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Abstract

Shannon’s theory of information laid the groundwork for the rapid developments in information
and communications technologies over the last century. Yet, it assumed that information carriers
were described by the laws of classical physics, whilst at the most fundamental level, nature obeys
the laws of quantum physics. Quantum Shannon theory, which describes information carriers as
quantum states, has led to a new era of possibilities, such as perfectly secure cryptography with-
out pre-established keys. Yet, there is a sense in which this transition from classical to quantum
is incomplete. Traditionally, quantum Shannon theory has focused on scenarios where the inter-
nal states of information carriers are quantum, whilst their trajectories in spacetime have still been
assumed to be classical.

This work presents a second level of quantisation where both the information itself and its prop-
agation in spacetime are treated in a quantum fashion. The second-quantised Shannon theory de-
scribes the possibility of a single particle being simultaneously transmitted through multiple com-
munication channels in a quantum superposition. The framework is developed using the tools of
higher-order transformations and quantum resource theories, formally quantifying the resources re-
quired for communication between a sender and receiver in this setting.

The advantages of the second-quantised theory are illustrated in a series of examples, showcas-
ing various counterintuitive phenomena that occur when information is simultaneously transmit-
ted through multiple communication channels. In particular, when a single particle travels in a
quantum superposition through two alternative transmission lines, the noisy processes in the two
lines can destructively interfere, leading to a cleaner communication channel overall. Various dif-
ferent scenarios are encompassed in the framework, including transmission through a superposi-
tion of both independent and correlated channels, as well as through large-scale communication
networks. This work concludes with a study of the robustness of these protocols to errors and a
discussion of recent experimental demonstrations of their associated communication advantages.
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Preface
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2. Hlér Kristjánsson, Giulio Chiribella, Sina Salek, Daniel Ebler and Matthew Wilson, ‘Re-
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3. Hlér Kristjánsson, Wenxu Mao and Giulio Chiribella, ‘Witnessing latent time correlations
with a single quantum particle’, Physical Review Research, vol. 3, no. 4, p. 043147, 2021. (Ref.
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4. Hlér Kristjánsson, Yan Zhong, Anthony Munson and Giulio Chiribella, ‘Quantum networks
with coherent routing of information through multiple nodes’, in preparation. (Ref. [118])

Additionally, elements of two experimental collaborations, which also include some new theo-
retical results, are briefly reviewed:

5. Giulia Rubino, Lee Rozema, Daniel Ebler, Hlér Kristjánsson, Sina Salek,  Philippe Allard
Guérin, Alastair A Abbott, Cyril Branciard, Časlav Brukner, Giulio Chiribella and Philip
Walther, ‘Experimental quantum communication enhancement by superposing trajecto-
ries’, Physical Review Research, vol. 3, no. 1, p. 013093, 2021. (Ref. [166])

6. Santiago Sempere Llagostera, Robert Gardner, Kwok Ho Wan, Raj B. Patel, Hlér Kristjáns-
son, Giulio Chiribella and Ian A. Walmsley, ‘Experimental perfect correction of noisy chan-
nels via quantum superposition of paths’, in preparation. (Ref. [173])
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Specifically, Chapter 3 is based on the framework sections of 1. and 3., Chapter 4 is mostly based
on the main part of 2. with some additional previously unpublished results, Chapter 5 is based on a
part of the results of 1., Chapter 6 is based on the results section of 3. and the new theoretical results
in 6., Chapter 7 is based on short discussions in 2. and 3., Chapter 8 is based on the main part of
the results in 4., and Chapter 9 is based on the last part of the results in 3. and 4., some previously
unpublished results, and the conceptual discussions in 5. and 6.

The following four works were also completed during my DPhil but are not included as part of
the results of this thesis. However, some parts of Chapter 2 (Background) and Chapter 10 (Dis-
cussions and conclusions) are based on the results of these works:

7. Hlér Kristjánsson, Robert Gardner and Giulio Chiribella, ‘Quantum Communications Re-
port for Ofcom’, Ofcom, 2021. (Ref. [120])

8. Augustin Vanrietvelde, Hlér Kristjánsson and Jonathan Barrett, ‘Routed quantum circuits’,
Quantum, vol. 5, p. 503, 2021. (Ref. [191])

9. Augustin Vanrietvelde, Hlér Kristjánsson, Nick Ormrod and Jonathan Barrett, ‘Consistent
circuits for indefinite causal order’, arXiv preprint arXiv:2206.10042, 2022. (Ref. [192])

10. Richard Howl, Ali Akil, Hlér Kristjánsson, Xiaobin Zhao and Giulio Chiribella. ‘Quantum
gravity as a communication resource’, arXiv preprint arXiv:2203.05861, 2022. (Ref. [110])

The results in this thesis based on the works 1.–4. were primarily completed by me under the
supervision of Prof Giulio Chiribella, with smaller contributions from the other authors. Major
results in the works 1.–4. that were completed entirely or initially by other authors are generally
omitted from this thesis. The exception is when those results are integral to the flow of the thesis.
A list of such results is given in the following paragraph:

Proposition 15 and Theorem 18 in Chapter 6 were both proven by my supervisor Prof Giulio
Chiribella in 3. (indeed, the main part of the proof of the latter is through Lemma 24, the proof of
which is omitted from this thesis). In Chapter 8, the derivations of Eq. (8.7) in §8.3 and (8.11) in
§8.5 were initially found by Anthony Munson, and also appear in his Master’s Thesis [143].

Additionally, credit should go to Wenxu Mao for performing numerical simulations, presented
in his Bachelor’s thesis [137], which were a first step towards the results presented in Figure 6.4a.
The same goes for Yan Zhong, who came up with the initial idea of point (3) in Theorem 21.

