
Centre for Doctoral Training in Controlled Quantum Dynamics
Department of Physics, Imperial College London

A process theoretic triptych

Two roads to
the emergence
of classicality

:
Reconstructing
quantum theory
from diagrams

:
Looking for
post-quantum
theories

John H. Selby

September 2017

Submitted in part fulfilment of the requirements for the degree of
Doctor of Philosophy in Physics of Imperial College





Declaration and copyright

Except when otherwise acknowledged and referenced, the following thesis is my own

original work that took place during my PhD at Imperial College. It has not been

already submitted to satisfy any degree requirement at this or any other university.

The copyright of this thesis rests with the author and is made available under a Cre-

ative Commons Attribution Non-Commercial No Derivatives licence. Researchers

are free to copy, distribute or transmit the thesis on the condition that they at-

tribute it, that they do not use it for commercial purposes and that they do not

alter, transform or build upon it. For any reuse or redistribution, researchers must

make clear to others the licence terms of this work.

John Selby

September 2017

3



Abstract

This thesis asks what can be learnt about quantum theory by investigating it from

the perspective of process theories. This is based on the diagrammatic compositional

structure of Categorical Quantum Mechanics, leading to a very general framework

to describe alternate theories of nature. In particular this framework is well suited

to understanding the relationship between different theories.

In the first part of the thesis we investigate the relationship between quantum and

classical theory, showing how an abstract description of decoherence in terms of

leaking information leads to emergent classicality. Moreover, this process theoretic

notion of a ‘leak’ allows us to capture the distinction between quantum and classical

theory in a particularly simple way, highlighting how the quantum and classical

worlds diverge.

In the second part we look at how to reconstruct quantum theory from diagrammatic

principles showing that i) the existence of a classical interface with the theory plus

ii) standard notions of composition and iii) a time symmetric form of purification

are sufficient to reconstruct the standard quantum formalism. Thereby demonstrat-

ing that the standard tools of Categorical Quantum Mechanics come very close to

capturing the essence of quantum theory.

In the third part we abstract the key features of this emergence of classicality to

define a notion of ‘hyperdecoherence’ whereby some post-quantum theory might

appear quantum due to an uncontrolled interaction with an environment. We prove

a no-go theorem which states that any operational post-quantum theory must violate

the purification principle, and so must radically challenge our understanding of how

information behaves.

To summarise, we use the framework of process theories to gain a better under-

standing of quantum theory, its sub-theories, and its potential super-theories.
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Chapter 1

Introduction

For nearly a century quantum theory has fascinated and frustrated in equal mea-

sure. The beguiling simplicity of the mathematical formulation foiled by its abstract

presentation, resulting in the abject inability for any consensus to be formed as to

what it all ultimately means for physical reality. Hence, we still have papers and

books written, conferences and workshops organised, and many an argument held

over a few pints regarding the “correct” way to interpret the theory. However, is

this difficulty something intrinsic to nature; the mathematical theory; our limited

human perception of the world; or perhaps, could this instead be just due to the

language that we use to describe the theory? Are we in a situation akin to explaining

Shakespeare via Morse code, computer code with abstract art [1] or linear algebra

through interpretive dance? Is there a more suitable “higher-level” language which

could be used to describe quantum theory in which some or all of the quantum

weirdness is easily explained?

Somewhat ironically, it seems like category theory [109, 59, 97] —aka generalised

abstract nonsense [36]— may provide such a language. Indeed, this is what the

research programme of Categorical Quantum Mechanics (CQM) [4, 49] has been

developing for the last 14 years, using tools developed for monoidal category theory

to provide a diagrammatic representation of quantum processes. In this language

certain odd features of quantum theory seem like natural, almost inevitable, features

of a physical theory. This viewpoint has admittedly not yet provided a compelling

account of all of the peculiarities of quantum theory, but it seems plausible that this

—by providing a simpler description in a more powerful intuitive language— is a

step in the right direction. It therefore seems pertinent to ask whether or not there

is anything of foundational interest to be learnt from this categorical approach.

There are three particular foundational questions that this thesis aims to address:

1. How are classical and quantum theory related? The relationship between

11



12 Chapter 1. Introduction

quantum and classical theory is an odd one. On one level we expect classical

theory to be some limiting case of quantum theory, and yet, we rely on classical

theory in the formulation of quantum theory1. How can we best understand

the emergence of classical theory? Can we find some clear physical principle

that distinguishes the two theories?

2. Can we find a more compelling axiomatisation of quantum theory? The stan-

dard Hilbert space formulation of quantum theory takes mathematical state-

ments as axioms, and so given any particular quirk of quantum theory it is

difficult to explain why that particular behaviour occurs. In contrast, special

relativity has many “paradoxes” but these can be explained by the invariance

of the speed of light, or the equivalence of inertial reference frames, and so find

satisfactory resolution. Can we therefore find some better motivated axioms

which reconstruct the standard formalism and so provide a more satisfactory

explanation of quantum phenomena?

3. What can we learn about any theory that could one day supersede quantum

theory? It would be exceedingly arrogant to assume that quantum theory is

the fundamental theory of nature, even putting aside the philosophical issues,

there is the more immediate problem as to how to unify quantum theory

and general relativity. As —given the difficulties in quantizing gravity— it

seems likely that both quantum theory as well as general relativity will need

to be modified to achieve such a unification. We therefore seek to answer the

question as to whether it is possible to go beyond quantum theory. Is there

some deeper theory of nature yet to be discovered which could be as radically

different from quantum theory as quantum is from classical? If so, how should

we go about looking for such a theory, what constraints can we place on it,

and what features should we expect it to have?

An offshoot of the development of Categorical Quantum Mechanics is the framework

of generalised process theories [55]. This provides a broad framework for describing

potential theories of nature in which quantum and classical theory are two partic-

ular examples. Studying physics “from the outside” using such a framework allows

one to gain an understand of why physics is the way it is by considering what

the alternatives would be like. For example, do all other possible theories have

particularly problematic features such as faster than light propagation of informa-

tion [123]? Moreover, this approach gives insight into how different features of a

theory interact with each other from a theory independent perspective, irrespec-

1At least if one wants a description of measurements then one must introduce classical agents
as part of the theory.
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tive of the mathematical formulation of the theory. For example, can we under-

stand how thermodynamic constraints [15, 47, 48, 44, 46] or computational features

[99, 24, 98, 2, 14, 101, 100, 104, 20] arise directly from physical principles?

The fundamental underpinning of the process theory framework is compositional-

ity. The central tenet being that nature is best understood not via the traditional

reductionist approach of breaking things apart and studying isolated irreducible

components, but instead, by studying the relations and interactions between sys-

tems. It is this idea that leads to the aforementioned diagrammatic representation

of these theories. The existence of such a representation has important conceptual

and practical consequences. On the practical side this diagrammatic representation

lends itself to automation and computational reasoning [93], whilst on the conceptual

side it provides an intuitive description of certain ‘strange’ quantum phenomena.

The classic motivating example of this is the teleportation protocol [49]. Which is

diagrammatically represented as follows:

=

Alice Bob Alice Bob

time time

Bob

=

Alice

time
Ψ

Φ

On the left we have a schematic drawing of what two agents, Alice and Bob, do to

achieve quantum teleportation. They share some state Ψ and then Alice performs

some measurement getting outcome Φ. If the state and measurement are chosen

correctly2, and the right outcome occurs, then we can draw the ‘information flow’

of these various diagrammatic features as is done in the middle part of the above

diagram. This can then be rewritten as the right hand side, as in these diagrams

the only relevant data is the connectivity rather than the specific layout on the page

so we automatically have the rewrite rule:

=

This is just the identity channel from Alice to Bob, and so we can see that any

state that Alice inputs on her side will end up with Bob. This is clearly not the

complete story of quantum teleportation [28] as we have made no mention of the

necessary classical communication between the two parties. However, this forms

the (post-selective) core of the protocol as will be properly explained once we have

2I.e. are a Bell state and measurement.



14 Chapter 1. Introduction

formally introduce the notation and framework in section 2.6. The simplicity of

this diagrammatic description motivates the idea that perhaps this is the correct

language to describe quantum theory, or at very least, provides a novel perspective

under which certain phenomena are more readily understood.

As mentioned earlier, the process theoretic approach to quantum foundations is built

on the mathematics of category theory. This has a rich literature which has (so far)

not been widely exploited in theoretical physics research3, and so has significant

potential for providing new tools for performing concrete calculations as well as new

ways of viewing the world. A historic precedent for this can be seen in the influence of

group theory in physics, which, not only is a useful tool for performing calculations,

but provides deep insights into nature. In particular, via Noether’s theorem [116]

revealing a remarkable connection between symmetries and conservation laws.

Studying of quantum physics from the perspective of a broad framework of alter-

nate theories has a long history stretching back to various approaches to quantum

logic [30, 122, 107, 110] through to modern forms of generalised probabilistic the-

ories building on [107] such as [76, 23]. The connections between some of these

frameworks will be discussed in detail in chapter 4, but broadly speaking much of

the recent work on generalised probabilistic theories can be seen as examples of

process theories or at the very least as inspired by the diagrammatic approach. In

particular the work of Hardy has taken the compositional approach as its core for

reconstructing quantum theory [79], a general principle for formulating physical the-

ories [81], and most recently, for general relativity [82]. The work of Chiribella et

al. can also be viewed as taking process theories as the basis for an axiomatisation

of quantum theory [41, 42, 43] and more recently their approach has been used to

explore thermodynamics [45, 46] and computation [98, 24, 99, 101] in generalised

theories. The work of Barnum et al. [18] on a unification of real, complex and quater-

nionic quantum theory has also been heavily influenced by the categorical viewpoint

in particular focusing on trying to find suitable composites of real, complex and

quaternionic systems. More directly within the process theory framework there has

been work connecting ‘terminality’ and no-signalling [53], a general framework for

resource theories [54, 71], a diagrammatic representation of Bayesian inference [62],

representing quantum theory as a quasi-stochastic process theory [140], and now

substantial progress into fields as diverse as linguistics and cognition [60, 12, 57].

3Although it has fairly recently been used in condensed matter [106] and topological quantum
field theory [25].
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1.1 Summary of the thesis

In the first chapter of the thesis we introduce the framework that will be used

throughout the thesis, that is the framework of generalised process theories. We

introduce the basic compositional structure as well as notions of causality and purity

for process theories. We show how the former is closely related to compatibility

with a classical interface for a theory, which can be thought of as how we interact

with the world by classically choosing which experiment to perform and by getting

classical data as an output of an experiment. The later requires that we introduce

the notion of a leak for a system, which can be thought of as the process describing

how information can freely escape particular systems in certain process theories.

We then consider how we can relax the constraints on the composition of processes

to obtain commonly used structures for the process theory framework. Finally, we

introduce the notion of a sharp dagger, which can be seen as a refinement of the

standard notion of a dagger such that it has a clear operational interpretation. This

chapter contains generic expository material adapted from a paper with Carlo Maria

Scandolo and Bob Coecke [131], some results from the same paper, as well as two

further papers with Bob Coecke [130] and [129].

In the second chapter we demonstrate that, given any process theory, it is natu-

ral, from an operational perspective, to add in extra systems which are those that

arise from the leak construction. Indeed, we show that one example of this leak con-

struction provides a process-theoretic account of the emergence of classicality within

quantum theory. More generally, we show that the leak construction leads to all C*-

algebraic systems and no more. Therefore, from this perspective one should describe

Operational Quantum Theory as a process theory of C*-algebras and completely

positive maps. Moreover, we then can ask, how do we distinguish the specifically

quantum or classical C*-algebras. We show that there are two equivalent ways do

this. We show that quantum systems are those for which two equivalent conditions

hold. The first, is that the maximally correlated state is pure, essentially, that there

is a maximally entangled state. The second, is that there are only trivial leaks for a

theory, essentially, that losing information necessarily disturbs a system. The main

results of this chapter are first presented paper with Sean Tull and Bob Coecke [61]

however they have been presented here in a different style along with some further

results from [130].

In chapter three we consider how close the process-theoretic structures introduced

in the first chapter come to reconstructing the standard quantum formalism. We

demonstrate that we need just a single extra postulate to obtain Operational Quan-

tum Theory. This extra postulate is the notion of time-symmetric purification, based

on the notion of purification of [41] but with three benefits. Firstly, it more nat-
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urally fits in the process theory framework as it is defined for all processes rather

than just for states. Secondly, it is a time symmetric notion and so this allows us to

more clearly pin down where in this reconstruction time asymmetry is introduced.

Thirdly, it applies equally well to quantum and classical theory and so we can get a

more refined notion as to what, on an axiomatic level, distinguishes these two theo-

ries. This chapter presents the main result of the paper with Carlo Maria Scandolo

and Bob Coecke [131].

In the final chapter we ask: can quantum theory be seen to emerge from some deeper

post-quantum theory? We formalise this in an analogous way to the emergence

of classicality presented in chapter two, and prove a no-go theorem that states:

there is no such post-quantum theory that satisfies the purification postulate of

[41]. As such, any post-quantum theory will necessarily challenge our fundamental

understanding of how information behaves. This chapter is based a paper with

Ciarán Lee [103] which has been modified slightly to fit more closely with the process

theory framework.



Chapter 2

Process theories

The original objective of the Categorical Quantum Mechanics research programme

[4] was to provide a high-level language to describe quantum processes, giving an

abstract account of information flow in quantum information protocols such as en-

tanglement sharing, state teleportation, and gate teleportation. This was achieved

by describing quantum theory in the language of category theory, specifically, as a

compact-closed symmetric monoidal category with biproducts. The upshot of this

was a pictorial representation of quantum processes [49, 51] which provides an in-

tuitive description of the abstract mathematical notions1, and hence, an intuitive

understanding of information flow in the aforementioned protocols. Of particular

note is that, unlike in many traditional presentations of quantum theory, this cate-

gorical description also handles classical information ‘internally’ to the theory, and

so, hybrid quantum-classical protocols can also be reasoned about in an intuitive

but mathematically rigorous way.

It is worth mentioning that this diagrammatic representation of quantum processes

has more recently been extended such that it forms a sound, complete, and universal

representation of quantum processes known as the ZX-calculus [114, 88, 75, 11, 10].

That is, there is not only a representation of each quantum process as some diagram,

but that anything that can be calculated in quantum theory can be calculated via

a set of diagrammatic rewrite rules. In other words, anything that can be proved

in the standard formalism using standard linear-algebraic techniques can instead be

proved (in principle at least) with this diagrammatic representation. Moreover, this

representation proves to be amenable to computer automation [93, 73, 37, 68] such

that novel results can be found that would be impossible to even check by hand.

Indeed, the ZX-calculus has in recent years found practical applications in the field

of quantum computation and error correction [66, 87, 67, 69].

1I.e. of “compact-closed symmetric monoidal category with biproducts”.

17



18 Chapter 2. Process theories

In this thesis however, we are not interested in the practical applications of the

categorical approach, but instead, with whether we can use this tool to understand

foundational aspects of quantum theory. One of the primary ways that questions in

quantum foundations are tackled is by considering quantum theory not as a theory

in isolation, but, by considering it as one particular theory in a wide landscape of

potential theories. There have been many frameworks proposed for exploring these

alternate theories, from early work in quantum logic [30, 72, 108] to more recent op-

erational approaches [76, 23, 3]. Despite the wide range of the conceptual motivation

and mathematical formulation of these approaches, the focus of all of them has been

in describing physics via the properties of single perfectly isolated systems. Dealing

with composite systems was therefore traditionally a significant technical challenge.

In contrast, process theories are based on the diagrammatic representation of Cate-

gorical Quantum Mechanics, and so, take composition of systems, how they interact

with each other, and with the environment as primitive notions. This framework

therefore provides a new perspective on quantum foundations, and, along with the

new perspective, a new set of mathematical tools allowing us to avoid many of the

pitfalls of the earlier approaches.

In this chapter we begin by introducing the process theory framework, illustrating it

with some key examples that will be used throughout the thesis. We then introduce

some of the basic tools that are commonly used in the framework, notably, classical

interfaces, sums, compact structure, leaks and sharp-daggers. Finally we demon-

strate how these can be used to understand some fundamental concepts in quantum

physics, namely, causality and purity of processes.

2.1 Defining process theories

Process theories [55] are defined by a collection of systems – denoted as wires where

multiple wires represent composite systems, for example:

A B C DD E, , , ...

and a collection of processes – denoted as boxes with input systems at the bottom

and output systems at the top2, for example:

f
A

B C

,
s

A A
, e

E D D

, ...

2That processes have fixed input and output systems may seem to be a limitation of the frame-
work, however (as we show in chapter 3), an indefinitely typed input or output can just be seen as
a new system type.
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along with a notion of composition of processes – they can be wired together to form

diagrams such as:

a

A

B

C

b

c

dc

f

C

D
D

E

where any such diagram corresponds to another process in the theory, in this case a

process with inputs A and C and outputs B and E. This wiring together of processes

is not completely free but is subject to certain constraints:

1. each output can be connected to at most one input (and vice versa),

a

A

B
b

c

D D7

2. such that system types match,

b

c

D

A
7

3. and this wiring does not create cycles3,

b

c

D

7

e
B

A

A

B

The only relevant data provided by the diagram is the connectivity : which outputs

are connected to which inputs, which inputs and outputs are disconnected/free and

3We will introduce a way to construct cycles in certain process theories in section 2.6. This is
closely related to the existence of a (post-selected) teleportation protocol in a theory.
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the ordering of the free inputs and outputs. For example,

and

are “the same diagram” as —despite not being drawn in precisely the same way—

the connectivity is identical for each. On the other hand,

and

are different diagrams as the ordering of the free outputs is swapped.

In the above diagrams we have dropped system and process labels for convenience

as we will regularly do throughout the thesis when they are either irrelevant —such

as in the above examples— or clear from the context.

This is the complete description of the process theory framework, and so it is clearly

very broad in scope – see [55] for a wide range of examples from cooking breakfast

to data structures. However, to gain a better understanding of this framework it is

useful to consider how it connects to more standard ‘symbolic’ notation, in particular

for making connections with standard presentations of physical theories. There is

a straightforward procedure to do just that, however, as we will now show, this

procedure does not result in a unique symbolic expression for each diagram. Hence

these equivalent symbolic representations must then be equated by introducing a

number of additional axiomatic equations. It is therefore generally much simpler

to remain on the diagrammatic level so as to avoid the ambiguity introduced by

the symbolic notation, and so the diagrammatic description seems to be the natural

choice of notation4.

The procedure is as follows. The first step is to specify the inputs and outputs of

each process in a diagram, for example we denote a process f with an input A and

an output B by f : A → B. We then define two primitive notions of composition,

4Hardy [81, 79] uses an alternative symbolic representation of the diagrams which does not suffer
from such a great degree of ambiguity, however this notation is more difficult to connect to standard
descriptions of physics and is less clear to read compared to the notation we will now introduce.
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sequential composition, denoted ◦ defined as:

f ◦ g :=
g

f

and parallel composition denoted ⊗ where:

f ⊗ g := f g

we similarly denote the parallel composition of systems A and B as A ⊗ B. Next,

for each system we must introduce an identity process denoted as:

1A :=

A

A

Note that the grey dashed line here does not form part of the diagrammatic language

itself, but is just used for illustrative purposes, for example, to indicate grouping a

collection of processes together.

