that H = [[G]B1 . . .]Bn ∗F .

This is useful in graph rewriting where we may want to replace instances of G with another

expression G′. If G matches H then we can write H = [[G]B1 . . .]Bn∗F as above and then apply our

rewrite to get [[G′]B1 . . .]Bn ∗F .

Remark 3.2.13. Concatenation is a commutative and associative binary operation with unit 1. It

also subsumes the usual product on !-tensors GH = G∗H.

We have in fact already seen one situation in which we needed to concatenate two !-tensors.

In (3.4) we allowed the identity edge 1b̂ǎ to rename b̌ to ǎ and the identity edge 1âb̌ to rename b̂ to

â. These can be written more succinctly using concatenation, so that equivalence of !-tensors can

be restated:

Definition 3.2.14 (!-Tensor Equivalence). Two !-tensor expressions are equivalent if one can be

transformed into the other by any number of α-conversions, edgeterm equivalences from defini-

tion 3.2.1 and identities:

(GH)K ≡ G(HK) GH ≡ HG G1 ≡ G

G∗[[1b̂ǎ]B1 . . .]Bn ≡ G[b̌ 7→ ǎ] H∗[[1âb̌]
B1 . . .]Bn ≡ H[b̂ 7→ â]

where b̌ and b̂ are free in G and H respectively.

47

3.3 Working with !-Tensors

3.3.1 Forests

To better discuss a !-tensor’s !-boxes (and the nesting structure on them) we define boxes(−).

Definition 3.3.1 (Box Structure). We define boxes recursively by:

boxes([G]B) := boxes(G) ∪ {C ≺ B : ∀C ∈ boxes(G) s.t. @A, C ≺ A}

boxes(GH) := boxes(G) ∪ boxes(H)

boxes(x) := ∅ otherwise

For B ≺ A we say B is a child of A (or A is a parent of B). We write 4 for the reflexive transitive

closure of ≺. Note that this definition is actually valid on a !-pretensor expression but we are only

interested in the !-tensor expression cases.

Theorem 3.3.2. If G ∈ TΣ! then boxes(G) is a directed forest (cycle-free directed graph where each

node has at most one parent).

Proof. It is clear from the definition that boxes(G) is directed and no !-box can have more than one

parent, so let us suppose it contains a cycle. By F2 boxes(GH) cannot create a loop since boxes(G)

and boxes(H) are disjoint. The loop must have been created by boxes([G]B) adding A ≺ B when

boxes(G) already has B 4 A. This means B appears in G which is a contradiction to [G]B being a

well formed !-tensor expression (by F2).

Forests can alternatively be defined as a disjoint union of directed trees. We now present some

useful definitions/notations for dealing with forests.

For a subset X of a forest F , we write ↓X and ↑X for the downward and upward closure of

X ⊆ F , respectively. For a single element A ∈ F , we write ↓A for ↓{A}.

Definition 3.3.3 (Component). If a subset X ⊆ F is both upward and downward closed (i.e.

X =↓X =↑X) then we say X is a component of F . If it contains no proper sub-components, it is

called a connected component.

We write F> for the set of maximal elements of F with respect to ≺ (those without parents).

Note that for A ∈ F> the set ↓A is always a connected component, and for F finite, all connected

components are of this form.

Example 3.3.4. The following diagram represents the forest with maximal elements {A,D} and

components ↓A = {
A

B C
} and ↓D = {

D

E

}.

A

B C

D

E

48

Definition 3.3.5 (Compatible). Two forests F, F ′ are said to be compatible, written F4F ′, if the

intersection F ∩ F ′ is a (possibly empty) component of both F and F ′.

Equivalently, F and F ′ are compatible if and only if there exist forests X,Y, Z such that F =

X] Y and G = Y] Z. As a consequence, the union of compatible forests is always well-defined

(F ∪ F ′ := X] Y] Z), and is itself a forest.

So for example, the forest depicted in example 3.3.4 is compatible with forests such as:

A

B C

D

E

F F

G H

but it is not compatible with forests such as:

A

B

D

E F

A

D

3.3.2 !-Box Operations

We have seen in Section 2.3.1 for !-graphs that the two !-box operations Exp and Kill allow us to

retrieve any concrete instance of a !-graph. We now wish to define equivalent !-box operations on

!-tensors.

Before we make the definitions we note that expansion creates new copies of edges and !-boxes

which need to have new ‘fresh’ names assigned to them. We now formalise renamings which rename

edges and !-boxes, and fresh renamings which assign new fresh names during a !-box expansion.

Definition 3.3.6 (Renaming). A renaming is a pair of bijections rn : B → B and rn : N → N ,

such that support(rn) := {x ∈ X : rn(x) 6= x} is finite for both.

Fresh renamings assign fresh names to specified sets of edge names and !-box names.

Definition 3.3.7 (Fresh Renaming). Given finite sets of !-box names B ⊂ B and edge names N ⊂ N

a renaming fr is said to be fresh for (B,N) if:

N ∩ fr(N) = ∅ and B ∩ fr(B) = ∅

We do not need to worry about existence of such renamings for a given pair (B,N), since both

B and N are infinite.

Remark 3.3.8. We add the restriction of finite support to fresh renamings with the intent of always

having infinitely many names which they do not affect. This will allow us to use these names for

new fresh renamings. For example, given a fresh renaming fr and a finite set X of names not in

support(fr) we can always find a new fresh renaming equal to fr on its support but also fresh for X.

We call this process extending a fresh renaming, in this case to also cover the set X.

49

Definition 3.3.9 (Fresh for !-Tensor Expressions). We say fr is fresh for the !-tensor expressions

G1, . . . , Gn if it is a fresh renaming for (
⋃n
i=1 boxes(Gi),

⋃n
i=1 edges(Gi)). This guarantees fr can be

used to assign fresh names during expansion of a !-box in any Gi.

We have already seen the two !-box operations of expanding and killing in section 2.3.1. These

allow us to replace any !-box with a finite number of copies of the contents. ExpB,fr creates a single

new copy of the contents of B freshly named using fr and attached as prescribed by the arcs. KillB

deletes B and all contents from the !-tensor.

B a B a fr(a)

ExpB,frKillB

These two operations allow us to retrieve any concrete tensor instance of the family of diagrams

represented by the !-tensor. However, there are more operations we may wish to apply on !-boxes

to create a more powerful proof system. The additional operations used in this thesis are as follows.

Copying, written CopyB,fr, creates a new (freshly named) copy of B and all contents attached as

prescribed by the arcs. Dropping, written DropB , removes the !-box B leaving the contents as they

were.

a B a B fr(B)a fr(a)

CopyB,frDropB

These operations have all appeared previously for the case of !-graphs. But for !-tensors we have

one additional !-box operation which is a result of the arc directions. We wish to be able to ‘flip’

the direction of all arcs around a !-box which still results in the same concrete instances. We call

the !-box operation which flips all of B’s clockwise arcs to anticlockwise and vice versa FlipB .

B
FlipB B

Definition 3.3.10 (!-Box Operations). A !-box operation OpB (possibly employing a fresh renaming

fr) is an operation on !-tensor expressions which acts somewhat trivially on the following cases:

OpB(GH) := OpB(G) OpB(H) OpB(ef) := OpB(e) OpB(f)

OpB([G]A) := [OpB(G)]A OpB(φe) := φOpB(e)

OpB([e〉A) := [OpB(e)〉A OpB(〈e]A) := 〈OpB(e)]A

OpB(x) := x

50

where A 6= B and x ∈ {1, 1âb̌, ǎ, â, ε}. The !-box operations we are interested in are the following

(defined by their actions in the three cases not mentioned above):

FlipB([G]B) := [G]B KillB([G]B) := 1 DropB([G]B) := G

FlipB([e〉B) := 〈e]B KillB([e〉B) := ε DropB([e〉B) := e

FlipB(〈e]B) := [e〉B KillB(〈e]B) := ε DropB(〈e]B) := e

CopyB,fr([G]B) := [G]B [fr(G)]fr(B) ExpB,fr([G]B) := [G]B fr(G)

CopyB,fr([e〉B) := [e〉B [fr(e)〉fr(B) ExpB,fr([e〉B) := [e〉B fr(e)

CopyB,fr(〈e]B) := 〈fr(e)]fr(B)〈e]B ExpB,fr(〈e]B) := fr(e)〈e]B

These operations are not minimal, for example, expanding can be factorised into two operations:

ExpB,fr = Dropfr(B) ◦CopyB,fr (3.5)

We wish to prove that the application of a !-box operation to a !-tensor expression results in a

!-tensor expression. First we present a couple of lemmas which will help us see how !-box operations

affect !-tensors.

Lemma 3.3.11. For a !-box operation OpB,fr (possibly using fresh renaming fr) we find that

boxes(OpB,fr(G)) depends only on boxes(G) (not the actual content of G).

Proof. We prove this by structural induction on the definition of !-tensor expressions. The cases 1,

1âb̌, φe, GH, and [G]A where A 6= B are trivial. We check the final case [G]B individually for each

operation.

• boxes(FlipB([G]B)) = boxes([G]B)

• boxes(KillB([G]B)) = boxes(1) = ∅

• boxes(DropB([G]B)) = boxes(G) = boxes([G]B)\{B}

• boxes(CopyB,fr([G]B)) = boxes([G]B [fr(G)]fr(B)) = boxes([G]B) ∪ fr(boxes([G]B))

• the ExpB,fr case follows from Copy and Drop using (3.5)

This lemma allows us to lift !-box operations to act on forests. For example, applying operations

to [[[1]C [1]D]B [1]E]A then lifting to forests we get:

KillB


A

B

C D

E

 =

A

E CopyB,fr


A

B

C D

E

 =

A

B

C D

B′

C ′ D′

E

51

Where we have written X ′ as shorthand for fr(X). We can also see how contexts are affected by

!-box operations:

Lemma 3.3.12. If ectxG(a) = [E1, . . . , En], nctxG(a) = [N1, . . . , Nm] then the following table shows

the contexts affected by !-box operations (writing B′ for fr(B)):

ectx nctx

DropEi
a [E1, . . . , Ei−1, Ei+1, . . . , En]

DropNi
a [N1, . . . , Ni−1, Ni+1, . . . , Nm]

CopyEi
fr(a) [E′1, . . . , E

′
i, Ei+1, . . . , En]

CopyNi
fr(a) [E′1, . . . , E

′
n] [N ′1, . . . , N

′
i , Ni+1, . . . , Nm]

ExpEi
fr(a) [E′1, . . . , E

′
i−1, Ei+1, . . . , En]

ExpNi
fr(a) [E′1, . . . , E

′
n] [N ′1, . . . , N

′
i−1, Ni+1, . . . , Nm]

Note that Flip has no affect on contexts and any edges remaining after a Kill operation have not had

their contexts altered.

Proof. OpB recurses through the definition of !-tensor expressions until it hits [−]B , [−〉B or 〈−]B

so we only check these cases. Let e(a) be an edgeterm including a, hence fr(e(a)) contains the edge

fr(a). Without loss of generality we take a expanding clockwise in Ei (other direction has similar

proof):

• DropEi
: [e(a)〉Ei → e(a) so the edge context of a has Ei removed.

• DropBi
: [φe(a) . . .]

Bi → φe(a) . . . so the node context of a has Bi removed.

• CopyEi
: [e(a)〉Ei → [e(a)〉Ei [fr(e(a))〉E′i so the context of a has not changed but we have

new edge fr(a) similar to a except in the edge context has E1, . . . , Ei replaced by E′1, . . . , E′i
respectively.

• CopyBi
: [φe(a) . . .]

Bi → [φe(a) . . .]
Bi [fr(φe(a) . . .)]

B′i so the context of a has not changed but we

have new edge fr(a) similar to a except the edge context has E1, . . . , En replaced by E′1, . . . , E′n
respectively and the node context has B1, . . . , Bi replaced by B′1, . . . , B′i respectively.

• The ExpEi
and ExpNi

cases follow from the previous four by (3.5).

From the definitions, the results of !-box operations on !-tensors are clearly !-pretensors. To

additionally show that OpB,fr(G) is a valid !-tensor expression, i.e. that OpB,fr(G) ∈ TΣ!, we need

to show that the !-tensor conditions (definition 3.2.5) still hold.

52

Theorem 3.3.13. If G ∈ TΣ! and OpB,fr is one of our five !-box operations then OpB,fr(G) ∈ TΣ!.

Proof. For each !-box operation the conditions F1-2 are trivial since new edges/!-boxes have new

names created by a fresh renaming. Hence we will only check conditions C1-3 for each of our !-box

operations. We will use lemma 3.3.12 to see how the contexts are affected.

-Flip

Contexts are not affected by FlipB so the conditions C1-3 are trivially respected by FlipB .

-Kill

C1: If a ∈ edges(KillB(G)) then contexts were not affected by KillB so the same condition

holds.

C2: Suppose we have a ∈ edges(KillB(G)) with edge context [E1, . . . , En]. This must have

come from a ∈ edges(G) with edge context [E1, . . . , En], hence E1 ≺G . . . ≺G En (by C2

on G), with no Ei nested inside B. Then, E1 ≺KillB(G) . . . ≺KillB(G) En.

If we also have En ≺KillB(G) C then En ≺G C and so C ∈ ctxG(a) which (since C is not

nested in B) implies C ∈ ctxKillB(G)(a).

C3: If â, ǎ ∈ edges(KillB(G)) they must be from â, ǎ ∈ edges(G) and ectx,nctx were not

affected by KillB so the condition still holds.

-Drop:

C1: Again trivial since ectx and nctx have only lost !-boxes.

C2: If a ∈ edges(DropB(G)) has edge context [E1, . . . , En] then a ∈ edges(G) could have

the same edge context or contain B, i.e [E1, . . . , B, . . . , En], in which case nesting in G

would be E1 ≺G . . . ≺G B ≺G . . . ≺G En. In either case, the nesting in DropB(G) is

E1 ≺DropB(G) . . . ≺DropB(G) En since B is removed.

If we also have En ≺DropB(G) C then either En ≺G C or En ≺G B ≺G C. In either case

C ∈ ctxG(a) which implies C ∈ ctxDropB(G)(a).

C3: If â, ǎ ∈ edges(DropB(G)) then â, ǎ ∈ edges(G) and ectx,nctx only lost the !-box B so

the condition still holds by removing B from es, bs.

-Copy

C1: Edges in CopyB,fr(G) are either edges from G or fresh names for edges in G. For the

former ectx,nctx have not been changed so the condition holds. For the latter we know

from lemma 3.3.12 that !-boxes in ectx,nctx have only been replaced by fresh versions of

themselves hence are still distinct.

C2: Take a ∈ edges(G):

53

- For a in CopyB,fr(G) we have ectxCopyB,fr(G)(a) = ectxG(a) and Ei ≺G Ei+1 =⇒

Ei ≺CopyB,fr(G) Ei+1 so the conditions hold.

- ectxCopyB,fr(G)(fr(a)) = [E′1, . . . , E
′
i, Ei+1, . . . , En] where ectxG(a) = [E1, . . . , En] and

B = Ei. From the definition of CopyB,fr we see E′i (= B′) must have been created

inside Ei+1. For the other !-boxes, it is clear from ectxG(a) that E′j ≺CopyB,fr(G) E
′
j+1

for j < i and Ej ≺CopyB,fr(G) Ej+1 for j > i.

If the top !-box in ectxCopyB,fr(G)(fr(a)) is nested inside C then En ≺G C. Then (by

C2 applied to G) C ∈ ctxG(a) which implies C ∈ ctxCopyB,fr(G)(fr(a)) (since C is not

nested in B).

C3: For â, ǎ ∈ edges(CopyB,fr(G)) where â, ǎ ∈ edges(G), ectx and nctx are not affected by

CopyB,fr so the condition still holds.

For fr(â), fr(ǎ) ∈ edges(CopyB,fr(G)) where â, ǎ ∈ edges(G), there exist !-boxes Ei, Ni ∈

B such that:

[E1, . . . , En].nctxG(ǎ) = ectxG(â).[N1, . . . , Nm]

[E1, . . . , En].nctxG(â) = ectxG(ǎ).[N1, . . . , Nm]

Since the edge was copied, B must be in the contexts of â and ǎ. We need to show that

there exist es, bs such that:

es.nctxG(fr(ǎ)) = ectxG(fr(â)).bs and es.nctxG(fr(â)) = ectxG(fr(ǎ)).bs

We do this by considering 4 cases:

- If B ∈ ectxG(ǎ) ∩ ectxG(â) then B = Ei for some i, and the condition holds by letting

es := [E′1, . . . , E
′
i, Ei+1, . . . , En] and bs := [N1, . . . , Nm].

- Similarly, if B ∈ nctxG(ǎ) ∩ nctxG(â) then B = Ni for some i, and the condition holds

by letting es := [E′1, . . . , E
′
m] and bs := [N ′1, . . . , N

′
i , Ni+1, . . . , Nn].

- If B ∈ ectxG(ǎ) ∩ nctxG(â), the condition holds with es := [E′1, . . . , E
′
m] and bs :=

[N1, . . . , Nm].

- Otherwise B ∈ nctxG(ǎ) ∩ ectxG(â), in which case the condition holds with es :=

[E′1, . . . , E
′
m] and bs := [N1, . . . , Nm].

-Expand

We note that ExpB,fr = Dropfr(B) ◦CopyB,fr so this case follows from the previous cases.

Lemma 3.3.14. For OpB one of our five !-box operations and G and H two !-tensors expressions

OpB(G∗H) = OpB(G)∗OpB(H)

54

Proof. Let G = G0[G1]B1 [G2]B2 . . . [Gn]Bn and H = H0[H1]B1 [H2]B2 . . . [Hn]Bn where B1, . . . , Bn

are the shared top-level !-boxes. We prove the lemma by induction on the maximum shared nesting

depth of !-boxes in G,H. The base case is trivial, for the step case if B is not one of the shared

!-boxes B1, . . . , Bn, then we find:

OpB(G∗H) = OpB(G0H0[G1∗H1]B1 . . . [Gn∗Hn]Bn)

= OpB(G0H0)[OpB(G1∗H1)]B1 . . . [OpB(Gn∗Hn)]Bn

= OpB(G0) OpB(H0)[OpB(G1)∗OpB(H1)]B1 . . . [OpB(Gn)∗OpB(Hn)]Bn

= OpB(G0)[OpB(G1)]B1 . . . [OpB(Gn)]Bn ∗OpB(H0)[OpB(H1)]B1 . . . [OpB(Hn)]Bn

= OpB(G)∗OpB(H)

where the third equality uses the inductive hypothesis. For the step case if B is one of the shared

!-box we have to check OpB([G∗H]B) = OpB([G]B)∗OpB([H]B). This is trivial for Flip, Kill and

Drop so we check CopyB,fr (with fr fresh for [G∗H]B) and then ExpB,fr follows.

CopyB,fr([G∗H]B) = [G∗H]B [fr(G∗H)]fr(B)

= [G]B∗[H]B∗[fr(G)]fr(B)∗[fr(H)]fr(B)

= [G]B∗[fr(G)]fr(B)∗[H]B∗[fr(H)]fr(B)

= CopyB,fr([G]B)∗CopyB,fr([H]B)

We wish to lift !-box operations to work on !-tensors, rather than !-tensor expressions. We prove

this possible in theorem 3.3.17. First we need to treat the CopyB,fr case carefully. This is due to

the use of fresh renamings which depend on bound names so cannot trivially be lifted to !-tensors

(which are classes of expressions each with their own set of bound names). We start by checking the

!-tensor represented by CopyB,fr(G) is independent of the value of fr on bound(G).

Lemma 3.3.15. If fr, fr′ are fresh for a !-tensor expression G and agree on boxes(G) and free(G)

then CopyB,fr(G) ≡ CopyB,fr′(G).

Proof. For a ∈ bound(G) condition C3 tells us that B ∈ ctxG(â) ⇔ B ∈ ctxG(ǎ) and so copying

creates fresh versions of â and ǎ in tandem. Hence the two expressions differ only on certain bound

names. Suppose they differ by CopyB,fr(G) having a bound edge named a where CopyB,fr′(G) has

bound edge named a′. We can choose a completely fresh name b, then by α-conversion a and a′ can

each be replaced by b. By repeating this for each conflicting bound name, α-equivalence eventually

gives us CopyB,fr(G) ≡ CopyB,fr′(G).

Now we attempt to define the operation CopyB,fr on !-tensors using the following procedure.

55

Definition 3.3.16 (Copy on !-Tensors). Given a !-tensor G and a fresh renaming fr for the pair

(boxes(G), free(G)):

• Choose an expression representing G, say G1, making sure bound(G1) ∩ support(fr) = ∅

• Choose an extension fr1 of fr which is fresh for G1

• Define CopyB,fr(G) to be CopyB,fr1(G1)

These choices are possible by α-conversion and since fr has finite support. Now we need to

check this is well defined by making sure the result is independent of our choice of expression G1

and fresh extension fr1. Suppose G2 and fr2 are another such expression and fresh extension. We

can then choose fr′, an extension of fr also free for bound(G1) ∪ bound(G2). By lemma 3.3.15

CopyB,fr1(G1) ≡ CopyB,fr′(G1) and CopyB,fr2(G2) ≡ CopyB,fr′(G2) so our problem is reduced to

showing that CopyB,fr′(G1) ≡ CopyB,fr′(G2). This case is treated as the other cases below.

Theorem 3.3.17. Let fr be a fresh renaming for the !-tensor expressions G,H. Then G ≡ H

implies OpB,fr(G) ≡ OpB,fr(H).