The works 5.-6. are primarily experimental works, where my contribution lay in formulating the
precise tasks to be experimentally implemented, translating some of the mathematical subtleties
into physical terms, and interpreting the data obtained. In 6., I was moreover responsible for the
new theoretical results.
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1
Introduction

Since the foundations of information theory were laid by Claude Shannon in the early 20th century
[174], the age of information has revolutionised modern science and technology. The discipline
which studies information transfer over noisy communication channels became known as Shan-
non theory, which underlies all practical communication technologies. Around the same time, the
development of quantum theory has led to the discovery of new forms of counterintuitive phe-
nomena, such as superposition, entanglement [109] and single-particle interference [197]. In the
second half of the century, researchers began investigating the potential of quantum systems for
information processing: first for classical information [92, 100, 101, 128] and later for quantum
information [83]. These investigations culminated in the seminal works on perfectly secure cryp-
tography without pre-established keys [28, 81]. In 1994, Shor presented a quantum algorithm to
factorise numbers in polynomial time [176], enabling the possibility of breaking RSA encryption.
Shor’s result initiated the field of quantum computation and the quest to build practical quantum
computers.

Despite these promising theoretical works, realising quantum computation or quantum com-
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munication in practice is a highly non-trivial task, which needs to overcome the inherent obsta-
cles of decoherence and noise present in any quantum system [124, 189]. This led to Shor’s pro-
posal of error correcting codes [177] and fault-tolerant quantum computation [178], which laid
the groundwork for both theoretical and experimental research in quantum information theory to
the present day. In particular, the idea of a quantum capacity of a noisy quantum channel was pro-
posed [177], defining the problem of achieving optimal communication rates in the new field of
quantum Shannon theory. An important result by Smith and Yard [182], building on the work of
Ref. [183], highlighted a striking non-classical effect: when two noisy channels which individually
cannot transmit any information are combined in parallel, it is possible that they can be activated
to transmit information. These works on Shannon theory have applications not only in genuine
communication scenarios, but also in any implementation of quantum computation in the pres-
ence of noise [122], where information needs to be transferred from one part of the computer to
another [38], or between multiple different computers.

At a fundamental level, we can understand this transition from classical to quantum Shannon
theory in terms of a transition in the physical description of information carriers. In Shannon’s
original formulation of information theory, the information carriers were assumed to obey the laws
of classical physics. That is, they were assumed to have perfectly distinguishable internal states,
and, to travel along definite trajectories in spacetime. However, the ultimate description of nature
is given by the laws of quantum physics, where many of the fundamental assumptions in classical
physics no longer hold. Quantum Shannon theory can be viewed as the generalisation of Shannon’s
original theory where the internal states of information carriers can be quantum states. That is, an
information carrier no longer needs to be in a perfectly distinguishable internal state, and can be in
a superposition of different classical states.

Although significant advances in technological capabilities have been made possible by the tran-
sition from classical to quantum Shannon theory, there is still a sense in which the transition to a
fully quantum description of information is incomplete. Despite the possibility of encoding mes-
sages in quantum states, the trajectories of the information carriers in spacetime have, until now,
still been assumed to be classical. Yet, as the double-slit experiment illustrates, quantum particles
can travel simultaneously in a quantum superposition of multiple trajectories.

This ability to simultaneously propagate along multiple trajectories in a superposition allows a
single quantum particle to undergo superpositions of multiple different evolutions [9, 146]. This
leads to an interference between the different evolutions on alternative trajectories. In particular,
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the 2005 work of Gisin et al. [91] showed that when the processes occurring on different trajec-
tories are noisy, they can interfere destructively and lead to a less noisy process overall. This was
demonstrated in experiment in Ref. [123].

More exotically, research in quantum foundations over the last two decades has shown that a
single particle can experience two alternative processes in a superposition of their two possible
orderings [53, 57]. When the processes correspond to noisy communication channels, the in-
terference between the two orders can lead to an increase in the capacity to communicate both
classical and quantum bits [58, 80, 168]. These effects have also been demonstrated in a series of
experiments [93, 94, 97, 160, 165]. Whether these experiments genuinely demonstrated an indefi-
nite causal order of events, as per the original formulations in Refs. [53, 57, 149], or rather, simply
more elaborate versions of a superposition of trajectories, as per Gisin et al., has been a subject of
considerable debate [147, 152]. In any case, they highlight the practical potential of a communi-
cation model which includes the possibility of information carriers experiencing (some form of)
superposition of evolutions.

The above examples of communication advantages arising from superpositions of multiple dif-
ferent evolutions showcase the need for a broader framework of information theory, where both
the messages themselves and their propagation in spacetime are treated as quantum states. Such
an extension can be regarded as a second level of quantisation of Shannon theory. Whilst the first
level of quantisation promoted information carriers’ internal degrees of freedom to quantum states,
the second level of quantisation should additionally allow their external degrees of freedom to be
quantum, thus enabling the possibility of transmitting messages in a coherent superposition of tra-
jectories through alternative communication channels. The formalisation of such a quantisation,
however, poses several challenges.

The first challenge is to formalise a communication paradigm in which a superposition of trans-
mission lines can be built solely from the devices available to the communicating parties. A sender
and receiver with access to two communication channels should be able to build a new device,
corresponding to a superposition of the original channels. Mathematically, a transmission line is
described by a quantum channel, however, the existing constructions of a superposition of two
quantum channels depends not only on the channels themselves, but also on their physical real-
isation through an interaction with the environment [2, 9, 146]. This means that when a sender
and receiver only know the input-output description of their transmission lines, it is not clear how
they should construct a superposition of those devices. In particular, within a Shannon-theoretic
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description, an important task is to specify precisely what the communication resources available
to the communicating parties are, and to develop such a specification in a way that enables com-
munication channels to be naturally combined in a superposition.