We must also introduce, for each pair of systems, a swap process:

SWAPAB :=

B A

A B

Additionally, it is convenient to introduce the concept of the trivial system, I, such

that,

a
=

a

I

A B A B

.

This allows one to describe all processes as having both an input and an output

system, in this case a : I → A ⊗ B. As this system represents ‘nothing’ then

composing it with other systems must leave them invariant, I ⊗A = A = A⊗ I.

We can then observe that any diagram can be built up out of these primitive ele-
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ments. For example:

a

b

c

a

c

b= = c ◦ (1⊗ b) ◦ (a⊗ 1)

This however introduces the unnecessary baggage of the identity transformations

and trivial system and is far less easy to read, in particular, all of the system type

information must be specified separately. Moreover, as mentioned above, this proce-

dure does not lead to a unique symbolic expression, and so there is always ambiguity

when switching from the diagrammatic notation to this more standard symbolic no-

tation. For example:

(b ◦ a)⊗ (d ◦ c) =
a

b

c

d
= (b⊗ d) ◦ (a⊗ c)

In this case it is fairly easy to understand why the two symbolic expressions should

be equal, but this is not always the case. For example the Yang-Baxter equation:

(SWAP⊗1)◦ (1⊗SWAP)◦ (SWAP⊗1) = (1⊗SWAP)◦ (SWAP⊗1)◦ (1⊗SWAP)

seems like a non-trivial equation, however when written as a diagram it becomes an

obvious statement:

=

as it is immediately clear that the connectivity of these two diagrams is the same.

To account for this ambiguity in the symbolic notation we must introduce a large

number of axiomatic equations for the ‘artificial’ features we have introduced in

the above procedure, i.e. for ◦, ⊗, 1A, SWAPAB, and I. This is essentially what

is provided in the standard textbook definition of a symmetric monoidal category.

Luckily however, we can use the diagrammatic notation and neatly avoid all of

these issues by noting that two symbolic expressions are automatically equal if they

correspond to the same diagram.
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Simply put, if a theory has a process-theoretic description, then the diagrammatic

representation immediately provides a huge simplification over its symbolic counter-

part, eliminating the need for a large number of equations which must be introduced

to deal with the ambiguity in the symbolic description. However, this does leave

open the question, are process theories a useful way to describe physical theories?

To describe physical theories as process theories, we interpret systems as correspond-

ing to some physical degree of freedom, for example, the polarisation of a photon,

the temperature of a thermal bath or the phase space of a classical particle. Whilst

processes are interpreted as something that can happen to that degree of freedom, or

something that transforms one type of degree of freedom into another, for example,

encoding the polarisation degree of freedom of a photon in the energy level of an

atom.

Given this interpretation then certain processes then have particular physical signifi-

cance. For example, processes with no inputs are processes that prepare a particular

system in some state, for simplicity we call these states, for example:

H

photon

could correspond to the preparation of a photon with horizontal polarisation. Pro-

cesses with no outputs correspond to the outcome of some measurement, or effects

for short, for example:

V

photon

would be the process associated to measuring the polarisation of a photon and ob-

taining ‘vertical’ as the outcome. Finally processes with neither inputs nor outputs

are known as scalars or numbers. They are often taken to be probabilities repre-

senting the probability of some outcome in an experiment occurring:

p

for example, note that if we wire together a state and an effect then we get a scalar,

this would correspond to the probability of obtaining the particular effect given the

particular state that was prepared. We are particularly interested in two particular

numbers which have a special diagrammatic representation as they are fully charac-

terised by their compositionality properties. The first is ‘certainty’, which is either

written as 1 or by the empty diagram. This can be defined diagrammatically by the
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fact that it leaves process invariant:

f = f

Another one is ‘impossible’, written as 0, which ‘eats’ all other diagrams, in the

sense that for each set of input and output wires there is a 0-process, again simply

denoted by 0, and when composing any process with the 0-scalar we obtain the

corresponding 0-process:

0 f = 0

Given this interpretation of the processes as physical transformations of some phys-

ical systems, it then is clear that compositionality should be a feature of any rea-

sonable physical theory, it is simply what we do when building experiments. Wiring

together two processes is simply taking the output of one piece of apparatus and

feeding it into the input of another. In terms of the symbolic notation, sequential

composition is just what happens when one first applies one transformation and

then the other, whilst parallel composition is applying two transformations to two

distinct systems at the same time. It therefore seems natural to expect that a phys-

ical theory should be a process theory, and so, as mentioned earlier, the process

theoretic description should be much simpler on a notational level if nothing else.

2.1.1 Example process theories

For our purposes we are interested in process theories representing descriptions of

physical theories, as such, we describe some key examples in this section. However,

this should not be taken as exhaustive of the uses of process theories, indeed as

mentioned earlier they have also been used for linguistics [60, 12], cognition [6, 33,

57], and the categorical approach has very wide applicability in computer science

and mathematics [50].

Note that in the following examples for now will not talk about measurements, just

states and how states evolve. We will address this apparent limitation in the next

section.

Example 2.1.1 (Classical probability theory). We consider a model of classical

probabilities over finite sets as a process theory. In particular, systems correspond

to natural numbers n ∈ N corresponding to the size of the set, composite systems

are given by the product of natural numbers, i.e. n⊗m = nm. Hence, the ‘nothing

object’ is represented by n = 1.
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Processes f : n → m then correspond to n × m stochastic matrices (i.e. matrices

with non-negative real entries such that each column sums to 1). Sequential and par-

allel composition are provided by standard matrix multiplication and tensor product

respectively.

To provide some more intuition for this process theory note that states are 1 ×
m stochastic matrices, and so correspond to m dimensional vectors with elements

pi satisfying pi ≥ 0 and
∑

i pi = 1. In other words, states of m are probability

distributions over an m element set. Parallel composition of a pair of states then

corresponds to the product distribution, however, note that not every state on the

composite system is of this form as correlated states are also part of the theory.

General processes in this theory then can be seen as stochastic evolution of the states.

Linearity of the evolution ensures that convex mixtures are preserved by processes,

and stochasticity ensures that probability distributions are mapped to probability dis-

tributions.

Example 2.1.2 (Quantum theory). Quantum theory can be described as a process

theory where we take systems to be finite dimensional Hilbert spaces H,K, ... with

the trivial system as C and composition of systems by the standard tensor product

H⊗K.

Processes with input H and output K correspond to completely positive trace pre-

serving (CPTP) maps

ξ : B(H)→ B(K)

where sequential and parallel composition are respectively given by sequential com-

position and the tensor product of linear maps.

States in this theory are therefore CPTP maps ρ : B(C) → B(H) which are in one-

to-one correspondence with density operators on H i.e. quantum states. Linearity

of these processes ensures that convex decompositions of density matrices are pre-

served, and trace-preservation and complete-positivity ensure that states (including

composite states) are mapped to states.

Example 2.1.3 (Classical possibilistic theory). Possibilistic classical theory can be

described in the same way as the probabilistic case, but where we take the elements of

the matrices to be Boolean valued. States are therefore possibility distributions over

the finite sets, with a Boolean value of 1 indicating possible and 0 impossible. Gen-

eral processes are then maps that preserve possibilistic mixtures and map possibility

distributions to possibility distributions.

Example 2.1.4 (Modal quantum theory). Modal quantum theory is another pos-

sibilistic theory described in [127, 128] and provides another useful example of a



26 Chapter 2. Process theories

process theory. Modal quantum theory is defined for any particular prime number p

such that systems correspond to vector spaces over prime finite fields, Znp where n

is the dimension of the vector space. Composition of systems is given by the vector

space tensor product and the trivial object is Zp.

Processes are then maps between the associated subspace lattices

ξ : L(Znp )→ L(Zmp )

such that ξ preserves the join ξ(x ∨ y) = ξ(x) ∨ ξ(y) of the lattice and respects the

bottom element (i.e. the zero-dimensional subspace) ξ(x) =⊥ ⇐⇒ x =⊥.

2.2 Classical interface

To discuss measurements for a theory we will now introduce a classical interface

which allow us to describe how we interact with the world and perform ‘experiments’

within the process theory. We say that a theory has a classical interface if three

conditions are satisfied:

1. there is a classical sub-theory,

2. all classically controlled processes exist,

3. and processes can be characterised by finite tomography.

Definition 2.2.1 (Classical sub-theory). To begin discussing a classical interface we

must have a process theory that contains classical theory as a sub-theory, where we

define classical theory in the sense of example 2.1.1. By a sub-theory we mean that

there exists a subset of systems such that when we restrict to processes with inputs

and outputs in this subset we obtain classical theory. For convenience of notation

we distinguish these classical systems by denoting them with dotted wires, e.g.:

n

Given this classical sub-theory we can now describe measurements as processes that

have a classical output, which can be thought of as the degree of freedom associated

to some classical pointer on some experimental measurement apparatus. Destructive

and non-destructive measurements are therefore represented by the processes

M and M ′ respectively.
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Examples 2.2.2. Classical probabilistic theory (example 2.1.1) clearly satisfies this

assumption, the sub-theory is just the theory itself. Measurements in classical theory

are then really just the encoding of the state into a new system. For example the

map,

:: i
7→

i i (2.1)

where i are the classical point distributions forming a basis for the system, can be

seen as measuring the state of the ingoing system in a non-destructive way, and

encoding this information in the new system.

In quantum theory as defined in example 2.1.2 there is not a classical sub-theory,

and so to define measurements we must first adjoin on some extra classical sys-

tems. We will show how this can be achieved in chapter 3, but the end result of this

is that destructive measurements correspond to POVMs where the outcome of the

measurement is encoded in the outgoing classical system.

The two possibilistic theories do not have a classical sub-theory as described above,

but if rather than demanding that the sub-theory is probabilistic classical theory we

allowed for possibilistic classical theory then we can – similarly to the quantum case

– adjoin on classical possibilistic systems to Modal Quantum Theory to allow for a

description of measurements.

The next two parts to the classical interface are standard operational assumptions

about how we do physics. Classical control describes our influence of the world, it

formalises the idea that we can use some classical randomness to choose which pro-

cess to implement, say by rolling a die and then choosing which piece of experimental

apparatus to use as a consequence.

Definition 2.2.3 (Classically controlled processes). A process theory has classically

controlled processes if for any set of processes fi

A

B

n

i=1

there exists a process

F

A

B

n

such that ∀i F

i

= fi (2.2)

where again these classical states i are the point distributions forming a basis for the
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system.

Finite tomography describes how we can learn about the world, stating that pro-

cesses can be characterised by the probabilities obtained in experiments. The finite-

ness condition demands that it is never necessary to perform an infinite number of

distinct experiments to characterise a process, and so, the set of probabilities needed

to describe a process is finite. Note that this would not be true of the (standard pre-

sentation of) infinite dimensional quantum theory or of quantum field theory. Yet,

in practice, we can also never perform an infinite number of distinct experiments,

and so rather than viewing this as a limitation on the theory we can view this as

an experimental limitation, our operational description of the theory should reflect

this by taking appropriate equivalence classes of the fundamental processes.

Before formally defining finite tomography we introduce some shorthand notation,

that is, we denote a circuit fragment as:

B

A
ξ :=

B

A

y

x

E

C
C

D
D

Definition 2.2.4 (Finite tomography). For all pairs of systems (A,B) there exists

a finite set of tests

 B

A
τi

n

m

i=1

such that

B

A

f =

B

g

A

⇐⇒ ∀i
B

A

τi

n

f =

B

τig

n

A

Note that if we have classically controlled processes then we can write this in a

cleaner form, that there exists a controlled test

B

A
τ

n

m

such that

B

A

f =

B

g

A

⇐⇒
B

A

τ

n

m

f =

B

τ

m

g

n

A

(2.3)

where finiteness demands that n and m are finite.
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There is a commonly used strengthening of this notion of tomography which requires

that it can be performed locally. This expresses the idea that, although we know the

world to be non-local (in the sense of [27]), that there are still no holistic degrees of

freedom, and that the description of two distinct regions of space can be formulated

entirely in terms of their individual properties and the correlations between them.

Alternatively, one can consider the ability to be characterised locally as the defining

feature of what we mean by a system, it is something that we can study in its own

right independent of the rest of the world. The notion of tomographic locality was

first used in reconstructions by Hardy in [76], but was identified as a property of

quantum theory much earlier [7, 29].

Definition 2.2.5 (Tomographic locality). Locality implies that τ in the definition of

process tomography can be chosen such that it factorises over parallel composition:

τ

n

m

=

· · ·

· · ·

α β

γ δ

· · ·

· · ·

nα nβ

mγ mδ

A B

C D
(2.4)

where n = nα...nβ and m = mγ ...mδ. Note that this implies that we can characterise

any process f by the set of scalars5:

α β

γ δ

· · ·

· · ·

iα iβ

iγ iδ

f



nα,...,nβ ,mγ ,...,mδ

iα,...,iβ ,iγ ,...,iδ=1

and so, for example, if we wanted to characterise a bipartite state A, B and we

needed kA and kB scalars to characterise the single system states then we would

need kAkB scalars to characterise the bipartite state [79].

Note that we will in general not take this stronger notion of tomography as part

of our classical interface and will make sure to specify when it is being used. In

particular, tomographic locality is not necessary for the following key consequence

of this classical interface (discussed in the next section), that is, any theory with a

classical interface must be causal.
5Note that because we are using the non-causal classical effects in this diagram the scalars will

similarly be non-causal and so will be positive real numbers.
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2.3 Causality

A key feature of a process theory is whether or not it is causal. A causal process

theory satisfies the no-signalling principle [53] and implies that information can

only propagate from present to future [42]. The notion of causality that we use was

introduced in [41], although we adopt a modified form that applies to the general

process theories of [56].

Definition 2.3.1 (Causal process theories). A process theory often comes with a

discarding effect for each system which provides a way to ‘throw away’ systems. We

denote this by:

A

A process, f , in such a theory is said to be causal [41, 42, 55] if it satisfies:

A

f
B

=
B

(2.5)

A theory with such discarding effects is then said to be causal if all processes in the

theory are causal. Note that this automatically implies that in causal theories the

only effects are the discarding effects themselves.

This seems like a somewhat odd definition of causality so to understand this in more

detail we derive some consequences of this condition. Consider the scenario where

Alice and Bob each share a system from a bipartite state, and each locally perform

some measurement dependent on some classical input.

Alice Bob

Then, if Bob does not have access to Alice’s input or output then there can be no

signal transmitted as the diagram separates:

Alice Bob Alice Bob

=

Alice

=

Bob
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Theories satisfying causality therefore satisfy a no-signalling theorem [53]. Similarly

if we consider the scenario where Bob is in the causal future of Alice, such that there

is some system transmitted between them, i.e.:

Alice

Bob

Then Bob cannot signal backwards in time to Alice as we again find that the diagram

separates:

Alice

Bob

=

Bob

Alice

Bob

=

Alice

In general we can see that causality implies that the causal structure implicit in

the input-output structure of the diagrams becomes an explicit constraint on the

observable probability distributions such that there is no signalling without the

transfer of a physical system, and such that there is no signalling backwards in time.

See [91] for a more formal (and general) proof of this result.

Examples 2.3.2. It is simple to show that all of our example process theories are

causal, they all have a unique effect for each system which must be deterministic as

the only scalar in each theory is 1. In classical probabilistic theory the discarding

effects are given by the n × 1 matrix (i.e. covector) where every element is 1 and

so applying this to half of a bipartite state corresponds to marginalisation, causality

of the processes is then implied by stochasticity. In quantum theory the discarding

effects are the (partial) traces, and so when applied to half of a bipartite state we

obtain the reduced density matrix, causality of processes is then guaranteed by trace-

preservation. In classical possibilistic theory the discarding effects are the same as

the probabilistic case (just with 1 from the Booleans rather than reals), causality

is guaranteed by the demand that possibility distributions are mapped to possibility

distributions, i.e. the zero state is not a valid state. Finally, in Modal Quantum

theory the discarding effects maps from the subspace lattice to the two element lattice

such that the bottom element is mapped to the bottom element and everything else is
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mapped to the top, causality of processes then corresponds to the fact that ξ(x) =⊥
=⇒ x =⊥.

We mentioned earlier that we want to interpret effects as measurement outcomes,

and so clearly in most theories we expect to have more than one measurement

outcome – we just do not expect these other outcomes to happen deterministically.

If a process theory includes these effects then it cannot be a causal process theory.

This is why we, when introducing measurements in the previous section, discussed

measurements as a whole rather than the individual outcomes. We did this by

describing measurements as processes with a classical output. These can be causal

processes, indeed, in the quantum case, the causality constraint is then nothing

more than the requirement that POVM elements sum to the identity. It is however

in practice very convenient to be able to work directly with effects, we show how

this can be done in the following section.

2.3.1 Acausal process theories and sums

It is often inconvenient to work with causal process theories and instead is often

simpler to work with an ‘acausal’ extension of the theory. We will however generally

still want to have a designated discarding map for each system as this allows us to

return to the operationally meaningful causal theory by restricting ourselves to the

processes satisfying equation 2.5.

Examples 2.3.3. We can extend classical probabilistic theory by dropping the stochas-

ticity requirement, such that processes are matrices valued in the non-negative reals.

Quantum theory can be extended by dropping the trace-preservation requirement al-

lowing for arbitrary completely positive maps. Classical possibilistic theory can be

extended by allowing for zero-processes i.e. matrices where every element is a zero.

Finally, modal quantum theory can be extended by weakening the constraint on the

bottom element to be ξ(x) =⊥ ⇐ x =⊥.

One of the main benefits of allowing for acausal processes is that it allows us to

define sums of processes.

Definition 2.3.4. A sum of processes is a binary operator + such that for any pair

of processes f, g : A → B we obtain a new process f + g : A → B such that + is

associative, commutative, has a 0 element, and, moreover, it must satisfy:

∑
i fi =χ fi

∑
i

χ (2.6)



2.3. Causality 33

for any circuit fragment χ. That is, the sum distributes over diagrams.

Given a theory with discarding maps and these sums we can then classify processes

in this theory according to whether they are causal, sub-causal or super-causal re-

spectively as

f =

A

B
B

, f =

A

B
B

+
e

B
or f =

A

B
B

+
e

B

note that in some process theories it is also possible for processes to satisfy none of

these.

Examples 2.3.5. In (the acausal extension of) classical probability theory, quantum

theory and classical possibilistic theory a sum of processes is provided by the standard

sum of linear maps. Whilst in modal quantum theory we define f + g by its action

on states (f + g)(x) := f(x) ∨ g(x).

Throughout this thesis we therefore will often be working with these acausal exten-

sions both for the sake of performing calculations and for understanding the com-

positional structure, but as mentioned above, we can always return to the causal

theory to understand the operationally realisable part of the theory. In fact, as we

will now show, a theory must be causal for it to be compatible with the operationally

motivated classical interface that we introduced previously.

2.3.2 Causality from a classical interface

We are now in a position to understand the connection between causality and the

classical interface.