Proof. We need to check our enforced equivalences still hold after OpB . It is clear from the defini-

tions of OpB(GH),OpB(ef),OpB(1),OpB(ε) that associativity/commutativity/unit conditions are

preserved. We check the other cases:

• When A 6= B we find

OpB([ε〉A) ≡ [OpB(ε)〉A ≡ [ε〉A ≡ ε ≡ . . . ≡ OpB(〈ε]A)

When A = B we need to check each operation individually:

FlipB([ε〉B) ≡ 〈ε]B ≡ ε ≡ [ε〉B ≡ FlipB(〈ε]B)

KillB([ε〉B) ≡ ε ≡ KillB(〈ε]B)

DropB([ε〉B) ≡ ε ≡ DropB(〈ε]B)

CopyB,fr([ε〉B) ≡ [ε〉B [ε〉fr(B) ≡ ε ≡ 〈ε]fr(B)〈ε]B ≡ CopyB,fr(〈ε]B)

ExpB,fr([ε〉B) ≡ [ε〉Bε ≡ ε ≡ ε〈ε]B ≡ ExpB,fr(〈ε]B)

• From definition 3.2.14 we need to check G∗[[1b̂ǎ]B1 . . .]Bn ≡ G[b̌ 7→ ǎ] is preserved given free

name b̌ in G.

If B 6∈ [B1, . . . , Bn] then neither b̂ nor b̌ is affected by OpB so using lemma 3.3.14 we get:

OpB(G∗[[1b̂ǎ]B1 . . .]Bn) ≡ OpB(G)∗OpB([[1b̂ǎ]B1 . . .]Bn)

≡ OpB(G)∗[[1b̂ǎ]B1 . . .]Bn

≡ OpB(G)[b̌ 7→ ǎ]

≡ OpB(G[b̌ 7→ ǎ])

56

otherwise B = Bi for some i ≤ n. Then each operation needs to be checked individually:

– FlipB(G∗[[1b̂ǎ]B1 . . .]Bn)

≡ FlipB(G)∗FlipB([[1b̂ǎ]B1 . . .]Bn)

≡ FlipB(G)∗[[1b̂ǎ]B1 . . .]Bn

≡ FlipB(G)[b̌ 7→ ǎ]

≡ FlipB(G[b̌ 7→ ǎ])

– KillB(G∗[[1b̂ǎ]B1 . . .]Bn)

≡ KillB(G)∗KillB([[1b̂ǎ]B1 . . .]Bn)

≡ KillB(G)∗[[1]Bi+1 . . .]Bn

≡ KillB(G)

≡ KillB(G[b̌ 7→ ǎ])

where the last equivalence is true since KillB will delete the edge into B whether it is

named b̌ or ǎ.

– DropB(G∗[[1b̂ǎ]B1 . . .]Bn)

≡ DropB(G)∗DropB([[1b̂ǎ]B1 . . .]Bn)

≡ DropB(G)∗[[[[1b̂ǎ]B1 . . .]Bi−1]Bi+1 . . .]Bn

≡ DropB(G)[b̌ 7→ ǎ]

≡ DropB(G[b̌ 7→ ǎ])

where the last equivalence is true since DropB will act the same whether our edge is

named b̌ or ǎ.

– Abbreviating fr(x) as x′:

CopyB,fr(G∗[[1b̂ǎ]B1 . . .]Bn)

≡ CopyB,fr(G)∗CopyB,fr([[1b̂ǎ]B1 . . .]Bn)

≡ CopyB,fr(G)∗[[[1b̂ǎ]B1 . . .]Bi [[1b̂′ǎ′]
B′1 . . .]B

′
i . . .]Bn

≡ CopyB,fr(G)∗[[1b̂ǎ]B1 . . .]Bn ∗[[1b̂′ǎ′]
B′1 . . .]Bn

≡ CopyB,fr(G)[b̌ 7→ ǎ][b̌′ 7→ ǎ′]

≡ CopyB,fr(G[b̌ 7→ ǎ])

where the last equivalence is true since moving a rename to after CopyB,fr, you have to

do both the original rename and the fresh version.

57

– ExpB,fr follows by applying Dropfr(B) to the above case:

ExpB,fr(G∗[[1b̂ǎ]B1 . . .]Bn) = Dropfr(B)(CopyB,fr(G∗[[1b̂ǎ]B1 . . .]Bn))

= Dropfr(B)(CopyB,fr(G[b̌ 7→ ǎ]))

= ExpB,fr(G[b̌ 7→ ǎ])

• The proof for H∗[[1âb̌]B1 . . .]Bn ≡ H[b̂ 7→ â] is similar.

• Finally, α-equivalence is trivial since for a ∈ N , B ∈ ctxG(â) ⇔ B ∈ ctxG(ǎ) and so a bound

wire â, ǎ under a !-box operation may result in bound wires â, ǎ and possibly fr(â), fr(ǎ) each

of which can be renamed freely using α-conversion.

3.3.3 Instantiation

Definition 3.3.18 (Fresh for !-Tensors). We say the renaming fr is fresh for the !-tensors G1, . . . , Gn

(with compatible !-box structures) if it is a fresh renaming on (
⋃n
i=1 boxes(Gi),

⋃n
i=1 free(Gi)). By

the above theorems this means CopyB,fr is a well-defined !-box operation on each Gi, hence so is

ExpB,fr.

Definition 3.3.19 (Partial Instantiation). A partial instantiation of a !-tensor is a sequence of zero

or more KillB ,ExpB,fr operations, each with B in its domain and fr fresh for its domain.

Definition 3.3.20 (Instantiation, Concrete Instance). An instantiation of a !-tensor G is a partial

instantiation i such that i(G) is a concrete tensor. We write Inst(G) for the set of instantiations of

G and call i(G) a concrete instance of G.

Example 3.3.21. Take the following !-tensor as an example:

A
B a

G :=

The function fr = [A ↔ A′, B ↔ B′, a ↔ a′] is fresh for G so can be used when expanding a !-box

as in the following partial instantiations:

A
B a

A
B a

A

a′a′B′ a′ a′′

ExpA,fr ExpB,fr KillB ◦ExpB,fr′ ◦ExpB,fr

58

Each concrete instance of G is made up of a gray node with edges to any number of white nodes,

each with an arbitrary number of outputs:

. . .

, , , , , , ,

The partial instantiations also lead to some interesting subsets of this family of diagrams. For

example, the second partial instantiation above represents all diagrams where each white node has

at least one output:

,,

. . .

, , , ,

whereas the third partial instantiation represents the diagrams where each white node has exactly

two outputs:

,,

. . .

,,

To work with instantiations we will show that they admit a normal form where !-boxes are dealt

with from the top down. We use a number of lemmas regarding commuting !-box operations which

are found in appendix A.

Theorem 3.3.22. Given an instantiation i ∈ Inst(G) and a top-level !-box A in G (i.e one with

no parent !-box), i can be rewritten as rn ◦ i′ ◦ KillA ◦ExpnA where rn is a renaming and i′ ∈

Inst(KillA ◦ExpnA(G)).

Proof. Clearly KillA must already occur to the left of any instance of ExpA, so it suffices to show

that these two operations can be commuted to the right past operations on a different !-box B. If

B is not nested in A, then by lemma A.1.1 we can reorder Op′A ◦OpB = rn ◦OpB ◦Op′A for some

appropriate fresh renamings and a renaming rn.

Otherwise B is nested in A, so we can use one of the following equations proved in lemma A.1.2 and

lemma A.1.3 respectively:

• KillA ◦OpB(G) = KillA(G)

• ExpA ◦OpB(G) = rn ◦Opfr(B) ◦OpB ◦ExpA,fr(G)

for some appropriate fresh renamings and a renaming rn.

Any renamings introduced can be commuted to the left via:

OpC,frC ◦ rn = rn ◦OpC,rn−1 ◦ frC ◦ rn

59

which is proved in lemma A.0.2. Repeating this procedure eventually results in all operations on A

being at the right and all renamings, which can then be combined into one, being at the left.

Notation 3.3.23. We will write KEnA as a shorthand for KillA ◦ExpnA.

Corollary 3.3.24. Given a total order on !-box names, !-tensor instantiations admit a normal form,

up to renaming.

Proof. Given an instantiation of G we can chose the first (by the total order on !-box names) top-level

!-box A, and move its operations (of the form KEnA) completely to the right, moving any renamings

completely to the left. The rest is then an instantiation of KEnA(G), so we can repeat the process.

Termination of this procedure can be shown since each step removes a !-box and only adds !-boxes

with fewer levels of nesting.

3.3.4 !-Tensor Equations

To properly reason with families of diagram equations we need to talk about equality of !-tensors.

Recall the definition of well-formed tensor equations from definition 3.1.13:

Definition 3.3.25 (Tensor Equation). A tensor equation G = H is well-formed if tensors G and

H have the same free inputs and the same free outputs.

To extend this definition to allow !-tensors we need to be careful about free edges and !-boxes. The

intended interpretation of the !-tensor equation G = H is that after applying any !-box operations

to each side we are still left with a valid !-tensor equation. From this it follows that any concrete

instantiation should result in a valid tensor equation. Hence we need free edges to always be

expanded in the same way on each side of the equation. This property is encapsulated by the

following definition.

Definition 3.3.26 (!-Tensor Equation). G = H is a well-formed !-tensor equation if the !-boxes are

compatible i.e boxes(G)4boxes(H), G and H have the same free inputs and outputs, and those free

edges have the same !-boxes appearing in their contexts in G as they do in H.

Remark 3.3.27. The definition of a well-formed !-tensor equation allows for !-boxes to appear on

only one side of the equation. This may seem counter-intuitive, but one example of a useful equation

with this property would be one allowing us to remove an arbitrary number of copies of some scalar

(diagram with no inputs or outputs).

B

=

60

If desired we can always avoid this by including empty !-boxes. The above equation, for example,

can have the right hand side 1 replaced with [1]B .

Definition 3.3.28 (!-Box Operation on an Equation). If the renaming fr is fresh for G,H we say

it is fresh for the equation G = H. We can then apply a !-box operation OpB,fr to G = H resulting

in OpB,fr(G) = OpB,fr(H).

Note that since G and H are allowed to have different !-boxes, it may be that OpB,fr acts as the

identity on one side of the equation. Having defined !-box operations on !-tensor equations we can

define instantiations of them in the same way as for !-tensors.

Definition 3.3.29 (Partial Instantiation). A partial instantiation of a !-tensor equation is a sequence

of zero or more KillB ,ExpB,fr operations, each with B in its domain and fr fresh for its domain.

Definition 3.3.30 (Instantiation, Concrete Instance). An instantiation of a !-tensor equation G =

H is a partial instantiation i such that i(G) and i(H) are concrete tensors. We write Inst(G = H)

for the set of instantiations of G = H and call i(G = H) a concrete instance of G = H.

Partial instantiations take !-tensor equations to !-tensor equations, whereas instantiations take

them to tensor equations.

Remark 3.3.31. Given i ∈ Inst(G = H) we know i(G) is a concrete tensor so we may expect i to

be an instantiation of G. This is not always the case since G and H can contain different !-boxes and

hence some operations OpB,fr in i might not have B in their domain on G. These operations act as

the identity and so we need not worry about them. We write i|G for i restricted to the operations

OpB,fr which have B in their domain when applied to G. Hence for any i ∈ Inst(G = H) we have

i|G ∈ Inst(G) and i|H ∈ Inst(H) and can write the equation i(G = H) as an instantiation of both

sides i|G(G) = i|H(H).

For an example, let us start with the arbitrary arity version of the theory of a monoid. We have

a single generator representing multiplication which allows an arbitrary number of inputs and has a

single output:

and two !-tensor equations:

Monoid Laws

=
A

=
C A C

B

B

61

The first allows any two connected nodes to be combined, often referred to as a spider theorem,

while the second replaces a node with a single input and a single output with an identity wire. We

can extend this definition by adding a homomorphism satisfying:

=

Homomorphism Laws

=

As suggested in conjecture 3.1.14 we believe that the homomorphism can pass through our

arbitrary arity multiplication. We can now state this as a !-tensor equation:

=
B

B

We can apply !-box operations such as KillB and ExpB,fr to this equation to get new !-tensor

equations:

= =
B

B

Repeated application results in the concrete instances:

=== =
,,

. . .

,

Similarly, in the theory of an antihomomorphism we hope to prove the theorem:

=
B

B

(3.6)

which leads to concrete instances with a twisting property:

=== =
,, ,

. . .

62

Remark 3.3.32. At the beginning of this chapter we decided to ignore typing of edges in order to

keep the definitions/proofs easy to understand. We now give a brief description of the changes to

make to allow typing. Typed diagrams differ by having labelling on wires with their object type

(both for free and bound wires).

a : Y

b : X c : X d : X e : Y

YX

To keep track of edge typing in tensor expressions we need edge names to carry a type. We do

this by having an infinite set of edge names for each type. If our signature has generating object

types O = {X,Y, . . .}, then we split the edge names N into disjoint infinite sets NX ,NY , . . . one for

each generator. We define a typing function τ : N → O by τ(a) = X where a ∈ NX .

From then on there are only a few minor alterations to definitions:

• To guarantee wires have unique types we add the restriction that τ(a) = τ(b) for 1âb̌ to be

valid in a tensor expression.

• For canonically named tensors we now require a list of canonical names {aX1 , aX2 , . . .} ⊂ NX
for each object type X. A tensor is canonically named if for some n ∈ N, for each i ≤ n it has

either an input or output aXi for some object X.

• !-Tensor expressions and !-tensors are unchanged (other than using the new typed edge names).

• To guarantee !-box operations respect edge typing we add an extra condition to being a fresh

renaming ensuring fr preserves typing.

τ(fr(a)) = τ(a) ∀a ∈ N

Remark 3.3.33. As with tensor equations, we prefer to track wires by position rather than edge

names. We will also extend this to dropping !-box names whenever the correspondence is clear from

position.

3.4 Definitional Extension

Families of diagrams with twisting are an obvious advantage of !-tensors, but another much more

subtle advantage is the ability to definitionally extend a theory by defining a node to replace some

larger structure. To see an example of the need for noncommutativity we will attempt such a

definition in a commutative formalism. Take the following two diagrams where edges can freely

commute around a node:

63

These have a lot of repeated structure. We see multiple instances of the following sub-diagram:

We might hope to define a new node φ : X ⊗X → X ⊗X to replace it:

=

so that using the new notation the diagrams simplify to

Unfortunately we have made a number of assumptions in our definition. In the second diagram

we have the rotated version of the repeated structure, but this is not apparent in our new notation.

Commutativity of the new node assumes we can move edges around as we want leading to an equality

between two different diagrams.

= = =

In fact we have assumed a large number of diagrams to be equal:

= = = == . . .

The problem here is that even though all generators are commutative, this does not imply com-

mutativity of the diagrams they form. Noncommutativity lets us overcome this difficulty, allowing

the following well-defined node to replace the repeated sections:

=

64

It is now clear that the tick identifies the two surrounding edges as those from white nodes and

edges cannot be commuted. The earlier examples can now be simplified to:

!-Tensors are the only formalism allowing families of diagrams and definitional extension of a

theory.

3.4.1 Recursive Definitions

One particularly useful application of definitional extension is the ability to replace fixed arity

generators in a theory with arbitrary arity versions. Taking the example of a monoid, we would like

to define an arbitrary arity node to represent the left associated trees of multiplication operations:

representing

.

Then the !-tensor:

represents the family of such nodes with an arbitrary number of inputs. Concrete instances are

retrieved via kill and expand operations.

,
. . .

,, ,

The use of Kill and Exp to retrieve concrete instances suggests a more precise method for defining

arbitrary arity nodes. We can give a recursive definition of the !-tensor G by defining a base case

KillB(G) and then defining ExpB,fr(G) in terms of G, i.e:

:= :=

65

Here the base case is defined to be the monoidal unit , then extra inputs are added via the

monoidal multiplication . We can check that this works as expected by unfolding the definition

for a node with three inputs:

= = = ==

where the last step is by the unit law.

We can use the new arbitrary arity nodes to make statements such as the following, claiming

that any two connected nodes can be combined (often referred to as a spider theorem):

=

which we will prove from the recursive definition in section 4.4 once we have developed a formal

logic for working with !-tensors. We will also prove rules such as the following for homomorphisms

and antihomomorphisms respectively.

=
B

B

=
B

B

3.5 Encoding !-Tensors as !-Graphs

In this section we demonstrate how !-tensors can be encoded as !-graphs with some additional data

to keep track of the order of edges around nodes. This is of particular interest for adapting the semi-

automated theorem prover Quantomatic to work with non-commutative theories. We will elaborate

on this idea in section 7.1.1, but for now we simply present the mechanics of the encoding.

3.5.1 Simple Overlap and Neighbourhood Orders

We know from theorem 3.3.2 that the !-boxes of a !-tensor form a directed forest, but definition 2.3.8

tells us that for !-graphs they are merely posetal. Hence if we wish to encode !-tensors as !-graphs

with additional data, we know that the result will be in a proper subset of all possible !-graphs.

We define this restriction, which we refer to as simple overlap, by enforcing that the contents of

!-boxes only overlap on the interiors of wires along with a condition to ensure they are consistent at

boundaries.

66

Definition 3.5.1 (Simple Overlap). Given a pair of non-nested !-boxes B and B′, we say they

overlap simply if C(B)∩C(B′) consists of only the interior of zero or more wires, where at least one

endpoint is a node-vertex and any node-vertex endpoints are in either C(B) or C(B′).

Definition 3.5.2 (!-Graph with Simple Overlap). A !-graph where any two non-nested !-boxes

overlap simply, is called a !-graph with simple overlap.

This is not quite the same as the notion of trivial overlap as defined in [31] where it was shown that

!-graphs with trivial overlap (BGTO) can be encoded using a context-free grammar. The difference

here is that we allow non-nested overlap at a boundary rather than just between two node-vertices.

A

B

B

A

B

A A

B

Here, the first two !-graphs have only simple overlap, though the second is non-trivial; the final

two have non-simple overlap.

Now we wish to encode !-tensors as !-graphs without losing any information. It is clear that edge

orders and expansion directions are lost when naively converting a !-tensor to a !-graph.

a b

cc

a bB B

Taking a !-tensor expression for the left hand side, φ[â〉B b̂č[]
B , we can see that all of the lost

information is stored in φ’s edgeterm [â〉B b̂č. Imagine encoding a single node as a !-graph (as in

definition 2.3.8). It is clear that adding the edgeterm as additional data ensures no information is

lost. In fact we no longer even require the hats and checks since it is clear from the !-graph node

which edges are inputs and which are outputs. we see this from the following diagrams of single

nodes where we fixed edge positions and draw edgeterms on nodes.

a b

cc

a b
B

B

[a〉Bbc

We can check that a different !-tensor has a different encoding. Even though the following !-tensor

results in the same !-graph as above, the extra data can distinguish them.

a

c

a

c

B
bb

B

b[a〉Bc

67

Hence we wish to encode !-tensors as !-graphs where each node has an associated edgeterm over

its adjacent edges. We refer to this edgeterm information as a neighbourhood order on the !-graph.

Definition 3.5.3 (Neighbourhood Order). Given a !-graph with simple overlap G, a neighbourhood

order on G is a function nhd : N(G)→ EW (G) satisfying ∀v ∈ N(G):

• nhd(v) is an edgeterm with edge names {w ∈W (G) : w → v ∨ v → w},

• The !-boxes in ectxnhd(v) a are precisely those with edges to a but not to v (ordered by nesting

order).

Our intention is to encode !-tensors as pairs (G,nhd) where G is a !-graph (with simple overlap)

and nhd is a neighbourhood order on G. We need to expand our five !-box operations to work

on these !-graphs with neighbourhood orders. We have already seen the definitions of most !-box

operations on !-graphs in definition 2.3.10. From !-tensors we gained one additional operation called

FlipB , but this is related to expansion directions so we decide that it acts as the identity map on

!-graphs. We also know how to apply !-box operations to edgeterms from definition 3.3.10.

Definition 3.5.4 (!-Box Operations). For OpB any !-box operation and (G,nhd) a !-graph with

neighbourhood order,

OpB(G,nhd) := (OpB(G),OpB ◦nhd)

3.5.2 The Encoding Map

We now wish to define a map I taking !-tensors for some signature to !-graphs with neighbourhood

orders. To do this we first need to fix the signatures. Recall that !-tensors are defined based on a

compact closed signature (definition 3.1.1) whereas !-graphs are based on a compressed monoidal

signature (definition 2.3.1). The former list all concrete morphisms as words over X,X∗ (using

compact closed structure) while the latter lists families of morphisms with seperate domains and

codomains over (X, •), (X,∞) where ∞-tagged objects represent variable arity. These are clearly

not equivalent, so we will fix a compact closed signature Σ and a corresponding compressed monoidal

signature I(Σ), to work with in the remainder of this section.

Suppose we have morphisms of the form (φ,w) where φ is the morphism’s name and w is a word

over the set {X,X∗}×{•,∞} (i.e. families of words in X,X∗). From this we can define the compact

closed signature Σ to have morphisms (φ, i(w)) for each i(w), concrete instances of w (i.e. (X,∞)

can be replaced by any number of X’s). We define the compressed monoidal signature I(Σ) to have

morphisms φ with cod(φ) = w|X (i.e only the output parts of w) and dom(φ) = w|X∗ (i.e the input

parts of w written as a word over X). For the rest of the section we will suppose we have such a

pair of well-defined signatures Σ and I(Σ).

68

For an example, take the signature for a bialgebra. This can be represented as a compact closed

signature Σ with one morphism (φ,X(X∗)i) for each i ∈ N and one morphism (ψ, (X)iX∗) for

each i ∈ N. The corresponding compressed monoidal category I(Σ) has (families of) morphisms

φ : [X∞]→ [X•] and ψ : [X•]→ [X∞]. Drawing φ and ψ as white and gray nodes respectively this

results in !-typegraph GI(Σ)! of the form:

∞∞

• •

We now start by defining a map taking a !-tensor expression for signature Σ to an I(Σ)-typed

!-graph, as described in section 2.3.2. The !-tensor formalism avoids the need to name nodes, but we

will need to assign them with unique names if we want to keep track of them during the conversion.