The second challenge is to specify a clear-cut separation between the internal degrees of free-
dom (used to encode the message) and external degrees of freedom (along which the message
propagates). Such a separation is not guaranteed by simply specifying which are the external and
internal degrees of freedom: the possibility of phase kickback enables information to flow from an
information-carrying system to an ancillary system if the two systems interact [62]. If the sender
uses phase kickback to encode information in the path of the particle, then the path simply becomes
part of the message, in which case the entire communication scenario can be described by standard
quantum Shannon theory with a larger information-carrying system. In contrast, a bona fide sec-
ond level of quantisation should pertain only to the study of communication scenarios where the
message and path are assigned fundamentally different information-theoretic roles.

In this work, we construct a framework for the development of a second-quantised Shannon
theory, which satisfies the above desiderata. The framework uses the tools of higher-order transfor-
mations (also known as supermaps) [51, 52, 54] to define an operation that combines two com-
munication devices in a superposition. To ensure this is well defined, the framework relies on the
abstract notion of vacuum, which describes the absence of an input to a communication device.
Accordingly, communication devices are modelled as quantum channels that can act on the inter-
nal degree of freedom used as the message, on the vacuum, and on a coherent superposition of the
message and vacuum. A superposition of two communication channels is then described by coher-
ently controlling which communication channel receives the message as input and which receives
the vacuum as input. Such a construction based on the coherent routing of the message and vac-
uum provides a well-defined way to construct a superposition of channels from purely the devices
already available to the sender and receiver.

The corresponding shift in our description from the states of individual particles to the occupa-
tion of a set of modes (that is, whether or not a particle is present or the vacuum), resembles the
shift from quantum mechanics to its second-quantisation [75, 84]. This gives further meaning to
the title of this work.

To formally specify the information-theoretic distinction between the internal and external de-
grees of freedom, we use the tools of resource theories [60, 67]. We construct a general family of
resource theories of communication, specifying a minimal requirement that all meaningful com-
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munication models must satisfy. We cast standard quantum Shannon theory as a resource theory
in this way. We define an extension of quantum Shannon theory that includes superpositions of al-
ternative trajectories by appending the original resource theory with the operation that places two
communication channels in a superposition, as described in the previous paragraph. Our mini-
mum requirement specifies natural constraints on communication models involving (any form of)
superpositions of alternative evolutions. We show that our framework of quantum Shannon theory
with superpositions of trajectories satisfies this requirement, whilst another recently proposed frame-
work [96] does not.

For completeness, we also construct a separate resource theory that describes the potential use
of communication channels in a superposition of causal orders, based on Refs. [58, 80, 168]. We
show that this framework of quantum Shannon theory with superpositions of causal orders also satis-
fies our minimal requirement. Our resource-theoretic description highlights several fundamental
differences between the superposition of trajectories and the superposition of causal orders, which
we discuss, following several recent comments on the similarities and differences between these
two paradigms [2, 58, 133].

With our framework in hand, we proceed to explore its applications to a variety of communica-
tion scenarios, showcasing some of the communication advantages that can be attained by allowing
information carriers to travel in a superposition of trajectories. We begin by considering the trans-
mission of information on a superposition of alternative paths, in the spirit of Refs. [2, 3, 91, 146].
We find that certain channels, which are so noisy that no classical information can be transmit-
ted through them when used on their own, can be activated to transmit classical information at a
non-zero rate when used in a superposition of paths. The same is true for quantum information:
channels which completely decohere the message when used on their own can, in specific cases, be
transformed into a channel that transmits qubits at a non-zero rate. Yet, the superposition of two
independent noisy transmission lines can never lead to a perfectly noiseless channel.

Building on the results for independent channels, we move to examine the, as of yet unexplored,
possibility of placing communication channels with correlated noise between successive uses [117,
135] in a superposition. The presence of correlations in the noise experienced by particles sent
through the same transmission line at different times arises naturally in many physical scenar-
ios. For example, an optical fibre induces random changes in the polarisation of photons pass-
ing through it, and since these changes happen on a finite timescale, photons sent at close times
will experience approximately the same noisy processes. In standard quantum Shannon theory,
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the presence of correlations is both a threat and an opportunity for communication. On the one
hand, it can undermine the effectiveness of standard error correcting schemes, which assume in-
dependent errors on the transmitted particles. On the other hand, tailored codes that exploit the
correlations among different particles can enhance the transmission of information [17, 18, 24, 39,
43, 45, 55, 70, 89, 90, 113, 135, 136, 141, 156, 167, 198].

In the context of a second level of quantisation of Shannon theory, just as a single quantum
particle can travel in a superposition of two paths, a single quantum particle can also be transmitted
at a superposition of alternative moments in time. This leads to a striking foundational result, which
is interesting in its own right independently of information-theoretic considerations. Classically,
if a communication channel exhibits correlations in noise between its use at two consecutive time
steps, then in order to probe these correlations, a particle must be sent through each of these two
time steps. A single classical particle, however, can only travel through the channel at one of these
time steps or the other, and is therefore unable to probe the correlations between successive uses.
In stark contrast, we find that a single quantum particle sent at a superposition of going through
the channel at one time step or another can probe these correlations, even though the particle only
traverses the channel once.

Taking advantage of the time-correlations in the noise, we show that it is possible to enhance
the amount of information that a single particle can carry from a sender to a receiver, beating the
ultimate limit achievable in the lack of correlations. We demonstrate this effect with two extreme
examples. In the former, a single quantum particle can transmit one bit of classical information
through a transmission line that completely erases information at every definite time step, while
in the latter, a single quantum particle can transmit one qubit of quantum information through a
transmission line that completely decoheres any quantum state at every definite time step. These
phenomena witness the presence of correlations between different uses of the transmission line: in
the lack of correlations, we show that the maximum number of bits or qubits that can be transmitted
through the respective channels is bounded by a value strictly less than one.