Proposition 2.3.6. If a theory has a classical interface, that is, has all classically

controlled processes and all processes can be characterised via finite tomography then

the theory is causal.

Proof (adapted from lemma 7 in [41]). In this proof we show that by demanding

causality of the classical processes that we obtain a notion of causality for all pro-

cesses.

Firstly, note that scalars are always classical (as the trivial system I must also be

the trivial system for the classical sub-theory) and hence, the only causal scalar is

1. Therefore for all states s and effects e we have:

s

e
= 1. (2.7)
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In other words, we know that all effects e in the theory are deterministic, to prove

that the theory is causal it just remains to check that there is a unique effect for

each system. We check for uniqueness via tomography of effects. Finite Tomography

(definition 2.2.4) implies that there is some test τ such that:

τ

e1

=

e2

τ ⇐⇒
e2

=
e1

Now, note that as all classical processes are causal the only classical effect is the

discarding map and so we find:

=
E

τ
=

τ

e

=
τ

e i∑
i

(2.8)

where the last equality is given by decomposing the classical discarding map into a

sum over basis elements. This is true for any effects e and E, but now let us pick a

specific choice of E which exists due to Classical Control (definition 2.2.3):

=E

ĩ

ẽ , e

i

E = ∀i 6= ĩ

Now, by decomposing the classical identity as a sum over rank-1 projectors and

using the definition of E we obtain:

=
E

τ i

τ

E∑
i

i
= τ

i∑
i 6=ĩ

e

+

ĩẽ

τ

Therefore, by comparing this to equation 2.8 we find that:

τ

ĩe

=

ĩẽ

τ

There is nothing special about ĩ so we could equally prove this for any i just by
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considering different E, therefore, we obtain:

τ

e

=

ẽ

τ

and so, by the definition of finite tomography this means that e = ẽ. As these could

be arbitrary effects we therefore have a unique effect for each system, which, by

equation 2.7 must be deterministic. Hence, by definition 2.5 the theory is causal.

It is clear that what is happening in this proof is that we are using the fact that

probabilistic classical theory is causal, along with the classical interface to give us a

notion of causality for the whole theory. However, in classical theory we often work

with the non-causal extension, we can likewise do the same thing here. We can then

see that processes are sub-causal if they give rise to sub-causal classical processes

under tomography, or similarly super-causal if they give super-causal classical pro-

cesses under tomography. In particular this gives the only causal scalar as 1, the

sub-causal scalars as [0, 1) and the super-causal scalars as (1,∞].

2.4 Leaks

Another important feature of a process theory are the leaks for a theory [130], in

particular these are necessary for defining a process-theoretic notion of purity and

also can be used to distinguish between quantum theory and classical theory as we

show later.

Definition 2.4.1. A leak is a process:

LA

A

(2.9)

which has discarding as a right counit, that is:

= (2.10)

This can be seen as one half of the defining equations for a broadcasting map, or

conversely, a broadcasting map is a map that leaks in both directions. That is, a
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broadcasting map, denoted as:

is one that satisfies:

= = (2.11)

Note that classical theory has a broadcasting map as defined in equation 2.1, and

so has leaks.

We now consider some basic properties of leaks.

Proposition 2.4.2. All leaks are causal.

Proof. Causality of a leak means:

=

and this equation is obtained by discarding the outputs in (2.10).

When we have multiple leaks around we may often represent them with different

colours to distinguish them.

Proposition 2.4.3. Leaks compose to give leaks.

Proof. Sequential composition of leaks is again a leak:

=:

L1 L2 L1 ⊗ L2

since we have:

=

L1

L2

L1 ⊗ L2
=

and the same goes for parallel composition:

=:

L1 L1 ⊗ L2
L2

A B A⊗B
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since we have:

=
L1L1 ⊗ L2

L2

A BA⊗B

= =

A B A⊗B

Examples 2.4.4. In quantum theory and modal quantum theory all leaks are trivial,

that is we find that:

= ρ

where ρ is an arbitrary causal state. Whilst in classical theory (either probabilistic

or possibilistic) all leaks can be written in the form:

=

c

where c is an arbitrary causal process and the white dot is the broadcasting map

defined in equation 2.1.

This provides a clear separation between quantum and classical theory, as we can see

—at least qualitatively— that quantum theory is minimally leaking whilst classical

theory is maximally leaking. This can be made a more qualitative statement by

defining the ‘quality’ of a leak see [130]. However, for our purposes here we are more

interested in the role that leaks play in defining process-purity.

2.5 Purity of processes

In this section we consider how leaks relate to purity in process theories [130]. The

purity (or lack of purity) of a state is a fundamental concept in quantum theory and

is equally important in most approaches to generalised physical theories. However,

there is no reason to consider this as solely a property for states but should be

considered for all processes in a theory. Indeed, lack of knowledge about a process,

noisiness of a channel and detection errors on an POVM-element all correspond to

process-impurities. We will show that defining such a property for general theories,

and classical theory in particular, requires leaks.

In [43] Chiribella et al. introduce the notion of side-information, this can be thought
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of as information that is lost during a process which —in principle— could be pos-

sessed by some other agent. The use of this in cryptographic scenarios is clear,

where the side-information can be thought of as being possessed by an eavesdrop-

per attempting to influence or gain information about some cryptographic protocol.

Diagrammatically this side information is depicted as:

g

Side information
about process f

f =

Lack of side-information for a process, would imply that g must separate such that

the side-information is independent of the process f . Indeed, this must be the case

for any such g, i.e.:

f = g =⇒ g = f ρ (2.12)

Or in other words, all dilations of f must separate. Separability of dilations, has been

proposed as a definition of process-purity. Indeed for the case of quantum theory

this corresponds to the expected notion of purity, that is, that the CP map must

be Kraus rank 1. Remarkably however, in the form (2.12) this definition doesn’t

extend to general processes of classical probability theory. In fact, nor does it do so

for any theory that has broadcasting:

Proposition 2.5.1. If a non-trivial theory has broadcasting, and one defines purity

by means of (2.12), then plain wires (i.e. identity processes) aren’t pure.

Proof. Assuming identities are pure, and applying (2.12) to the defining equation of

a broadcasting map (2.11) we obtain:

= ρ (2.13)

that is, it is a constant leak. But then from the second defining equation of broad-

casting we obtain:

(2.11)
=

(2.13)
=

ρ

that is, each plain wire is a constant process, and hence the theory is trivial since

as a consequence all processes must then be constant since for (causal) processes we
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have:

f =

f

=

f

ρ

=
ρ

Hence, in a non-trivial theory with broadcasting identities cannot be pure in the

sense of (2.12).

From the first part of this proof, namely that this definition of purity implies that

leaks must be constant, it follows that this issue arises in any theories with non-

constant leaks. We can think of this as the fact that, if a system has a leak, then

there is irreducible side-information contained within the system itself:

Side information
about system A

=

A A

Fortunately, leaks also allow us to fix this problem. Firstly, let us suppose that a

theory has leaks, and also has a pure process f . Then, clearly the following is a

dilation of f :

f

l

where l is causal. One may therefore consider explicitly bringing leaks into play in

the definition of purity. A first step in this direction is to weaken (2.12) as follows:

f = g =⇒ ∃ , & l : g = f

l

(2.14)

However, now we have the opposite problem: all classical processes, including all

states, are pure! It is clear that we are missing a constraint. The original idea was

that for a process to be pure it should have no side-information that some eaves-
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dropper could take advantage of. However, we have shown that for some systems

there is irreducible side-information represented by leakage. Therefore to ensure that

the eavesdropper cannot gain information or influence the process we must demand

that the process does not interact with this irreducible side-information, such that

leaking before or after are equivalent:

∀ ∃ and ∀ ∃ such that
f

=
f

(2.15)

Hence, we propose the following definition of process-purity which packages these

two conditions, 2.14 and 2.15, into a neat form:

Definition 2.5.2. f is pure if and only if

f = g =⇒ ∃ & : g =
f

=
f

(2.16)

This, ensures that the only side-information is this irreducible kind i.e. system

leakage, and moreover, that pure processes do not interact with this irreducible side

information. To further motivate this definition we will show that it provides a

sensible definition for quantum, classical and composite systems. But first, note

that for states this definition reduces to:

Example 2.5.3. A state ψ is pure if we have:

ψ =
σ

=⇒ σ = ψ ρ

This is the same as the previously proposed definition based on equation 2.12, and

so we see that it is only for general processes that we must take leaks into account

and that this new definition is necessary.

Examples 2.5.4. In quantum theory as we mentioned earlier all leaks are trivial

and hence this definition reduces to equation 2.12 which is equivalent to the processes

having Kraus rank 1. In classical theory (probabilistic or possibilistic) this definition

implies that the matrices have at most a single non-zero element in each row and in

each column.

Remark 2.5.5. A closely related definition is given in [64] based on the categorical

notion of a ‘weak factorisation system’ and taking inspiration from the Stinespring
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dilation theorem. The precise connection between these two definitions is a subject

of ongoing work, however, the main distinction between these two approaches is

whether or not we demand that pure processes are closed under composition. This

is not guaranteed by the definition provided here but is in [64]. Whether or not this

should be the case is a matter for debate, but it is worth noting that this is closely

related to the ‘purity preservation’ postulate of [45] which is a non-trivial constraint

that requires that the pure processes are closed under composition.

2.6 Relaxing constraints on composition

In section 2.1 we introduced how processes can be composed to form diagrams,

however, this composition of processes was subject to certain constraints. In this

section we explore what happens when one of these constraints is relaxed, relaxing

the other constraints is a matter for future work. Specifically, we want to remove

the assumption that outputs must be connected to inputs to allow for a freer notion

of composition. This is clearly going to be in conflict with the notion of causality

that we introduced in the previous section, as such, we will for now consider the

acausal extension of our example theories.

Definition 2.6.1 (String diagrams). To connect inputs to inputs and outputs to

outputs we require a wires of the shape:

A A and A A respectively.

as only the connectivity matters these satisfy the obvious equations of:

= = , = and =

Remark 2.6.2. Note that rather than thinking of this as relaxing the constraints

on composition for process theories, we can instead ‘internalise’ these wires into a

process theory as a particular bipartite state (called a cup) and effect (called a cap)

for each system:

:= and :=

which also must satisfy the equations presented in the above definition. This is the

notion of compact structure that has been part of the CQM since its conception [4].

Examples 2.6.3. In quantum theory this looser form of composition is closely re-
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lated to the Choi-Jamiolkowski isomorphism between completely positive maps and

bipartite (acausal) states. More precisely, this isomorphism is a special case of these

string diagrams, the two directions of the isomorphism are provided by:

f → f and ρ
→

ρ

where it is simple to check that this is indeed an isomorphism:

f → f → f f=

→
ρ

→
ρ ρ

=
ρ

More concretely, we can take the cup and the cap to each be super-normalised Bell

states and effects respectively, in Dirac notation represented as
∑

ij |ii〉 〈jj|.

In classical theory these correspond to the super-normalised perfectly correlated state

and effect, i.e.

=
∑
i

i i and =
∑
i

i i

where the states i correspond to classical point probability/possibility distributions

and the associated effects. It is simple to verify that these satisfy the required equa-

tions.

It is these string diagrams that really capture the flow of information in quantum

information protocols, for example, the teleportation protocol mentioned in the in-

troduction:

=

Alice Bob Alice Bob

where this diagram shows that Alice and Bob sharing a Bell state followed by Alice

post-selectively obtaining an Bell outcome in a measurement, is equivalent to Alice

and Bob sharing an identity channel. Another simple example is entanglement

entanglement sharing:

=

Alice BobCharlie Alice Bob
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where Alice and Bob both share a Bell state with Charlie, who then post-selectively

obtains a Bell outcome in a measurement leading to Alice and Bob sharing a Bell

state. These are clearly not the full protocol as this involves measurements, classical

communication and corrections, but, this post-selected version captures the core of

these schemes in a concise and intuitive way.

2.7 Sharpening the dagger

Another key feature of many process theories of interest is the existence of a dagger,

like the string diagrams/compact structure of the previous section this has been part

of the categorical formulation of quantum theory from the beginning, at least, in

the sense that besides transposition there has to be another involution that captures

conjugation. Initially conjugation was taken as the primitive [4], and later it became

the dagger [132]. Again, Like the string diagrams of the previous section, this

weakens the distinction between input and outputs for a process.

Definition 2.7.1 (Dagger). A dagger provides a way to interchange forwards and

backwards in time propagation, swapping inputs and outputs. It is defined as a

reflection of processes:

f f

†

†A

AB

B

where the asymmetry of the processes has been introduced to make the reflection

clear. Which moreover acts on diagrams as a whole:

†

†

(2.17)

Intuitively, the dagger is acting as a time-reversal operator, swapping forwards in

time propagating processes for backwards in time. However, as we will discuss below,

the above definition is not sufficient to fully capture this notion.

Remark 2.7.2. Note that if we are interpreting the compact structure as a particular

state and effect within the theory, then we need to make explicit that the dagger maps

the cup to the cap. Similarly, if we consider the wires as identity transformations,

and a crossing of wires as a swap transformation, then these are taken to be invariant

under the dagger.
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Note that we do not represent the dagger in terms of processes in the theory, but,

have it as an ‘external’ structure. There are some daggers that can indeed be

represented internally, but, as we will discuss, these are not always the ones that we

are interested in. One way to internally provide a dagger is via the string diagrams

defining:

f := f

and in the case of classical theory this has many desirable properties for a ‘time-

reversal operation’. In particular, if a process f : n → n is reversible then this

dagger provides the inverse process:

f

f
= =

f

f

Moreover, for point distributions this dagger provides the effects that perfectly dis-

tinguish them:

i

j

= δij

However these properties don’t hold more generally, in particular in the case of

quantum theory we find that:

+i

+i

= 0

where we take the cap to be the Bell effect
∑

ij |ii〉〈jj| and the +i state defined as

|+i〉〈+i| where |+i〉 := 1√
2
|0〉 + i |1〉6. Similarly it does not provide the inverse of

reversible processes.

Luckily though, in quantum theory there are other possible daggers for the theory

which are more suitable as being interpreted as giving the time-reverse of processes.

We therefore need to find some extra constraints to identify the relevant dagger,

that is, we must sharpen the dagger. This is closely related to the logical sharpness

axiom of Hardy [80] and related works [46, 129]. To define this sharpness condition

we must first define the testability of a state preparation procedure.

6Essentially, this is because quantum theory has no perfectly correlating state, for example, the
Bell state correlates in the X and Z directions but anticorrelates in Y .
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Definition 2.7.3 (Testability). A state preparation S : n → A is testable, if it

satisfies three conditions:

1. S = ,

2.
S

is pure7, and

3. there exists M such that
S

S
=

M

such a testable state preparation is maximal if n is the largest value such that a

testable state preparation exists.

In quantum theory a testable state preparation corresponds to a set of pure, nor-

malised and perfectly distinguishable states, where maximality then means that they

form a basis for the underlying Hilbert space.

Given this notion of testability we can define a sharp dagger for theories with a

classical interface as follows.

Definition 2.7.4 (Sharp dagger).

1. Is a dagger in the sense of definition 2.7.1

2. Compatibility with the classical dagger,

f † = f (2.18)

3. Sharpness, if a state preparation S is testable (definition 2.7.3) then

S

S
=

7One might assume that we should simply demand that S is pure, however, there are no pure
processes with only a classical input and only a quantum output [130]. Instead, demanding purity
of this process guarantees that each state of the classically controlled state preparation is a pure
state.
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moreover, if S is maximal (see definition 2.7.3) then

S =

Examples 2.7.5. The dagger defined in terms of the string diagrams can easily be

seen to be the sharp dagger for classical theory. Whilst for quantum theory the sharp

dagger is provided by the Hermitian adjoint arising from the trace inner product on

states.

This, for the case of quantum theory, manages to capture what it means for a

dagger to be a time-reversal operator, however, it seems like there should be a more

general principle underpinning this. In particular, there should be a more general

principle that holds beyond theories with a classical interface. What this principle

is remains ongoing work but, hopefully, will provide a more intuitive definition than

the somewhat ad-hoc one given above.

Remark 2.7.6. Note that this ‘sharpening’ of the dagger is closely related to the

definition that we gave in [129] but here, rather than considering the sharpness

condition for just single states, we consider more general state preparation procedures

instead.

2.8 Tension with causality

We have now seen three important features of process theories that are in conflict

with the notion of causality, and hence, by proposition 2.3.6, in conflict with having

a classical interface for the theory.

Firstly, we have sums of processes, see definition 2.3.4. It is clear that the sum of

the two causal processes will not (in general) be causal:

f + g = f g = (1 + 1)+

Therefore, as in most theories 1 + 1 6= 1, we find that f + g is usually not causal.

Note that this is not actually the case in possibilistic theories and so in possibilistic

theories it is often the case that the sum of causal processes is again causal. However,

even in probabilistic theories we see a remnant of this structure in the causal part

of the theory in the form of convexity. That is, if we have a causal process f and a

causal process g then a convex combination of these pf + (1 − p)g will be another
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causal process in the theory as:

pf + (1− p)g = f g = (p+ 1− p)+p (1− p) =

this can be seen as a probabilistic mixture of the process f and the process g with

probabilistic weights p and 1− p respectively.

Secondly we had string diagrams. It seems obvious that these would not interact well

with causality as this allows for a free notion of composition where the distinction

between inputs and outputs is lost. Indeed, if we assume that the cap is causal then

we can derive the following:

= = :=
ρ

that is, the identity wire separates and so there can be no information flow in the

theory and the theory must be trivial. Therefore, for interesting process theories

and in particular for the cases of quantum and classical theory, the cap cannot be

causal. Like in the case of sums however, there is an impact of this structure at the

operational level, both the cup and the cap appear in a sub-normalised form in some

branch of a measurement process. Taking into account this branching structure is

what ultimately leads to the full teleportation protocol.

Finally, we have the sharp dagger. Again it seems obvious that this should not

interact well with causality as it can be seen as reversing the arrow of time. If we

did try to make the dagger compatible with causality this would mean that the

dagger was a map between causal processes, as such, if we only have a single causal

effect, then we also have only a single causal state:

:= †
( )

again, we find that demanding compatibility between the dagger and causality gives

us a trivial theory. As before though, we do find some sign of this process theoretic

structure in the operational theory, here providing an isomorphism between the

causal states and a subset of the effects in branches of measurements as well as in

providing the inverse of unitary transformations.

We therefore have a tension between the classical interface for a theory giving rise

to a notion of causality, with the compositional structures that we use as standard

tools in Categorical Quantum Mechanics. In the generalised probabilistic theory
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framework it is the operational structure which tends to be given precedence with

these compositional features taken as only convenient mathematical tools. However,

from the process-theoretic perspective this is not so clear cut, and is suggestive of the

idea that it maybe this compositional structure which is more fundamental. There

are two reasons to think this, firstly, we expect that classical theory should be emer-

gent from quantum theory and so taking classical theory and the resultant causality

as a starting point seems to be pre-empting this, perhaps to gain a deeper under-

standing of quantum theory we need to discard this operational starting point and

work towards a purely compositional framework. Secondly, foundational research in

quantum gravity suggests that nature may have fundamental indefiniteness of causal

structure, this freer notion of composition seems to capture this to some extent, and

so again this adherence to the operational viewpoint could be a hindrance to our

understanding of this deeper theory.