We do this using an indexing set. Given a !-tensor expression G, we say J indexes the nodes if the

elements j ∈ J are in 1-to-1 correspondence with the nodes in G (i.e. the subexpressions of the form

φe). If j corresponds to a node φe we will write Nj to refer to the expression φe.

Example 3.5.5. We can index the !-tensor expression G = φ〈ǎ]A [φâ[b̌〉B [1]B]A1d̂č using the natural

numbers reading them from left to right so that J = {1, 2} and the corresponding nodes are:

N1 = φ〈ǎ]A N2 = φâ[b̌〉B

Note that not all atomic subexpressions are indexed, only those representing a node.

In converting a !-tensor expression to a !-graph, the node Nj can be labelled j.

Definition 3.5.6 (Encoding on Expressions). We define I taking !-tensor expressions to !-graphs

with neighbourhood orders recursively by:

• I(1) := {}

• I(1b̂ǎ) := {a→ b}

• I(φe = Nj) := {a→ j : ǎ ∈ e} ∪ {j → a : â ∈ e} ∪ {B → a : B ∈ ectxe(a)}

• I(GH) := I(G) ∪ I(H)

• I([G]B) := I(G) ∪ {B → x : x ∈ U(I(G))} ∪ {B → B′ : B′ ≤ B}

The typing function on vertices maps j → φ where Nj = φe, !-boxes to !, and edge names a to their

edge type τ(a). The neighbourhood order is nhd(j) := e′ for each Nj = φe where e′ is e without the

hats or checks.

69

Example 3.5.7. If we index G = φ〈ǎ]A [φâ[b̌〉B [1]B]A1d̂č using J = {1, 2} as in the previous example,

the atomic subexpressions become:

I(N1) =
a

A

I(N2) =

a

b

B

I(1) = I(1d̂č) =
c

d

Going through the recursive definition, these combine to the !-graph we would expect:

I(φ〈ǎ]A [φâ[b̌〉B [1]B]A1d̂c) =

1

2

a

b

B

A

c

d

With neighbourhood order nhd = [1 7→ 〈a]A, 2 7→ a[b〉B].

It is easy to see how this encodes the !-tensor:

b

d

c

Now we verify the definition acts as expected.

Theorem 3.5.8. Given G ∈ TΣ, I(G) is a GI(Σ)!-typed !-graph with simple overlap and a neigh-

bourhood order.

Proof. Let J index the nodes in G.

• We first go through the four conditions of definition 2.3.8 to check we have a GI(Σ)!-typed

!-graph:

BG1: We wish to show U(I(G)) is a GI(Σ)-typed string graph. To do this we check the typing

function is arity matching and wire-vertices have at most one incoming edge and at most

one outgoing edge.

Given φe = Nj , we must have a morphism (φ,w) in I(Σ) where concrete instances of e are

instances of w. Hence the •-edges adjacent to j in U(I(G)) come from (and hence are in

bijection with) the •-tagged objects in w. Now from the definition of a derived typegraph,

GI(Σ) contains a node φ with •-edges to/from the •-tagged objects in w. Hence we have

a bijection between the •-edge neighbourhoods of j (in U(I(G))) and φ (in GI(Σ)) as

required.

70

From the definition of I, wire vertices come directly from edge names. The unique

(possible) occurrence of â results in a wire _→ a and the unique (possible) occurrence of

ǎ results in a wire a→ _. Hence each a can have at most one incoming and one outgoing

edge.

BG2: The full subgraph !(G) is the reflexive, transitive closure of the ‘child of’ relation on

!-boxes. Hence it is reflexive, transitive, and antisymmetric (the ‘child of’ relation is

cycle-free).

BG3: Take B ∈!(G) and write X for U(C(B)), so we need to show that X is an open subgraph

of U(G). We first show that any wire-vertex adjacent to a vertex in X is in X. From

the definition of I, the only time an edge is added from a box-vertex to a node-vertex j,

there are also edges added to each neighbour of j. Any two adjacent wire-vertices must

come from I(1âb̌), so that B → a⇔ B → b.

Incident edges can only come from node-vertices not in X with adjacent wire-vertices in

X. Hence the wire comes from a directed edge with B in its edge context which means

it is ∞-tagged in the typegraph.

BG4: An edge between box-vertices, A→ B must be added by I([H]A) during the recursive

definition, where B and C(B) are already in I(H). Hence we get edges A → x for all

x ∈ C(B) meaning C(B) ⊆ C(B′).

• Next we check that any overlap of non-nested !-boxes B,B′ is simple.

Suppose j is a node-vertex such that B → j and B′ → j. From the definition of I we see

that B and B′ must appear in the node context of Nj and so one is nested inside the other.

This contradiction proves that C(B) ∩ C(B′) contains only wire vertices.

Suppose a is a wire-vertex such that B → a and B′ → a. If a is adjacent to another

wire-vertex b, then this edge must have come from 1b̂ǎ or 1âb̌ so a and b are nested inside the

same !-boxes. Hence the intersection C(B)∩C(B′) contains only the interiors of zero or more

wires.

Suppose both endpoints are wire-vertices. Hence the edges have come from identity wires

1b̂ǎ which must have B and B′ in its context which would require them to be nested.

Suppose a wire-vertex a ∈ C(B)∩C(B′) is adjacent to the node-vertex j. If j was neither

in C(B) nor C(B′), then both B and B′ must occur in the edge context of a and hence would

be nested. We conclude that j must occur in exactly one of C(B) or C(B′).

• Finally, we wish to check that nhd is a neighbourhood order on I(G). For Nj = φe the

incoming edges a to j come from all inputs ǎ in e and the outgoing edges b come from all

outputs b̂ in e, hence the neighbourhood of j is made up of edge names in e as required. Also,

71

for the node Nj = φe, !-boxes with edges to a (an edge name in e) but not to j are exactly

those which appear in ectxe(a) = ectxnhd(φ)(a).

Hence I takes a !-tensor expression and returns a correctly typed !-graph with a neighbourhood

order. By the following theorem, the definition of I can be lifted from specific !-tensor expressions

to !-tensors (equivalence classes of !-tensor expressions).

Theorem 3.5.9. ∀G,H ∈ TΣ, G ≡ H if and only if I(G) and I(H) are equivalent up to renaming

and wire homeomorphism.

Proof. In both formalisms bound variables can be renamed freely, so we will not worry about names

here. We prove first that all !-tensor equivalences from definitions 3.2.1 and 3.1.6 are preserved

through I. Then we check that if I(G) and I(H) are equivalent up to wire homeomorphism then

G ≡ H.

• Since edgeterms are copied directly from !-tensors to !-graphs, the edgeterm equivalences are

still preserved. The associativity, commutativity, and identity equivalences on !-tensor expres-

sions have no affect on the graphical formalism so these are also preserved. The only things left

to check are the two equivalences involving inserting identity wires 1b̂ǎ using concatenation.

These two conditions come down to wire homeomorphism in the !-graph framework. First we

are given that b̌ exists in G and (for some !-boxes B1, . . . , Bn) we look at G∗ [[1b̂ǎ]B1 . . .]Bn

under I. This becomes a graph with edges a→ b→ x for some x and since a and b are both

wire-vertices this is wire homeomorphic to G[b̌ 7→ ǎ]. The other case is similar but with arrows

reversed.

• For the other direction suppose I(G) and I(H) differ only by a single wire homeomorphism,

so there exist wire-vertices a, b and a vertex c in I(G) with a→ b→ c, and I(H) is I(G) but

with a→ b→ c replaced with a→ c. From the definition of I we see that there exists some G′

and !-boxes B1, . . . , Bn such that G = G′∗[[1b̂ǎ]B1 . . .]Bn (this is the only way two wire vertices

can be connected) and also b̌ must exist in G′. H must be the same as G′ except the edge b̌

is replaced by the edge ǎ.

G ≡ G′∗[[1b̂ǎ]B1 . . .]Bn

≡ G′[b̌ 7→ ǎ]

≡ H

72

We have shown I is injective on !-tensors and hence is a bijection onto its image. We can hence

take any !-tensor G and work with it in the form of I(G). To work as an encoding we would hope

that !-box operations are equivalent in each formalism. Applying the !-box operation OpB to I(G)

and then returning to the !-tensor formalism should result in a !-tensor equivalent to OpB(G). By

the previous theorem, I has a left inverse I−1 so we need only check that OpB ◦I = I ◦ OpB and

it then follows that I−1 ◦OpB ◦I = OpB .

Theorem 3.5.10. OpB(I(G)) = I(OpB(G)) for any !-box operation OpB and G ∈ TΣ.

Proof. This can be shown by case analysis on the recursive definition of TΣ going through each !-box

operation CopyB , FlipB , KillB , and DropB (from which ExpB also follows). Most cases are trivial,

the interesting case is showing OpB(I([G]B)) = I(OpB([G]B)) for each operation:

CopyB(I([G]B)) is defined by a pushout of the inclusion 1 ↪→ I([G]B) with itself, so equals the

disjoint union of two copies of I([G]B). Hence if fr assigns fresh names to to the edges and !-boxes

of [G]B , then:

CopyB(I([G]B)) = I([G]B) ∪ I([fr(G)]fr(B))

= I([G]B [fr(G)]fr(B))

= I(CopyB([G]B))

FlipB(I([G]B)) = I([G]B)

= I(FlipB([G]B))

KillB(I([G]B)) = KillB(I(G) ∪ {B → x : x ∈ U(I(G))} ∪ {B → B′ : B′ ≤ B})

= {}

= I(1)

= I(KillB([G]B))

DropB(I([G]B)) = DropB(I(G) ∪ {B → x : x ∈ U(I(G))} ∪ {B → B′ : B′ ≤ B})

= I(G)

= I(DropB([G]B))

Corollary 3.5.11. The concrete instances of I(G) are the concrete instances of G with I applied

to them.

73

74

Chapter 4

A Formal Logic

The second major contribution of this thesis is !-logic, a logic for !-tensors. Previous attempts at

diagrammatic reasoning have relied on rewriting via substitution. The equation L = R implies we

can replace any instance of L as a section of a diagram with R. We replace the previous methods

for equational reasoning (which lacked a formal logical framework) with a first order logic with

conjunction, implication, and universal quantification over !-boxes. In section 4.2 we present the

!-logic rules (referred to as !L), culminating in a !-box induction rule.

After looking through a few examples of proof by induction for recursively defined nodes, we

conclude this chapter by defining a semantics for !-logic and proving soundness with respect to this

semantics.

4.1 !-Formulas

4.1.1 Quantification

In [39] an attempt was made to develop a formal logic for !-graphs. A !-graph equation G = H was

taken to mean that any instantiation of that equation holds. Suppose we take the same definition

for !-tensor equations.

AA

= ==

{
=

,
=

, ,
. . .

}

To prove this equation from some set of concrete axioms we may hope to use a form of induction:

75

=

A
A

=

A
A

= −→ =

A
A

(Induct)

Here we have split into a base case with no copies of A and a step case where n copies implies

n+ 1 copies. Unfortunately, interpreting → as ‘the set of instances on the left implies the set on the

right’ we find that this induction is invalid. The step case turns out to be vacuous, as the instances

of the right hand side are a subset of those of the left hand side. This is analogous to trying to apply

induction to first order logic by the rule:

−→P (0) ∀n P (n) ∀n P (n+ 1)

∀n P (n)
(Induct)

It is clear that quantification is playing an important role here. The corrected version of induction

for first order predicate logic is:

−→
(Induct)

P (0) P (n) P (n+ 1)

∀n P (n)

∀n
()

We have corrected the induction by pulling the quantification outside of the step case implication.

Hence in the quest for !L we no longer take a !-tensor equation to mean truth of its instances, instead

introducing quantification over !-boxes. We hope to correct the previous attempt at !-box induction

by analogy with first order logic, where now the left hand side of the implication does not assume

truth of every instance.

=

A
A

=

A
A

= −→ =

A
A

(Induct)

∀A.

∀A.

()

However, things get more interesting when we bring !-box nesting into the picture. If G and H

have a single !-box B, then it is clear that ∀B.(G = H) should be interpreted as ‘any instantiation i

of B (i.e. KEnB for some n ∈ N) results in the correct concrete equation i(G) = i(H)’. It is less clear

how we should interpret quantification over B if it is nested inside another !-box A. B is implicitly

bound to operations applied to A which create new copies of, and eventually delete, B. Hence if we

want to quantify over B we must also quantify over any parents and children. So quantification is

done over connected components of the !-box structure. Any such component can be written as ↓A

for some !-box A and so we simply write ∀A.X for quantification over the component ↓A in X.

76

We make the interpretation of quantification formal when we describe semantics in section 4.5.

First we define !-formulas which are the building blocks of our logic.

4.1.2 !-Formulas

Definition 4.1.1 (!-Formulas). The set of !-formulas, FΣ, for a signature Σ is defined inductively

as:

• G = H ∈ FΣ G,H ∈ TΣ!, G = H well-formed

• X ∧ Y ∈ FΣ X,Y ∈ FΣ, boxes(X)4boxes(Y)

• X → Y ∈ FΣ X,Y ∈ FΣ, boxes(X)4boxes(Y)

• ∀A.X ∈ FΣ X ∈ FΣ, A ∈ boxes(X)>

where boxes(−) is defined recursively on !-formulas by:

• boxes(G = H) := boxes(G) ∪ boxes(H)

• boxes(X ∧ Y) := boxes(X) ∪ boxes(Y)

• boxes(X → Y) := boxes(X) ∪ boxes(Y)

• boxes(∀A.X) := boxes(X)\ ↓A

Remark 4.1.2. Note that the set FΣ is defined inductively, relying on a simultaneous recursive

definition of boxes(−). This is non-circular, since the inductive steps always rely on calls to boxes(−)

on strictly smaller formulas. Unsurprisingly, this style of definition is referred to as induction-

recursion [17].

Remark 4.1.3. The function boxes(−) returns only the free !-boxes of a formula. Quantification

∀A.X means the !-boxes in ↓A are now bound. As with bound edge names this means we can use

α-conversion to rename them.

Definition 4.1.4 (Free Edges). We write free(X) for the set of free edges in X (i.e. the union of

free(−) applied to each atomic part of X).

To instantiate !-formulas we need to be able to apply !-box operations to them.

Definition 4.1.5 (Fresh for !-Formulas). We say fr is fresh for X if it is a fresh renaming on

(boxes(X), free(X)).

Definition 4.1.6 (Operations on FΣ). For OpB,fr one of the !-box operations FlipB , KillB , DropB ,

77

CopyB,fr or ExpB,fr and fr fresh for the domain:

• OpB,fr(G = H) := OpB,fr(G) = OpB,fr(H)

• OpB,fr(X ∧ Y) := OpB,fr(X) ∧OpB,fr(Y)

• OpB,fr(X → Y) := OpB,fr(X)→ OpB,fr(Y)

• OpB,fr(∀A.X) :=

∀A.X B ∈↓A

∀A.OpB,fr′(X) B 6∈↓A

Remark 4.1.7. In the recursive definition of OpB,fr(∀A.X) for B 6∈↓A we have used a new fresh

renaming fr′. The reason for this is that we now need it to be fresh for the contents of the !-boxes

in ↓A even though it will not be applied to them as they are necessarily not nested inside B. By

α-equivalence we can take A not to share any names with support(fr), then we can always extend

fr to be fresh on ↓A.

Theorem 4.1.8. !-Box operations preserve the property of being a !-formula.

Proof. We prove this using structural induction on !-formulas.

• If G = H is a !-formula then G and H have the same free edges in the same !-boxes. Hence

OpB(G) and OpB(H) have the same free edges (a or fr(a) for a free in G = H) and these are

in the same !-boxes.

• For the next two cases we have boxes(X) and boxes(Y) compatible. OpB takes the unique

connected component S containing B and replaces it with OpB(S). This can only have gained

fresh !-box names so boxes(OpB(X)) and boxes(OpB(Y)) are still compatible.

• If B ∈↓A then the final case is trivial. If B 6∈↓A then the component ↓A is not affected by

OpB so is still a component of OpB(X).

Having defined !-box operations on !-formulas we can define the set of instantiations, resulting

in concrete formulas, as expected.

Definition 4.1.9 (Partial Instantiation). A partial instantiation of a !-formula is a sequence of zero

or more KillB ,ExpB,fr operations each with B in its domain and fr fresh for its domain.

Definition 4.1.10 (Instantiation, Concrete Instance). An instantiation of a !-formula X is a partial

instantiation i such that i(X) is a concrete formula. We write Inst(X) for the set of instantiations

of X and call i(X) a concrete instance of X.

Example 4.1.11. The following !-formula (taken from the inductive step of our proposed !-box

induction):

78

A
A

= −→ =

A
A

has concrete instances:

=

=

=

=

−→

= −→

−→=

...

,

,

,

As we might expect, and will see later, quantifying over A means requiring each of these to be true,

which when combined with a base case clearly implies truth of every concrete instance of:

=

A
A

We have seen how !-box operations can be applied to a !-formula X. We now show that any

combination of !-box operations i resulting in a concrete !-formula i(X) can be rewritten as an

instantiation, up to renaming. We use a number of lemmas from appendix A concerning reordering

!-box operations.

Theorem 4.1.12. Given a sequence i of !-box operations such that i(X) is a concrete !-formula,

∃i′ ∈ Inst(X) and a renaming rn such that i(X) = rn ◦ i′(X).

Proof. First we note that any operations OpB without B in their domain when applied to X act

trivially and can hence be removed. Similarly, DropB operations can be removed by rewriting

DropB = rn ◦KillB ◦ExpB,fr for some renaming rn as shown in lemma A.2.2. Note that any

renamings introduced can be pushed to the left by lemma A.0.2 which states:

rn ◦Oprn−1(C),rn−1 ◦ fr ◦ rn(G)

Now suppose j is a combination of Kill, Exp, Copy, and Flip operations such that j(X) is a concrete

!-formula. We wish to show that j can be rewritten to an instantiation, that is, a composition of

only Kill and Exp operations. We do this by repeatedly applying the following rewriting procedure

79

to j:

If j has no Copy or Flip operations then we are done, else we go through one of the following four

cases based on the left-most Copy or Flip operation:

• CopyB,fr is the left-most such operation with j = i ◦CopyB,fr ◦ j′ and B has a parent !-box in

CopyB,fr ◦ j′(X):

Let A be the top level !-box containing B. By theorem 3.3.22 we can write i = rn ◦ i′ ◦KEnA

for a renaming rn, so that:

j = i ◦ CopyB,fr ◦ j′

= rn ◦ i′ ◦KEnA ◦CopyB,fr ◦ j′

= rn ◦ i′ ◦ CopyB1
◦ . . . ◦ CopyBn

◦KEnA ◦ j′

where B1, . . . Bn are the copies of B created by KEnA and the final step is by repeated use of

lemma A.2.3.

Now we can restart the procedure on i′ ◦ CopyB1
◦ . . . ◦ CopyBn

◦KEnA ◦ j′, knowing that the

new left-most copying operation CopyB1
has lower nesting depth.

• CopyB,fr is the left-most such operation with j = i ◦ CopyB,fr ◦ j′ and B has no parent !-box

in CopyB,fr ◦ j′(X):

Then fr(B) also has no parent !-box in CopyB,fr ◦ j′(X). By theorem 3.3.22 we can write

i = rn ◦ i′ ◦KEnfr(B) for a renaming rn, so that:

j = i ◦ CopyB,fr ◦ j′

= rn ◦ i′ ◦KEnfr(B) ◦CopyB,fr ◦ j′

= rn ◦ i′ ◦ ExpnB ◦ j′

where the final step is by repeated use of lemma A.2.3.

Now we can restart the procedure on i′ ◦ Expnfr(B) ◦ j′, knowing that we have removed the

left-most Copy operation.

• FlipB is the left-most such operation with j = i ◦ FlipB ◦ j′ and B has a parent !-box in

FlipB ◦ j′(X):

Let A be the top level !-box containing B. By theorem 3.3.22 we can write i = rn ◦ i′ ◦KEnA

for a renaming rn, so that:

j = i ◦ FlipB ◦ j′

= rn ◦ i′ ◦KEnA ◦FlipB ◦ j′

= rn ◦ i′ ◦ FlipB1
◦ . . . ◦ FlipBn

◦KEnA ◦ j′

80

where B1, . . . Bn are the copies of B created by KEnA and the final step is by repeated use of

lemma A.2.1.

Now we can restart the procedure on i′ ◦FlipB1
◦ . . .◦FlipBn

◦KEnA ◦ j′, knowing that the new

left-most flipping operation FlipB1
has lower nesting depth.

• FlipB is the left-most such operation with j = i ◦ FlipB ◦ j′ and B has no parent !-box in

FlipB ◦ j′(X):

By theorem 3.3.22 we can write i = rn ◦ i′ ◦ KillB ◦ExpB,frn ◦ . . . ◦ ExpB,fr1 for a renaming

rn, so that:

j = i ◦ FlipB ◦ j′

= rn ◦ i′ ◦KillB ◦ExpB,frn ◦ . . . ◦ ExpB,fr1 ◦FlipB ◦ j′

= rn ◦ i′ ◦KillB ◦ExpB,fr′1 ◦ . . . ◦ ExpB,fr′n ◦ j
′

where the final step is by lemma A.2.1, introducing new fresh renamings fr′i, each of which

agrees with fri on the contents of B.

Now we can restart the procedure on i′ ◦KillB ◦ExpB,fr1 ◦ . . . ◦ExpB,frn ◦ j
′, knowing that we

have removed the left-most Flip operation.

To see that this process terminates, note that each iteration either eliminates a Copy or Flip operation

at depth 0, or replaces one at depth k with operations at depth k − 1.