Having investigated the enhancements in the transmission of both classical and quantum infor-
mation through noisy channels, we move to study the potential of the second-quantised Shannon
theory for long-distance communication networks, where a single particle can travel in a super-
position of multiple different paths through the network. In real-life communication networks,
noise in transmission degrades the information transmitted in the message in a way that scales ex-
ponentially with the length of the communication channels. Similarly, in optical communication
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networks, the probability of particle loss scales exponentially with distance [42]. These two sources
of errors limit the distance over which information can be transmitted via quantum particles. An
important step in bringing quantum Shannon theory with superpositions of trajectories to prac-
tical use is to understand how robust its protocols are to communication over a long sequence of
channels, and whether it can, to some extent, suppress the exponential degradation of information.
An additional source of errors arises in the context of the superposition of paths itself: crucially, the
superposition of paths relies on coherence between the two trajectories to be maintained through-
out the protocol, however, this is also expected to degrade over long distances.

We show, using a combination of analytical and numerical methods, that the superposition of
channels is robust against both particle loss and decoherence on the external degree of freedom.
That is, in the case of decoherence on the path affecting the communication protocols where the su-
perposition of channels provided a communication advantage, we find that for every finite amount
of decoherence, the superposition of channels still provides a finite communication advantage over
the analogous communication scenario where the channels are combined in a purely classical man-
ner. In the case of particle loss with a fixed probability on each path, we find that the probability of
loss experienced by the superposition of paths is just the same as that for each path individually.

More striking, however, is our finding that the superposition of channels can suppress the expo-
nential degradation of the message itself, when used in combination with repeaters acting locally
on the intermediate nodes of the network. In an extreme example of a sequence of noisy channels,
where every channel returns a fixed state and therefore cannot transmit any information on its own,
we find that for certain parameters of the channel, a superposition of sequences of such channels
can correct the overall error at a finite rate, even in the asymptotic limit of an infinite sequence of
channels. Building upon this result, we provide a general theorem specifying the conditions on any
noisy channel, such that the possibility of information transmission at a non-zero rate is maintained
in the asymptotic limit of an infinite sequence of such channels. Of course, in realistic scenarios,
these conditions are unlikely to be satisfied exactly. Accordingly, numerical studies of the commu-
nication capacity under deviations of these conditions are provided, showing that our scheme can
still provide an enhancement in the communication capacity under small deviations from the ideal
case.

To emphasise the practical applicability of our framework, we discuss two recent experimental
implementations of the superposition of channels, which have demonstrated the communication
advantages in experiment. We focus on the conceptual issues of the implementation and sum-
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marise the experimental setup and results.
Finally, we conclude with a discussion and outlook. We discuss the significance of our results

and its potential in future communication technologies. We discuss a number of other research
directions related to our current framework, including the formal study of quantum circuits, indef-
inite causal order, and information-theoretic perspectives on quantum gravity, highlighting how
our techniques and methods have impacted these areas. We propose that our framework can be
further extended to other areas of quantum information and foundations, such as the study of
quantum algorithms and quantum causality. In preparation for these extensions, we present our
initial theoretical framework on the superposition of channels in full generality, where the quan-
tum channels can in principle represent any type of information-processing device, to be used in
communication, computation or other scenarios.

The rest of this thesis is structured as follows. Chapter 2 presents the standard theory and nota-
tion used in the remainder of the work and summarises the relevant literature. Chapter 3 presents
the framework of superposition of quantum channels. Chapter 4 presents the framework of re-
source theories of communication, casting standard quantum Shannon theory as well as its exten-
sions to superpositions of trajectories and superpositions of causal orders in this form. Chapter 5
presents communication advantages of our framework for a superposition of independent chan-
nels, while Chapter 6 presents analogous communication advantages for a superposition of time-
correlated channels. In Chapter 7, observations made in the previous chapters are used to discuss
the distinction between the superposition of trajectories and the superposition of causal orders.
Chapter 8 extends the framework to communication networks, highlighting the new possibilities
arising when a single particle can travel in a superposition of multiple paths through different nodes
in the network. Chapter 9 discusses practical considerations, such as the tolerance of the superpo-
sition of channels to particle loss and dephasing on the path, as well as recent experimental im-
plementations of our protocols. Chapter 10 provides a discussion of related works, as well as a
summary and outlook.

19



2
Background on selected topics in quantum

information and foundations

In this chapter, we review the essential concepts and relevant literature from a variety of fields
within quantum information and foundations, which form the basis on which the work of this
thesis builds. First, the basic features of quantum theory are reviewed, together with the nota-
tion we shall use. Second, we provide an introduction the study of communication capacities in
quantum Shannon theory. Third, the concepts of quantum circuits and their transformations are
discussed, which are essential for understanding the ways in which communication channels can
be composed. Fourth, we discuss the recent literature on an indefinite causal ordering of processes,
which cannot be written in the form of a circuit. Fifth, we consider the superposition, interference,
or coherent control of quantum channels, which forms the basis of the work of this thesis, with
such constructions formally defined in Chapter 3. Sixth, we provide a brief overview of quantum
resource theories, which are used in Chapter 4. Finally, we discuss time-correlated quantum chan-
nels and their applications to communication, which we use in Chapter 6.
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2.1 Basic concepts and notation

This work uses the standard notation and language of quantum information theory, as presented in
e.g. Ref. [196]. Additionally, some notation inspired by the process-theoretical approach to quan-
tum theory, following Ref. [56], is introduced. The formal circuit diagrams used to illustrate the
key ideas are inspired by the diagrammatic-categorical approach to quantum theory [5, 65] and
closely follow the constructions in Refs. [54, 69].