2.9 Conclusion

We have now introduced some of structure that is commonly use within the process

theory framework providing the abstract definitions as well as examples of how this

relates to quantum theory and classical theory. In particular introducing the basic

compositional framework, the classical interface for a theory, the notions of causality

and purity for processes. We then look to relaxing the notion of composition and

how this leads to a standard part of categorical quantum mechanics known as string

diagrams, it is the subject of ongoing work as to how relaxing other constraints on

composition leads to new structures for the process theory. Finally, we consider

another standard part of the categorical formulation of quantum theory, the dagger,

and show that to be able to have an interpretation of this either in terms of providing

tests for states, or in terms of time reversal symmetry, requires a sharpening which

provides an additional set of constraints that uniquely single out the Hermitian

adjoint in the case of quantum theory.

One of the odd features of our current presentation of quantum theory —both as a

process theory and more generally— is that it is built on top of classical theory. Fun-

damentally we describe our quantum processes via tomography and hence in terms

of classical probability distributions, where these measurements are best described

as processes with quantum inputs and classical outputs. However, this does not

mean that there are necessarily fundamentally distinct systems that are classical,

instead we expect ‘classical-like’ systems to emerge in certain regimes. We explore

a process theoretic view of this emergent classicality in the following chapter.

Another question that is posed by what we have described so far is, given this
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process theoretic machinery, how close are we to quantum theory? Are there any

other theories with a classical interface, string diagrams and a sharp dagger? We

answer this in chapter 4 showing how given two further assumptions of the theory

(time-symmetric purification and tomographic locality) that one can reconstruct

quantum theory from diagrammatic postulates.

A final question that we address is whether it is possible to find a process-theory

that could one day supersede quantum theory, a theory that is to quantum theory

what quantum theory is to classical. We explore this in chapter 5.



Chapter 3

Two roads to classicality

The goal of this chapter is to gain a process theoretic understanding of the emergence

of classicality in quantum theory, to do so however, we must first complete the full

description of operational quantum theory that we have brushed over so far. In

example 2.2.2 we remarked that we needed classical systems to encode the results of

quantum measurements, but we did not concretely define such a process theory for

quantum theory. To do so we need a process theory in which we have both quantum

systems as presented in example 2.1.2 as well as classical systems as presented in

example 2.1.1 such that they interact in a suitable way to provide a classical interface

for quantum theory. The notion of a finite dimensional C*-algebra is suitable to

capture this.

Definition 3.0.1 (C*-algebra). A finite dimensional C*-algebra A is the direct sum

of finite dimensional complex matrix algebras Ak,

A =
⊕
k

Ak =
⊕
k

B(Hk)

where Hk are finite dimensional Hilbert spaces. Note that there is a standard way

to embed this into a quantum system as

e :
⊕
k

B(Hk)→ B

(⊕
k

Hk

)

embedding the elements of the C*-algebra as block diagonal density matrices in a

quantum system, note that e† ◦ e = 1A.

This defines the systems for a process theory that allows us to describe quantum

theory with a classical interface. Note that when there is just a single branch in

the direct sum then we have a quantum system, and when we have for all k that

50
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Hk = C then this is embedded by e as diagonal density matrices which correspond

to classical probability distributions. However, we want to not only consider systems

but also processes as well. We call this process theory Operational Quantum Theory

(OQT) which will (hopefully) be satisfactorily justified by the end of this chapter.

Example 3.0.2 (Operational Quantum Theory). Systems are finite dimensional

C*-algebras (definition 3.0.1) and processes are completely positive1 linear maps be-

tween these systems. If we consider the embedding of these systems into quantum

systems then the processes are completely positive maps that preserve the block di-

agonal structure. Parallel composition is given by the tensor product of the matrix

algebras, and sequential composition by composition of linear maps. The trivial sys-

tem is given by B(C).

Restricting to quantum systems we find that this theory is equivalent to quantum

theory (example 2.1.2) and restricting to classical systems we obtain classical proba-

bilistic theory (example 2.1.1). If we simply take these systems and their composites,

ignoring all others, then this would describe quantum theory with a classical inter-

face. Indeed, processes with a quantum input and a classical output would then

correspond to POVMs; those with quantum inputs and both quantum and classical

outputs to quantum instruments; and those with both quantum and classical inputs

and outputs to classically controlled quantum instruments. However, as we will

see in the remainder of this chapter, if we view these classical systems as emergent

from the quantum systems, then it is equally natural to include all of the other

C*-algebraic systems as well.

3.1 Introduction

Mixing and decoherence are both manifestations of classicality within quantum the-

ory, each of which admit a very general process theoretic construction. In this chap-

ter we show under which conditions these two ‘roads to classicality’ coincide. This

is indeed the case for (finite-dimensional) quantum theory, where each construction

yields Operational Quantum Theory (example 3.0.2).

We have seen in section 2.8 having sums of processes provides a way to describe

probabilistic mixtures of processes by considering convex combinations. On the

other hand, decoherence, which in the quantum formalism is a process that sets

all off-diagonal entries of a density matrix to zero, is generalised to any causal

1Which if trace-preserving will be part of the causal theory otherwise they are part of the acausal
theory.



52 Chapter 3. Two roads to classicality

idempotent2. That this generalisation makes sense follows from the fact that any

idempotent can arise from leaking some information into the environment [130]. In

the case of quantum theory, by considering more general idempotents, one not only

recovers classical theory, but also intermediate ones described by C*-algebras, and,

remarkably, C*-algebras only.

Each of these manifestations of classicality can be used to construct new systems

to describe classical data. These are perfectly embodied by two standard universal

constructions for categories namely the biproduct completion [109] and the Karoubi

envelope [34] (i.e. splitting of all idempotents or Cauchy completion). The biprod-

uct completion —corresponding to the case of mixing— generates classical set-like

systems with the biproduct playing the role of the set-union, whilst the Karoubi

envelope —corresponding to the case of decoherence— generates systems equipped

with a decoherence map which ‘classicise’ their processes.

In this chapter we present the coincidence of these two roads for the case of quantum

theory. In [61] we present a more general abstract result, the technical core of which

is both a strengthening and generalisation of a theorem by Heunen, Kissinger and

Selinger [86]. The key strengthening of the result is that, by drawing on a result of

Blume-Kohout et al. [31], we no longer need to assume that the idempotents (i.e.

generalised decoherence maps) are self-adjoint. While the passage from self-adjoint

idempotents to general idempotents might seem minor, it is precisely this relaxation

that allows for a clear physical interpretation which applies to any process theory.

3.2 The two roads

In this section we introduce the two ‘universal constructions’ which adjoin classical

systems to quantum theory, showing that they both lead to the process theory of

‘Operational Quantum Theory’ i.e. C*-algebras and completely positive maps. We

also consider these two constructions for our other example theories.

3.2.1 The leak construction and Karoubi envelope

Firstly we show how one can construct new process theories from old ones by creating

leaks. To do this there must be processes in the theory that called pre-leaks:

2That is, a causal process f such that f ◦ f = f , setting the off-diagonal elements to zero twice
is the same as doing it once.
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Definition 3.2.1. A pre-leak is a causal process

A

A LA

(3.1)

such that

A

=

A

A

A

A

In other words, a pre-leak is a causal process for which

A

A

(3.2)

is idempotent. By inserting particular pre-leaks of the old theory on all of the wires

we obtain a new theory in which the pre-leaks are leaks. Hence, the leak construction

turns pre-leaks into leaks.

Theorem 3.2.2. Given any process theory and a pre-leak for each system which are

chosen coherently for composite systems, that is, such that for all A and B:

A⊗B

A⊗B LA⊗B

=

LA

A

A

B

B LB

(3.3)

we can construct a new process theory in which each pre-leak becomes a leak for the

associated system. This construction goes as follows:

1. systems stay the same;



54 Chapter 3. Two roads to classicality

2. one restricts processes to those of the form:

f

A

B

B

A

(3.4)

Proof. By causality of (3.1):

= (3.5)

discarding is preserved by the leak-construction. Given the form (3.4) of the pro-

cesses in the theory and due to idempotence of (3.2), plain wires have taken the form

(3.2), so the defining equation of a leak (2.10) is satisfied. To consider the pre-leak

in the new theory we must apply the leak construction 3.4 and using the condition

for composites (3.3) we get the following process in the new theory:

A

A

A

A

LA

LA

LA

LA

LLA

which is indeed a leak in the new theory:

(3.5)
=

(3.2)
=

which is the form of a plain wire in the new theory, and so this construction does

indeed turn pre-leaks into leaks. It is moreover straightforward to see that we again

obtain a process theory.
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Sometimes the leak-construction does nothing, in particular, when the pre-leaks are

already leaks:

Example 3.2.3 (Trivial). A simple example of the leak construction is the one

where the pre-leaks are taken to already be leaks, since then (3.4) will reduce to the

processes f themselves.

The main motivating example for this construction is of course the following:

Example 3.2.4 (Decoherence). The leak construction for the pre-leak:

: B(H)→ B(H⊗H) :: |i〉〈i| 7→ |i〉〈i| ⊗ |i〉〈i|

applied to the process theory of quantum processes (i.e. Example 2.1.2) we obtain

classical probability theory (i.e. Example 2.1.1).

There is no good reason to limit our consideration to just a single idempotent per

system, rather, we can modify construction in theorem 3.2.2, by not fixing a pre-

leak for each type but rather considering all pairs of a system and a corresponding

pre-leak. This is known as the Karoubi envelope, or Cauchy completion, or splitting

of idempotents. This provides our first universal construction.

Definition 3.2.5 (Karoubi envelope). Given a process theory we can define a new

process theory where the systems correspond to pairs (A, p) where A is a system in

the original theory and p is an idempotent on that system. Processes in the new

theory between (A, p) and (B, q) are simply given by q ◦ f ◦ p where f : A→ B is a

process in the original theory.

In the above construction it is really the idempotents rather than the specific pre-

leaks which determines the theory that is obtained. We can therefore have several

different perspectives on the ‘cause’ of this idempotent, by considering the different

pre-leaks from which it could have been obtained. Firstly, we can always take the

trivial case, where the pre-leak is just the idempotent itself, i.e. taking the leaked

system as the empty system. There are however three alternate forms that always

exist in quantum theory, and which are more insightful.

Examples 3.2.6. Firstly we can consider the purification of the idempotent (in the

sense of [41]) that is, we can always take the pre-leak to be some pure process f :

= f
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This corresponds to the idea that information can never be fundamentally destroyed,

only discarded, and so we can see this leaking of information into some causally

separated system as the cause of decoherence. Another standard way to represent a

general process is —via Stinespring dilation [136]— as a reversible interaction with

an environment:

= U
s

and so, we can equivalently view decoherence as arising due to a reversible interaction

with some uncontrolled environment [148]. A final example, suggested to us by Rob

Spekkens, is that the idempotent can be viewed as describing a system which lacks

a reference frame [26] Section IVB, the leaked system would then correspond to the

reference system itself:

=
∫
G

dg Ug g

where G is a group associated with a reference frame for a particular degree of

freedom, Ug is the representation of G on the system of interest and g a basis state

of the reference system that is in one-to-one correspondence with the elements of

the group. Note, however, that making sense of this integral for general symmetry

groups requires the reference be an infinite dimensional quantum system and so is

beyond the scope of this thesis. One could replace, at least for compact groups, the

integral by a finite convex mixture3, this could then be thought of as there only being a

finite set of possible orientations for the reference frame. However, a comprehensive

understanding of the connections here demands further justification or consideration

of the infinite dimensional case.

3.2.2 The biproduct completion

We now introduce the second way to add classicality to quantum theory. This can

be seen as describing the branching structure that arises from a quantum measure-

ment. In particular we can consider performing a measurement and then preparing

a different system conditioned on the outcome of the measurement. To represent

this we construct a new process-theory via the biproduct completion.

Definition 3.2.7 (Biproduct completion). We take systems to be lists of systems

from the original theory, (A1, ..., An) where we can think of each system Ai as being

the system prepared given a particular measurement outcome. Processes in this new

3For example by using the results of [41] Corollary 33 from Carathéodory’s theorem
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theory are described as matrices of processes M : (A1, ..., An)→ (B1, ..., Bm) defined

by:

(
f ji : Ai → Bj

)j=1,...,m

i=1,...,n

where these compose sequentially by standard matrix multiplication and in parallel

via the Kronecker product.

We will denote the system (A1, ..., An) as A1 ⊕ ... ⊕ An =
⊕n

k=1Ak and moreover

define ⊕ for processes as
⊕n

k=1 fk = (fiδij)
j=1,...,n
i=1,...,n .

Note in particular that a measure and prepare set up as described above would

be a map from M : A →
⊕

k Bk where the systems Bk correspond to the system

prepared conditioned on obtaining outcome k in a measurement. More general

processes f :
⊕

k Ak →
⊕

lBl in this theory can be seen as processes that allow for

an ‘indeterminate’ input system as well as indeterminate outputs. Therefore, just

as the sum + allows for mixing of processes, we find that ⊕ allows for ‘mixing’ of

systems such that we can describe classical systems within the theory.

3.2.3 Comparison

We can now compare the two constructions, for a more general abstract view of this

see [61], we present the result for quantum theory below.

Theorem 3.2.8. Both the Karoubi envelope and the biproduct completion applied

to quantum theory (i.e. example 2.1.2) gives the theory of Operational Quantum

Theory (example 3.0.2).

Proof sketch. A complete proof is provided [61] however we will provide a sketch of

the proof here.

That the biproduct completion of Quantum Theory is Operational Quantum Theory

immediately follows from the definition of finite dimensional C*-algebras 3.0.1 as

they are direct sums of quantum systems, see Example 3.4 of [86] for details.

The Karoubi envelope is more work, firstly, note that the Karoubi envelope is nothing

but the splitting of all causal idempotents, and so, the relevant data is the system

over which the idempotent splits. A splitting of p : A→ A over α is a decomposition

p = x ◦ y where y : A → α, x : α → A and x ◦ y = 1α. If we have the Karoubi

envelope of a theory in which p : A → A splits over α and q : B → B splits

over β then the processes (A, p) → (B, q) are in one-to-one correspondence with

processes α → β. Therefore, to prove our result we just need to show that every
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causal quantum idempotent splits over a C*-algebra such that the processes in the

Karoubi envelope of quantum theory are in one-to-one correspondence with processes

between C*-algebras.

Firstly note that if we have two idempotents p and p̃ where Im(p) = Im(p̃) then

p̃ ◦ p = p as idempotence of p̃ guarantees that it must be identity on its image.

Secondly, from Theorem 5 of [31], we know that the image of any causal quantum

idempotent p is a ‘distorted C*-Algebra’, that is, a set of states of the form:⊕
k

σk τk

Ak Bk

e

∣∣∣∣∣∣∣∣∣σk ∈ Ak


where τk is fixed causal state of Bk and e the embedding described in definition

3.0.1. We can define another idempotent p̃ with the same image:

⊕
k

τk

Ak

Bk

p̃ :=

Bk

e

e

which clearly splits through the C*-algebra
⊕

k Ak as can be checked by defining x̃

and ỹ as:

⊕
k

τk
Ak

Bk
x =

e

and
⊕
k

Ak
y =

Bk
e

Hence as we know that p = p̃ ◦ p = (x̃ ◦ ỹ) ◦ p as they have the same image, then

it is simple to check that p also splits as p = x ◦ y where x := x̃ and y := ỹ ◦ p.
We have therefore shown that any causal idempotent splits over a C*-algebra which

completes the proof.

So despite the weak structure of a leak, for the specific case of quantum theory

we obtain precisely the C*-algebras via the leak construction. This leads one to

contemplate the view that the operational essence of (finite dimensional) C*-algebras
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is entirely captured by leaks, and that the additional structure of C*-algebras is

merely an artefact of the Hilbert space representation.

Based on these two constructions it therefore seems natural not just to describe

operational quantum theory as the combination of quantum and classical theory,

but, to also include more general finite dimensional C*-algebraic systems. Having

said that, it is still interesting to ask, are there any simple principles that single out

the ‘pure’ quantum systems within this theory. Before turning to this question we

will first consider our other example process theories, see [61] for the proofs.

Examples 3.2.9. For classical probabilistic theory we again find that the two con-

structions coincide, and moreover, leave the theory invariant. In contrast, for pos-

sibilistic classical theory and for modal quantum theory we find that the two do

not coincide. In particular for classical possibilistic theory the biproduct completion

leaves the theory invariant whilst the leak construction adds some extra systems.

3.3 Separating quantum and classical theory

In this section we ask how we can characterise particular systems in Operational

Quantum Theory as being strictly ‘quantum’ or ‘classical’? We could simply take

the mathematical assumption that we want to consider the commutative C*-algebras

for the classical systems, or the irreducible C*-algebras as the quantum systems.

But, there are two more insightful principles that also achieve this.

Proposition 3.3.1 (The existence of a pure cup restricts to quantum systems).

Proof. It is simple to check that for a C*-algebra A =
⊕

k Ak that we can define

the cup and cap as the direct sum of the cups and caps for the Ak, it is then simple

to see that this has the following dilation:

=
⊕
k

A A Ak Ak Ak Ak
⊕
k

=
k

where {k} are some set of perfectly distinguishable states. This can only be repre-

sented as a leak on the trivial input system (necessary for purity) if k takes a single

value. Hence this is only pure when the C*-algebra has only a single branch, that

is, when it is a quantum system.

This provides an axiomatic account of the following statement of Schrödinger:

“When two systems, of which we know the states by their respective

representatives, enter into temporary physical interaction due to known
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forces between them, and when after a time of mutual influence the sys-

tems separate again, then they can no longer be described in the same

way as before, viz. by endowing each of them with a representative of its

own. I would not call that one but rather the characteristic trait of quan-

tum mechanics, the one that enforces its entire departure from classical

lines of thought.”

That is, if known states interact in a known way then the resulting state should be

pure. So it is really the fact that we have a non-separable pure state in the form of

a cup, which forces us to depart the classical world.

Proposition 3.3.2 (Lack of non-trivial leaks restricts to quantum systems).

Proof. For quantum theory all leaks are trivial, and for any other C*-algebra we can

construct a non trivial leak by leaking the ‘which branch’ information. Essentially,

=
⊕
kA Ak

⊕
k

= k

Ak

:=
A

is only trivial when k takes a single value and the system is quantum.

This can be seen as equivalent to the statement that information gain causes dis-

turbance, a result about quantum theory that is known to explain many of its non-

classical features. To make this precise, note that if a non-trivial leak exists, then

the leaked system must contain some information about the ingoing system, and so

by measuring it we can learn something in a way that does not disturb the original

system. Conversely, if we had a measurement that did not disturb the system then

this would be a leak where the outgoing system were classical.

The fact that we have these two ways to characterise quantum systems is not sur-

prising as it can generally be shown that:

Proposition 3.3.3. Existence of non-trivial leaks ⇐⇒ Cup is mixed

Proof. If we have a non trivial leak, then this defines a non-trivial dilation of the

cup:

6= ρ
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and so the cup must be mixed. Similarly, if the cup is mixed it has a non-trivial

dilation s, which allows us to define a non-trivial leak:

s
6= ρ

One could ask how the classical systems can be singled out from the C*-algebras.