4.2 The Rules of !L

!L is presented in terms of sequents which are of the form Γ ` Y , where Γ is a finite sequence

X1, X2, . . . , Xn. We interpret this as the !-formula Y following from the conjunction of the !-formulas

X1, X2, . . . , Xn. We always assume the !-formulas of a sequent have compatible !-box structures.

The core rules of !L are taken from those of positive intuitionistic logic with (Cut):

(Ident)
X ` X

Γ ` Y (Weaken)
Γ, X ` Y

Γ, X, Y,∆ ` Z
(Perm)

Γ, Y,X,∆ ` Z
Γ, X,X ` Y

(Contr)
Γ, X ` Y

Γ ` X ∆ ` Y (∧I)
Γ,∆ ` X ∧ Y

Γ ` X ∧ Y (∧E1)
Γ ` X

Γ ` X ∧ Y (∧E2)
Γ ` Y

Γ ` X → Y (→ E)
Γ, X ` Y

Γ, X ` Y
(→ I)

Γ ` X → Y

Γ ` X ∆, X ` Y
(Cut)

Γ,∆ ` Y

81

The rules for introducing and eliminating ∀ are also analogous to the usual rules. We take a

renaming rn : B → B for !-boxes with support(rn) =↓A. Write rn(X) for the application of that

renaming to a !-formula, then:

Γ ` rn(X)
(∀I)

Γ ` ∀A.X
Γ ` ∀A.X (∀E)
Γ ` rn(X)

where in the case of (∀I) we also require that rn(↓A) is disjoint from boxes(Γ).

To these core logical rules, we add rules capturing the fact that = is an equivalence relation and

a congruence:

(Refl)
Γ ` G = G

Γ ` G = H (Symm)
Γ ` H = G

Γ ` G = H Γ ` H = K (Trans)
Γ ` G = K

Γ ` G = H (Box)
Γ ` [G]A = [H]A

Γ ` G = H (Concat)
Γ ` G∗F = H∗F

The (Box) and (Concat) rules allow an equation to be applied to a sub-expression as we will

prove in theorem 4.3.2.

The main utility of universal quantification is to control the application of !-box operations. In

order to start instantiating a !-box (or one of its children), it must be under a universal quantifier:

Γ ` ∀A.X (Flip)
Γ ` FlipB(X)

Γ ` ∀A.X (Kill)
Γ ` KillB(X)

Γ ` ∀A.X (Drop)
Γ ` DropB(X)

Γ ` ∀A.X (Copy)
Γ ` CopyB(X)

Γ ` ∀A.X (Exp)
Γ ` ExpB(X)

where B 4 A in boxes(X). These rule-schemes along with (∀I) play an analogous role to the

substitution of a universally-quantified variable for an arbitrary term.

Remark 4.2.1. !-Box operations do not make up part of the underlying object language and are

actually applied at the meta level. For example, in Γ ` CopyB(X), the expression CopyB(X)

represents the !-formula resulting from applying CopyB to the !-formula X. This is why we refer to

(Copy) as a rule-scheme rather than a rule and similarly for the other !-box operation rule-schemes.

The final and possibly most significant rule-scheme of !L is !-box induction, which allows us to

introduce new !-boxes. For a top-level !-box A, we have:

Γ ` KillA(X) ∆, X ` ∀B1. · · · ∀Bn.ExpA(X)
(Induct)

Γ,∆ ` X

82

where A does not occur free in Γ or ∆ and B1 to Bn are the fresh names of children of A coming

from its expansion.

Remark 4.2.2. The order of B1, . . . Bn above is unimportant as we can use (∀E) and (∀I) to

reorder them.

4.3 Derived Rules

As described in definition 4.5.4, a sequent Y1, . . . , Yn ` X means the !-formula X follows from the

conjunction of the list of !-formulas Y1, . . . , Yn. By the rule (Perm) we can freely commute the

elements of this list, meaning it acts as a multiset. Then by (Contr) we can remove repetition

ensuring the assumptions act as the set {Y1, . . . Yn}.

As seen in section 3.1.1, diagrammatic theories are made up of a number of generators and a set

Γ of diagrammatic equations. By the above we can then use Γ in a sequent by writing Γ ` X. If

X is one of the equations of Γ then we would trivially expect Γ ` X to be true as X is one of the

assumptions. We now show how this is achieved in !L and give it the name (Assm) which we use

throughout the rest of this thesis.

Theorem 4.3.1. If X ∈ Γ then
(Assm)

Γ ` X

Proof. Let Γ be the list Y1, . . . Yi, X, Yi+1, . . . Yn then by repeated application of (Weaken) and

(Perm) we prove the claim:
(Ident)

X ` X (Weaken)
... (Weaken)

X,Y1, . . . , Yn ` X (Perm)
... (Perm)

Γ ` X

We often have multiple ways to represent the exact same !-formula but wish to add an additional

step to a proof tree to clarify rewriting. When we wish to do this we will write it as a rule (≡). For

example, the following diagrams demonstrate the use of (≡) for equivalent expressions for a !-tensor

and definitions of !-box operations respectively.

Γ ` GH = K (≡)
Γ ` HG = K

Γ ` DropB([G]B) = H
(≡)

Γ ` G = H

83

Suppose we have Γ ` G = G′ and G matches a !-tensor H, by which we mean ∃B1, . . . , Bn ∈ B

and ∃F ∈ TΣ such that H = [[G]Bn . . .]B1∗F . We would expect to be able to substitute the copy of

G in H with G′. We can now prove a rule stating this:

Theorem 4.3.2. If G matches H as witnessed by H = [[G]Bn . . .]B1 ∗F , then:

Γ ` G = G′ (Subst)
Γ ` H = H ′

where H ′ = [[G′]Bn . . .]B1 ∗F , i.e. H with G′ substituted for G.

Proof.
Γ ` G = G′ (Box)

... (Box)
Γ ` [[G]Bn . . .]B1 = [[G′]Bn . . .]B1

(Concat)
Γ ` [[G]Bn . . .]B1 ∗F = [[G′]Bn . . .]B1 ∗F

(≡)
Γ ` H = H ′

It may seem unusual that the !-box operation rules (Op) lose quantification, since we may wish to

apply more !-box operations. We now show how the current rules are enough to prove the quantified

versions. We bring back not only quantification over ↓B but also over any new components created

by OpB :

Theorem 4.3.3. If OpB,fr is a !-box operation for B ∈↓A with fr fresh for a !-formula X, then:

Γ ` ∀A.X (∀Op)
Γ ` ∀A1. · · · ∀An.OpB,fr(X)

where ↓A1, . . . , ↓An are the connected components of OpB,fr(↓A) (i.e. those created by OpB,fr in

OpB,fr(X)).

Proof. If we directly applied the rule (OpB,fr), the result may contain !-boxes which already appear

in Γ, preventing us from using (∀ I) to bring back the quantification. Hence we need to be more

precise about !-box names.

Let rn : B → B rename the !-boxes of ↓A to fresh names and act as identity elsewhere. We can

extend fr to a new fresh renaming fr′ which is also fresh on rn(↓A). By alpha equivalence, we use

rn to replace ∀A.X with ∀ rn(A). rn(X) which removes the problem of names clashing.

Γ ` ∀A.X (≡)
Γ ` ∀ rn(A). rn(X)

(Op)
Γ ` Oprn(B),fr′ rn(X)

(∀ I)
... (∀ I)

Γ ` ∀A1. · · · ∀An.OpB,frX

where the final steps are valid since rn and fr both chose fresh names not appearing in Γ.

84

Theorem 4.3.4. The rule (Exp) can be derived from the other rules in !L.

Proof. We show that it can be derived from (Copy) and (Drop) using the identity ExpB,fr =

Dropfr(B) ◦CopyB,fr. We have two cases to check:

If B 6= A then:
Γ ` ∀A.X (∀Copy)

Γ ` ∀A.CopyB,fr(X)
(Drop)

Γ ` Dropfr(B) ◦CopyB,fr(X)
(≡)

Γ ` ExpB,fr(X)

If B = A then:

Γ ` ∀A.X (∀Copy)
Γ ` ∀A.∀ fr(A).CopyB,fr(X)

(∀ E)
Γ ` ∀ fr(A).CopyB,fr(X)

(Drop)
Γ ` Dropfr(B) ◦CopyB,fr(X)

(≡)
Γ ` ExpB,fr(X)

Theorem 4.3.5. For i a partial instantiation of the !-formula Y1 → (. . . (Yn → X)) we get:

Y1, . . . , Yn ` X
(Partial)

i(Y1), . . . , i(Yn) ` i(X)

Proof. Since i is made up of !-box operations we need only show the above for a general !-box

operation i = OpB,fr then repeated application gives the general theorem. LetB be in the component

↓A.
Y1, . . . , Yn ` X (→ I)

... (→ I)
` Y1 → (. . . (Yn → X))

(∀ I)
` ∀A.(Y1 → (. . . (Yn → X)))

(Op)
` OpB,fr(Y1 → (. . . (Yn → X)))

(≡)
` OpB,fr(Y1)→ (. . . (OpB,fr(Yn)→ OpB,fr(X)))

(→ E)
... (→ E)

OpB,fr(Y1), . . . ,OpB,fr(Yn) ` OpB,fr(X)

We now use these new rules to present a few examples of the use of induction when transitioning

from a fixed arity theory to an arbitrary arity one.

4.4 Induction Examples

4.4.1 Monoid

Recall the finite arity theory of a monoid from example 3.1.4. There are two generating morphisms:

(,) and three diagrammatic axioms:

85

= =

Monoid Laws

=
ΓM =

As seen in section 3.4.1 we can recursively define an arbitrary arity multiplication operation from

the finite arity generators:

:= :=

From this we wish to prove that any two connected nodes can be combined to a single node. We

will now prove this using !L, starting with a lemma.

Lemma 4.4.1.

B

=

B

A
A

∀A.∀B.ΓM `

(4.4.1)

Proof. We present part of the proof tree:

ΓM `

ΓM `
A

=

A B

`

B
A

BB

=
A

A

=

A

ΓM ,

(Induct)

ΓM `

(≡)

(step)

(Concat)

A

=

A

=ΓM `

(Assm)

(∀I)

ΓM ` ∀A.∀B.

B
B

A
A

=

B
BA

=

A

where we have proved the base case but left the step case (marked step) to be proved by a rewrite

sequence:

step:

86

B
A

=

B

A
=

B

A

A B

=

B

A

=

A B

=
IH

The equality labelled as IH follows from the inductive hypothesis by concatenation with the monoidal

multiplication.

Proof trees often become unfeasibly large and difficult to write down, so we present our proofs

using rewriting sequences. Each equality in a rewrite sequence will be provable from the assumptions

using !L. We will often drop the names of !-boxes and keep track of them using their position.

Using lemma 4.4.1 we can prove the more general case using rewriting.

Theorem 4.4.2.

=
AC

B

A

B

C
∀A.∀B.∀C.ΓM `

(4.4.2)

Proof.

= = = = =
(4.4.1) (4.4.1) (4.4.1)

Where the first equality comes from ExpA(4.4.1) by (Concat); the third comes from lemma 4.4.1 by

(Concat); and the final equality is CopyA(4.4.1). These are all valid since A is quantified over in the

lemma.

Remark 4.4.3. With the aim to simplify diagrams we can now always combine connected nodes

until we have only one node. At this point we might be tempted to think we have as simple a diagram

as possible. However, in the case of a single node with a single input we can simplify further:

= = =

Theorem 4.4.4. The finite arity theory of monoids ΓM can be replaced by the arbitrary arity version

ΓM ! made up of a single arbitrary arity generator:

along with two !-tensor equations:

87

==
ΓM ! =

Monoid Laws

Proof. We have seen how the arbitrary arity node can be defined in terms of fixed arity generators

and proved the equations in ΓM !. Now we need only check that ΓM ! covers all of the axioms in ΓM .

For example, the associativity axiom can be shown by:

== ==
(4.4.2) (4.4.2)

where the second and third equalities follow by applying KE1
C ◦KE2

B ◦KillA and KillC ◦KE2
B ◦KE1

A

respectively to theorem 4.4.2. Similarly, the unit laws can be shown via rewriting:

== =
(4.4.2) (4.4.3)

== =
(4.4.2) (4.4.3)

As it is stated, theorem 4.4.2 allows us to combine any two connected nodes (so long as we keep

track of edge ordering). This type of theorem allowing connected nodes to be merged together is

often refered to as a spider theorem. By induction we can combine any finite connected network

of nodes (again keeping track of edge order). The process of reducing an arbitrary diagram of

connected nodes to a single node is as follows: first we identify a spanning tree in the diagram;

second we use naturality to move all crossings (and possibly loops) out of the spanning tree; and

finally, by repeated use of theorem 4.4.2, we can combine all nodes into one.

= =

It is now clear to see the advantages of moving to the arbitrary arity theory. Complicated

diagrams can be reduced to disconnected nodes:

=

88

4.4.2 Antihomomorphism

The fixed arity theory ΓAH of an antihomomorphism () for a monoid (,) is given by dia-

grammatic axioms:

= =

Monoid Laws

= =

Antihom. Laws

=
ΓAH =

As in the previous section, we can replace the finite monoid part with its arbitrary arity coun-

terpart. We can then prove the theorem suggested in (3.6):

Theorem 4.4.5.

=
B

B

(4.4.5)

ΓAH ` ∀B.

Proof. By induction on B the lemma breaks down into two cases:

= (base)

=
B

B B

=
B

−→ (step)

The base case trivially holds by (Assm); we show the step case by rewriting:

step:

= = = = =
IH

where the equality labelled as IH follows from the inductive hypothesis via the rule (Concat).

Hence by instantiating we have a proof for tensor equations such as:

=== =
,, ,

. . .

89

Theorem 4.4.6. The finite arity theory of antihomomorphisms ΓAH can be replaced with the arbi-

trary arity version ΓAH! made up of two generators:

along with three !-tensor equations:

== =

Antihom. LawsMonoid Laws

ΓAH! =

Proof. We have seen how these follow from the fixed arity theory. Now we need only check the

axioms in ΓAH follow from those in ΓAH!. The monoid laws were shown in theorem 4.4.4 to follow

from ΓM ! which is a subset of ΓAH!, so we need only check the antihomomorphism laws:

=== = =
(4.4.5)(4.4.5)

4.4.3 Bialgebra

The theory of a bialgebra consists of a monoid (,) and a comonoid (,) with the bialgebra

laws governing their interaction:

= =

Bialgebra Laws

Monoid Laws

=

=

Comonoid Laws

= =

= =

= =

ΓBA =

As in the previous two sections, we can replace the finite monoid part with its arbitrary arity

counterpart. But in this case we can do the same with the comonoid. The recursive definition of a

left associated tree of comultiplications is:

90

:= :=

from which we prove the same lemma and theorem as in the monoid case:

91

Lemma 4.4.7.

B

=

B

A
A

ΓBA `

(4.4.7)

∀A.∀B.

Proof. Proof by induction, similar to the proof of lemma 4.4.1 except with the diagrams flipped

upside down and white nodes replaced with gray nodes.

Theorem 4.4.8.

=
AC

B

A

B

C

ΓBA ` ∀A.∀B.∀C.

(4.4.8)

Proof. Proof by rewriting using lemma 4.4.7, similarly to the proof of theorem 4.4.2 except with the

diagrams flipped upside down and white nodes replaced with gray nodes.

Hence similarly to the monoid case, connected planar tree-like networks of comultiplications can

be replaced by a single node:

= =

This already lets us replace the monoid and comonoid parts with arbitrary arity versions. We

hope to do the same for the four bialgebra laws. Take the axiom stating that gray comultiplications

copy white units:

=

We hope to replace this with an arbitrary arity version, as seen in section 4.1.1.

Theorem 4.4.9.

=

A
A

(4.4.9)

ΓBA ` ∀A.

92

Proof. We use this example to demonstrate how a proof can be presented as a proof tree:

=

A
A

=

A
A

= ` =
A

(Induct)

ΓBA `

ΓBA ,

(Assm)

(=)

A

= `
AA

=

A

=

A

AA

(Concat)

=

(Assm)

ΓBA `

A
A

=

(Concat)

A

= `
A

(Ident)

ΓBA `

ΓBA `

(∀I)

∀B.ΓBA `
A

A

=

This theorem can be used to replace two of the bialgebra equations (the two concerning white

units) but we can generalise even further to replace all four axioms by one !-tensor equation.

Lemma 4.4.10.

B

=

(4.4.10)

ΓBA `

B

∀B.

Proof. By applying induction on B the lemma breaks down into two cases:

(Induct)

`
ΓBA `

(Assm)

=

ΓBA `

ΓBA,

(step)

= =

=

93

where we prove the step case (marked step) by rewriting:

step:

== =
IH

==

The equality labelled as IH follows from the inductive hypothesis via the rule (Concat).

Theorem 4.4.11.

A

B

∀A.∀B. =

B

A

ΓBA `

(4.4.11)

Proof. By applying induction on A the lemma breaks down into two cases:

(4.4.9)

=ΓBA,

=

(step)

(Induct)

ΓBA `
=

=

ΓBA `

`

The base case is theorem 4.4.9, so we only need to prove the step case, which we do by rewriting:

step:

IH

= ===

(4.4.10)

The second and third equalities follow from lemma 4.4.10 and the inductive hypothesis repectively

via (Concat).

Hence by instantiating we have a proof allowing any multiplication to pass through a comulti-

plication as in the following examples:

94

= = = =

Theorem 4.4.12. The fixed arity theory of bialgebras ΓAB can be replaced with the arbitrary arity

version made up of two generators:

along with five rules:

Bialgebra Law

=
Monoid Laws

Comonoid Laws

=

=

=

=

ΓBA! =

Proof. We have seen how these follow from the fixed arity theory. Now we need only check the

fixed arity bialgebra axioms follow from ΓBA!. This is trivial as each one is simply an instance of

theorem 4.4.11. Specifically we used the four instantiations KillB ◦KillA, KillB ◦KE2
A, KE2

B ◦KillA

and KE2
B ◦KE2

A.

4.5 Semantics

Recall that a valuation for a signature Σ is a map J−K : Σ→ C into a compact closed category and

can uniquely extend to assign a morphism in C to each tensor. This allows us to assign a truth value

to any concrete equation G = H by saying it is true if JGK and JHK are the same morphism in C.

Hence we start by defining semantics on concrete equations:

JG = HK :=

T if JGK = JHK

F otherwise
(4.1)

95

We hope to build this up to !-formulas. We have defined the application of !-box operations and

hence instantiations to !-formulas. Applying i ∈ Inst(X) to X should result in a truth value and

hence we can think of JXK as a map from Inst(X) to truth values. Equivalently X can be defined

as the set of instantiations i for which i(X) holds. We adopt the second approach and hence atomic

formulas have a natural interpretation.

Definition 4.5.1 (Atomic Formula Semantics). For an atomic !-formula G = H and a valuation

J−K : Σ→ C, we let:

JG = HK =

{
i ∈ Inst(G = H)

∣∣∣∣ Ji(G)K = Ji(H)K
}

(4.2)

So in the concrete case, true equations get mapped to the set containing the identity instantiation

id and false equations become the empty set. This can agree with our suggested interpretation of

concrete !-formula equations if we define true and false by T = {id} and F = ∅.

Definition 4.5.2 (!-Formula Semantics). The interpretation J−K of a !-formula is defined recursively

by (atomic case above):

JX ∧ Y K :=

{
i ∈ Inst(X ∧ Y)

∣∣∣∣ i|X ∈ JXK ∧ i|Y ∈ JY K
}

JX → Y K :=

{
i ∈ Inst(X → Y)

∣∣∣∣ i|X ∈ JXK→ i|Y ∈ JY K
}

J∀A.XK :=

{
i ∈ Inst(∀A.X)

∣∣∣∣ ∀j ∈ Inst(i(X)) j ◦ i ∈ JXK
}

When we write i|X we mean the restriction to only !-box operations which act onX (i.e. removing

those acting as the identity). This ensures that i|X is an instantiation of X.

Remark 4.5.3. In the final case above we used the fact that !-box operations on different compo-

nents commute. The concrete formula i(∀A.X) can equivalently be written as ∀A.(i(X)), demon-

strating that boxes(i(X)) =↓A. Hence universal quantification over Inst(i(X)) is quantifying over

possible instantiations of ↓A as we would expect.

This is analogous to a similar style of interpretation in first order predicate logic [19]. Here

a predicate in some variables is treated as the set of assignments of those variables resulting in a

correct statement. Our !-boxes take the role of variables and instantiating them is the equivalent of

applying an assignment.

For example, working in N, if we have the statement ‘m.n is an even number’ which we refer

to as P (m,n), we can take JP (m,n)K to be the set of assignments of natural numbers to m and n

resulting in a true statement, i.e. those highlighted green in the following illustration.

96

P (m,n)

P (1, 1) P (2, 1) P (2, 5)

. . .
. . .assignments

truth values

J∀nP (m,n)K is the set of assignments of natural numbers to m such that for all assignments of

n we have correct statement P (m,n) (in this case we get all even assignments of m).

In the statement ∀m∀nP (m,n) the quantification over m leaves us with no variables to assign

values to, so the only assignment is the trivial identity assignment. As suggested by our interpre-

tation, J∀m∀nP (m,n)K should equal {id} if and only if id(∀m∀nP (m,n)) is true; in other words if

and only if P (m,n) is true for all m and n (in this case it is false and we are left with the empty

set).

Replacing variables with !-box components and assignments with instantiations we see how this

compares with our semantics. For X containing two non-nested !-boxes A and B, JXK is the set of

instantiations leading to correct concrete equations which can be drawn similarly to above:

X

i1(X) i2(X) in(X)

. . .
. . .

instantiations

truth values

J∀B.XK is the set of instantiations i of ∀B.X such that i(∀B.X) is a correct formula. These

must instantiate the only remaining !-box A and hence are instantiations i of A such that for all

instantiations j of i(X) we have correct formula j ◦ i(X).