Quantum systems In quantum Shannon theory, the degrees of freedom used to carry infor-
mation are represented by quantum systems. A quantum system A is associated to a Hilbert space
HA. For simplicity, this work only considers finite-dimensional systems.

Quantum states An information carrier is represented by a quantum state ρ, i.e. a positive semi-
definite linear operator with unit trace on the Hilbert space HA (also called a density matrix). The
set of all quantum states on a physical system A is denoted St(A) ⊂ L(HA), where L(HA) is the
space of all linear operators on HA.

Pure states are quantum states that can be written in the form

ρ = |ψ〉〈ψ| ∈ St(A) , (2.1)

for some |ψ〉 ∈ HA (where 〈ψ| is the Hermitian conjugate of |ψ〉). The qubit computational basis
states are denoted |0〉 , |1〉, and the Fourier basis states are denoted

|±〉 := |0〉 ± |1〉√
2

. (2.2)

Quantum states which cannot be written in the form (2.1) are known as mixed states, which can
always be written in the form

ρ =
r−1∑
i=0

pi |ψ i〉〈ψ i| , (2.3)

where {|ψ i〉}
r−1
i=0 is a set of pure states and {pi}r−1

i=0 are (non-negative) probabilities.

Quantum channels A (single use of a) quantum device, e.g. a computational gate or a trans-
mission line, is described by aquantumchannelC, i.e. a completely positive trace-preserving (CPTP)
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map, from L(HA) to L(HB), where A and B are the input and output quantum systems, respec-
tively. Quantum channels transform quantum states into quantum states. The set of all linear maps
from L(HA) to L(HB) is denoted Map(A → B). The set of all quantum channels is denoted
Chan (A → B) ⊂ Map(A → B), and when A = B, the shorthand Chan(A) := Chan(A → A)
is used. When the input and output states are arbitrary, we simply write Chan.

The action of a quantum channel on a quantum state can be written in the Kraus representation
as

C(ρ) =
∑
i

CiρC†
i , (2.4)

where {Ci} is a (non-unique) set of Kraus operators, satisfying the normalisation condition∑
i

C†
i Ci = I , (2.5)

where I is the identity linear map.
Quantum channels are written in calligraphic fonts (e.g. C) and the corresponding Kraus op-

erators are written in standard italics (such as Ci). In particular, a unitary channel formed from a
unitary gate U (i.e. a linear map satisfying U†U = UU† = I) is denoted U(·) = U(·)U†, and the
identity channel is written as I(·) = I(·)I†.

The composite system consisting of subsystems A and B is denoted by A ⊗ B. The use of two
separate devices C,D in parallel is described by their tensor product C ⊗ D. Multiple (indepen-
dent) uses of the same physical device C is also described by a tensor product of multiple copies of
the channel C. For example, if a transmission line C is used k times between a sender and receiver,
then the overall process is described by the quantum channel C⊗k.

A single quantum device can have multiple subsystems as inputs and outputs, which are known
as ports of the device. A quantum device with k input/output ports is described by a k-partite quan-
tum channel C ∈ Chan

(
A(1) ⊗ · · · ⊗ A(k) → A′(1) ⊗ · · · ⊗ A′(k)) where (A(j),A′(j)) denotes the

j-th input-output pair. It can be shown that every map M ∈ Map(A1 ⊗ A2 → B1 ⊗ B2) can be
decomposed into a sum of product maps, that is,

M =
L∑
j=1

M1,j ⊗M2,j , (2.6)

with M1,j ∈ Map(A1 → B1) and M2,j ∈ Map(A2 → B2) for all j ∈ {1, . . . , L}.
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Any quantum channel C can be recovered from a unitary channel on a larger Hilbert space via
the Stinespring dilation. That, is for any channel C ∈ Chan(A → B), there exists a (not generally
unique) unitary channel U ∈ Chan(A ⊗ E → B ⊗ F) and a pure state |η〉 ∈ HE, where E, F are
‘environment’ quantum systems, such that

∀ρ ∈ St(A) : TrF U(ρ⊗ |η〉〈η|) = C(ρ) . (2.7)

Here, the partial trace over system F corresponds to discarding the system F. Each Stinespring
dilation gives rise to a choice of Kraus operators {Ki = 〈i|F U |η〉E}, for some basis {|i〉F}.

Quantum supermaps An operation that transformations a set of quantum devices into another
set of quantum devices is described by a quantum supermap [52]. A quantum supermap is a linear
transformation fromMap(A → B) toMap(A′ → B′), whereA,A′,B,B′ are generic systems, such
that it always maps quantum channels into quantum channels, i.e. it is required to be (i) linear, to
preserve probabilities, and (ii) completely positive, to ensure that it is well-defined when acting
locally on a bipartite quantum channel [52] ¹.

The tensor product of two quantum supermaps S : Map(A1 → B1) → Map(A′
1 → B′

1) and
T : Map(A2 → B2) → Map(A′

2 → B′
2) is the supermap S ⊗ T : Map(A1 ⊗ A2 → B1 ⊗ B2) →

Map(A′
1 ⊗ A′

2 → B′
1 ⊗ B′

2) defined by the condition

(S ⊗ T )(M1 ⊗M2) := S(M1)⊗ T (M2) , (2.8)

for allM1 ∈ Map(A1 → B1) andM2 ∈ Map(A2 → B2). Since all of the maps inMap(A1⊗A2 →
B1 ⊗ B2) are linear combinations of product maps, this condition uniquely defines the supermap
S ⊗ T .

Graphical representation The graphical representations of a quantum state and a quantum
channel are shown in Figure 2.1. The action of a channel C ∈ Chan(A → B) on a state ρ ∈ St(A)
is represented by connecting the two lines labelled by A.