These can be seen as those that are maximally leaking, and which have the minimally

pure compact structure. Similarly, one could ask whether there is some principle

that picks out the quantum systems, classical systems and their composites. One

such principle is transitivity, that there is a reversible transformation between any

two pure states of a system. This principle is used —in some form or other— in

every modern reconstructions of quantum theory. However, there seems to be no

good justification for including classical systems but not the other C*-algebras, and

so, assuming transitivity in an operational reconstruction quantum theory seems

unfounded4.

3.4 Conclusion

We have seen that there are two natural ways to adjoin classical systems onto quan-

tum theory. Thus allowing for a complete description of operational quantum theory,

with both the usual quantum systems as well as with a classical interface. More-

over, from each of these constructions we also obtain some ‘intermediate’ systems

corresponding to more general C*-algebraic systems. These too however have a

clear operational interpretation as: the types of systems that arise from the branch-

ing structure of quantum measurements; allowing for classical indeterminacy as to

which system is prepared; arising from decoherence due to interaction with an envir-

onment; leaking of information; or from the loss of some quantum reference frame.

These systems should therefore also be included in our operational description of

quantum theory along with the strictly quantum or classical systems.

4Specifically, the generalised probabilistic theory framework allows for probabilistic mixtures of
states, we include states which correspond to: ‘flip a coin, if heads prepare system A in state s1
if tails prepare system A in state s2’. If we can do this as a fundamental part of the framework
then we should also allow the state which corresponds to: ‘flip a coin, if heads prepare system A
in state s1 if tails prepare system B in state s2’. This will usually, and in particular in the case of
quantum theory, lead to non-transitive state spaces. Therefore assuming transitivity as a postulate
in a reconstruction is contrary to the conceptual underpinnings of framework in which they take
place.
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Given this process-theoretic understanding of the emergence of classicality, we can

imagine that quantum theory might equally well just be an effective description of

the world. Can quantum theory emerge from some deeper theory in an analogous

way? We return to this question in the final chapter.

First however, having seen how classical systems can emerge from quantum via these

two roads to classicality, we use these classical systems, along with the compositional

features discussed in chapter 2, to see how Operational Quantum Theory can be

reconstructed from diagrammatic postulates.



Chapter 4

Quantum from diagrams

In this chapter we reconstruct quantum theory from diagrammatic postulates. But,

why would one want to reconstruct quantum theory in the first place? The fun-

damental motivation for this is a dissatisfaction with the standard axioms, as their

mathematical nature makes it difficult to understand why quantum theory is the

way it is. The aim of a reconstruction is therefore to start from conceptually jus-

tified structures and axioms, and, from this, to derive the standard Hilbert space

formalism. The hope being that this will allow us to derive more applications of

quantum theory, and to understand how it can, and should, be modified to rec-

oncile the theory with general relativity. Furthermore, reconstructions enable us

to build toy theories other than quantum theory, which provide concrete points of

comparison, contributing to the understanding of why nature is quantum.

This dissatisfaction with the standard axiomatisation is not at all new. Indeed, the

first to contribute to the reconstruction endeavour was John von Neumann. A mere

three years after the publication of his book [142] that cemented the mathemati-

cal formalism of quantum theory, he wrote to the mathematician Garrett Birkhoff

stating that he was no longer satisfied with the Hilbert space formalism [125]. His

original goal however was not so much to simply reconstruct quantum theory, but,

to find a different formalism that may also allow for new physics. The actual re-

construction programme building on this was outlined by George Mackey [110], and

mostly completed by Constantin Piron [121] and Günther Ludwig [107].

There have been many subsequent attempts (and successes) at reconstructing quan-

tum theory, these have had a wide range of conceptual starting points, however,

broadly there have been two kinds of approaches. The first wave of reconstructions

[142, 110, 121, 107] (surveyed in [58]) took place in the previous century, where

assumptions were taken to be axioms in the mathematical sense. Nothing was left

implicit, and there were no givens. As a result, the mathematical sophistication

63
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of these reconstructions was substantial. For example, Piron’s Theorem [121] was

actually only finalised in 1995 by Solèr [134], while arguably it already took off from

von Neumann’s book [142] in 1932. In this first wave of reconstructions the focus was

on single systems under observation. Indeed, the Achilles heel of these approaches

was the description of composite systems at a general axiomatic level: while these

approaches were able to recover Hilbert space, they all failed to reproduce the tensor

product as part of the formalism.

The second wave of reconstructions [76, 65, 111, 42, 79] was driven —under the

impetus of Lucien Hardy’s [76]— by modern developments in quantum information

theory. These developments had two important consequences, firstly, they showed

that there was much to be learnt from finite-dimensional quantum theory, and so the

target of these reconstructions shifted to a mathematically much simpler objective.

The second change was that composite systems could no longer be ignored, as they

are essential to the description of quantum information theory, and so, the failure of

the earlier approaches to derive the tensor product structure needed to be overcome.

Moreover, there was also a broader shift: the mathematical axiomatic flavour was

relaxed, leaning more towards a ‘physicist’s approach’ (like Einstein’s conception of

the principles underpinning relativity theory – the limited speed of light and the

invariance of laws for different observers). This relaxation means that many pieces

of structure are often sneaking into the reconstructions (again like in Einstein’s

derivation of relativity theory), for example, the structure of real numbers. To

distinguish the assumptions used in these approaches from the mathematical axioms

of the first wave, the term ‘postulates’ was adopted. Now the goal was to focus more

on the conceptual grounding of each of these postulates, and in casting them as much

as possible within some interpretational school. For example, principles should only

make reference to measurement [76], should only refer to single systems [21], or,

should be information-theoretic [42]. But, despite their success, these postulate-

based approaches generally lacked the mathematical clarity of the earlier attempts,

and so, in many cases, the proofs were not so insightful.

In response to the issue of dealing with composite systems, learning from the failures

of the earlier axiomatic reconstructions, a rigorous focus on composition of quan-

tum systems and processes has been the subject of Categorical Quantum Mechanics

[4, 55] for well over ten years. While the first reconstructions of the second wave

focused on states of physical systems and their geometry, the categorical approach

changed the paradigm completely, from states to processes. In this way the attention

switched naturally to composition [52]. Specifically, as we have seen, the particu-

lar nature of the categorical structures found in CQM has the great upshot that

it admits a full and faithful diagrammatic representation [49, 51] (a.k.a. quantum

picturalism). Meanwhile, borrowing from CQM, the reconstructionists of the second
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wave had adopted ‘diagrams of processes’ as their starting point [78, 41, 42, 79],

hence embracing composition of process as the core ingredient of quantum theory.

More recently, a third wave of reconstruction attempts took off [17, 21, 146], which

can be seen as resurrecting the mathematical spirit of the first wave while still em-

bracing the principled underpinning that guides the second wave.

This chapter provides a reconstruction that is conceptually grounded whilst still

being based on crisp mathematical axioms. This is achieved by exploiting the cor-

respondence:

diagrams ' category theory ' process theory

our postulates are now entirely diagrammatic, which means entirely category-theoretic,

that is entirely process-theoretic – providing them with an intuitive, elegant as well

as principled underpinning.

Essentially, what we prove, is that if we have a process theory with all of the ‘stan-

dard’ process-theoretic tools (i.e. those introduced in chapter 2), then a single

additional postulate time-symmetric purification suffices to be able to reconstruct

Operational Quantum Theory. We will introduce this time-symmetric purification

postulate in detail in the next section. More specifically, we prove that it is possible

to reconstruct Operational Quantum Theory from the following postulates:

1. The theory is a process theory,

2. that has a classical interface comprising of,

(a) all classically controlled processes, and

(b) tests to perform finite local tomography,

3. moreover, the theory admits string diagrams,

4. a sharp dagger,

5. and all processes have time-symmetric purifications.

These are formally presented in section 4.2. The proof of this result is remarkably

simple in contrast to many other reconstructions, largely owing to the use of the

diagrammatic notation for proving the results. Indeed, the entire reconstruction

can be presented in a simple flowchart (figure 4.1) showing that the structure of the

reconstruction consists of few lemmas and a standard result, the Koecher-Vinberg

theorem [96, 141] (introduced to the authors by the works of Barnum and Wilce

[19, 18, 22, 146, 16, 17]).
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4.1 Time-symmetric purification

The final postulate for the reconstruction is based on the notion of purification

introduced in [41, 42, 39, 43] as an operational generalisation of the Stinespring

dilation theorem [136]. The purification principle states that for all states ρ there

exists a pure bipartite state ψ such that:

ρ =
ψ

where this purification is ‘essentially unique’ [43], that is, if there are two such

purifications ψ and φ with the same purifying system, then they are related via a

reversible transformation R:

ρ =
ψφ

= =⇒
ψ

=
φ

R

This notion of purification is problematic for us for three reasons. Firstly, it is not

compatible with the classical interface – classical theory does not satisfy this prin-

ciple. Secondly, it is explicitly time asymmetric, whereas we want to be able to pin

down the asymmetry as purely a consequence of the classical interface. Thirdly, it is

formulated specifically in terms of states, whilst we aim to treat all processes on an

equal footing taking the process-theoretic view that processes are the fundamental

entities, states being special instances thereof. In this section we therefore introduce

the postulate of time-symmetric purification which resolves these issues: stipulating

that every process arises from a pure process by ‘discarding’ a system to both the

future and the past. However, before we can get to defining such a notion of purifi-

cation we first need to understand what the pure processes are in the process theory

of Operational Quantum Theory.

4.1.1 Purity and leaks in Operational Quantum Theory

We first recall the following results about C*-algebras discussed in chapter 3 that

we will need to understand process purity for operational quantum theory.

1. Given a C*-algebra A =
⊕

iAi there is a decomposition of the identity into

orthogonal projectors

A
=

∑
i

i
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2. such that each of these projectors splits through an irreducible C*-algebra

i =
i

i

Ai

A

A

3. this decomposition of the identity provides us with a matrix representation of

these processes with input A =
⊕n

i=1Ai and output B =
⊕m

j=1Bj

f =
∑
ij

f

i

j

A

B
:=

∑
ij

fij ∼ (fij)
j=1,...,m
i=1,..,n

4. where each fij defines a map between the irreducible C*-algebras Ai and Bj

as

fij

i

j

Ai

Bj

B

A

5. such that the quantum processes defined by the discarding map for the C*-

algebras are the discarding maps for the quantum systems,

i

Ai

=
A

Ai

6. finally, we note that,

F = 0 ⇐⇒ F = 0

Recalling the definition of pure processes 2.5.2 we see that to understand what the

pure processes are we must understand what the leaks are for these systems. In

quantum theory, as mentioned in example 2.4.4 all leaks are trivial, that is, any leak

separates as:

= ρ

however, in classical theory, and more general C*-algebras the leaks are more inter-

esting as we will now demonstrate.
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Proposition 4.1.1. Given a C*-algebra, A =
⊕

iAi any leak can be written as:

A

A

L

=
∑
i

i ρi =
l

Proof. Note first that any leak for A defines a leak for each of the Ai by pre- and

post- composing with the relevant projector, hence, as the Ai are quantum systems

these leaks must be constant:

= i ρi

i

i

=

i

i

i

i

i

=

i

ρi (4.1)

We therefore have

= i ρi

i

j

=
∑
ij

+
∑
i

∑
i 6=j

j

i

However, by decomposing the identity as a sum of the projectors and using the

defining equation of a leak we find

i= +
∑
i

∑
i 6=j

j

i

=
∑
i

i =

and hence if i 6= j

j

i

= 0 and so

j

i

= 0

Combining this with equation 4.1 provides us with the result. Using classical control
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then allows us to write this in the form

A
L

l

A
where

i

l :=
ρi

which completes the proof.

In example 2.5.4 we noted that our definition of purity for quantum processes reduces

to the standard notion and hence, pure quantum processes are those with Kraus rank

1. We now consider what our definition means for more general C*-algebras.

Proposition 4.1.2. Pure processes between C*-algebras are processes whose matrix

representation has i) pure processes as matrix elements, and ii) at most a single

non-zero process in each row and in each column.

Proof. Consider a pure process f : A → B where A =
⊕

iAi and B =
⊕

j Bj , and

its matrix representation f =
∑

ij fij . Now given the leak of system B which leaks

the ‘which branch’ information to a classical system

j j:=

B

∑
j

we find that

f = f = f = f

l j

f l

j

=

ii

∑
ij

:=
∑
ij

fijlij

Hence we find that fijlij = fij and so either fij = 0 or lij = 1. However, as we

know that l is causal this means that
∑

j lij = 1 for all i and so for each i there is

only a single value of j such that lij = 1. Therefore for that i all other values of j

must result in fij = 0. That is, the matrix representation of f has at most a single

non-zero element in each row. We can make an equivalent argument starting with

the leak at the bottom pushing it through to the top, in this case we find that there

is at most one non-zero element in each column.



70 Chapter 4. Quantum from diagrams

Now note that every dilation F of f must be given by some leak, which means that

F
∑
ij

j

i

F= = f f=

j

i

∑
ij

ρj

therefore

F

j

i

f

j

i

ρi=

and so every dilation of each of the fij must separate. In other words, the fij are

pure quantum processes.

To summarise, from the ‘commutativity’ conditions we find that a pure process f

maps each branch of A to at most one branch of B and vice versa, and, from the

‘all dilations are leaks’ condition we find that these maps between branches are

themselves pure.

4.1.2 Defining time-symmetric purification

To produce a time-symmetric version of purification we need to have a notion of

‘discarding’ systems in the past. We can think of the standard discarding effect as

an operational way to describe a scenario where we have no knowledge about, control

over, or interaction with the future of a system. However, we can also imagine a

scenario where we have no information about, no control over, and no interaction

with the past of a system, to represent this we define:

A := †
(

A

)
(4.2)

That is, as the time reverse of the discarding (to the future) map. In the cases of

quantum and classical theory, the dagger of the discarding map is the unnormalised

maximally mixed state. One may worry that this is not actually a valid state (i.e.

is not normalised/causal), however, discarding to the past is not something that we

can ‘do in the lab’ and so should not correspond to a state that we can prepare.

Given this ‘state’, we can then define a symmetric version of purification as follows.

Definition 4.1.3 (Symmetric purification). A theory has symmetric purifications

if every process f : A → B can be dilated to a pure process F : A⊗ B → B ⊗ A as
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follows:

f

A

B

= F

A

A

B

B

we say that F is a symmetric purification of f . Moreover, a theory has essentially

unique symmetric purifications if any two pure processes F,G : A⊗C → B⊗D with

the same ‘marginals’ are connected by a circuit fragment R, that is:

=F
D

C

A

B

C

A

G
D

B

=⇒ G=F R , (4.3)

where the ‘backwards leak’ is provided by the dagger of a leak and where R must

satisfy:

=R (4.4)

Symmetric purification expresses the requirement that all processes of the theory

are fundamentally pure, and the apparent lack of purity should arise from lacking

information about and control over the past and/or future of some environment

systems. Here the word “symmetric” emphasizes the fact that both the discarding

map and its dagger appear in the definition of the purification of a process as well as

the fact that the input and output systems are now the same. Indeed, Operational

Quantum Theory actually satisfies a stronger form of time-symmetric purification

where we can demand also that F = F †, however, this stronger version is not

necessary for our reconstruction and so understanding the implications of this are

left to future work.

The ‘essential uniqueness’ part of this postulate is not exactly an intuitive postulate,

here it is postulated simply as the natural generalisation of the essential uniqueness

part of the standard purification postulate (see [41] or the start of section 4.1).

Understanding this condition is (like the sharp-dagger) the subject of ongoing work,

however, it seems clear that it should be seen as a separate postulate to purification.

One direction to pursue, is to view it as a corollary of a much more general principle

regarding equivalence of processes under arbitrary decoherence maps.

Remark 4.1.4. Given the symmetric nature of this postulate it may well turn out
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to be useful in causally neutral scenarios [120, 105], time symmetric formulations of

quantum theory [5, 118] or for theories with indefinite causal order [77, 9, 92, 35, 38].

We now want to check that this postulate is actually satisfied by the theories we are

considering:

Theorem 4.1.5. Operational Quantum Theory has symmetric purifications.

Proof. First let us consider the quantum case. We know that any process f : A→ B

can be purified to a process F : A → B ⊗ C where C = A ⊗ B, and so it is simple

to see that it can also be purified in a symmetric way F : A⊗B → B ⊗A:

f = F
A

B

A

B

A

F

B

=

C

:=

A

B

F

A A

BB

using the fact that the compact structure is pure for quantum theory and that the

composite of pure processes is pure. It therefore just remains to check that any two

such purifications are related in the correct way. Consider two such purifications F

and G, then we can use the compact structure – as it is pure for quantum theory –

to define two more purifications as:

f =

A

B

A

C D
B

G

A

=F
C D

B

which must be related by a reversible and hence causal transformation r:

G=F

r

Using the compact structure for a second time therefore means that:

G=F

r

:= G R (4.5)

where it is simple to check that causality of r implies that R satisfies equation 4.4

as required.
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Next we turn to the general C*-algebraic case. Consider a process f : A → B where

A = ⊕iAi and B = ⊕jBj with {Ai} and {Bj} irreducible C*-algebras, i.e. quantum

systems. It is simple to check that this does have a symmetric purification by noting

that we can define a dilation of a process f by symmetrically purifying the quantum

maps of matrix representation

f =
∑
ij

f

j

j

i

i

∑
ij

i

j

= Fij

Ai

Bj i

Fij

j

=
∑
ij

j

i

:= F

It is then simple to check that this dilation is moreover pure and hence a symmetric

purification of f . Like for the quantum case, the more interesting part to check is

equation. 4.3.

Given two purifications F and G let us define:

F

j

i

:= Xij and G

j

i

:= Yij

Noting that these are purifications of the same quantum process, i.e.

Xij = Yij=f

j

i

and so using our result for quantum systems we obtain:

= YijXij Rij

and therefore:

= YijXij Rij
∑
ij

∑
ij

:= G RF =

j

i i

j

R =

i

j

Yij
∑
ij

where in the last step we have used classical control to construct R and defined the
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forwards and backwards leaks as

=
∑
j

j j and :=
∑
i

i i respectively.

That R satisfies equation 4.4 follows directly from the quantum case.

4.2 The postulates

We now formally present the full list of postulates that we will use in the recon-

struction. Firstly, we set up the basic framework that we work in.

Postulate 1. The theory is a process theory as described in section 2.1.

Next, two postulates that provide a classical interface see section 2.2.

Postulate 2a. All classically controlled processes exist (definition 2.2.3).

Postulate 2b. Processes are characterised by finite local tomography (definitions

2.2.4 and 2.4).

Next we introduce two compositional postulates.

Postulate 3. The theory has string diagrams (definition 2.6.1).

Postulate 4. The theory has a sharp dagger (definition 2.7.4).

Finally, the symmetric purification postulate discussed earlier in this chapter.

Postulate 5. All processes have essentially unique symmetric purifications (defini-

tion 4.1.3).

We can now show how these postulates take us to operational quantum theory.