Quantifying over A leaves us with no free !-boxes to instantiate so the only instantiation is the

trivial identity function. As suggested by our interpretation, J∀A.∀B.XK should equal {id} if and

only if id(∀A.∀B.X) is true; in other words if and only if all instantiations of X are true.

Sequents on the other hand will always be interpreted as truth values. Namely whether or not

the !-formulas on the left of the turnstyle imply that on the right. To define this we push all sequents

right past the turnstyle and quantify over all remaining free !-boxes.

Definition 4.5.4 (Sequent Semantics).

JX1, . . . , Xn ` Y K := J∀A1 . . . ∀Am.((X1 ∧ . . . ∧Xn)→ Y)K

where ↓A1, . . . ↓Am are the connected components of (X1 ∧ . . . ∧Xn)→ Y .

Theorem 4.5.5. The definition above is independent of the chosen order of A1, . . . , Am.

97

Proof. We verify J∀A.∀B.XK = J∀B.∀A.XK, from which the result follows. By expanding the defi-

nition of semantics twice:

J∀A.∀B.XK = {i ∈ Inst(∀A.∀B.X) | ∀j ∈ Inst(i(∀B.X)) j ◦ i ∈ J∀B.XK}.

= {i ∈ Inst(∀A.∀B.X) | ∀j ∈ Inst(∀B.(i(X)) ∀k ∈ Inst(j(i(X))) k ◦ j ◦ i ∈ JXK}.

Suppose i is in this set. We wish to show i ∈ J∀B.∀A.XK. Hence given k′ ∈ Inst(i(∀A.X)) and

j′ ∈ Inst(k′(i(X))) we need to verify j′ ◦ k′ ◦ i ∈ JXK.

We have j′ ◦ k′ ∈ Inst(i(X)). By lemma A.1.1 we can commute all operations in j′ through k′ only

changing fresh renamings. Hence we have k ◦ j = j′ ◦ k′ ∈ Inst(i(X)) where k ∈ Inst(j(i(X))) and

j ∈ Inst(∀B.i(X)).

i ∈ J∀A.∀B.XK implies j′ ◦ k′ ◦ i = k ◦ j ◦ i ∈ JXK as required.

Hence J∀A.∀B.XK ⊆ J∀B.∀A.XK and by symmetry the reverse is true. This proves order of quan-

tification is unimportant.

4.6 Soundness

Now that we have a semantic interpretation of sequents, we hope to check that !L is sound with

respect to it. i.e. If Γ ` X is derivable in !L, then JΓ ` XK is true for any valuation J−K into a

compact closed category.

To prove this, it suffices to show that each rule in our logic respects J−K, i.e. truth of the

conclusion (with respect to J−K) should follow from truth of the premises. Before we prove this we

present some useful notation and a lemma to make the proof easier to follow.

If boxes(X) is a component of boxes(Y) and i ∈ Inst(Y) we will write i � X as shorthand for

i|X ∈ JXK. Using this notation, the interpretation can be rewritten as follows:

i � G = H ⇐⇒ Ji(G)K = Ji(H)K i ∈ Inst(G = H)

i � X ∧ Y ⇐⇒ i � X ∧ i � Y i ∈ Inst(X ∧ Y)

i � X → Y ⇐⇒ i � X → i � Y i ∈ Inst(X → Y)

i � ∀A.X ⇐⇒ ∀j ∈ Inst(i(X)) j ◦ i � X i ∈ Inst(∀A.X))

Lemma 4.6.1. Given a !-formula X with boxes(X) comprised of connected components ↓B1, . . . ↓

Bn:

i � X ∀i ∈ Inst(X) ⇐⇒ J∀B1 . . . ∀Bn.XK = {id} = T

Proof. Suppose we have the left hand side and take j ∈ Inst(∀Bn.X). If k is a concrete instantiation

of j(X) then k ◦ j is a concrete instantiation of X and so k ◦ j � X. Hence we have shown for any

j ∈ Inst(∀Bn.X) that j � ∀Bn.X.

98

Conversely, suppose we are given that ∀j ∈ Inst(∀Bn.X) j � ∀Bn.X and we have i ∈ Inst(X). Then

we can pull the operations on ↓Bn to the left in i to rewrite it as i = k ◦ j where j ∈ Inst(∀Bn.X)

and k ∈ Inst(j(X)). By the assumption we now have j � ∀Bn.X and hence k ∈ Inst(j(X)) implies

k ◦ j � X, i.e. i � X.

We have shown the equivalence of i � X ∀i ∈ Inst(X) and i � ∀Bn.X ∀i ∈ Inst(∀Bn.X). By

repeated application we can prove the lemma:

i � X ∀i ∈ Inst(X)⇔ i � ∀Bn.X ∀i ∈ Inst(∀Bn.X)

...

⇔ i � ∀B1 . . . ∀Bn.X ∀i ∈ Inst(∀B1 . . . ∀Bn.X) = {id}

⇔ id � ∀B1 . . . ∀Bn.X

⇔ J∀B1 . . . ∀Bn.XK = {id} = T

We can now prove soundness as described at the start of the section

Remark 4.6.2. Since edge names do not inherently carry any meaning, for a concrete formula X

and a renaming rn, we have that rn(X) and X are interchangeable. From this we deduce that

Jrn(X)K = JXK for any !-formula X and also that if i
 X then rn ◦ i
 X.

Theorem 4.6.3 (Soundness). If Γ ` X is derivable in !L, then JΓ ` XK is true for any valuation

J−K into a compact closed category C.

Proof. We check for an arbitrary valuation J−K : Σ → C, that the rules of !L respect truth of J−K.

Throughout we will write K for the conjunction of the !-formulas in Γ and K ′ for the conjunction

of those in ∆. By lemma 4.6.1, to check that JΓ ` XK is true, it suffices to check that, for all

i ∈ Inst(K → X), i � K → X. We now check each rule individually:

• (Ident) Given i ∈ Inst(X → X), we need to show i � X → X. This is equivalent to i � X → i � X,

which is trivially true.

• (Weaken) Given i ∈ Inst((K ∧X)→ Y), the premise of (Weaken) states that i � K → Y . Now if

i � K ∧X, then i � K, so i � Y by the premise. Thus i � (K ∧X)→ Y .

• The rules (Perm) and (Contr) follow from associativity, commutativity, and idempotence of ∧.

• (∧I) Given i ∈ Inst((K∧K ′)→ (X ∧Y)), the premises of (∧I) state i � K → X and i � K ′ → Y .

Now if i � K ∧K ′, we have i � K and hence i � X. We also have i � K ′ and hence i � Y . Thus

i � X ∧ Y .

99

• (∧E1) Given i ∈ Inst(K → X). We can apply i to K → (X ∧ Y) but there may be free !-boxes

left so let j ∈ Inst(i(K → (X ∧ Y))). Then our premise states that j ◦ i � K → (X ∧ Y). Now, if

i � K then j ◦ i � K so the premise implies j ◦ i � X ∧ Y from which we conclude j ◦ i � X and

so i � X.

• (∧E2) is similar to (∧E1).

• (→ E) Given i ∈ Inst((K ∧X) → Y), the premise states i � K → (X → Y). Now if i � K ∧X

then we can firstly conclude i � K, so by the premise i � X → Y , and secondly we can conclude

i � X and hence deduce i � Y .

• (→ I) is the same as (→ E) in reverse.

• (Cut) Given i ∈ Inst(K ∧K ′ → Y). We can apply i to K → X or to (K ′ ∧X)→ Y but in each

case we may be left with free !-boxes (from those components in X which are not in K,K ′ or Y).

Let j instantiate these extra !-boxes so that both j ◦ i(K → X) and j ◦ i((K ′ ∧ X) → Y) are

concrete !-formulas. Then the premises tell us that j ◦ i � K → X and j ◦ i � (K ′ ∧X) → Y .

Now if i � K ∧K ′ then j ◦ i � K ∧K ′, which firstly gives us j ◦ i � K which by our first premise

implies j ◦ i � X. Secondly, it gives us j ◦ i � K ′ which combined with the previous statement

shows us j ◦ i � K ′ ∧X and hence, by the second premise, j ◦ i � Y i.e. i � Y .

• (∀I) Given i ∈ Inst(K → ∀A.X), we need to show that if i � K then given an arbitrary j ∈

Inst(i(X)) we have j ◦ i � X. First note that without loss of generality any !-box names on

operations in i are disjoint from rn(↓A). This is possible because rn(↓A) must already be disjoint

from boxes(Γ) (by side-condition) and it must be disjoint from boxes(∀A.X) = boxes(X)\ ↓A by

injectivity of rn. The only other !-box names in i are those introduced during instantiation, which

can be freely chosen.

We now have that rn(j) ∈ Inst(i(rn(X))) (since rn has no affect on operations in i) and hence

rn(j) ◦ i ∈ Inst(K → rn(X)) which by the premise implies rn(j) ◦ i � K → rn(X). Now since

rn is identity everywhere except ↓A, we can rewrite this as rn(j ◦ i) � rn(K → X) which is

equivalent to j ◦ i � K → X. Now since i � K we can conclude j ◦ i � X.

• (∀E) Given i ∈ Inst(K → rn(X)) and that i � K, the premise tells us i � ∀A.X. If we remove

some operations from i to get i′ = i|∀A.X we still have i′ � ∀A.X. By definition this means for

any j in Inst(i′(X)) we have j ◦ i′ � X. Renaming both sides gives rn(j ◦ i′) � rn(X) but since

rn is identity except on ↓A this is equivalently written as rn(j) ◦ i′ � rn(X). Since j is free to

be chosen, we can take it so that (rn(j) ◦ i′)|rn(X) = i|rn(X). Hence i � rn(X).

• The rules (Refl), (Symm), and (Trans) reduce to the equivalent properties of equality of morphisms

in the category C.

100

• (Box) We are given i ∈ Inst(K → [G]A = [H]A), with i � K. For the !-formulas to be compatible

we must have ↓A disjoint from boxes(K). Hence A is a top-level !-box in K → [G]A = [H]A so

that we can write i = rn ◦ i′ ◦KEnA for a renaming rn, with i′ ∈ Inst(KEnA(K → [G]A = [H]A)).

Writing fr1 to frn for the successive ExpA operations we can prove i � [G]A = [H]A:

Ji([G]A)K = Ji′(fr1(G) . . . frn(G))K

= Ji′(fr1(G)) . . . i′(frn(G))K

= Ji′(fr1(H)) . . . i′(frn(H))K

= Ji′(fr1(H) . . . frn(H))K

= Ji([H]A)K

where we have dropped the renaming rn using remark 4.6.2 the third equality follows from the

premise and the fact that if JGK = JG′K and JHK = JH ′K for concrete tensors G and H then

JGHK = JG′H ′K.

• (Concat) Given i ∈ Inst(K → G∗F = H∗F), such that i � K the premise tells us Ji(G)K = Ji(H)K

so we can check i � G∗F = H∗F :

Ji(G∗F)K = Ji(G)∗i(F)K

= Ji(G)i(F)K

= Ji(H)i(F)K

= Ji(H)∗i(F)K

= Ji(H∗F)K

• (Kill) We are given i ∈ Inst(K → KillB(X)) such that i � K. We look at i ◦ KillB . We can pull

the operations on boxes(K → ∀A.X) to the right to get, for rn a renaming, i ◦KillB = rn ◦ j ◦ i′

where i′ = i|K→∀A.X and j ∈ Inst(i′(K → X)). Since i′ � K the premise tells us i′ � ∀A.X.

Hence j ◦ i′ � X which by remark 4.6.2 implies rn ◦ j ◦ i′ � X i.e. i ◦ KillB � X which is

equivalent to i � KillB(X) as required.

• The proofs for (Flip), (Drop), and (Copy) are similar to that of (Kill) except we use theorem 4.1.12

to rewrite i◦FlipB , i◦DropB , and i◦CopyB respectively as only Exp and Kill operations to make

sure they form valid instantiations. Note, theorem 4.1.12 introduces a renaming function at the

left so

• (Exp) We can prove this similarly to (Kill) or note from theorem 4.3.4 that it is not necessary.

• (Induct) We wish to show from the premises of (Induct) that for any instantiation i ∈ Inst((K ∧

K ′) → X) that if i � K and i � K ′ then i � X. Since (Induct) is done on a top-level !-box

101

A, by theorem 3.3.22, we can rewrite i as rn ◦ j ◦ KEnA, where rn is a renaming and j does not

contain A. Renaming is unimportant so we proceed for arbitrary expressions of the form j ◦KEnA

by induction on the natural number n.

Base case: For j ◦ KillA if j ◦ KillA � K, then since A is not free in K, j � K. So, by the first

premise, j � KillA(X). Thus j ◦KillA � X, as required.

Step case: For fixed natural number n, the inductive hypothesis tells us any expression of the form

i := j ◦KEnA we have i � (K ∧K ′)→ X. Now take an arbitrary expression i′ = j′ ◦KEnA ◦ExpA,fr

(which has one additional expansion of A) and suppose i′ � K ∧K ′. j′ may contain operations

on newly created !-boxes from ExpA,fr, but since these new !-boxes do not overlap with the others

their operations commute. Hence we can pull the operations from j′ which act on fr(↓A) to the

right and call them j′′ so i′ = j ◦ KEnA ◦ j′′ ◦ ExpA,fr for some j. Since A is not free in K ∧K ′

we can reduce i′ � K ∧ K ′ down to j ◦ KEnA � K ∧ K ′. Now the inductive hypothesis tells us

j ◦ KEnA � X which by the second (Induct) premise implies j ◦ KEnA � ∀B1 . . . ∀Bn.ExpA,fr(X).

This quantification over B1, . . . , Bn allows any instantiation of these !-boxes, such as j′′, and so

trivially implies j ◦KEnA ◦ j′′ � ExpA,fr(X) and hence j ◦KEnA ◦ j′′ ◦ ExpA,fr � X i.e. i′ � X as

required.

102

Chapter 5

Node Types

We have seen how !-logic allows us to formalise proof in the language of !-tensors which are designed

for working with noncommutative theories. We would like to allow commutative theories to use the

same natural deduction system. Suppose we have a commutative morphism with two inputs and a

single output. We can represent this as a !-tensor node:

however, this has fixed the order of edges. To enforce commutativity of a generator we would

need to add new axioms. For example, in this case we would add an axiom allowing the inputs to

be reversed:

=

We would prefer not to have to deal with such axioms every time we wish to commute edges,

instead having them built into the notation. In this chapter we introduce a new node type to take

advantage of commutativity and another for nodes with the property of symmetry, which ensures

they do not need the tick on their node. This allows not only commutative theories but theories

involving a variety of generators: some noncommutative, some symmetric and some commutative.

5.1 Symmetric Morphisms

Symmetric morphisms are characterised by the property that cyclic permutations of edges have no

effect on the morphism. For such morphisms we wish to remove the tick, resulting in a new notation

as a circular node. Before looking at the general case let us attempt such a transition for a fixed

arity generator.

103

Take the example of a morphism with no inputs but three outputs: φ : I → X ⊗ X ⊗ X. We

refer to such a morphism with only outputs as a state. Symmetry prescribes that the three outputs

can undergo cyclic permutations without affecting the state. We can visualise this in point notation

and !-tensor notation, representing φ as a white node:

φ φ
= =

Another way to see this in !-tensor notation is that the tick position can pass through edges. In

the following diagram the second and third equalities are by symmetry:

== ==

This suggests that tick position no longer has any relevance, so we may remove the tick entirely.

We will refer to nodes without ticks, i.e. circles, as symm-nodes. Hence we would hope to implement

the following rule stating that if the tick position on φ is irrelevant, then it can always be replaced

by a symm-node:

==

(Symm)

=

It is clear to see how the new notation is inherently symmetric. To represent the fact that φ is

a symmetric morphism in the !-tensor language, we could tag it with a superscript φ→ φs. We can

then add a new equivalence to !-tensor expressions allowing cyclic permutation of edges. In this case

it is sufficient to allow φs
âb̂ĉ
≡ φs

ĉâb̂
for any edgenames a, b, c. Having symmetry built in to !-tensor

equivalence in this way allows us to quotient out the unnecessary information in edge orders of φ.

While this rule for introducing symm-nodes could be added to !L, the same is not true for

the more general arbitrary arity generator. Suppose we have extended φ to represent a family of

generator states, each with no inputs and indexed by the number of outputs, φi : I → X⊗i. i.e. the

family represented by:

where we also have a rule allowing the tick to ‘pass through’ a single edge:

104

=

By induction we can prove a generalisation allowing the tick to pass through an arbitrary num-

ber of edges. Writing Γ for the set of axioms (in this case only symmetry) we present the proof

graphically:

Theorem 5.1.1.

A A

=

(4.4.5)

∀B.∀A.Γ `

BB

Proof. We prove this theorem, of the form ∀B.∀A.X by applying induction on B to the !-formula

∀A.X:

A A

=

(∀I)

∀B.∀A.Γ `

BB

B

=

A

B

Γ `

(Induct)

A

∀A.

` ∀A. =
AA

(Refl)

B

Γ, ∀A.

B

=

AA

`

A

B B

=

A

(step)

∀A.

where we prove the step case by rewriting:

A

B B

=

A

=

A

B

IH

The first equality is from the symmetry axiom allowing the tick to pass through a single edge. The

second equality comes from the inductive hypothesis, by applying FlipA ◦ExpA ◦FlipA, which is

valid since A is quantified over.

The concrete instances demonstrate how a tick can be placed at any location on any concrete

instance of the state φ:

105

= = =

There are also many partial instantiations which demonstrate how a tick can move around a

variable arity node, such as:

= =

We may hope that any such equation (simply repositioning the tick around a state of type φ)

is an instance of theorem 5.1.1. However, this is not the case. For example, the following two

equations, which we expect to hold, are not partial instances.

==

It is clear that we cannot retrieve these as instances since no !-box operations will increase the

depth of !-box nesting or the number of edges in the single !-box. While these cases do not directly

follow from theorem 5.1.1 by (Partial), each can be shown via !-box induction. Unfortunately it is

clear that there is no single rule which has as instances all possible tick repositionings.

Similarly, we would like to be able to write a single rule specifying that any node of type φ can

be replaced by a symm-node (i.e. a circular node, since tick position is irrelevant). The concrete

instances would be rules such as:

= =

Each of these fixed arity cases is a concrete instance of:

=

Yet, as previously, this !-tensor equation does not cover all cases of switching to symm-nodes

as partial instances. For example, neither of the following is an instance (though they can each be

deduced by induction):

== = =

106

Again, no single rule could possibly cover all cases, so we cannot implement the conversion from

arbitrary nodes to symm-nodes in !L. We can, however, implement symmetric nodes in our theory

by tagging morphisms which are known to be symmetric. We can then add new !-tensor equivalences

to represent the fact that tick position is no longer important.

We write φse rather than φe to represent that the morphism φ is symmetric. Then, to enforce

the ability to arbitrarily apply cyclic permutations to the edges, we add the !-tensor equivalence:

φsef ≡ φsfe (5.1)

Theorem 5.1.2. The equivalence ≡ is still preserved by !-box operations.

Proof. Given φsef ≡ φsfe and the !-box operation OpB (possibly employing a fresh renaming) we

check:

OpB(φsef) ≡ φsOpB(e) OpB(f) ≡ φ
s
OpB(f) OpB(e) ≡ OpB(φsfe)

To introduce symm-nodes to a theory we would like to use a metarule describing when it is

valid to switch a morphism to symm-nodes. In the case of the (family of) states φ above, from

theorem 5.1.1, the metarule should deduce that any term φe can be replaced by φse, allowing all

arbitrary nodes of type φ to be replaced by symm-nodes.

We will write this rule as:

φ = φ

by which we do not mean φε = φsε as it appears but that φe = φse for any valid edgeterm e. This

equation is clearly not a !-formula, but it makes the earlier difficult cases trivial:

== = =

The state φ has only output edges, all of the same type X, so any cyclic permutation φsef → φsfe

results in a valid state. More generally, a generating morphism might not allow every arrangement of

edges but still be independent of valid choice of tick position. For example, the family of morphisms

generated by:

107

may have equalities:

= = = . . .

so that any valid choices for tick position around the node are equal. Note that there are tick

positions which are not valid such as:

Therefore we need to adapt our idea of symmetry accordingly, to allow for cases where not all

cyclic permutations of edges are valid. We define a morphism to be symmetric in the theory Γ if

any two concrete instances which differ only by a cyclic permutation can be shown to be equal from

Γ.

Definition 5.1.3 (Symmetric Morphism). We say φ is a symmetric morphism in theory Γ if for

any concrete edgeterms e, f we have Γ ` φef = φfe (if it is a valid !-formula).

It is clear to see how this relates to equivalence of symmetric nodes as described in (5.1).

Definition 5.1.4 (Symmetry Metarule). If φ is symmetric in Γ then the metarule (Symm) deduces

that:

φ = φ

This agrees with our suggestion for the state φ where any concrete case of Γ ` φef = φfe follows

as an instance of theorem 5.1.1. Hence the meta rule allows us to draw nodes as circles without

ticks. We could equivalently use a sequence of instances of the symmetry axiom for φ to show each

concrete instance.

Example 5.1.5. Take the arbitrary arity theory of a monoid ΓM ! from section 4.4. Nodes have a

single output after the tick followed by an arbitrary number of inputs. The only cyclic permutation

of edges taking the single output back to its original position is the trivial permutation and hence

we vacuously have that the morphism is symmetric and nodes with ticks can be replaced by circular

nodes. This is not surprising since the single output edge uniquely determines where the tick should

be positioned, so it should not be necessary in the graphical notation.