¹Note, that here we use the term quantum supermap to refer to what in Ref. [52] is called a deterministic supermap,
as we do not consider non-deterministic supermaps in this work.
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ρ
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Figure 2.1: Left: A quantum state ρ ∈ St(A). Right: A quantum channel C ∈ Chan(A → B).
In this thesis (with the exception of Chapters 4 and 7, where a more elaborate convention is
used), quantum channels representing communication channels are drawn in colour to em-
phasise that they are the resource of interest, whilst quantum states and quantum channels
representing other types of operations are kept in white.

2.2 Key concepts from quantum Shannon theory

In this section, we review some of the key definitions and results from classical and quantum Shan-
non theory. The purpose of the section is to explain the meaning of the classical channel capacity
and its quantum analogues: the classical capacity of a quantum channel, and the quantum capac-
ity of a quantum channel. These capacities quantify the amount of information that can be reliably
transmitted through a (possibly noisy) communication channel. This brief review follows elements
of Ref. [120].

First, we describe the physical setup. The simplest communication scenario between a sender
and a receiver is where the two communicating parties are directly connected by a single transmis-
sion line. Each use of the transmission line is modelled as a quantum channelN ∈ Chan(A → B),
where A denotes the input system accessible to the sender (Alice) and B denotes the output sys-
tem accessible to the receiver (Bob). In this case, the question of how much information can be
transmitted from the sender to the receiver is determined by the possible encoding and decoding
operations performed locally by the sender and receiver, respectively, over some given number
of channel uses k [196]. The capacities described below quantify the ability of a communication
channel to transmit information between the communicating parties, where both Alice and Bob are
assumed to be able to perform any local encoding or decoding operations. Other types of commu-
nication capacities corresponding to more complex communication scenarios, for example with
multiple senders or receivers, or where the communicating parties have access to entangled states,
can be defined in a similar way. For a more detailed discussion, the reader is referred to the standard
textbook by Wilde [196].

In the following, we use ‘communication’ in the broadest meaning of the term, where Alice and
Bob could either be distant communicating parties, or, more generally any two spatially separated
points in an information-processing quantum device, such as a quantum computer.
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2.2.1 Communication rate of classical information

We begin by reviewing the definition of the channel capacity for classical communications. Build-
ing up to this definition, we first define the concepts of entropy and mutual information.

Entropy Consider an experiment with a list of possible classical outcomes x of a random vari-
able X, which each occur with probability p (x). Classical Shannon theory tell us that the expected
amount of information gained from the result of the experiment is given by the entropy

H (X) = −
∑
x

p (x) log p (x) , (2.9)

which is given in units of bits (here we take the logarithm to be base 2). For example, a fair coin has
the probability of each of heads or tails equal to 1/2, giving an entropy of H=-0.5log0.5-0.5log0.5=1
bit.

Mutual information When information is transmitted through a noisy communication chan-
nel, then in addition to the randomness inherent in the choice of message (as quantified by the
probability distribution {p (x)}), the errors occurring in the channel induce a second level of ran-
domness. Alice encodes her message in a set of symbols {x}, which are instances of the random
variable X, each sent with probability p (x). Now, the possible outcomes Bob can receive are given
by a set of symbols {y}, which are instances of the random variable Y, and correspond directly to
the {x}. However, due to errors in transmission, Bob cannot decode the message directly with
knowledge only of the sending probabilities p (x). Instead, he needs to consider the conditional
probabilities p (x|y), which correspond to the probability that Alice actually sent x given that Bob
received y. The probabilities p (x|y) fully characterise the noisy channel [196]; we assume that it is
possible for the communicating parties to obtain knowledge of this distribution. Mathematically,
the amount of transmitted information that is error free is quantified by the mutual information:

I (X; Y) =
∑
x

∑
y

p (x, y) log
p (x|y)
p (x)

= H (X)− H (X|Y) . (2.10)

Channel capacity The fundamental limit on how much information can be transmitted through
a noisy channel N is given by the channel capacity C (N ), defined as the maximum number of bits
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that can be transmitted through the channel per use of the channel. The channel capacity is equal
to the maximum of the mutual information of the channel N over all possible choices of sending
probabilities [174]:

C (N ) = max
{p(x)}

I (X; Y) . (2.11)

2.2.2 Communication rate of classical information through quantum channels

In this subsection, we quantify the classical capacity of a quantum channel. In order to understand
the definition of classical capacity, we start by defining the quantum entropy, which enables the
definition of the conditional quantum entropy, followed by the quantum mutual information and
Holevo capacity.

Quantum entropy The entropy of a classical system corresponded to how much uncertainty
there was in obtaining one of the possible outcomes. If we are sure what outcome is to come, then
the entropy is zero; if all outcomes are equiprobable then the entropy is maximal. In the quan-
tum case, a definition of entropy will have to capture both the classical uncertainty associated with
Alice’s choice of message, as well as the quantum uncertainty arising from the possible choices of
measurement basis.

This is done by replacing the probability distribution of Alice’s preparation in the classical case
by the quantum state of Alice’s preparation. The quantum entropy, also known as the von Neumann
entropy, of a state ρA is given by:

H(A)ρ := −Tr(ρA log ρA) (2.12)

Operationally, suppose Alice produces states |ψx〉 in her lab with some probability distribution
px. Then from Bob’s point of view, before Alice sends him the state, his expected state is ρA =∑

x px |ψx〉 〈ψx|. Now, if the states {|ψx〉} form an orthonormal basis, then we recover the classical
entropy of the probability distribution {px}.