4.3 The reconstruction

Figure 4.1 shows a high-level view of the structure of the reconstruction showing

how the different postulates are used to provide various results that combine to

reconstruct quantum theory. This demonstrates the simplicity of this reconstruction

when compared to earlier reconstructions of quantum theory some of which involve

hundreds of lemmas.

To begin reconstructing quantum theory we first demonstrate how we can obtain a

notion of sums from our postulates. In particular, showing that the state spaces have
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II-Pure	Cup

Convex	Cones	
and	Linear	
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Generalised	
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Figure 4.1: Flowchart outlining the structure of the reconstruction, the top section

obtains something similar to the generalised probabilistic theory framework, the

middle section takes us to Operational Quantum Theory and the final section gives

two routes to quantum theory as described in section 3.3. The green rectangles cor-

respond to postulates and the blue ellipses to the lemmas and theorems constituting

the proof of the reconstruction.

the structure of convex cones, bringing us close to the structure that is typically used

in the Generalised Probabilistic Theory framework. To prove many of the results
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in this section it is convenient to first consider the acausal extension of the theory

—essentially, by allowing for acausal processes in the classical interface— and then

to restrict to the physical, causal, theory using Prop. 2.3.6.

Lemma 4.3.1. In a theory satisfying classical control (Post. 2a) we can define a

sum of processes.

Proof. First, let us show that we can introduce a notion of sum for processes by

using classical control and exploiting the properties of classical systems. We define

the sum of any finite set of processes as

∑
i

fi
A

B

:= F

A

B

(4.6)

where F is the classically controlled process satisfying

fi
A

B
= F

i A

B

(4.7)

and the ‘dagger’ (c.f. equation 4.2) of the classical discarding map is the (super-

normalised) maximally mixed state:

∑
i

=
i

where we are exploiting the sum present in classical theory and where i are the

classical point distributions used in the definition of classical control (c.f. defini-

tion 2.2.3). Given this definition we need to check that this sum is actually well

defined, specifically, that they distribute over diagrams. Formally we need to show

that:

∑
i fi =χ fi

∑
i

χ (4.8)

holds for any circuit fragment χ. The LHS of this is defined through equation (4.6)

as:

∑
i fi =χ χF
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On the other hand, to understand the RHS let us first define:

:= fi χgi

then using equation (4.6) again the RHS is equal to:

=fi
∑
i

χ
∑
i

gi = G

where we are again using classical control to define G such that it satisfies:

gi = G

i

Then it is simple to see that:

∀i gi=G

i

= fi χ = χ

i

F

which using local tomography of classical theory implies that:

G = χF

We therefore find that:

RHS = G = χF = LHS

and so, equation 4.8 is satisfied for all circuit fragments χ, and hence, that the

sums are free to move around diagrams. The other constraints on the sum (e.g.

commutativity etc.) are immediately inherited from the equivalent property of the

classical sum.

Remark 4.3.2. Note that this immediately provides the standard interpretation of
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these sums as probabilistic mixtures if we provide suitable weights, in the form of

scalars ri, as for all effects e we have:

∑
i

ri si =

e ∑
i

ri
si

e
i.e. Prob

(
e,
∑
i

risi

)
=
∑
i

riProb(e, si)

Noting that tomography implies that states are characterised by these probabilities,

it is then simple to check that this sum is associative, commutative and has a zero

as expected.

Given this notion of summation, we can prove some basic properties regarding the

state spaces of systems and maps between them.

Lemma 4.3.3. In a theory satisfying classical control (Post. 2.2.3) and finite to-

mography (Post. 2.2.4), the states form a finite dimensional pointed cone. Processes

then induce positive linear maps between these cones. The causal states are defined

by an intersecting hyperplane and causal processes preserve this hyperplane.

Proof. Firstly note that the scalars in the theory are going to be non-negative real

numbers (scalars are just processes s : I → I as there is a classical subtheory

then I must be classical, hence, these scalars are classical and are non-negative

real numbers). Given the above definition of summation it is then clear that the

state space of a given system A is a convex cone CA as it is closed under linear

combinations with non-negative real coefficients. Defined by:

si

A

ri
∑
i

∑
i risi :=

A

Allowing the coefficients of linear combination to be negative, the cone extends

naturally to a real ordered vector space, spanned and ordered by the cone itself.

By construction the cone is full dimensional (i.e. spans the vector space) and it

is simple to show that it is pointed (i.e. the zero-vector is in the cone and is the

unique vector for which v and −v are in the cone). Moreover the cones are finite

dimensional, this immediately follows from finite tomography as it implies that a

state is characterised by a finite number of real numbers.

Note also that the hyperplane defined by ◦ s = 1 intersects the cone not through

the origin, we first consider ◦s = 0 and note that ◦s = 0 =⇒ ∀e e◦s = 0 =⇒
s = 0. Therefore, for any state s 6= 0 there is some scalar rs such that ◦ (rss) = 1

hence the hyperplane intersects the cone.
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Thanks to distributivity of sums (Eq. 4.8), any process f : A→ B induces a positive

linear map between the vector space spanned by the states of system A and the vector

space spanned by the states of system B. Defined by

s

A 7→
s
A

f

B

where linearity follows immediately as a special case of Eq. 4.8 as

siri

∑
i

∑
i risi

=
ff

= f
∑
i si

ri = ∑
i ri(f ◦ si)

Moreover, the map is positive because it maps states to states.

Remark 4.3.4. The systems therefore have the same structure as in the “convex-

cones” framework [23, 76] apart from the fact that we have made no mention of the

necessity of the convex sets to be closed (see [131] for a discussion of the consequences

of this). For a more categorical approach to connecting these two frameworks see

[143, 74, 137, 16, 145, 144].

Remark 4.3.5. Note that many of the above results can easily be extended to ar-

bitrary processes, for example, the set of processes from A to B will form a finite

dimensional proper cone with a convex subset of causal processes.

We now consider how some key features of the quantum state space arise from our

axioms, namely, homogeneity, spectrality and strong self duality. We begin with

homogeneity which is defined as follows.

Definition 4.3.6 (Homogeneous cone). A convex cone C is homogeneous if for

every pair of vectors v1, v2 internal to C, there exists a cone automorphism T such

that T (v1) = v2.

By considering the implication of the time-symmetric purification postulate for

states we can obtain homogeneity of the state-cone.

Lemma 4.3.7. If in addition to the classical interface (postulate 2a and postu-

late 2b) the theory satisfies symmetric purification (postulate 5) then the state cone

is homogeneous (definition 4.3.6).

Proof. Homogeneity is the statement that, for any pair of internal states s1 and s2

there exists a cone automorphism T such that T (s1) = s2. As T is reversible this is
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equivalent to the statement that, there is a cone automorphism between a particular

chosen internal state and any other. For this proof we take the particular internal

state to be the ‘discarding’ state. We proceed in two steps, firstly, we show that

there is a process that maps the discarding state to any other internal state, then

secondly, we show that this map is surjective and so is a cone automorphism as it is

automatically linear due to lemma 4.3.3.

The first part is a simple corollary of symmetric purification. Consider an arbitrary

internal state s, then its purification S gives a map from the discarding state to s:

s
= SA

A

A

For the second part, we adapt [43, Proposition 7] to show that S is surjective. Note

that as s is internal, then any state a is in some decomposition of s:

s = p +(1− p)a A

where p 6= 0. Therefore we can construct the following dilation, σ, of s where 0

and 1 are causal, perfectly distinguishable states of some system B:

= p +(1− p)a Aσ 10

A B

which has a purification Σ, which is moreover a purification of s, hence we can

construct two purifications of s with the same input and output systems:

Σ = σ = s = S
1
NB

A

B

BA

A

A

B

B

where NB := ◦ B . Then, from the definition of purification are related by some

R as:

Σ =
S

r
S R=

S

:=R1
NB

1
NB

where in the second step we use that S is pure and so we can replace the leak
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afterwards with a leak before. It is then clear that there is a state, 1
pα that is

mapped to a by S:

Σ:=

S

r
S

α

0
=

0

= Σ

0

=
σ

0
= ap

Hence, as a is an arbitrary state S is surjective.

Strong self duality is really the key property we need to prove along with homogene-

ity, however to get there we will first show a spectrality result.

Definition 4.3.8 (Spectrality). Any (causal) state can be written as

S

p

=
s

where p is a (causal) classical state and S is a maximal testable state preparation

(definition 2.7.3).

Lemma 4.3.9. If in addition to the classical interface (postulates 2a and 2b), the

Homogeneity from lemma 4.3.7, and the theory additionally has a sharp-dagger

(postulate 4) then the state-cone is spectral (definition 4.3.8).

Proof. Firstly note that if
S

is pure then S

T

is pure for any reversible

transformation T . To see this we must consider the possible dilations of this process:

S

T

= D

which gives a dilation of the original process (pure by assumption) by composing

this with T−1 so we have:

S
=D l S=

l
T−1
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and hence, by composing this with T we see that the same is true of D and so we

obtain the result.

Now to obtain spectrality, note that every system A must have a (generally non-

unique) maximal testable state preparation S : n→ A (def. 2.7.3) although it could

be trivial (i.e. n = 0). For such a maximal testable state preparation and the

definition of the sharp dagger (def. 2.7.4) we therefore have:

=S

and so taking the dagger of this equation we find that:

= S

which means that, by homogeneity we have, for any internal state t, a reversible

map T such that:

=
S

t
T

S

T

=

p

p̄ := τ
p

where p and p̄ are defined by:

S

T
:=p and =

p

p̄

We can then also define a measurement:

M S:= p

T−1

One may worry that T−1 is not guaranteed to be a physical transformation, however,

regardless, this measurement is well defined as each of the effects that make it up

must be physical (as T induces an automorphism on the effect cone so does T−1).

Hence, this measurement can then be defined as a classically controlled process. It

is then simple to check that the pair τ,M satisfy the conditions for the sharp dagger
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such that:

τ
=

τ
and τ =

Therefore,

=t τ
p

satisfies the conditions of spectrality. What we have so far proved is that there is

a spectral decomposition of any internal state, we want to extend this to all states,

and, to the vector space in which the convex cone is embedded. Note that any vector

can be written as the difference of two internal states which can each be spectrally

decomposed:

=v s1 s2− = − τ2τ1
r1 r2

Then define,

R := maxi

{
i

r2

}
+ ε,

where ε > 0. Then

=v − τ2τ1
r1 r2

+R +R

r2

−= τ2 +R
r1

τ1 τ2

+ τ2τ1=
r1 R− r2

is an internal state as all of the elements of the classical vectors are strictly positive

thanks to the definition of R. As this is an internal state it therefore has a spectral

decomposition

=v τ
r3

+ R
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and so we can write

=v τ
r3

−R τ
r3

= −R τ = τ :=
r

τ

r3 −R

hence we have spectral decompositions for arbitrary vectors.

Given this spectrality result we can show that the state cone is strongly self dual in

a fairly straightforward way.

Definition 4.3.10 (Strongly self dual cone). A convex cone C is strongly self dual

if there exists an inner product on the vector space spanned by C, 〈 , 〉 such that,

x ∈ C ⇐⇒ 〈x, c〉 ≥ 0 ∀ c ∈ C.

Lemma 4.3.11. If in addition to the classical interface (postulates 2a and 2b),

the Spectrality from lemma 4.3.9, and the theory additionally has a sharp-dagger

(postulate 4) then the state-cone is strongly self dual (definition 4.3.10).

Proof. First we will show that the sharp-dagger provides an inner product defined

as:

〈s1, s2〉 :=
s1

s2
(4.9)

and secondly we show that the state cone is strongly self dual with respect to this

inner product.

To show that this is a valid inner product, firstly, we check that this is symmetric:

〈s1, s2〉 =
s1

s2

(2.18)
= †

(
s1

s2

)
(2.17)

=
s1

s2
= 〈s2, s1〉

Secondly that it is linear follows immediately from linearity of effects given by

Lem. 4.3.3:

〈s1, αs2 + βs3〉 =
s2

s1
α +

s3
β

s1
= α〈s1, s2〉+ β〈s1, s3〉 (4.10)

Finally, we can check positivity using the previous spectrality result for the vector

space:

〈v, v〉 = =
v

v

r

τ

τ
r

=
r

r
≥ 0
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where equality implies that r = 0 and hence v = 0. Hence Eq. 4.9 defines a valid

inner product.

Note that if all elements of r are strictly positive we have an internal state, if they

are non-negative then we have a state and if any are negative then the vector cannot

be a state as it would give a negative probability for some effect. It is then simple to

check strong self-duality. Firstly, if s is an element of the state cone C then 〈s, c〉 ≥ 0

for all c ∈ C as 〈s, ·〉 = s† is an effect and so evaluates to a positive real number

on the cone of states. Conversely, if v 6∈ C then there is a negative coefficient in

the spectral decomposition, without loss of generality we label this element i. There

then exists some c ∈ C such that 〈c, v〉 < 0, that is:

〈c, v〉 =
c

v
:= τ

v

i

=
i

r
< 0

The state cone is therefore strongly self dual with respect to the inner product

defined by the sharp dagger.

These properties, in particular homogeneity and strong self duality, are well known

to get us close to quantum theory, specifically, by using the Koecher-Vinberg theorem

[96, 141] we get that the state cones correspond to Euclidean Jordan Algebras.

Theorem 4.3.12 (Koecher-Vinberg theorem). There is a one-to-one correspon-

dence between Euclidean Jordan Algebras and symmetric cones i.e. convex cones

that are closed, pointed, homogeneous, and self-dual.

Theorem 4.3.13. Systems in our theory correspond to finite dimensional Euclidean

Jordan Algebras.

Proof. By using the Koecher-Vinberg theorem above we must simply demonstrate

that our state-cones are indeed symmetric cone and hence also correspond to EJAs.

First note that given a cone C in a vector space V we define the dual cone by

C ′ := {v|v ∈ V s.t. 〈v, u〉 ≥ 0 ∀ u ∈ C}

This implies that the dual cone is closed as it is the intersection of closed half

spaces, one for each u ∈ C defined by 〈v, u〉 ≥ 0. Hence, strong self-duality implies

that the state cone must be closed too. This therefore follows for our systems

from lemma 4.3.11. Lemma 4.3.1 then implies that the cones are pointed, finite

dimensional and lemma 4.3.7 that they are homogeneous. Hence the state spaces
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are finite dimensional symmetric cones. It therefore immediately follows that each

system in our theory corresponds to a finite dimensional EJA.

There is a well known classification result for finite dimensional EJAs [90], they

correspond to direct sums of five types of simple EJAs. There are two important

properties of each of these, their rank which corresponds to the maximum number of

pure and perfectly distinguishable states and their dimension, the number of fiducial

effects.

i. Cn, algebra of self adjoint n × n complex matrices, which have rank n and

dimension n2

ii. Rn, algebra of self-adjoint n × n real matrices, with rank n and dimension
n(n+1)

2

iii. Hn, algebra of self-adjoint n × n quaternionic matrices, with rank n and di-

mension n(2n− 1)

iv. O3, algebra of self adjoint 3×3 octonionic matrices, with rank 3 and dimension

33, and finally,

v. SpinK , spin factors with rank 2 and dimension K.

Note that for the spin factors in the case of K = 3 coincides with R2, K = 4 with

C2 and K = 6 with H2. Given this classification we are in a position to ask which

of these EJAs are compatible with our compositional structure.

Theorem 4.3.14. Given that state-cones correspond to EJAs, then local tomogra-

phy (postulate 2b) and string diagrams (postulate 3) imply that the theory must be

Operational Quantum Theory (i.e. the theory of finite dimensional C*-algebras and

completely positive maps as presented in example 3.0.2).

Proof. We start by making two assumptions that need to be checked. Firstly that

if a Euclidean Jordan Algebra A is simple, then the composite A⊗A is also simple.

Secondly, that Rank(A⊗A) = Rank(A)2.

Firstly, we consider the composite Hn⊗Hn this must be a simple-EJA with Rank =

n2 and Dim = n2(2n − 1)2, it is straight forwards to check that this does not exist

for n > 1. Therefore, the quaternionic case is ruled out. Next we turn to the

real case, Rn ⊗ Rn and see that this requires a simple-EJA with Rank = n2 and

Dim = n2(n+1)2

4 we already know that the quaternionic case is ruled out, and it

is again straight forwards to rule out the other options as well. Considering the

octonionic case we have for O3 ⊗ O3 that Rank = 32 and Dim = 36 again having
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ruled out the quaternionic and real cases then it is simple to check that this is not

satisfied by the complex case for which if Rank = 32 then Dim = 34 and rule out

the spin factors as they all have Rank = 2. Finally we consider the spin factors

SpinK ⊗ SpinK which requires that Rank = 4 and Dim = K2 we only have the

complex case to check now which implies that K = 4 which is the situation when

Spin4 = C2 i.e. the cone is the Bloch Ball. Hence, given our two assumptions,

it is only the complex case which have valid self composition. We can then check

that the standard quantum tensor product i.e. Cn ⊗ Cm := Cnm is the only choice

consistent with our constraints as it has Rank = nm and Dim = n2m2 as required.

To extend this result to non-simple cases we note that ⊗ is bilinear and so distributes

over⊕. Therefore our above result rules out any EJA with a non-complex component

in its decomposition. This leaves only the C*-algebras as valid systems, with their

standard tensor product.

Now let us check the two assumptions we made. We intend to show that if A⊗A is

not simple, then A is not simple either. Consider A⊗A = B ⊕ C i.e.:

PB PC+=

where PI ◦ PJ = δIJPI for I, J ∈ {A,B} i.e. they are orthogonal projectors.

We can use this to define a leak for A as:

PB +:=∆ 0 PC 1

It is straightforward to check that this is indeed a leak, and moreover, using the

orthogonality of PB and PC we can show that:

=

∆

∆

∆
(4.11)

Now consider the effect of the leak on pure states χ, the definition of purity imme-

diately implies that:

=∆

χ

χ ρχ
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where

=ρχ pχ bχ 0 + 1cχ(1− pχ)

Now by considering this along with Eq 4.11 implies that:

pχ bχ := pχb= PB

χ

and

(1− pχ) cχ := pχc=

χ

PC

are orthogonal projectors, pi ◦ pj = δijpi where i, j ∈ {a, b} and therefore:

χ

= = pχb= pχc+

χ

PB

χ

PC+

provides a decomposition of A = b ⊕ c unless either pχb or pχc is zero. This means

that for each χ either

χ

PB = 0 or

χ

PC = 0

The same argument can be made for the other input. Therefore, consider some ψ

such that:

ψ

PB = 0

this means that for all χ we have:

ψ

PB

χ

= 0 =⇒
χ

PB = 0 =⇒ PB = 0

Hence, A ⊗ A was not decomposable which is in contradiction to our starting as-

sumption and so if A is simple then so is A⊗A as we assumed.

Now let us consider the second assumption. It is clear that

Rank(A⊗B) ≥ Rank(A)Rank(B)
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as given a set of pure and perfectly distinguishable states for A and for B we can

form a set of the composite as just all possible product of these. We then know that

(using tomographic locality):

A⊗B
=

A B

and as the discarding map is an internal effect we have a spectral decomposition of

this effect given by the composite of the spectral decomposition of the two individual

discarding maps. Hence,

Rank(A⊗B) ≤ Rank(A)Rank(B)

the conjunction of these two inequalities then gives the required result.