The most interesting cases of symmetry are those where the generating morphism is of the form

X = φ[e〉B or X = φ〈e]B (such as the state φ above and the frobenius algebra case we will present in

section 6.2). In these cases the condition of symmetry reduces to correctness of all concrete instances

of KillA ◦CopyA,frC ◦CopyA,frB (X) = KillA ◦CopyA,frB ◦CopyA,frC (X). For example, this states

that symmetry of φ follows from:

108

B CC

=

B

where frB takes A (along with its contents) to B and frC takes A to C. From which the metarule

(Symm) deduces that φe = φse for any valid edgeterm e.

5.2 Commutative Morphisms

Commutativity of a morphism states that wire order is unimportant. For example, taking the family

of states φi : I → X⊗i as in the previous section, commutativity of the family φ means that any

well-formed equality of the form σ ◦ φi = φi, where σ is constructed from only symmetries and

identities, holds:

φ
φ

σ =

. . .

. . .

. . .

We can represent commutativity of φ in !-tensor notation by allowing any rearrangements of the

edges around a node of type φ:

= = =

As in the symmetric case, we will tag commutative morphisms and then allow them in the theory

by replacing arbitrary nodes with what we call comm-nodes. A comm-node is drawn without a tick

since edge order is clearly not important; however, we also draw the circle in bold to represent

that edges can commute arbitrarily. Then we define some new !-tensor equivalences to implement

commutativity of edges around these nodes. In this case the equivalence should allow any edges to be

rearranged, which we implement on the level of edgeterms. Hence two edgeterms are equivalent up

to commutativity, written ≡c, if they are equivalent under any of the previous edgeterm equivalences

along with the additional equivalence:

ef ≡c fe

From this it follows that efgh ≡c egfh so by transitivity of ≡c any rearrangement of edges is

equivalent. We use this to write the definition of commutativity of a morphism:

Definition 5.2.1 (Commutative Morphism). We say the morphism φ is commutative in theory Γ

if Γ ` φe = φf for any concrete edgeterms e and f valid for φ such that e ≡c f .

109

Note that commutativity of a morphism talks only about the concrete instances similarly to the

definition of a symmetric morphism. We tag commutative morphisms with a superscript c, so our

metarule is:

Definition 5.2.2 (Commutativity Metarule). If φ is commutative in Γ then the metarule (Comm)

deduces that:

φ = φ

i.e. φe = φce for any valid edgeterm e.

We now have not only lost the tick but also drawn the node in bold to indicate that edges

commute. Since comm-nodes are independent of edge order, we then introduce a new !-tensor

equivalence:

e ≡c f =⇒ φce ≡ φcf (5.2)

This is enough to arbitrarily rearrange edges around any concrete instance of φ, but it transpires

this is not the only equivalence needed for comm-nodes. Recall that the notation [e〉B dictates that

expansions of the !-box B should add new copies of e clockwise around the node. Since edge order is

redundant, we expect direction to be redundant too. We can see this from the following equivalences:

CopyB,fr([e〉B) ≡c [e〉B [fr(e)〉fr(B) ≡c [fr(e)〉fr(B)[e〉B

CopyB,fr(〈e]B) ≡c 〈fr(e)]fr(B)〈e]B ≡c 〈e]B〈fr(e)]fr(B)

so clockwise expanding groups can be expanded anti-clockwise and vice versa. We remove this

redundancy from !-tensors by adding a new equivalence saying clockwise expanding groups and

anti-clockwise expanding groups are interchangeable in commutative edgeterms.

[e〉B ≡c 〈e]B (5.3)

To avoid this redundancy in the !-tensor expression notation we can write 〈e〉B := [e〉B ≡c 〈e]B .

Similarly, the ability to group edges functions only to enforce an ordering on their expansions, so

we also expect these to be redundant. The concrete instances of 〈ef〉B are equivalent to the concrete

instances of 〈e〉B〈f〉B up to commutativity. Hence we add another equivalence:

〈ef〉B ≡c 〈e〉B〈f〉B (5.4)

This allows all edge groups to be split apart into single edges. Taking this ability to ungroup

edges along with removing their directions allows us to entirely remove the arc notation around

110

comm-nodes. Hence if all morphisms are commutative, we no longer have ticks or expansion arcs

and so our graphical language has been reduced to that of !-graphs.

Note that we are still allowing each of these commutative edgeterm equivalences on commutative

morphisms by e ≡c f ⇒ φce ≡ φcf .

Theorem 5.2.3. The equivalence ≡ is still preserved by !-box operations.

Proof. We need to check that if e ≡c f , then OpA(φce) ≡ OpA(φcf) or equivalently φcOpA(e) ≡

φcOpA(f) which we show by checking OpA(e) ≡c OpA(f). We must check each of our three enforced

equivalences for ≡c:

• The first commutativity equivalence is ef ≡c fe so we check:

OpA(ef) ≡c OpA(e) OpA(f) ≡c OpA(f) OpA(e) ≡c OpA(fe)

• The second equivalence is [e〉B ≡c 〈e]B . This is simple to check if A 6= B:

OpA([e〉B) ≡c [OpA(e)〉B ≡c 〈OpA(e)]B ≡c OpA(〈e]B)

else if A = B it needs to be shown separately for each !-box operation:

– FlipB([e〉B) ≡c 〈e]B ≡c [e〉B ≡c FlipB(〈e]B)

– KillB([e〉B) ≡c ε ≡c KillB(〈e]B)

– DropB([e〉B) ≡c e ≡c DropB(〈e]B)

– CopyB,fr([e〉B) ≡c [e〉B [fr(e)〉fr(B) ≡c 〈e]B〈fr(e)]fr(B) ≡c 〈e]fr(B)〈e]B ≡c CopyB,fr(〈e]B)

– The ExpB,fr case follows by applying Dropfr(B) to the Copy case.

• The final equivalence is 〈ef〉B ≡c 〈e〉B〈f〉B . This is simple to check if A 6= B:

OpA(〈ef〉B) ≡c 〈OpA(e) OpA(f)〉B ≡c 〈OpA(e)〉B〈OpA(f)〉B ≡c OpA(〈e〉B〈f〉B)

else if A = B it needs to be shown separately for each !-box operation:

– FlipB(〈ef〉B) ≡c 〈ef〉B ≡c 〈e〉B〈f〉B ≡c FlipB(〈e〉B〈f〉B)

– KillB(〈ef〉B) ≡c ε ≡c KillB(〈e〉B〈f〉B)

– DropB(〈ef〉B) ≡c ef ≡c DropB(〈e〉B〈f〉B)

– CopyB,fr(〈ef〉B) ≡c 〈ef〉B〈fr(e) fr(f)〉fr(B)

≡c 〈e〉B〈fr(e)〉fr(B)〈f〉B〈fr(f)〉fr(B)

≡c CopyB,fr(〈e〉B〈f〉B)

– The ExpB,fr case follows by applying Dropfr(B) to the Copy case.

111

To see an example we return to the state φ as in the previous section but add an additional

axiom enforcing that any two neighbouring edges can commute:

=

This allows any two adjacent edges to be commuted, hence sequences of instances of this allow

arbitrary rearrangements of edges around any fixed arity instance of the state φ. In fact, using

induction, we can prove the following rule covering all concrete instance of the equivalence φcefgh ≡

φcegfh as suggested above:

=

from which our metarule deduces:

=

Hence many equations become trivial by switching to comm-nodes (remembering that bold nodes

do not track edge order):

= = =

For another example let us take the theory of commutative monoids. Here we add the new axiom:

=

to the fixed arity theory ΓM . We can replace the fixed arity theory with the arbitrary arity

version as in section 4.4 and replace the commutativity rule with its arbitrary arity counterpart:

Theorem 5.2.4.

=BA BA

112

Proof. Which we prove by rewriting:

== =

where the first and third equalities use theorem 4.4.2 which states that two connected nodes can be

combined.

Now any rearrangement of the edges of an instance of the arbitrary arity commutative monoid

node must take the single output to itself. The remaining inputs can be rearranged in any way. By

a sequence of instances of theorem 5.2.4 we can show that any reorderings are equal. Hence our

metarule tells us that the arbitrary arity commutative monoid morphisms can be drawn as comm-

nodes (bold circles) and hence all arcs can be removed. This makes theorem 5.2.4 trivial and hence

the theory of commutative monoids can be described by a single (commutative) generator:

with rules:

Commutative Monoid Laws

==

5.3 Commutative Bialgebra

A (co)commutative bialgebra can be described by the theory of a commutative monoid along with

a similar theory of a cocommutative comonoid and the interactions of the two as described in

section 4.4:

Commutative Comonoid Laws

==

Commutative Monoid Laws

= =

=

Bialgebra Law

113

(Co)commutative bialgebras appear in a variety of fields and have been shown to admit a normal

form where all comultiplications are pushed to the bottom and all multiplications are pushed to the

top [33, 16]. Here we demonstrate how we can replace the two generators with a single generator by

defining the new morphism:

=

A

B

A

B

Note that this must be defined as an arbitrary node (with tick) even though it is defined in terms

of commutative morphisms. The concrete instances of this new node are of the form:

= =

Any rearranging of the edges must rearrange the inputs and separately rearrange the outputs.

Hence commutativity follows from sequences of instances of the following two equations, which follow

trivially from (co)commutativity of the (co)monoid:

=BC BC
CB

=
C B

A A

A A

So by the metarule (Comm) we can replace the arbitrary nodes with commnodes and drop arcs,

meaning the theory can be described more succinctly by the rules:

(Co)Commutative Bialgebra Laws

=

=

= =

In each of our examples of the use of the metarule (Comm), each !-box in the generator contained

a different edge type (e.g. input vs output). This has ensured that edges can only be rearranged

with other edges from the same !-box. If this is the case, then commutativity of the morphism

114

can be deduced from proofs for each !-box A in the generator that CopyA,fr′ ◦CopyA,fr′′(X) =

CopyA,fr′′ ◦CopyA,fr′(X). For example, in the bialgebra case this means showing each of:

D CA

=

A

C D

BB

B C

=
D

A

DC

B

A

In the next chapter we demonstrate another example of switching to symm-nodes and another

of switching to comm-nodes, in each case for frobenius algebras.

115

116

Chapter 6

Working Example: Frobenius

Algebras

In this chapter we work through the example of Frobenius algebras including symmetric, commuta-

tive, and special variations. Frobenius algebras appear in a large variety of different areas particularly

in quantum information theory. Commutative Frobenius algebras (CFAs) have been shown to play

an important role in topological quantum field theories [37] and to describe classical data in [7].

They lend themselves to a graphical notation and are the building blocks of the Z/X-calculus [8]

and GHZ/W-calculus [9], which are key to understanding various principles in categorical Quantum

mechanics.

Starting with the standard fixed arity definition of a Frobenius algebra, we define arbitrary arity

nodes to generalise the theory. We then demonstrate (and prove by induction) the equations which

hold for symmetric, commutative, and special Frobenius algebras, taking advantage of the new node

types defined in chapter 5. In each case we present a normal form result allowing arbitrary diagrams

to be reduced to disconnected nodes.

6.1 Arbitrary Arity Input/Output Nodes

A Frobenius algebra can be described by the combination of a monoid (,) and a comonoid

(,) along with the Frobenius law which governs their interaction. Writing ΓFA for the set of

axioms we get:

117

=

=

=

=

=

Frobenius Law

Monoid Laws

Comonoid Laws

=

=

ΓFA =
=

We might hope that we can replace the generators and rules of ΓFA with an arbitrary arity

version as in the monoid and bialgebra examples of section 4.4. It transpires this is possible but

using a more complicated type of arbitrary arity node. So far we have only looked at nodes with

either an arbitrary number of inputs (fixed outputs) or an arbitrary number of outputs (fixed inputs).

For the Frobenius algebra case, we will require nodes which have arbitrary arrangements of inputs

and outputs, for example:

Clearly it is not possible to describe the family of such generators using a node with only a single

!-box. Fortunately it can be represented by using the !-box nesting demonstrated in the following

diagram:

b1

B0B1

B

b0

Having these nested !-boxes results in many options for partial instantiations. To see how the

concrete instances of this are all possible arbitrary arrangements of input and output edges, we

only need three (sequences of) !-box operations. The first is KillB which removes all three !-

boxes. The second creates a single additional output edge (positioned anticlockwise) and can be

achieved by Killfr(B0) ◦Expfr(B0),fr0 ◦Killfr(B1) ◦ExpB,fr. We abbreviate this sequence to Exp0
B,fr′

which demonstrates that we are creating a new copy of the contents of B0. The fresh renaming fr′

need only take b0 to fr0(fr(b0)). The final operation written Exp1
B,fr′ creates one additional copy

of the contents of B1. This creates a new input edge (anticlockwise) and is achieved by applying

Killfr(B1) ◦Expfr(B1),fr1 ◦Killfr(B0) ◦ExpB,fr.

118

KillB


b1

B0B1

B

b0

 =

Exp0
B,fr′


b1

B0B1

B

b0

 =

b1

B0B1

B

b0

fr′(b0)

Exp1
B,fr′


b1

B0B1

B

b0

 =

b1

B0B1

B

b0

fr′(b1)

To make the diagrams easier to read we will often employ a shorthand notation, drawing only a

single !-box but still two edges into it.

B

:=
B

B1 B0

b1 b0

Hence the !-box operations can be drawn as:

KillB


B

 =

Exp0
B,fr′


B

 =
B

fr′(b0)

Exp1
B,fr′


B

 =
B

fr′(b1)

These three operations suggest the possibility of recursive definition of such nodes. We can give

definitions for the base case of no edges and then define addition of a single input and of a single

output. Recall from the monoid example that we used a single free edge at the top of the node to

add extra structure. We do the same for Frobenius algebras by first recursively defining a node with

a single output followed by an arbitrary arrangement of edges. Using the same shorthand as above

we define:

:= := :=

The unit is used to define a node with only the top output, then we use multiplies and comultiplies

respectively to add inputs and outputs. Finally, we plug the top output using the Frobenius counit

so that completely arbitrary arrangements are possible.

119

:=

Expanding these definitions we can see what form such an arbitrary node takes:

== = = = =

6.1.1 Induction on Arbitrary Input/Output

Given the above recursive definition, a natural question is whether we can prove using induction on

B appearing in the form [[. . .]B0 [. . .]B1]B . We would suspect that from ` KillB(X), X ` Exp0
B,fr(X)

and X ` Exp1
B,fr(X) we could deduce ` X (and hence ` ∀B.X). We will refer to these three

sequents respectively as the base case, step 0 case and step 1 case.

Theorem 6.1.1. Suppose the !-formula X contains the subexpression [[. . .]B0 [. . .]B1]B (so the only

contents of B are B0, B1, and their contents). If B, B0, and B1 do not appear in Γ then we can

apply the following induction rule:

Γ ` KillB(X) Γ, X ` Exp0
B(X) Γ, X ` Exp1

B(X)
(Induct 0,1)

Γ ` X

Proof. The proof is given in Appendix B.

Remark 6.1.2. This new form of induction is not restricted to arbitrary arrangements of input

and output edges. For example, for a white node taking an arbitrary number of inputs we could use

(Induct 0,1) to prove things about:

B
B1 B0

Extensions could also be given if the !-box B contains more !-boxes, so long as it only contains

!-boxes (no nodes or edges directly inside B):

B

Bn B1.B2

In this case we would need one step case for each of B1 to Bn. These would represent creating

a new copy of the contents of each !-box.

120

6.1.2 Combining Frobenius Nodes

We now wish to prove that two Frobenius nodes with aligned ticks can be combined to form a single

node.

B

A

=

A B

∀A.∀B.

(6.1.4)

ΓFA `

where we have used the shorthands:

A

:=
A

A1 A0
a1 a0

B

:=
B

B1 B0

b1 b0

Recall that our Frobenius nodes are defined via:

:=

where the gray nodes are recursively defined. We first prove a lemma about combining the gray

nodes.

Lemma 6.1.3.

A

B
A B

=

(6.1.3)

∀A.∀B.ΓFA `

Proof. By applying our new form of induction on B (and its nested !-boxes):

ΓFA ` KillB(X) ΓFA, X ` Exp0
B(X) ΓFA, X ` Exp1

B(X)
(Induct0,1)

ΓFA ` X

the lemma breaks down into three cases:

A
A

=`ΓFA (base)

A

B
A B

= `
BA

B

A

=ΓFA , (step 0)

121

A

B
A B

= `
BA

B

A

=ΓFA , (step 1)

...each of which has a simple rewriting proof:

base:

A
A

=

A

=

step 0:

A

B

A B

= =

A

B

IH

B

=

A

step 1:

A

B

A B

= =

A

B

IH

B

=

A

The equalities labelled as IH follow from the inductive hypothesis via the rule (Concat) with the

Frobenius comultiply and multiply respectively.

From which our earlier claim follows by rewriting:

Theorem 6.1.4.

B

A

=

A B

∀A.∀B.

(6.1.4)

ΓFA `

Proof.

B

A

=

A BA
B

A
B

==
6.1.3

122

Note that this theorem allows us to combine two nodes with an edge from the first position of

one node to the last position of the other (clockwise from the tick). We could similarly prove the

ability to combine nodes if we have an edge from the last position of one node to the first of the

other. To prove more interesting theorems we now start to look at different classes of Frobenius

algebras.

6.2 Symmetric Frobenius Algebras

If a Frobenius algebra also satisfies the symmetry axiom:

=

then we refer to it as a symmetric Frobenius algebra. We write ΓSFA for the axioms of ΓFA

along with the symmetry axiom.

Remark 6.2.1. In a Frobenius algebra the symmetry axiom implies its codiagram:

=

As the name suggests, nodes in symmetric Frobenius algebras satisfy a property that edges are

able to ‘pass through the tick’. We hope to employ the metarule (Symm) to deduce that the family of

symmetric Frobenius algebra morphisms can be expressed using symm-nodes. We prove the ability

to pass an edge through the tick by the following theorems (keeping the previous section’s notation

for B).

Lemma 6.2.2.

B B

=ΓSFA ` ∀B.

(6.2.2)

Proof. By induction on B we can break this into three cases, each of which has a simple rewriting

proof:

base:

= = = = =

123

step 0:

= = = =
IH

step 1:

= = = =
IH

where the two equalities labelled IH follow from the inductive hypothesis via the rule (Concat) with

the Frobenius comultiply and multiply respectively.

Theorem 6.2.3.

B

=

B

∀B.ΓSFA `

(6.2.3)

Proof.

= = = = = =
(6.2.2)

Similarly, for output edges:

Lemma 6.2.4.

B
B

=ΓSFA ` ∀B.

(6.2.2)

Proof. As above, by induction on B, we can break this into three cases which we prove separately

by rewriting:

base:

= = = = =

124

step 0:

= = = =
IH

step 1:

= = = =
IH

Theorem 6.2.5.

B

=

B

∀B.ΓSFA `

(6.2.5)

Proof.

= = = = = =
6.2.4

From this we would expect to be able to pass any arrangement of input and output edges through

the tick. Using our standard shorthand notation:

A

:=
A

A1 A0
a1 a0

B

:=
B

B1 B0

b1 b0

this can be written as follows and proved via induction:

Theorem 6.2.6.

A

BB

=

A

∀A.∀B.ΓSFA `

(6.2.6)

Proof. Writing X for the !-tensor equation above, we wish to prove ΓSFA ` ∀A.∀B.X. We start by

applying (Induct 0,1
A) on the !-formula ∀B.X to break the goal into three cases:

125

ΓSFA ` ∀B.KillA(X) ΓSFA,∀B.X ` ∀B.Exp0
A(X) ΓSFA,∀B.X ` ∀B.Exp1

A(X)
(Induct0,1)

ΓSFA ` ∀B.X (∀I)
ΓSFA ` ∀A.∀B.X

The base case is trivially true, the step cases have simple rewriting proofs:

step 0:

=
IH

=

step 1:

=
IH

=

Note that the IH steps come from applying FlipB ◦Exp0
B ◦FlipB and FlipB ◦Exp1

B ◦FlipB respec-

tively to the induction hypothesis. This explains the need to keep the quantification of B while

applying the induction principle.

Another way to write this demonstrates how we have shown ticks can be positioned arbitrarily

on symmetric Frobenius algebra nodes:

=

Hence applying the metarule (Symm) we can replace arbitrary symmetric Frobenius algebra

nodes with symm-nodes:

=

When we need to go back to the recursive definition we can always reintroduce the tick at any

location and then expand the definition out from there.

a
b

c

d

b
a

c

d
d

= c

a

b
=

Theorem 6.1.4 now tells us that any two connected nodes can be combined (since tick positioning

is irrelevant) but we cannot change the order of edges. Formally, we could prove this for arbitrary

nodes by rewriting:

126

Theorem 6.2.7.

∀A.∀B.∀C.∀D.

(6.2.7)

ΓSFA `
A

D

A B

C

B

=

CD

Proof. By rewriting:

===

where the third equality comes from theorem 6.1.4 by the partial instantiation CopyB ◦CopyA.

However, using the new symm-nodes directly in theorem 6.1.4 we get the much simpler symmetric

presentation of the same rule:

B

C

B

=

C

Remark 6.2.8. Similarly to the monoid case of remark 4.4.3 we can simplify an arbitrary arity

node with single input and single output to an identity wire:

= = ==

Theorem 6.2.9. The finite arity theory of symmetric Frobenius algebras ΓSFA can be replaced by

the arbitrary arity version ΓSFA! made up of a single (symmetric) arbitrary arity generator:

b1

B0B1

B

b0

along with the !-tensor equations:

SFA Laws

ΓSFA! =
=

B

=

B

C

C

127

Proof. We have seen how the arbitrary arity node can be defined in terms of fixed arity generators

and proved the equations in ΓSFA!. Now we need only check that ΓSFA! covers all of the axioms in

ΓSFA. For example, the first half of the Frobenius law can be shown by:

== ==

where the second and third equalities are instances of theorem 6.2.7. The symmetry law can be

shown by:

== = = =

where the second and fourth equalities are instances of theorem 6.2.7 and the third, an instance of

theorem 6.2.6, appears trivial in our new notation. The other laws have similar proofs.