Conditional quantum entropy In order to define the quantum analogue to the mutual in-
formation, we first need a definition of conditional quantum entropy. This turns out to be a non-
trivial task, as there is no direct analogue of conditional probabilities in the quantum case. The
following definition is chosen [196]: The conditional quantum entropy of the joint state ρAB of Alice
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and Bob’s composite system AB is

H(A|B)ρ := H(AB)ρ − H(B)ρ (2.13)

where ρB := TrA ρAB is the marginal state as seen by Bob. (Here, TrA is the partial trace over
subsystem A only.)

Counterintuitively, the conditional quantum entropy can be negative, illustrating one of the
most important differences between the classical and quantum worlds. For example, consider the
maximally entangled Bell state between Alice and Bob |Φ+〉 := (|0〉 ⊗ |0〉 + |1〉 ⊗ |1〉)/

√
2.

H(AB)ρ = 0, but the marginal state as seen by Bob is ρB = TrA |Φ+〉〈Φ+| = I/2, i.e. the maxi-
mally mixed state, which has a quantum entropy H(B)ρ = 1, leading to H(A|B)ρ = −1. Concep-
tually, the negative conditional quantum entropy can be understood as quantifying the fact that we
can know more about an entangled state as a whole than about any of its individual components.

Quantum mutual information Thequantummutual information can now be defined in com-
plete analogy with the classical case:

I(A;B)ρ := H(A)ρ − H(A|B)ρ, (2.14)

or equivalently, I(A;B)ρ = H(A)ρ+H(B)ρ−H(AB)ρ. As in the classical case, the quantum mutual
information describes the amount of classical correlations between two systems.

The most relevant communication scenario where this is useful is in the case of classical com-
munication between two parties. Consider the scenario where Alice sends classical information
through a noisy channel N to Bob. Alice prepares the states ρxA which can be input into the chan-
nel, each with probability p(x), and keeps a copy of the index of her chosen state in a classical
register X with states {|x〉}. The expected density matrix of her prepared state is then

ρXA =
∑
x

p(x) |x〉〈x|X ⊗ ρxA. (2.15)

Now if she sends the state of theA system over to Bob via a quantum channelNA→B ∈ Chan(A →
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B), then the joint state of Bob’s received system B with Alice’s remaining classical register X is

ρXB =
∑
x

p(x) |x〉〈x|X ⊗NA→B(ρxA). (2.16)

The quantum mutual information I(X;B)ρ of this state gives a measure of the classical information
that Alice was able to transmit to Bob.

Holevo capacity of a quantum channel The fundamental question here, just as in the case
of classical channels, is: what is the maximum amount of information that can be sent through a
given quantum channel N . If the input states to each use of the channel are not allowed to be
entangled (as in the classical case), then the maximum number of bits that can be sent through
a channel N per use of the channel is given by the Holevo capacity² (defined analogously to the
channel capacity of a classical channel):

χ(N ) := max
ρXA

I(X;B)ρ , (2.17)

where the maximisation is over all possible states of the form (2.15).

Classical capacity of a quantum channel In contrast to the classical case, the Holevo
capacity is not the ultimate limit of classical information transfer through quantum channels. Cru-
cially, the Holevo capacity is superadditive, meaning that kχ(N ) ≤ χ(N⊗k). That is, the Holevo
capacity of kparallel uses ofN can be larger than k times the Holevo capacity ofN itself. In particu-
lar, the RHS can be made larger than the LHS for certain quantum channels, when successive input
states are entangled. This leads to the following expression for the classical capacity of a quantum
channel (Holevo–Schumacher–Westmoreland Theorem):

CC(N ) = lim
k→∞

1
k
χ(N⊗k), (2.18)

where χ(N⊗k) is the Holevo capacity of k parallel copies of N [102, 172]. The classical capacity
of a quantum channel is the maximum number of bits that can be transmitted through the channel
per channel use, in the asymptotic limit of infinitely many channel uses.

²In some texts, this quantity is also know as the Holevo information of a quantum channel, however, here we shall
use the term Holevo capacity to unambiguously distinguish it from the Holevo information of a quantum state [196].
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In general, the classical capacity of a quantum channel is intractable to calculate, as it involves
the regularisation over infinitely many copies of the channel. In practice, the Holevo capacity is
often a useful lower bound.

Example: depolarising channel The depolarising channel Ndep is an example of a process
that describes common sources of noise that hinder the transfer of classical information. Given
an input state ρ of a d-dimensional system, the depolarising channel returns the original state with
probability (1− p), and replaces it with the maximally mixed state I/d (i.e. white noise) with prob-
ability p:

Ndep(ρ) = (1− p)ρ + p
I
d
. (2.19)

The depolarising channel can arise via a randomisation over an orthogonal set of unitary matri-
ces. For example, for qubits (d = 2),

Ndep(ρ) =
(
1− 3p

4

)
ρ +

p
4
(XρX+ YρY+ ZρZ), (2.20)

where X, Y,Z are the Pauli matrices.
To illustrate the measures of information described above, consider the completely depolarising

channel, i.e. p = 1, which is described by

Ndep(ρ) = Tr(ρ)I/d . (2.21)

This means that every possible output state NA→B(ρxA) in the expression for the Holevo capacity
(2.16) is independent of the classical register x, so that the quantum mutual information must al-
ways be zero. Therefore, both the Holevo capacity and the classical capacity of the completely
depolarising channel are zero. A general depolarising channel with an error probability 0 < p < 1
will have a non-zero Holevo capacity. It has been shown that the Holevo capacity of the depolar-
ising channel is additive (i.e. does not exhibit superadditivity), and therefore the classical capacity
is equal to the Holevo capacity [114]. The full expression is given by

C(Ndep) = log d− Hmin(Ndep) (2.22)
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bits per channel use, where

Hmin(Ndep) = −(1− p+ p/d) log(1− p+ p/d)− (d− 1)(p/d) log(p/d) (2.23)

is a quantity known as the minimum output entropy of the channel [114].