4.4 Conclusion

We have therefore reconstructed Operational Quantum Theory from our five pos-

tulates. It is then possible, should one be interested, to single out just the pure

quantum systems by introducing an additional postulate. There are many poten-

tial ways to distinguish the quantum systems from the general C*-algebras, and so,

many different postulates that could be chosen. However, of particular interest for

us are those that we discussed in detail in section 3.3, that is:

1. the cups and/or caps of the string diagrams are pure, or equivalently,

2. all leaks are trivial.

4.4.1 Comparison to generalised probabilistic theories

Most recent reconstructions of quantum theory have been in the generalised prob-

abilistic theory framework. These typically describe systems as finite dimensional,

regular, closed cones, along with an intersecting hyperplane picking out the nor-

malised states. Transformations are then described as linear maps and in particular

effects are linear functionals on the state space. It is interesting to contrast this

to our reconstruction where we see that we obtain most of this structure from our

classical interface. In fact our classical interface can be interpreted as ‘internalising’

the generalised probabilistic framework within the process theory itself.

Yet, we do not obtain all of the structure of the GPT framework. In particular,

we do not obtain that the state space is closed. Closure is —from an operational



90 Chapter 4. Quantum from diagrams

perspective— a very natural assumption, as, up to any finite error, a state space and

its closure would be indistinguishable. We obtain closure as a corollary of strong self

duality, it would however be interesting to know if we can obtain this more directly

from a process-theoretic viewpoint.

In this reconstruction to make use of results in the GPT framework, in particular

to allow the use of the Koecher-Vinberg theorem we focus on the cone of states.

However, our postulates apply equally well to arbitrary processes, and so many

of our results can immediately be extended to apply to general processes. These

generalisations however have been omitted to try to keep the reconstruction as simple

as possible. It seems plausible that by using the full generality of these postulates

could show that some of them are redundant, or provide a more direct reconstruction

that does not use the Koecher-Vinberg theorem.

4.4.2 Sharpening the dagger

As explained in the introduction, the notion of a dagger has been part of CQM since

its conception. However, the standard definition of the dagger does not uniquely

pick out the Hermitian adjoint as the dagger in the case of quantum theory, instead,

this is an ad-hoc assumption that must be made. For example, the transpose also

provides a valid dagger, but, the transpose however is not suitable for how we use

the dagger in practice. For example, we use the dagger to give the inverse to unitary

evolution, and to provide ‘tests’ for states. It is therefore clear that some further

constraints on the dagger are necessary.

In [129] we introduce one way to do this, by considering the dagger as an operation

that associates to each pure state a test for that state. This is closely related to

sharpness conditions used, for example, in [80] and [46]. It is this sharpening of

the dagger that allows it to fill the role that the Hermitian adjoint does in quan-

tum theory, indeed we show in [129] that this singles out the Hermitian adjoint in

the case of quantum theory. We have developed this idea further here, extending

sharpness from a property about single states and effects to a property of general

state preparations and measurements. This however remains a somewhat inelegant

postulate and it seems like there should be a more general principle behind this that

extends this to arbitrary processes.

4.4.3 Leaks and symmetric purification

In [130] we showed that —if one expects reversible transformations to be pure—

that leaks must be taken into account when defining purity for general processes in
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general process theories. In particular, in the case of classical theory this is essential

if the identity transformation is taken to be pure.

We show here that this new notion of purity allows for arbitrary classical processes

to be purified. However, unlike the standard notion of purification that introduces

an extra output that is then discarded we must introduce both an extra output and

an extra input both of which are ‘discarded’. It is interesting to note that this form

of symmetric purification is now compatible with both the classical interface that we

introduce for the theory, but also the freer notion of composition that we introduce

which removes the distinction between inputs and outputs.

It is simple to see that we can return to the standard notion of purification in the case

where we have a pure cup for each system, as we can then turn the discarded input

into a discarded output instead. Purification in the reconstruction of [42] was used

as a postulate that ruled out classical theory leaving just quantum theory, we can

now see that this postulate can be thought of as comprising of two parts. The first,

being symmetric purification which is satisfied by both classical and quantum theory,

and the second that the cup is pure (or in the language of [41] that there is a pure

dynamically faithful state) which rules out classical theory. From this perspective

it is therefore the ability to turn uncertainty about the past into uncertainty about

the future which is the defining characteristic of quantum theory.

There are many results in quantum foundations [101, 100, 103, 45, 46, 40] which

use the standard notion of purification in the derivation. However, in many cases,

the result is satisfied by classical theory but this case is not covered by the proof.

It therefore seems plausible that these results might instead be derivable using the

symmetric purification postulate (perhaps along with the existence of a dynamically

faithful —not necessarily pure— state) to give a more general result. There has also

been recent interest in formulating quantum theory in a causally neutral [105, 120]

or time symmetric [118, 5] or with indefinite causal order [77, 9, 92, 35, 38], for

which this notion of purification may be more applicable.

4.4.4 Comparison to other reconstructions

There have been several other reconstructions of quantum theory from various dif-

ferent perspectives, many results of which have been adapted for this work. It

is therefore worth highlighting the features of this particular reconstruction which

distinguish it from the others.

Firstly, the postulates that we impose are entirely diagrammatic. Moreover, we

do not pick out states as being special, instead the postulates apply equally to all

processes. As such, they fit with the spirit of Categorical Quantum Mechanics and
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the process-theoretic understanding of the world, that is, as being about processes

and composition rather than being about states of isolated systems.

Secondly, the reconstruction is relatively simple. In particular, the structure of

the reconstruction is clear (see figure 4.1) allowing for a high-level view of how the

different postulates relate to each other and how they are used in each step. This will

hopefully make it simpler to understand how relaxing or altering any given postulate

will impact on the theory. In contrast, in many other reconstructions it is difficult

to know precisely which postulates, and which of the assumptions going into the

generalised probabilistic theory framework, are necessary to obtain each result.

Finally, we reconstruct Operational Quantum Theory. Rather than aiming to re-

construct quantum theory in its standard presentation we instead first reconstruct

the process theory of C*-algebras and CPTP maps. This allows for a unified way

to describe both quantum and classical systems as well as some other operationally

meaningful systems. We argue that this is the correct operational account of quan-

tum theory, and moreover, allows us to clearly see what it is that separates quantum

systems from the others—specifically that is the lack of leaks, or equivalently, purity

of the cups. In contrast, the majority of other reconstructions take transitivity as

a postulate1. Transitivity is the property that there is a reversible transformation

between any pair of pure states. This does not hold for general C*-algebras and so

other reconstructions rule out Operational Quantum Theory from the start.

4.4.5 Future work

Whilst the postulates of this reconstruction are entirely diagrammatic the proofs

ultimately rely on standard linear algebraic techniques. Moreover, whilst the pos-

tulates are defined at the level of processes we often only use them in the context

of states. Both of these are against the spirit of process theories, as such, it would

be interesting in future work to try to make the proof of the reconstruction process-

theoretic along with postulates. Indeed, it seems plausible that by using the full

strength of the postulates that there may be a much simpler and direct way to go

about the reconstruction.

As with all reconstructions we assume the existence of a classical interface for the

theory representing the action of experimenters in a lab deciding the experiments

to perform and getting classical data as outputs. In our reconstruction this leads to

the postulates of classical control and finite tomography. However, we expect this

to be an emergent feature of quantum theory (as we discuss in chapter 3), and so it

would be interesting to see if we can move beyond this operational approach. Can we

1Or have it as a direct corollary of a stronger postulate such as purification or strong symmetry.
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instead express everything in terms of diagrams and find some replacement for the

classical interface? That is, can we find a diagrammatic axiomatisation of classical

theory that does not presuppose a probabilistic structure? The process theoretic

notion of ‘spiders’ [55] seems to capture some aspects of classicality, namely, the

copyability and deletability of classical information, but there are also many non-

classical theories that have this structure and so we clearly need something more.

We presented the notion string diagrams, as a relaxation of the constraints on com-

positionality built into the process-theory framework. That is, it can be seen as

relaxing the constraint that inputs cannot be connected to inputs and that outputs

cannot be connected to outputs. It is interesting to ask what happens if we relax

the other constraints on compositionality as well. For example, relaxing the con-

straint that only pairs of inputs/outputs are connected leads to the aforementioned

‘spiders’. It therefore seems like many common tools of Categorical Quantum Me-

chanics would naturally be recovered from this approach, this will be discussed in

more detail in a future paper.

4.4.6 Summary

In this chapter we have shown how the process theories provide a suitable framework

and set of tools to reconstruct quantum theory. But, what if we want to go beyond

quantum theory —as von Neumann originally aimed when he tried to move away

from the Hilbert space formalism— can we use the process theory framework to find

new physics? This will be the subject of the next chapter.



Chapter 5

Post-quantum theories

In 1903 Michelson wrote

“The more important fundamental laws and facts of physical science have

all been discovered, and these are so firmly established that the possibil-

ity of their ever being supplanted in consequence of new discoveries is

exceedingly remote” [112].

Within two years Einstein had proposed the photoelectric effect [70] and within

thirty quantum theory was an established field of scientific research. This new

science revolutionised our understanding of the physical world and brought with it

a litany of classically counter-intuitive features such as superposition, entanglement,

and fundamental uncertainty.

Today, quantum theory is the most accurately tested theory of nature in the his-

tory of science. Yet, just as for Michelson, it may turn out to be the case that

quantum theory is only an effective description of our world. There may be some

more fundamental theory yet to be discovered that is as radical a departure from

quantum theory as quantum was from classical. If such a theory exists, there should

be some mechanism by which effects of this theory are suppressed, explaining why

quantum theory is a good effective description of nature. This would be analogous

to decoherence, which both suppresses quantum effects and gives rise to the classical

world [89, 147]1. As such, this mechanism is called hyperdecoherence. To the best of

our knowledge, the notion of hyperdecoherence was first discussed in [149] and has

commonly been considered as a mechanism to explain why we do not observed post-

quantum effects, such as in [65], and, in particular, in the context of higher-order

interference [135, 102, 101, 100, 21, 32, 115, 85, 138, 133].

1Given a process theoretic description as the leak construction in chapter 3.

94
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We formalise such a hyperdecoherence mechanism within a broad framework of

operationally-defined physical theories2 by a key feature of quantum to classical

decoherence. Using this we prove a no-go result: there is no operationally-defined

theory that satisfies the natural physical principle of purification, and which reduces

to quantum theory via a hyperdecoherence mechanism. Here, purification formalises

the idea that each state of incomplete information arises in an essentially unique

way due to a lack of information about some larger environment system. In a sense,

purification can be thought of as a statement of “information conservation”; any

missing information about the state of a given system can always be accounted for

by considering it as part of a larger system. Our result can either be viewed as a

justification of why the fundamental theory of nature is quantum, or as highlighting

the ways in which any post-quantum theory must radically depart from a quantum

description of the world.

5.1 Decoherence

One of the standard descriptions of the quantum to classical transition is environment-

induced decoherence [147]. In this description, a quantum system interacts deter-

ministically with some environment system, after which the environment is dis-

carded, leading to a loss of information. This procedure formalises the idea of a

quantum system irretrievably losing information to an environment, leading to an

effective classical description of the decohered system. The decoherence process can

be viewed as inducing a completely positive trace preserving map on the original

quantum system, which is termed the decoherence map.

In chapter 3 we abstractly captured this notion of decoherence via the leak construc-

tion, but we will now further develop example 3.2.4 to illustrate the key features.

Consider the following reversible interaction with an environment: U =
∑

i |i〉〈i|⊗πi,
where {|i〉} is the computational basis and πi is a unitary which acts on the envir-

onment system as πi |0〉 = |i〉 , ∀ i. Switching to the density matrix formalism, the

decoherence map arising from the above interaction corresponds to

D(ρ) = TrE

(
Uρ⊗ |0〉〈0|E U

†
)

=
∑
i

〈i| ρ |i〉 |i〉〈i| ,

where ρ is the input state. Hence, in this concrete setting, the decoherence map D
is a de-phasing map.

It is clear that D(ρ) will always be diagonal in the {|i〉} basis, regardless of the input.

Hence, as they have no coherences between distinct elements of {|i〉}, the states D(ρ)

2That is, process theories with a classical interface.
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correspond to classical probability distributions. In fact, the entirety of classical

probability theory can be seen to arise from quantum theory by applyingD to density

matrices ρ as D(ρ), completely positive trace preserving maps E as D (E (D( ))),

and POVM elements M as Tr (MD( )). In this manner, one can consider classical

probability theory to be a sub-theory of quantum theory —meaning that applying

stochastic maps to probability distributions results in probability distributions—

where D is the map restricting quantum theory to the classical sub-theory. This is

precisely what is captured by the leak construction in example 3.2.4.

There are three key features of the decoherence map that we will use to define our

hyper-decoherence map in section 5.3.

1. It is trace preserving, corresponding to the fact that it is a deterministic pro-

cess.

2. It is idempotent, meaning

D (D(ρ)) = D(ρ), for all ρ.

This corresponds to the intuitive fact that classical systems have no more

coherence ‘to lose’.

3. If D(ρ) is a pure classical state, i.e. D(ρ) = |i〉〈i| for some i, then it is clearly

also a pure quantum state. This is a consequence of the fact that decoherence

arises from an irretrievable loss of information to an environment and if the

state that results from this procedure is a state of maximal information, then

no information can have been lost to the environment.

Note that the first two of those are captured by the leak construction whilst the

third is an additional feature of decoherence which we have not discussed earlier.

5.2 Generalised theories

In this chapter we work with operationally defined theories, that is:

Definition 5.2.1 (Operational theory). An operational theory is a process theory

(defined in section 2.1) with a classical interface (defined in section 2.2), that is,

it has classically controlled processes (definition 2.2.3) and its processes are charac-

terised by finite tomography (definition 2.2.4).

Some key results for this chapter regarding such theories were proved in the previous

chapter:
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1. causality from proposition 2.3.6,

2. convexity from lemma 4.3.1,

3. linearity again from lemma 4.3.1,

from the above requirements, it can be shown that the set of states, effects, and

transformations give rise to real vector spaces, with the effects and transformations

acting linearly on the vector space of states [41].

In what follows, we will require our post-quantum theory to satisfy the purification

postulate, which was first introduced in [41].

Definition 5.2.2 (Purification [41]). For every state on a given system A, there

exists a pure bipartite state on some composite system AB, such that the original

state arises as a marginalisation of this pure bipartite state:

ρ =
ψ

A A
B

Here, ψ is said to purify ρ. Moreover, any two pure states ψ and ψ′ on the same

system which purify the same state are connected by a reversible transformation

R

=
ψψ′

A B
A B

B

If one considers a pure state to be a state of maximal information, then the purifi-

cation principle formalises the statement that each state of incomplete information

arises in an essentially unique way due to a lack of information about an environment

system. In a sense, purification can be thought of as a statement of “information

conservation”; any missing information about the state of a given system can al-

ways be traced back to lack of information of some environment system. Or, more

succinctly: information can only be discarded, not destroyed [44].

The purification principle, in conjunction with another natural principles, implies

many quantum information processing [41] and computational primitives [101]. Ex-

amples include teleportation, no information without disturbance, no-bit commit-

ment [41], and the existence of reversible controlled transformations. Moreover,

purification also leads to a well-defined notion of thermodynamics [45, 47, 48].
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5.3 Hyperdecoherence

In section 5.1, the quantum to classical transition was modelled by a decoherence

map restricting quantum systems to classical ones. We can analogously model a

post-quantum to quantum transition with a hyperdecoherence map, represented by

, which restricts post-quantum systems —described by a generalised theory, defini-

tion 5.2.1 from section 5.2— to quantum ones. We now adapt the three key features

of decoherence outlined at the end of section 5.1 to this general setting, ending this

section with a formal definition of a post-quantum theory.

As in the quantum to classical transition, we think of this hyperdecoherence map as

arising via some deterministic interaction with an environment system, after which

the environment is discarded by marginalising with the unique deterministic effect.

Hence, as with standard decoherence, hyperdecoherence can be thought of as an

irretrievable loss of information to an environment. As deterministic processes are

causal, the hyperdecoherence map should be causal :

=A

A A

This is the analogue of point 1. from the end of section 5.1.

Moreover, hyperdecohering twice should be the same as hyperdecohering once, as

the hyperdecohered system has no more ‘post-quantum-coherence’ to ‘lose’. Hence

this map should be idempotent :

=
A

A A

This is the analogue of point 2. from the end of section 5.1.

As was the case for classical theory in section 5.1, one can construct the entirety

of quantum theory as a sub-theory of the post-quantum theory by appropriately

applying D to states, transformations, and effects from the post-quantum theory.

That is, density matrices, completely positive trace non-increasing maps, and POVM

elements correspond to

s
T

A

B

A

e

A, ,
A

A

Hence —as the A are idempotent— quantum states, transformations, and effects

are those left invariant by the hyperdecoherence map. These two conditions are
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perfectly captured by the leak construction (section 3.2.1) where we demand that

the theory given by the construction is quantum theory. However, in section 5.1

there was a third key feature that we have not yet generalised.

As hyperdecoherence arises from an irretrievable loss of information to an environ-

ment, if a state resulting from this process is a state of maximal information, then no

information can have been lost to the environment. We formalise this by demanding

that pure states in the sub-theory are pure in the post-quantum theory. This is the

analogue of point 3. from the end of section 5.1.

This requirement will play an important role in our proof, so it is worth discussing

in more detail here. Firstly note that we need some assumption in addition to

causality and idempotence in order to capture a sensible notion of hyperdecoherence.

Indeed, even to adequately capture the standard notion of decoherence, one needs

constraints beyond causality and idempotence. To see this, consider the following

example. Let n denote a system in classical probability theory. Define systems in

a “post-classical theory” by tensoring two n systems together to form n ⊗ n = n2,

with the decoherence map given by tracing out one of the n systems and preparing

a mixed classical state q, in its place. That is, here,

q

n2

:=

n n

n

it is easy to see that this decoherence map is trace preserving (i.e. causal), idempo-

tent, and recovers all states of the original n system – albeit tensored with a fixed

mixed state. However, this does not properly capture the standard notion of deco-

herence as the “post-classical theory” is nothing but classical theory itself. Moreover,

we can do a similar thing for quantum theory by having a quantum system H that

“hyperdecoheres” from the quantum system H ⊗ H, such that the “post-quantum

theory” is nothing but quantum theory itself3.

Note that these examples are ruled out by our assumption that pure states in the

decohered sub-theory are pure in the full theory. One might then ask whether this

is the minimal assumption needed to rule out these examples. Indeed, demand-

ing the seemingly weaker constraint that the pre- and post-decohered systems have

the same dimension also rules them out. Phrased in operational terms, preserv-

ing the dimension corresponds to the hyperdecoherence map preserving the number

of pairwise perfectly distinguishable states. This requirement rules out the above

3A more complete understanding what it means for an extension of a theory to be non-trivial is
the subject of ongoing work.
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example. Indeed, if the decohered system has n distinguishable states then the orig-

inal system has n2. However, we prove in [103] that —given a strengthened version

of purification— one can derive the requirement that pure quantum states are pure

post-quantum states from the assumption that hyperdecoherence preserves the num-

ber of perfectly distinguishable states. This, in conjunction with the fact that pure

classical states are always pure quantum states, leads us to propose the requirement

that pure quantum states are pure as a defining feature of hyperdecoherence. See

section 5.5 for a further rumination on this point.