Repeated application of theorem 6.2.7 tells us that we can combine any number of such nodes

so long as we keep track of the order of edges. Specifically any planar, acyclic, connected network

of symmetric Frobenius algebra nodes can be combined to a single node. The following illustration

demonstrates this process by deforming a connected network until we can easily see a planar, acyclic

sub-diagram which can be combined to a single node.

a

b

c

=

c

=

a

b
b

c

a

(6.1)

It is then clear how transitioning from fixed to arbitrary arity removed unnecessary structure.

The following diagram demonstrates how we can use theorem 6.2.7 to simplify any diagram built

from the fixed arity Frobenius algebra generators { , , , }.

==

The process is to find a spanning tree for each connected component, then use naturality and the

compact closed structure to pull out any loops or wire crossings. We then collapse each spanning

tree to an arbitrary arity symmetric Frobenius node, being careful to preserve the order on edges

entering/leaving the planar, acyclic section containing the spanning tree.

128

6.3 Commutative Frobenius Algebras

If a Frobenius algebra also satisfies commutativity

=

then we refer to it as a commutative Frobenius algebra. We write ΓCFA for the theory of

commutative Frobenius algebras (i.e. ΓFA with the commutativity axiom).

Remark 6.3.1. It follows from the Frobenius law that commutativity of the multiplication operation

(as above) implies cocommutativity of the comultiplication. Commutativity also subsumes the

property of symmetry and hence for the rest of this section we can switch from nodes with ticks to

plain circular nodes.

Commutativity specifies that edge order is unimportant on the generating nodes. We now demon-

strate that, by the metarule (Comm), this extends to commutativity of the arbitrary arity nodes

letting us replace arbitrary nodes with comm-nodes. Throughout this section we use our standard

notation for arbitrary in/out !-boxes A,B and C.

A

:=
A

A1 A0
a1 a0

B

:=
B

B1 B0

b1 b0
C

:=
C

C1 C0
c1 c0

We wish to prove that any two neighbouring edges can commute past each other. There are

three cases to check: commuting two inputs; commuting two outputs; and commuting an input with

an output.

Lemma 6.3.2. Any two neighbouring edges on a commutative Frobenius algebra node commute.

Proof. We show each case individually by rewriting:

out edges commute:

= = = = =

out edges commute with in:

= = = = =

129

in edges commute:

= = = = =

From this we would expect to be able to pass any arrangement of input and output edges through

each other. We could prove this by induction: first proving that a single output can pass through an

arbitrary arrangement, then similarly for a single input. Finally, we would conclude that arbitrary

arrangements can commute by a final induction proof. However, in this case we can avoid induction

and in fact prove commutativity of arbitrary arrangements of edges using only theorem 6.1.4 and

one of the cases above. Note that for ease of readability we have not fixed the position of free

edges/!-boxes.

Theorem 6.3.3.

C

B

B

C

A

=

A

∀A.∀B.∀C.

(6.3.3)

ΓCFA `

Proof.

C

B

A

= =

BC
BA

C

=

A

B

A

C

where the first and third steps come from repeated use of theorem 6.1.4 and the second step is one

of the instances of lemma 6.3.2 applied to the centre node.

Since edges can now commute at will, we deduce that all instances of commutative Frobenius

algebra nodes are commutative, so (Comm) lets us switch to comm-nodes which we denote diagram-

matically by drawing the nodes in bold.

=

Theorem 6.3.4. The finite arity theory of commutative Frobenius algebras ΓCFA can be replaced

by the arbitrary arity version ΓCFA! made up of a single (commutative) arbitrary arity generator:

130

b1

B0B1

B

b0

along with the !-tensor equations:

CFA Laws

ΓCFA! =
==

Proof. By theorem 6.2.9 we need only check the commutativity part. We have seen how theorem 6.3.3

follows from ΓSFA, then we trivially check:

== =

where the second equality is an instance of theorem 6.3.3.

This allows us to generalise the process described in (6.1). We no longer need to restrict to planar

diagrams. Any crossings inside a sub-diagram could be pulled out, then removed by commuting the

edges:

===

Hence any acyclic, connected network of commutative Frobenius algebra nodes can be combined

to a single node as illustrated below.

a

b

c

=

c

=

a

b
b

c

a

(6.2)

Again this is a clear advantage over dealing with the fixed arity theory. We can now reduce

any diagram in a fixed arity commutative Frobenius algebra to disconnected commutative arbitrary

arity nodes:

131

==

The process is to find a spanning tree for each connected component, then use naturality and the

compact closed structure to pull out any loops. We then collapse each spanning tree to an arbitrary

arity commutative Frobenius node.

6.4 Special Frobenius Algebras

If a commutative Frobenius algebra satisfies the condition:

=

then we refer to it as a special commutative Frobenius algebra (SCFA), writing ΓSCFA for the

set of axioms. Speciality together with symmetry allows us to drop adjacent loops from nodes.

Theorem 6.4.1.

B

=

B

(6.4.1)

ΓSCFA ` ∀B.

Proof.

= = =

Theorem 6.4.2.

B

=

B

ΓSCFA `

(6.4.2)

∀B.

Proof.

= = == = =

132

Adding commutativity we can trivially make any loop into an adjacent loop and hence loops can

be dropped altogether.

=
A

B

A

B =
A

B (6.3)

Theorem 6.4.3. The finite arity theory of special commutative Frobenius algebras ΓSCFA can be

replaced by the arbitrary arity version ΓSCFA! made up of a single arbitrary arity generator:

b1

B0B1

B

b0

along with the !-tensor equations:

SCFA Laws

ΓSCFA! =
===

Proof. We have seen how ΓSCFA! follows from ΓSCFA, so by theorem 6.3.4 we only need to check

the special law follows from ΓSCFA!:

= = = =

where the second, third, and fourth equalities are from theorem 6.2.7, theorem 6.3 and remark 6.2.8

respectively.

This allows us to drop the acyclic condition from the process in (6.2) and conclude that any

connected network of nodes in a special commutative Frobenius algebra can be combined to a single

node:

a

b

c

=

c

=

a

b
b

a

c

(6.4)

133

As expected this allows us to reduce any diagram in a SCFA to disconnected nodes without

loops:

== (6.5)

134

Chapter 7

Conclusions

The first major contribution of this thesis is a formalism for families of string diagrams called the

!-tensor formalism. The previous (combinatoric) !-graph formalism allowed descriptions of infinite

families of diagrams but was restricted to nodes which were independent of the order of edges (called

commutative nodes). !-Tensors extend the graphical notation to noncommutative nodes while still

allowing reasoning with infinite families of diagrams. This allowed us to describe a larger variety of

theory, such as those involving a twisting property where edges need to reverse order between two

nodes.

To reason with !-tensors we presented a syntactic formalism, based on Penrose’s abstract tensor

notation. We then defined !-box operations which allow us to retrieve the concrete diagrams repre-

sented by a !-tensor. They similarly allow us to retrieve all concrete diagram equations represented

by a !-tensor equation.

!-Tensors allow more than just working with noncommutative theories, another of their major

features is the ability to definitionally extend a theory. In section 3.4 we demonstrated the ability to

define new nodes to replace diagrams, including recursively defining families of nodes, such as trees

of multiplication operations. We presented a few examples of how multiple fixed arity generators

in a theory can be replaced by a single arbitrary arity generator. For example, monoids, antiho-

momorphisms, and bialgebras each admit a node representing the family of left associated trees of

multiplications. Definitional extension was not possible in the !-graph formalism since the newly

defined nodes would always be assumed to be commutative.

Next we developed !-logic (!L) as a framework to reason with !-tensors. !-Formulas were defined

to have !-tensor equations as atoms and the connectives: conjunction, implication, and universal

quantification over !-box components. We then presented the rules of !L in the form of a natu-

ral deduction system over sequents Γ ` X. We started with rules analogous to those of positive

intuitionistic first order logic and concluded with !-box induction, which is the powerhouse of !L.

135

In section 4.4 we illustrated the power of !-box induction for a few examples of recursively defined

arbitrary arity nodes where we proved that a fixed arity theory can be replaced by an (often simpler)

arbitrary arity theory.

To give an interpretation to !L we defined a semantics J−K for !-formulas and sequents based on

valuations of the generators. This allowed us to show soundness of !L by checking each rule preserved

truth of sequents with respect to J−K.

While transitioning to a non-commutative formalism has many clear advantages, if we wish to

work with commutative morphisms, the additional structure only gets in the way. We demonstrated

in chapter 5 that no single !-tensor equation can cover all equalities expected of a commutative

morphism. Hence we decided to implement commutativity at the level of !-tensors by augmenting the

ability to tag those nodes which represent commutative morphisms. The ability for edges to commute

around such nodes is then built in to !-tensor notation. Diagrammatically, we introduced circular

nodes to represent symmetric morphisms (those where edges can undergo cyclic permutations) and

bold circles to represent commutative morphisms. We then presented metarules which describe

conditions under which nodes can be replaced by their symmetric or commutative counterparts.

We concluded by working through the example of Frobenius algebras which exemplify many of

the advancements made in this thesis. Frobenius algebras admit a particularly interesting variable

arity node which allows arbitrary arrangements of input and output edges. We demonstrated how

this family of nodes could be described using nested !-boxes and defined recursively. This is only

possible by using !-tensors.

Having described the tools to talk about frobenius algebras we could then prove many of their

fundamental properties using !L, particularly !-box induction. We first proved a spider theorem

allowing two connected nodes with aligned ticks to be merged. In the example of a symmetric

Frobenius algebra, we then proved that the theory can be described by a single symmetric generator

and a spider law allowing nodes to be combined. From this we demonstrated how any planar, acyclic,

connected network of symmetric Frobenius algebra nodes can be combined to a single node. Sim-

ilarly, for commutative Frobenius algebras we removed the restriction that edges cannot commute,

hence showing that any acyclic, connected network of commutative Frobenius algebra nodes can be

combined to a single commutative node.

7.1 Future Work

7.1.1 Implementation

We have already suggested one clear avenue of future work in section 3.5 where we stated that it would

be useful to implement non-commutativity of nodes in the graphical proof assistant Quantomatic [27].

The idea for Quantomatic arose when graphical languages became useful in areas such as quantum

136

information theory. As diagrams grew larger and more complex it became difficult to work with

them rewriting by hand. Quantomatic was introduced as a means to automate parts of this process.

The user provides a set of axioms and then draws a diagram to be rewritten and interactively applies

rewrites to the diagram.

For an example, take the theory of a commutative bialgebra, as presented in section 5.3. We can

implement the bialgebra law as can be seen in the Figure 7.1.

Figure 7.1: Bialgebra Law in Quantomatic

We use Quantomatic to explore the tree of possible rewrites of a diagram. Figure 7.2 demonstrates

a diagram in the process of being rewritten. Note that on the left hand side we can see the different

rewrite paths we have attempted to take.

Rewriting can be achieved by manually choosing each step or by applying a simplification proce-

dure (simproc). A simproc is a Poly/ML function which iteratively chooses which rewrite to apply

to the given graph.

The current version of Quantomatic is based on !-graphs and hence has a combinatoric archi-

tecture. We would like to implement a similar semi-automated theorem prover for !-tensors. There

are two options for this: A term rewriting program could be built from scratch based on !-tensor

expressions; or we could adapt the code for Quantomatic to also allow noncommutative nodes. The

former may provide some efficiency advantages over the latter but involves a large amount of work

and we would prefer to have one program to cover both. To that end we developed the theory in

section 3.5 which demonstrates how !-tensors can be encoded as !-graphs with some additional data

about each node called a neighbourhood order.

137

Figure 7.2: Proof Derivation in Quantomatic

It is simple to adapt quantomatic to understand neighbourhood orders and check that a !-tensor

encoded as a !-graph with neighbourhood order is well formed. For matching we need to be more

careful. For instance the following is a !-graph matching:

a b x y

Suppose we have a neighbourhood order on these with the top nodes having edgeterms ab and

yx for the left and right hand side respectively. Drawing as !-tensors it is clear we no longer have a

match:

b

Instead we need to slightly restrict the notion of matching from [39] to respect edgeterms. A

matching from (G,nhdG) to (K, nhdK) should be a !-graph matching i : G→ K, satisfying:

i(nhdG(v)) = nhdK(i(v)) ∀v ∈ N(G)

The next step is to develop an efficient matching algorithm and implement this along with !-tensor

substitution. We leave this as future work.

138

7.1.2 Self Dual Objects

One area which would benefit from being formalised is the ability for object types to be self dual.

If we are given that X = X∗, then wire direction for X becomes meaningless, hence it would make

sense to replace directed wires with undirected wires.

X∗

=

X∗X

=

X

=

To reflect this we would like to drop the direction notation in tensor and !-tensor expressions.

We could do this by replacing â and ǎ with ā when the type of a is self dual. The definitions would

need to reflect this with the new identity edge equivalence 1āb̄ ≡ 1b̄ā.

Writing #â for the number of occurrences of â we could define an edgename a in G to be

• free in G if #â+ #ǎ+ #ā = 1

• bound in G if (#â,#ǎ,#ā) = (1, 1, 0) or (0, 0, 2)

• invalid in G otherwise

Then conditions F1-2 and C1-3 would need to be updated. For example, F1 would require that

each a ∈ N must be valid in G.

A bound undirected edge a would have two contexts, one for each occurrence of ā. But the

consistency conditions remain the same except for using these two contexts instead of ctx(â) and

ctx(ǎ).

7.1.3 Completeness

Having shown soundness of !L the obvious next step is completeness. The statement of completeness

is:

Conjecture 7.1.1 (Completeness). If JΓ ` XK is true for any compact closed category C, then

Γ ` X is derivable in !L.

String diagrams (and hence tensors) are known to be sound and complete for compact closed

categories. i.e. Concrete !-tensor equations are true in all models if and only if they are identical

tensors. Hence for general !-tensor equations the problem reduces to deciding whether two !-tensors

with corresponding !-boxes have identical instances. This covers atomic !-formulas, but when we

involve conjunction, implication, and universal quantification, things become less clear. We leave

it as future work to either prove completeness of !L (or possibly an extension of !L) or to prove no

such complete extension exists.

139

140

Appendix A

Reordering !-Box Operations

This appendix presents some useful lemmas describing when and how !-box operations can be com-

muted past each other. These lemmas are used in the proofs of theorem 3.3.22, theorem 4.1.12, and

the (Copy), (Drop), and (Flip) cases of theorem 4.6.3.

Proving that two different sequences of operations are equivalent on a !-tensor expression G

is generally done by structural induction on G. Take the example of (3.5) which states that the

expression ExpB,fr(G) can equivalently be written Dropfr(B) ◦CopyB,fr(G). Most of the cases in

the inductive definition of a !-tensor expression are trivial to check, with the interesting cases being

[G]B , 〈e]B , and [e〉B . For example, the [G]B case is shown by the following, where each step is from

the definition of a !-box operation.

Dropfr(B) ◦CopyB,fr([G]B) = Dropfr(B)([G]B [fr(G)]fr(B)) = [G]B fr(G) = ExpB,fr([G]B)

The proofs for 〈e]B and [e〉B are similar. For more complicated equations involving multiple op-

erations on different and possibly nested !-boxes, the proofs become tedious and so we will omit

them here. We do, however, need to be careful about renamings, in particular checking appropriate

fresh renamings exist for each operation. In the above example we know fr is fresh for G, since it is

used in ExpB,fr when applied to G, and so CopyB,fr is a valid !-box operation on G. In the more

advanced cases below we will often introduce new fresh renamings and will need to check they are

fresh on their domains.

Remark A.0.1. The fresh renaming fr in OpA,fr(G) is only ever applied to names contained in A,

by which we mean edges a such that A ∈ ctxG(a) and !-boxes B 4G A. Hence when defining such a

fresh renaming fr for use in OpA,fr(G) we often only explicitly give its value on the contents of A,

stating that it is fresh elsewhere. By this we mean that fresh names are chosen which are not in G

or the image of fr on the contents of A. If we write C(A) for the contents of A (both edge and box

names), then we may define a fresh renaming as follows:

141

fr(x) =

x
′ x ∈ C(A)

fresh otherwise

In some cases it will not be possible to rearrange the operations and get the exact same result.

For example, suppose we are given ExpA,fr ◦KillB acting on the !-tensor G below, where fr(a) = b:

a

b

A

B

aA A a

b

KillB ExpA,fr

If we wish to apply the operation on A first, then we may hope this is equivalent to KillB ◦ExpA,fr′(G)

for some appropriate fresh renaming fr′. The following diagram demonstrates what affect this has:

a

b

A

B

A a

fr′(a)

a

bB

A

fr′(a)

ExpA,fr′ KillB

For the two to be equivalent we require fr′(a) = b which is not a valid fresh renaming on G. In

these cases, where names prevent operation reordering, we use renamings to correct the names after

reordering. Hence in this case we show ExpA,fr ◦KillB(G) = rn ◦KillB ◦ExpA,fr′(G) where rn need

only take fr′(a) to b. Again we need to be careful that our chosen renaming is a well-defined bijection.

A useful lemma is that which allows us to commute a renaming to the left past any !-box

operations:

Lemma A.0.2. Renamings can be pushed left past !-box operations using the following equality:

OpC,fr ◦ rn(G) = rn ◦Oprn−1(C),rn−1 ◦ fr ◦ rn(G)

Proof. As stated above we will omit the structural induction on !-tensor expressions which is simple

but tedious. We are left to prove that the !-box operation Oprn−1(C),rn−1 ◦ fr ◦ rn is well-defined on

G, i.e. that rn−1 ◦ fr ◦ rn is fresh for G.

Suppose, for a contradiction, that rn−1 ◦ fr ◦ rn(edges(G))∩ edges(G) 6= ∅. Hence there exist a and

b in edges(G) such that rn−1 ◦ fr ◦ rn(a) = b, or equivalently fr(rn(a)) = rn(b).

This contradicts fr(rn(edges(G))) ∩ rn(edges(G)) = ∅ as enforced by freshness of fr on rn(G). A

similar contradiction proof shows that rn−1 ◦ fr ◦ rn(boxes(G))∩ boxes(G) = ∅, so we can conclude

that rn−1 ◦ fr ◦ rn is indeed fresh for G.

142

A.1 Instantiations

To work with instantiations we wish to show that, given a total order on !-box names, they admit

a normal form, up to renaming. The normal form deals with !-boxes from the top down, so oper-

ations on parents are always applied first. To do this we now present a couple of lemmas about

reordering operations, which are used in the proof given in corollary 3.3.24. We wish to show that,

up to renaming, operations on non-nested !-boxes can be commuted (possibly changing their fresh

renamings) and that operations on a !-box A can commute right past operations on !-boxes nested

in A.

Lemma A.1.1. Given a !-tensor G and partial instantiation Op′A,frA ◦OpB,frB where A and B are

not nested inside each other there exist fresh renamings fr′B , fr
′
A, and rn such that:

Op′A,frA ◦OpB,frB (G) = rn ◦OpB,fr′B ◦Op′A,fr′A(G)

Proof. Since A and B are not nested inside each other, it is straightforward to show that applying

operations in either order yields the same resulting !-tensor expression, up to renaming of some

edges. Thus, it only remains to define the new renamings to ensure that the final edge names are

correct. Let fr′A and fr′B act the same as frA and frB , respectively, on box names. For edge names,

let fr′A be fresh for G taking a to a1, then let fr′B be fresh for Op′A,fr′A(G) by taking each a to a new

name a2.

The resulting !-tensor expression OpB,fr′B ◦Op′A,fr′A(G) may have names of the form a1, a2, and

a12, where a subscript 1 indicates the name results from the operation on A and a subscript 2

indicates the name results from the operation on B. Finally, we fix a bijection rn such that for the

names in OpB,fr′B ◦Op′A,fr′A(G):

rn =


a1 7→ frA(a)

a2 7→ frB(a)

a12 7→ frA(frB(a))

To see that such a bijection exists, we go through the cases for each operation. If both operations

are killing, then rn can be the identity since none of the above names exist in OpB,fr′B ◦Op′A,fr′A(G).

If one operation is killing, then rn only needs to be defined as a1 7→ frA(a) or a2 7→ frB(a). Finally,

if both operations are expansions, then such a bijection exists because the images of frA, frB , and

frA ◦ frB in Op′A,frA ◦OpB,frB (G) are disjoint. It is now possible to show through straightforward

but tedious case analysis that the lemma holds.

Given a !-tensor G and a partial instantiation Op′A,frA ◦OpB,frB where B is nested in A we hope

to rewrite the partial instantiation so that the operation on A is applied first. We split this into two

cases based on the operation on A:

143

Lemma A.1.2. If B is nested inside A in the !-tensor expression G, then:

KillA ◦OpB,frB (G) = KillA(G)

Proof. It is clear that killing A will erase any effects resulting from the operation OpB,frB . We omit

the tedious structural induction proof.

Lemma A.1.3. If we are given the partial instantiation ExpA,frA ◦OpB,frB on G, where B is nested

inside A, there exist renamings fr′A, fr
′
B, fr

′′
B, rn such that:

ExpA,frA ◦OpB,frB (G) = rn ◦Opfr′A(B),fr′′B
◦OpB,fr′B ◦ExpA,fr′A(G)

Proof. Again, it is straightforward to check that the sequences of operations ExpA,frA ◦OpB,frB and

Opfr′A(B),fr′′B
◦OpB,fr′B ◦ExpA,fr′A have the same result on !-tensors up to renaming of some edges.

We now define the renamings fr′A, fr
′
B , fr

′′
B , and rn for equality to hold.

Similarly to the proof of lemma A.1.1, we will tag names affected by operations on A with the sub-

script 1 and those affected by operations on B with the subscript 2. However, unlike in lemma A.1.1,

we also need to apply the renaming to box names (since !-boxes can be nested inside both A and

B).

Let fr′A take each edge or !-box name x inside G to fresh name x1. We then define fr′B fresh

on fr′A(G) to take the name x to fresh name x2. We need to be more careful when defining fr′′B as

we hope to take x to x2 but this is not necessarily fresh on names inside B. Fortunately it is fresh

on the contents of B1 (= fr′A(B)) which is where it will be applied during Opfr′A(B),fr′′B
. Hence we

define fr′′B on edge and box names by:

fr′′B(x) :=

x2 x ∈ C(B1)

fresh otherwise

The resulting !-tensor expression Opfr′A(B),fr′′B
◦OpB,fr′B ◦ExpA,fr′A(G) may have names of the

form x1 corresponding to edges affected by the !-box operation ExpA,frA , names of the form x2

corresponding to edges affected by the operation OpB,frB , and names of the form x12 corresponding

to edges affected by both. We then fix a bijection rn such that:

rn =


x1 7→ frA(x)

x2 7→ frB(x)

x12 7→ frA(frB(x))

Such a bijection always exists since if the operation on B is killing, then this is simply x 7→ x1; if

the operation is expanding then the images of frA, frB , and frA ◦ frB in ExpA,frA ◦OpB,frB (G) are

necessarily disjoint. It is now possible to show through straightforward but tedious case analysis

that the lemma holds.

144

A.2 Flip, Drop, and Copy

To prove soundness of the rules (Flip), (Drop), and (Copy) in theorem 4.6.3 we wish to rewrite

sequences of !-box operations into a form only involving killing and expanding to show they are

instantiations. The process for this is presented in theorem 4.1.12 and relies on pushing such un-

wanted operations left until they can be removed. In this section we prove the lemmas which allow

this reordering.

Lemma A.2.1. Suppose B is nested inside A in the !-tensor expression G and we are given the

left hand side of the following equations. We claim there exist fresh renamings fr′1, . . . , fr
′
n such that

these equalities hold:

1. ExpA,fr ◦FlipB(G) = Flipfr(B) ◦FlipB ◦ExpA,fr(G)

2. KillA ◦FlipB(G) = KillA(G)

3. KillB ◦ExpB,frn ◦ . . . ◦ ExpB,fr1 ◦FlipB(G) = KillB ◦ExpB,fr′1 ◦ . . . ◦ ExpB,fr′n(G)

Proof.

1. Since flipping has no effect on edge or box names we know that fr is fresh for G and so the right

hand side is well defined. It is then a straightforward structural induction proof to check the

equality.

2. Any changes made by FlipB happen inside the contents of A and hence are removed by KillA so

that the equality is trivial.

3. Flipping has no effect on names and so the left hand side being well defined tells us that edges(G)

and the images of each fri on C(B) are disjoint. We define the operations fr′i by:

fr′i(x) :=

fri(x) x ∈ C(B)

fresh otherwise

Each is fresh for its domain which contains the names in edges(G) and frj applied to the

content of B for j < i.

It is then simple to check the equality as a structural induction proof.

Instances of DropB are easier to remove by a simple rewriting:

Lemma A.2.2. Given DropB and G, there exist renamings fr and rn such that:

DropB(G) = rn ◦KillB ◦ExpB,fr(G)

145

Proof. We let fr act on the contents of B by taking the name x to a fresh name x1:

fr(x) :=

x1 x ∈ C(B)

fresh otherwise

So the result of expanding and then killing has names x1 where it should have names x. We correct

this using the renaming rn defined by x↔ x1 for all x ∈ C(B). The equation therefore follows.

Lemma A.2.3. Suppose B is nested inside A in G and we are given the left hand side of the

following equations. We claim there exist renamings fr′A, fr
′
B , fr

′′
B such that the equalities hold:

1. ExpA,frA ◦CopyB,frB (G) = Copyfr′A(B),fr′′B
◦CopyB,fr′B ◦ExpA,fr′A(G)

2. KillA ◦CopyB,frB (G) = KillA(G)

3. ExpfrB(B),frA ◦CopyB,frB (G) = CopyB,fr′B ◦ExpB,fr′A(G)

4. KillfrB(B) ◦CopyB,frB (G) = G

Proof. In each case it is straightforward but tedious to check the results on each side are equal

!-tensors, up to renaming of some edges and !-boxes. This is sufficient to complete the proof of cases

2 and 4 as no new names are created. We now define appropriate renamings to ensure equality for

cases 1 and 3.

1. To shift the copy operation after expansion on A, we need to copy both B and the fresh version

created by expanding A. To ensure the names are correct, we need to be careful about the

newly defined fresh renamings. We take fr′A = frA, we also wish fr′B to give the same results

as frB , though we need to be more careful and extend it to be fresh on new names created by

ExpA,fr′A on G:

fr′B(x) =

frB(x) x ∈ C(B)

fresh otherwise

For our final renaming, note that the contents of fr′A(B) have necessarily come from the

operation ExpA,fr′A and hence are of the form fr′A(y) for some y. We can therefore define fr′′B ,

which is only applied in C(fr′A(B)), in terms of such y:

fr′′B(x) =

frA(frB(y)) x = fr′A(y)

fresh otherwise

Freshness of these functions comes from the fact that the images of frA, frB , and frA ◦ frB are

disjoint on the contents of B.

146

3. We use fr′A and fr′B to assign fresh names to new edges and !-boxes by:

fr′A(x) = frA(frB(x)) fr′B(x) =

frB(x) x ∈ C(B)

fresh otherwise
Freshness of these functions comes from the fact that the images of frA and frA ◦ frB are

disjoint on the contents of B.

147

148

Appendix B

Induction on Arbitrary Input/Output

We now prove that the rule generalising induction for nodes with arbitrary arrangements of input

and output edges can be derived from !L. The statement of the rule (as in theorem 6.1.1) is:

Γ ` KillB(X) Γ, X ` Exp0
B(X) Γ, X ` Exp1

B(X)
(Induct 0,1)

Γ ` X

where B appears in the form [[−]B0 [−]B1]B , i.e. containing two !-boxes and their contents but

nothing else directly inside B.

We will refer to the three premise sequents respectively as the base case, step 0 case and step

1 case.

Let us attempt induction on B appearing in the form [[. . .]B0 [. . .]B1]B in a !-formula X. Induction

on B will create new copies of B0 and B1 which will need separate inductions (we start with the

copy of B0). To save space and increase readability, we write X ′ for fr(X) and shorten Kill and Exp

to K and E respectively. We also drop additional context (i.e. Γ in Γ ` X), this can trivially be

added to the left of ` in each of the following sequents, so long as the context does not contain the

!-boxes we use (∀I) on.

1

` KB(X)

†1
X ` ∀B′1.KB′0

(EB,fr(X))

†2
X,∀B′1.EB,fr(X) ` ∀B′1.EB′0(EB,fr(X))

(Induct)
X ` ∀B′1.EB,fr(X)

(∀I)
X ` ∀B′0.∀B′1.EB,fr(X)

(Induct)
` X

Our first goal 1 is precisely the base case. Then induction on B1 reduces (†1) to another goal:

(Ident)
X ` X (≡)

X ` KB′1
KB′0

EB,fr(X)

2

X,KB′0
EB,fr(X) ` EB′1 KB′0

EB,fr(X)
(Induct)

X ` KB′0
EB,fr(X)

(∀I)
†1

149

where we have used the fact KB′1
KB′0

EB,fr(X) = X on the left hand side. Unfortunately our

second goal 2 is not one of the step or base cases predicted above and similarly continuing (†2)

leads to another two unexpected goals:

3

X,∀B′1.EB,fr(X) ` KB′1
EB′0 EB,fr(X)

4

X,∀B′1.EB,fr(X),EB′0 EB,fr(X) ` EB′1 EB′0 EB,fr(X)
(Induct)

X,∀B′1.EB,fr(X) ` EB′0 EB,fr(X)
(∀I)

†2

We wish to show that 1 to 4 can be derived from the base and step cases above. This turns

out to follow from a lemma which allows us to rewrite the above expressions in terms of Exp0
B and

Exp1
B .

Lemma B.0.1. For a !-box B as above (made up of two further !-boxes B0 and B1 and nothing

else) the following hold on a !-formula X:

• Given Efr(B1),fr1 Kfr(B0) EB,fr there exist fresh renamings fr′ and fr′1 such that:

Efr(B1),fr1 Kfr(B0) EB,fr = Kfr(B0) EB,fr Kfr′(B1) Efr′(B1),fr′1 Kfr′(B0) EB,fr′

= Kfr(B0) EB,fr E1
B,fr1 ◦ fr

• Given Efr(B0),fr0 Kfr(B1) EB,fr there exist fresh renamings fr′ and fr′0 such that:

Efr(B0),fr0 Kfr(B1) EB,fr = Kfr(B1) EB,fr Kfr′(B0) Efr′(B0),fr′0 Kfr′(B1) EB,fr′

= Kfr(B1) EB,fr E0
B,fr0 ◦ fr

• Given Efr(B1),fr1 Efr(B0),fr0 EB,fr there exist fresh renamings fr′ and fr′1 such that:

Efr(B1),fr1 Efr(B0),fr0 EB,fr = Efr(B0),fr0 EB,fr Kfr′(B1) Efr′(B1),fr′1 Kfr′(B0) EB,fr′

= Efr(B0),fr0 EB,fr E1
B,fr1 ◦ fr

Proof. Each case follows by structural induction so long as we are careful about renaming. We take

fr′ to be a fresh renaming on the domain X which takes the name x to fresh name x1. We then

need to define fr′0 to be applied to Kfr′(B1) EB,fr′(X) by an operation on the !-box fr′(B0). Hence

it is only important how it affects names in the contents of fr′(B0) all of which are of the form x1.

Similarly, the definition of fr′1 is only important on names in the contents of fr′(B1), also of the form

x1. We define:

fr′0(y) =

fr0(fr(x)) y = x1

fresh otherwise
fr′1(y) =

fr1(fr(x)) y = x1

fresh otherwise

150

which guarantees that fr′0 ◦ fr
′ = fr0 ◦ fr on the contents of B0 and fr′1 ◦ fr

′ = fr1 ◦ fr on the contents

of B1. The only thing left to note is that in each case above fr needs to be extended so that it is

fresh for its new domain. This is not a problem as it will still only be applied to the contents of B

and new names cannot clash with the extra names in the domain since they were fresh when added

on the left hand side.

Theorem B.0.2. Let the !-formula X contain the subexpression [[. . .]B0 [. . .]B1]B (so the only con-

tents of B are B0, B1, and their contents). If B, B0, and B1 do not appear in Γ then we can apply

the following induction rule:

Γ ` KillB(X) Γ, X ` Exp0
B(X) Γ, X ` Exp1

B(X)
(Induct 0,1)

Γ ` X

Proof. Again we now drop the context Γ, though it can trivially be added to the left of every `. We

need only show that 1 to 4 follow from the premises. The first is trivial, we show the others:

X ` E0
B,fr0 ◦ fr(X)

(Partial)
Kfr(B1) EB,fr(X) ` Kfr(B1) EB,fr E0

B,fr0 ◦ fr(X)
(≡)

Kfr(B1) EB,fr(X) ` Efr(B0),fr0 Kfr(B1) EB,fr(X)
(Weaken)

2

X ` E1
B,fr1 ◦ fr(X)

(Partial)
Kfr(B0) EB,fr(X) ` Kfr(B0) EB,fr E1

B,fr1 ◦ fr(X)
(≡)

Kfr(B0) EB,fr(X) ` Efr(B1),fr1 Kfr(B0) EB,fr(X)
(Weaken)

3

X ` E1
B,fr1 ◦ fr(X)

(Partial)
Efr(B0),fr0 EB,fr(X) ` Efr(B0),fr0 EB,fr E1

B,fr1 ◦ fr(X)
(≡)

Efr(B0),fr0 EB,fr(X) ` Efr(B1),fr1 Efr(B0),fr0 EB,fr(X)
(Weaken)

4

151

152

Bibliography

[1] S. Abramsky and B. Coecke. A categorical semantics of quantum protocols. In Proceedings

from LiCS, arXiv:quant-ph/0402130v5, 2004.

[2] J. C. Baez and J. Erbele. Categories in control. Technical report, arXiv:1405.6881, 2014.

[3] F. Bonchi, P. Sobocinski, and F. Zanasi. A categorical semantics of signal flow graphs. In

CONCUR’14: Concurrency Theory., volume 8704 of Lecture Notes in Computer Science, pages

435–450. Springer, 2014.

[4] B. Coecke. Quantum picturalism. Contemporary Physics, 51:59–83, 2009. arXiv:0908.1787.

[5] B. Coecke and R. Duncan. Interacting quantum observables. In Proceedings of the 37th In-

ternational Colloquium on Automata, Languages and Programming (ICALP), Lecture Notes in

Computer Science, 2008.

[6] B. Coecke, R. Duncan, A. Kissinger, and Q. Wang. Strong complementarity and non-locality in

categorical quantum mechanics. In Proceedings of the 27th Annual IEEE Symposium on Logic

in Computer Science (LICS). IEEE Computer Society, 2012. arXiv:1203.4988.

[7] B. Coecke and D. Pavlovic. Quantum measurements without sums. eprint arXiv:quant-

ph/0608035, August 2006.

[8] B. Coecke and R. Duncan. Interacting Quantum Observables: Categorical Algebra and Dia-

grammatics. arXiv:0906.4725v1 [quant-ph], 2009.

[9] B. Coecke and A. Kissinger. The Compositional Structure of Multipartite Quantum Entangle-

ment. In Automata, Languages and Programming, volume 6199 of Lecture Notes in Computer

Science, pages 297–308. Springer, 2010.

[10] B. Coecke, A. Kissinger, A. Merry, and S. Roy. The GHZ/W-calculus contains rational arith-

metic. arXiv:1103.2812 [cs.LO], 2011.

[11] D. de Jongh and Z. Zhao. Positive formulas in intuitionistic and minimal logic. In Logic,

Language, and Computation, pages 175–189. Springer, 2013.

153

[12] L. Dixon, R. Duncan, and A. Kissinger. Open Graphs and Computational Reasoning. In

Proceedings of DCM’10, volume 26, pages 169–180. EPTCS, 2010.

[13] L. Dixon and R. Duncan. Extending Graphical Representations for Compact Closed Categories

with Applications to Symbolic Quantum Computation. AISC/MKM/Calculemus, pages 77–92,

2008.

[14] L. Dixon and R. Duncan. Graphical Reasoning in Compact Closed Categories for Quantum

Computation. AMAI, 56(1):20, 2009.

[15] L. Dixon and A. Kissinger. Open-graphs and monoidal theories. Mathematical Structures in

Computer Science, 23:308–359, 4 2013. arXiv:1007.3794v1 [cs.LO].

[16] R. Duncan and S. Perdrix. Graph States and the necessity of Euler Decomposition. In K. Ambos-

Spies, B. Löwe, and W. Merkle, editors, Computability in Europe: Mathematical Theory and

Computational Practice (CiE’09), volume 5635 of Lecture Notes in Computer Science, pages

167–177. Springer, 2009.

[17] P. Dybjer and A. Setzer. A finite axiomatization of inductive-recursive definitions. In J.-

Y. Girard, editor, Typed Lambda Calculi and Applications, volume 1581 of Lecture Notes in

Computer Science, pages 129–146. Springer Berlin Heidelberg, 1999.

[18] D. Hilbert, W. Ackermann, and R. E. Luce. Principles of mathematical logic, volume 69.

American Mathematical Soc., 1950.

[19] M. Huth and M. Ryan. Logic in Computer Science: Modelling and reasoning about systems.

Cambridge University Press, 2004.

[20] A. Joyal and R. Street. The geometry of tensor calculus I. Advances in Mathematics, 88:55–113,

1991.

[21] A. Joyal, R. Street, and D. Verity. Traced Monoidal Categories. Math. Proc. Camb. Phil. Soc.,

119(3):447–468, 1996.

[22] D. Kaiser. Physics and Feynman’s Diagrams. American Scientist, 93:156–165, 2005.

[23] D. Kartsaklis. Compositional Distributional Semantics with Compact Closed Categories and

Frobenius Algebras. PhD thesis, University of Oxford, 2014.

[24] A. Kissinger. Pictures of Processes: Automated Graph Rewriting for Monoidal Categories and

Applications to Quantum Computing. PhD thesis, University of Oxford, 2011. arXiv:1203.0202

[math.CT].

154

[25] A. Kissinger. Abstract tensor systems as monoidal categories. In C. Casadio, B. Coecke,

M. Moortgat, and P. Scott, editors, Categories and Types in Logic, Language, and Physics:

Festschrift on the occasion of Jim Lambek’s 90th birthday, volume 8222 of Lecture Notes in

Computer Science. Springer, 2014. arXiv:1308.3586 [math.CT].

[26] A. Kissinger, A. Merry, and M. Soloviev. Pattern graph rewrite systems. In Proceedings of

DCM 2012, volume 143 of EPTCS, 2012. arXiv:1204.6695 [math.CT].

[27] A. Kissinger, A. Merry, L. Dixon, R. Duncan, M. Soloviev, and B. Frot. Quantomatic.

https://sites.google.com/site/quantomatic/, 2011.

[28] A. Kissinger and D. Quick. Tensors, !-graphs, and non-commutative quantum structures. In

Proceedings of the 11th workshop on Quantum Physics and Logic, QPL 2014, Kyoto, Japan,

4-6th June 2014., pages 56–67, 2014. arXiv:1412.8552 [cs.LO].

[29] A. Kissinger and D. Quick. A first-order logic for string diagrams. In Proceedings of CALCO,

2015. arXiv:1505.00343 [cs.LO].

[30] A. Kissinger and D. Quick. Tensors, !-graphs, and non-commutative quantum structures (ex-

tended version), 2015. arXiv:1503.01348.

[31] A. Kissinger and V. Zamdzhiev. !-graphs with trivial overlap are context-free. 2015.

arXiv:1501.06059.

[32] A. Kissinger and V. Zamdzhiev. Quantomatic: A proof assistant for diagrammatic reasoning,

2015. arXiv:1503.01034.

[33] S. Lack. Composing PROPs. Theory and Applications of Categories, 13(9):147–163, 2004.

[34] S. Lack and P. Sobocinski. Adhesive Categories. Basic Research in Computer Science, pages

1–28, 2003.

[35] S. Lack and P. Sobocinski. Adhesive and quasiadhesive categories. Theoretical Informatics and

Applications, 39(2):522–546, 2005.

[36] A. Lang and B. Coecke. Trichromatic Open Digraphs for Understanding Qubits. ArXiv e-prints,

October 2011.

[37] A. D. Lauda and H. Pfeiffer. Open-closed strings: Two-dimensional extended tqfts and frobenius

algebras. Topology Appl., 155(7):623–666, 2008.

[38] S. Mac Lane. Categories for the working mathematician. Springer Verlag, 1998.

[39] A. Merry. Reasoning with !-Graphs. PhD thesis, University of Oxford, 2014.

155

[40] R. Penrose. Applications of negative dimensional tensors. In Combinatorial Mathematics and

its Applications, pages 221–244. Academic Press, 1971.

[41] R. Penrose and W. Rindler. Spinors and Space-Time, volume 1. Cambridge University Press,

1984. Cambridge Books Online.

[42] U. Prange, H. Ehrig, and L. Lambers. Construction and properties of adhesive and weak

adhesive high-level replacement categories. Applied Categorical Structures, 16(3):365–388, 2008.

[43] D. Quick. Encoding !-tensors as !-graphs with neighbourhood orders. In Proceedings of the 12th

workshop on Quantum Physics and Logic, QPL 2015, Oxford, England, 13-17th July 2015.,

2015.

[44] P. Selinger. A survey of graphical languages for monoidal categories. In New structures for

physics, pages 289–355. Springer, 2011.

156

	Introduction
	Background: Reasoning with Diagrams
	Monoidal Categories
	Symmetric Traced Categories
	Compact Closed Categories

	Commutativity and Graph Notation
	String Graphs
	Frobenius Algebras

	Families of Diagrams and !-Graphs
	!-Boxes
	!-Graphs
	Z/X-Calculus

	Rewriting

	!-Tensors
	Tensors
	Tensor Diagrams
	Tensor Notation
	Interpretation
	Rewriting

	!-Tensors
	!-Tensor Diagrams
	!-Tensor Expressions
	Concatenation

	Working with !-Tensors
	Forests
	!-Box Operations
	Instantiation
	!-Tensor Equations

	Definitional Extension
	Recursive Definitions

	Encoding !-Tensors as !-Graphs
	Simple Overlap and Neighbourhood Orders
	The Encoding Map

	A Formal Logic
	!-Formulas
	Quantification
	!-Formulas

	The Rules of !L
	Derived Rules
	Induction Examples
	Monoid
	Antihomomorphism
	Bialgebra

	Semantics
	Soundness

	Node Types
	Symmetric Morphisms
	Commutative Morphisms
	Commutative Bialgebra

	Working Example: Frobenius Algebras
	Arbitrary Arity Input/Output Nodes
	Induction on Arbitrary Input/Output
	Combining Frobenius Nodes

	Symmetric Frobenius Algebras
	Commutative Frobenius Algebras
	Special Frobenius Algebras

	Conclusions
	Future Work
	Implementation
	Self Dual Objects
	Completeness

	Reordering !-Box Operations
	Instantiations
	Flip, Drop, and Copy

	Induction on Arbitrary Input/Output
	Bibliography