A final requirement of hyperdecoherence is that the original theory is not the same

theory as the decohered theory, that is, one of the hyperdecoherence maps must be

non-trivial. We say a hyperdecoherence map is trivial if it is equal to the identity

transformation:

=A A

To summarise all of the above, we now formally define a post-quantum theory.

Definition 5.3.1 (Post-quantum theory). An operational theory (definition 5.2.1)

is a post-quantum theory if, for each system type A, there exists a hyperdecoherence

map A satisfying the following

1. A is causal:

=A
A A

2. A is idempotent:

=A
A A

3. Pure states in the sub-theory are pure states.

Moreover, the sub-theory defined by the collection { A} is quantum theory and at

least one of the hyperdecoherence maps must be non-trivial.

5.4 Result

We can now state our main result.

Main Theorem. There is no post-quantum theory (definition 5.3.1) satisfying pu-

rification (definition 5.2.2).
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Before we present the proof, we give an intuitive sketch of how it will proceed. We

prove that in any post-quantum theory satisfying causality and purification, the

hyperdecoherence map must be trivial for all systems. The main idea of the proof is

to show that by performing a suitable post-quantum measurement on the quantum

Bell state and post-selecting on a suitable post-quantum effect, any post-quantum

state can be steered to. As quantum states are left invariant by the hyperdecoherence

map (even locally, as we show below), all post-quantum states are left invariant as

well—due to the fact that they can be steered to using a quantum state. Hence, for

each system, the hyperdecoherence map must be the identity, a contradiction.

Proof. For convenience we denote quantum states with a subscript q. Given a bi-

partite quantum state ψq, it can always be written as

ψq
=

φiq φiq

∑
ij
rij

φiq χjq
rij ∈ R.

Idempotence of the hyperdecoherence map (point 2. of definition (5.3.1)) then gives

ψq
=

φiq φiq

∑
ij
rij

φiq χjq ψq
= (5.1)

Next, consider the maximally mixed quantum state, µq := 1
d , of a d-dimensional

system. For any pure quantum state ψq, there is a state σq such that

µq = ψq σq
1
d (1− 1

d)+ (5.2)

Now, denote the Bell state 1
d

∑
ij |ii〉〈jj| for a d-dimensional system diagrammati-

cally as:

A A

rather than as a bent wire because we do not know that the quantum cup and cap

provide a cup and cap for the post-quantum theory.

As the hyperdecoherence map is causal (point 1. of definition (5.3.1)), marginali-

sation in the post-quantum theory is the same as in quantum theory. Hence, the

marginals of the above Bell state are the maximally mixed quantum state

= µq = (5.3)
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Equation (5.3), in conjunction with the fact that reversible transformations are

causal, implies that for any reversible transformation G —including post-quantum

transformations— we have

G

=

As the marginalised systems are of the same type, the purification principle implies4

the existence of a reversible transformation T such that

G

=
T

Hence,

G

=
T

µq

G

µq= = (5.4)

the maximally mixed quantum state is invariant under all reversible transformations

in the post-quantum theory.

A standard result [41] obtained from purification is transitivity : given any two pure

states of the same system there exists a reversible transformation between them.

This result, in conjunction with equation (5.2), equation (5.4) and the fact that

transformations act linearly on states, gives

µq

G

µq = = ψq

G

ρq

G
1
d + (1− 1

d) = φ (1− 1
d)1

d + σ

(5.5)

where φ is an arbitrary pure state in the theory. Hence, any pure state from the

post-quantum theory arises in a decomposition of the quantum maximally mixed

state.

Now, as every (non-trivial) quantum system A has at least two perfectly distinguish-

able states, {|0〉〈0| , |1〉〈1|}, given the decomposition of equation (5.5), convexity

implies the following is a state in the post-quantum theory:

:= φ (1− 1
d)1

d + σsφ

A A

0q 1q

4Note that applying a reversible transformation to a pure state results in a pure state [45].
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Consider a purification of this state, denoted Sφ, and note that it has the following

properties:

1. =
sφ

A AA

Sφ
A P

2. =
A

Sφ
A P

µq

3. =
A

Sφ
A P

0q

φ
1
d

Where the effect 0q is the quantum effect Tr(|0〉〈0| ) which gives probability 1 for

state 0q and probability 0 for 1q. As the product of two pure quantum states is a

pure quantum state, the definition of hyperdecoherence (point 3. of definition (5.3.1))

implies that the following is another purification of µq with the same purifying system

A⊗ P as Sφ
A A P

χq
(5.6)

where χq is a pure quantum state. The purification principle implies that these two

purifications are connected by a reversible transformation Rφ:

χq

Rφ
= Sφ

Using point 3. above, it then follows that there is an effect eφ that steers the Bell

state to φ

χq

Rφ

=:=

eφ

0q

φ
1
d (5.7)

This is true for any pure state φ in the theory. That is, despite the fact that we do

not know that the cup of quantum theory gives string diagrams for the post-quantum

theory, it at least still provides an injective map from pure states to effects.

Using equation (5.1) and equation (5.7), and noting that the Bell state for a com-
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posite system is the composite of the Bell states for the single systems

A AB B

:=

AB AB

(5.8)

we have, for all pure states ψ and all effects η, that

A

B
5.7
=

5.1
= 5.7

=

η

ψ

η

B

eψ

η eψ η

ψ

A A
A

A A

BB

B
B

dAB

dAB

This result, in conjunction with tomography and convexity, implies that, for all

systems A,

=A A

As we know that there exists a post-classical theory which satisfies causality and

purification and decoheres to classical theory, i.e. quantum theory, one might wonder

at what stage our proof breaks down when analysing this situation. The main reason

is that the maximally correlated state in classical probability theory is mixed and

so equation (5.6) is no longer a valid purification. Hence, the reason why quantum

theory cannot be extended in the manner proposed here is the existence of pure

entangled states. Hence, it is the existence of a pure maximally entangled state

in quantum theory that both distinguishes it from other C*-algebraic systems and

prevents us from finding a post-quantum theory!

5.5 Discussion

From the famous theorems of Bell [27] and Kochen & Specker [95] to more recent re-

sults by Colbeck & Renner [63], and Pusey, Barrett & Rudolph [124], no-go theorems

have a long history in the foundations of quantum theory. Most previous no-go the-

orems have been concerned with ruling out certain classes of hidden variable models
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from some set of natural assumptions. Hidden variables —or their contemporary

incarnation as ontological models [84]— aim to provide quantum theory with an

underlying classical description, where non-classical quantum features arise due to

the fact that this description is ‘hidden’ from us.

Unlike these approaches, our result rules out certain classes of operationally-defined

physical theories which can supersede quantum theory, yet reduce to it via a suitable

process. To the best of our knowledge, our no-go theorem is the first of its kind.

This may seem surprising given that it is an obvious question to ask. However, to

even begin posing such questions in a rigorous manner requires a consistent way

to define operational theories beyond quantum and classical theory. The mathe-

matical underpinnings of such a framework have only recently been developed and

investigated in the field of quantum foundations.

As with all no-go theorems, our result is only as strong as the assumptions which

underlie it. We now critically examine each of our assumptions, outlining for each

one the sense in which it can be considered ‘natural’, yet also suggesting ways in

which a hypothetical post-quantum theory could violate it and hence escape the

conclusion of our theorem.

Our first assumption is purification. As noted in section 5.2, the purification prin-

ciple provides a way of formalising the natural idea that information can only be

discarded [44], and any lack of information about the state of a given system arises

in an essentially unique way due to a lack of information about some larger envir-

onment system. However, proposals for constructing theories in which information

can be fundamentally destroyed have been suggested and investigated [117, 13, 139].

Such proposals take their inspiration from the Black Hole Information Loss paradox.

Our result can therefore be thought of as providing another manner in which the

fundamental status of information conservation can be challenged.

Our second assumption is causality of the classical interface. This principle allows

one to uniquely define a notion of “past” and “future” for a given process in a

diagram, and is equivalent to the statement that future measurement choices do

not affect current experimental outcomes. As such, this principle appears to be

fundamental to the scientific method. Despite this, recent work has shown how one

can relax this principle to arrive at a notion of “indefinite” causality [120, 119, 43, 77].

In this case, there may be no matter of fact about whether a given process causally

precedes another. The indefinite causal order between two processes has even been

shown to be a resource which can be exploited to outperform theories satisfying

the causality principle in certain information-theoretic tasks [8, 38]. Moreover, it

has been suggested that any theory of Quantum Gravity must exhibit indefinite

causal order [82, 83]. Hence, as in the previous paragraph, our result provides
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further motivation for discarding the notion of definite causal order in the search for

theories superseding quantum theory.

As purification seems to require a unique way to marginalise multipartite states, one

might wonder whether one can define a notion of purification without the causality

principle. Indeed, recent work [9] has shown how one can formalise a purification

principle in the absence of causality, and the time-symmetric notion of purification

of chapter 4 may provide a route to this as well.

Another assumption in our theorem was the manner in which our hyperdecoher-

ence map —the mechanism by which the post-quantum theory reduces to quantum

theory— was formalised. It may not be the case that post-quantum physics gives

rise to quantum physics via such a mechanism. Indeed, alternate proposals for how

some hypothetical post-quantum theory reduces to quantum theory have been pro-

posed [94]. Moreover, there is some evidence from research in quantum gravity that

quantum pure states may become mixed at short length scales [113]. This suggests

that quantum pure states may not be fundamentally pure in a full theory of quantum

gravity. However, we see the necessity of the requirement that quantum pure states

are pure in a potential post-quantum theory (point 3. from definition (5.3.1)) in our

derivation as a feature rather than a bug. Indeed, it lends evidence to the assertion

that to supersede quantum theory one must give up the requirement that states

which appear pure within quantum theory are fundamentally pure. Despite this,

our understanding of the quantum to classical transition in terms of decoherence

suggests hyperdecoherence as the natural mechanism by which this should occur.

Moreover, as discussed in the section 5.3 and proved in [103], one can derive that

pure quantum states are pure post-quantum states from more primitive notions.

The last assumption underlying our no-go theorem is the generalised framework it-

self, introduced in section 5.2. While the operational methodology underlying this

framework is part and parcel of the scientific method, it may not be the case that

the correct way to formalise this methodology is by asserting that pieces of labora-

tory equipment can be composed together to result in experiments, as described in

section 5.2. Indeed, it may be the case that the standard manner in which elements

of a theory are composed together needs to be revised in order to go beyond the

quantum formalism. Work on a more general compositional framework has already

begun [81].

Our result can either be viewed as demonstrating that the fundamental theory of

nature is quantum mechanical, or as showing in a rigorous manner that any post-

quantum theory must radically depart from a quantum description of the world by

abandoning the principle of causality, the principle of purification, or both.
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Summary and future work

This thesis is an exploration of the impact of the process theory framework on

quantum foundations. The role of this framework is three-fold. Firstly, it provides

physical theories with a convenient and intuitive diagrammatic representation, sim-

plifying calculations and allowing for new insights. Secondly, it allows one to directly

explore the impact of physical principles independent of the specifics of the theory

or the way it has been formalised. Thirdly, it provides a way to compare different

theories and, in particular, to understand the relationships between them via con-

structions such as the leak construction, biproduct completion and the idea of sub-

and super-theories. There were three questions, posed at the beginning of the thesis,

that we aimed to understand from this perspective: how are classical and quantum

theory related; can we find a more compelling axiomatisation of quantum theory;

and what can we learn about any theory that could one day supersede quantum the-

ory? We will now summarise the contribution that this thesis made towards each of

these.

The first key result is in understanding emergent classicality from a process theoretic

perspective. In particular we show that there is —in the case of quantum theory— an

equivalence between two natural process theoretic constructions, each leading to the

theory of C*-algebras and completely positive maps. This provides a unified way to

describe quantum and classical systems as well as how they interact. Moreover there

are other emergent systems, these can be interpreted, via the biproduct completion,

as being the result of the branching structure of quantum measurements, or, via the

leak construction, as the result of a leaking information to an environment. Indeed,

these two perspectives imply that the process theory of C*-algebras is really the

‘correct’ description of Operational Quantum Theory. Taking this as our starting

point we can then precisely pin down the distinction between the quantum and

classical systems in terms of their leaking properties, or equivalently, in terms of
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purity of their maximally correlated states.

Our second main result is that the process theory framework, along with the opera-

tional and compositional features discussed in the introduction, brings us very to re-

constructing quantum theory. Specifically, all we need to add is the time-symmetric

purification postulate to give us a particularly clear and compelling reconstruction

of Operational Quantum Theory. A vital step in understanding that Operational

Quantum Theory satisfies such a postulate was to introduce a process-theoretic no-

tion of purity. We demonstrate that in certain cases —in particular for the case

of classical theory— the standard notions of purity are insufficient and to overcome

this limitation we must consider the leaks of a theory. Another key step in the recon-

struction was demonstrating how (most of) the structure involved in the generalised

probabilistic theory framework can be obtained from the classical interface for a

process theory. Of particular interest is that any theory with a classical interface

must be causal, demonstrating where the arrow of time arises in our reconstruction.

Finally, we investigated theories that could potential supersede quantum theory.

We showed that if any operationally defined theory is able to reduce to quantum

theory via a decoherence like mechanism, then it must fundamentally challenge

our understanding of the behaviour of information. More precisely, we show that

to go beyond quantum theory we must abandon one of the following: the notion

of purification; that we can interact with the theory via a classical interface; the

process-theory framework; or, the idea that this post-quantum theory is ‘hidden’

from us by a mechanism analogous to decoherence.

There is however still much work to be done before we can claim a complete un-

derstanding of all of these questions, and there are many more questions that this

research opens up. Perhaps the most straightforward direction for future work would

be to find an improved version of our reconstruction. For example, can we use fewer

postulates, or make the existing postulates weaker? Is there a simpler or clearer def-

inition of the sharp-dagger? Can the result be proved more directly without going

via properties of the state space and the convex cones formalism, in particular, can

we find an entirely diagrammatic proof? More interestingly than these however, is

the question of the necessity of the classical interface for the reconstruction. Such an

interface is —in one form or another— present in every reconstruction to date. It is

an open question as to whether this structure too can be derived from diagrammatic

principles rather than being simply postulated. We know that some of the structure

of classical systems can be captured diagrammatically as ‘spiders’, however, this is

clearly not sufficient to single out classical theory, can we find further axioms that

do? Or, is it even necessary to capture classical theory precisely rather than just its

process-theoretic features?
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The second avenue of research stems from our no-go theorem, can we either extend

this no-go theorem to rule our all post-quantum theories, or conversely, can we find

some natural theory that gets around it by violating one of the assumptions of the

theorem? Of particular interest —given current research in quantum foundations

[120, 119, 43, 77, 8, 38, 82, 83]— is the abandonment of causality. However, as we

have discussed this stems from the classical interface for a theory, and so, formulating

a theory without causality will be challenging and may require a fundamental change

to how we approach experimental tests for such a theory. Indeed, we may even have

to modify the process theory framework to allow for a more relaxed notion of system

types or a more relaxed notion of composition to formulate a post-quantum theory.

A third question to be explored regards the general notion of decoherence that

we have introduced in the form of the leak construction and hyperdecoherence.

Specifically, what can we say about theories that a) decohere to classical theory and

b) cannot hyperdecohere from some other theory. Work has begun in this direction,

for example, we recently showed in [126] that if a theory can decohere to classical

theory (in a non-trivial way) then it must have entangled states. Can some or all of

the structure of quantum theory be obtained from such a perspective?

Fourth, what does our notion of time-symmetric purification tell us about the world?

Taken literally, it seems to be saying that the world is fundamentally built of time-

symmetric pure processes, and that everything else arises from lack of access to

systems to the past or future. This is true of all C*-algebraic systems, so what

makes quantum theory special from this perspective is the ability to turn uncertainty

about the past into uncertainty about the future. However, these pure processes are

not always causal, and so, how (or if) these can be understood operationally is not

clear. There have been other recent attempts to formulating quantum theory in a

time-symmetric way, it would be interesting to explore whether any connection can

be found to these alternative approaches.

Finally, when we introduced the notion of string diagrams, we explained this as a

weakening of the constraints imposed on composition for process theories. What

happens if we relax the other constraints? Relaxing the assumption that connec-

tions are between pairs of systems leads naturally to the definition of ‘spiders’ for

a theory, and that relaxing the assumption that system types must match would

necessarily lead to some non-trivial interactions. In fact, it seems plausible that

such interactions would allow for a description of the entirety of quantum theory

without needing to reference the actual processes at all. This would offer a radically

different perspective on Categorical Quantum Mechanics which typically treats the

processes as the primitive building blocks.

To conclude, the opening premise of this thesis was that the diagrammatic approach
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could be the ‘correct’ language to describe quantum theory. However, whether or

not this is the case does not have a universal answer, it depends on what you want

to do. If you want specific quantitative results —such as scattering amplitudes in

quantum field theory, the secure key rates in quantum key distribution, or the laser

frequency needed to drive a transition in a calcium ion— then this diagrammatic

approach is unlikely to be providing you with much assistance. On the other hand,

if you want to gain a deeper understanding of more qualitative, structural features

of a theory, or, if you want to understand the relationship between different theories,

then process theories provide a powerful tool. In particular, in this thesis, the process

theory framework has allowed for understanding how how different theories relate to

one another: we explore the sub-theories of quantum theory and the emergence of

the classical world, as well as exploring super-theories and the challenges that await

us as we try to go beyond quantum theory.
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[141] Èrnest B Vinberg. Homogeneous cones, volume 1. 1960.

[142] John von Neumann. Mathematische grundlagen der quantenmechanik.

Springer-Verlag, 1932. Translation, Mathematical foundations of quantum me-

chanics, Princeton University Press, 1955.

[143] Alexander Wilce. A shortcut from categorical quantum theory to convex op-

erational theories.

[144] Alexander Wilce. Symmetry and composition in probabilistic theories. Elec-

tronic Notes in Theoretical Computer Science, 270(2):191–207, 2011.

[145] Alexander Wilce. Symmetry and self-duality in categories of probabilistic

models. arXiv:1210.0622, 2012.

[146] Alexander Wilce. A royal road to quantum theory (or thereabouts), extended

abstract. In R. Duncan and C. Heunen, editors, Proceedings 13th International

Conference on Quantum Physics and Logic, Glasgow, Scotland, 6-10 June

2016, volume 236 of EPTCS, pages 245–254. Open Publishing Association,

2017.

[147] Wojciech Hubert Zurek. Decoherence, einselection, and the quantum origins

of the classical. Reviews of modern physics, 75(3):715, 2003.

[148] Wojciech Hubert Zurek. Quantum Darwinism. Nature Physics, 5(3):181–188,

2009.



122 BIBLIOGRAPHY
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