2.2.3 Communication rate of quantum information through quantum channels

In this subsection, we quantify the quantum capacity of a quantum channel. We begin with the
definition of the coherent information of a quantum state, followed by the coherent information of
a quantum channel.

Coherent information A standard measure of the amount of quantum correlations between
two systems is given by the coherent information:

I(A〉B)ρ := H(B)ρ − H(AB)ρ, (2.24)

which, interestingly, is equal to the negative of the conditional quantum entropy. This equivalence
can be understood from the example above of the maximally entangled state which has maximal
negative conditional quantum entropy. The essence of establishing quantum correlations is estab-
lishing entanglement, so it is reasonable that a measure of information which is maximised for a
maximally entangled state corresponds to a quantification of quantum correlations.

Coherent information of a quantum channel The extent to which a quantum channel
can preserve quantum correlations in the presence of noise is quantified by the coherent informa-
tion of a quantum channel, defined similarly to the Holevo capacity in the case of classical infor-
mation. Consider a pure bipartite state φAA′ in Alice’s possession, where she sends the A′ system
to Bob through a channel NA′→B ∈ Chan(A′ → B). If the initial state φAA′ is entangled, then the
communication protocol would want the final state ρAB = NA′→B(φAA′) to preserve this entangle-
ment as much as possible. The coherent information of a quantum channel is defined as

Q(N ) := max
φAA′

I(A〉B)ρ, (2.25)
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where the maximisation is with respect to all pure states φAA′ . Just like the Holevo capacity of a
quantum channel, the coherent information of a quantum channel is not in general additive, mean-
ing that kQ(N ) ≤ Q(N⊗k).

Quantum capacity of a quantum channel The quantum capacity of a quantum channel
is the maximum number of qubits that can be transmitted through the channel per channel use,
in the asymptotic limit of infinitely many channel uses. This is the fully quantum analogue of the
channel capacity in classical Shannon theory. The quantum capacity of a quantum channel is given
by the quantum capacity theorem:

CQ(N ) = lim
k→∞

1
k
Q(N⊗k). (2.26)

whereQ(N ) is the coherent information of channelN . (This a result of the work of many different
authors; a standard reference is the textbook by Wilde [196].)

The quantum capacity possesses a striking property: it is possible that two quantum channels,
each with zero quantum capacity when used individually, have a non-zero quantum capacity when
combined in parallel – a phenomenon known as superactivation [182].

Example: dephasing channel The paradigmatic error which affects the communication of
quantum information, but not classical information, is the dephasing error. The dephasing error
collapses a quantum state into a given classical basis, thus losing its essential quantum properties.
Dephasing occurs naturally in most quantum systems due to their interaction with the environ-
ment. Mathematically, a dephasing channel Ndeph has the following form:

Ndeph(ρ) = (1− p)ρ + p
d−1∑
i=0

|i〉〈i| ρ |i〉〈i| , (2.27)

where |i〉 are the basis vectors of a given basis (of dimension d).
Now consider the qubit completely dephasing channel (p = 1). To see what it does to the

coherent information and quantum capacity, we find that if one half of an entangled state is sent
through a completely dephasing channel, then the entanglement is completely destroyed. This
means that the coherent information is zero, and therefore also the quantum capacity. On the other
hand, the computational basis states |0〉 and |1〉 can be transmitted error-free through the channel,
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Figure 2.2: The parallel composition of quantum channels E ∈ Chan(A → B) and F ∈
Chan(C → D). In this thesis (except in Chapters 4 and 7), we shall use different colours to
represent each independent communication device.

meaning that the classical capacity of a completely dephasing channel is 1 bit per channel use.

2.3 Quantum circuits and higher-order transformations

In real-life communication scenarios, there are typically multiple transmission lines connecting the
sender and receiver, connected together in a communication network. The transmission lines are
modelled as quantum channels with input and output systems which are accessible to the sender,
intermediate parties, or the receiver. Similarly, in computation, an algorithm is usually performed
by connecting multiple quantum gates together in a network. Both of these scenarios are formally
described by a quantum circuit [5, 6, 65, 73, 145]. A quantum circuit is the most general object
formed by combining quantum channels (and possibly quantum states) in parallel and sequence.

2.3.1 Connecting quantum circuits

Mathematically, the construction of a quantum circuit from elementary quantum channels can be
described as follows, in the language of Refs. [51, 54].

To combine two quantum channels E ∈ Chan(A → B) and F ∈ Chan(C → D) in parallel,
we simply construct their tensor product E ⊗ F ∈ Chan(A ⊗ C → B ⊗ D). In diagrams, this
corresponds to just drawing the two channels side-by-side, with the inputs and outputs aligned, as
shown in Figure 2.2.

Combining two quantum channels E ∈ Chan(A → B) and F ∈ Chan(C → D) in sequence
is done by simple concatenation of the channels: F ◦ E ∈ Chan(A → D). In diagrams, this
means that the output of the first channel is connected to the input of the second channel. When
the channels have multiple input/output systems, only inputs and output of the same type (i.e.,
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Figure 2.3: The sequential composition of quantum channels C ∈ Chan(F⊗ G → H⊗ J) and
D ∈ Chan(J⊗ K → L⊗M) formed by contraction over system J.

corresponding to the same Hilbert space) can be connected together. All inputs/outputs that are
not involved in the concatenation are formally concatenated with an identity channel. That is, for
two bipartite channels C ∈ Chan(F ⊗ G → H ⊗ J) and D ∈ Chan(J ⊗ K → L ⊗ M), the
sequential composition over the system J is given by

(IH ⊗D) ◦ (C ⊗ IK) . (2.28)

This is illustrated in Figure 2.3.
Formally, the sequential composition is constructed in the following way. A quantum channel

C ∈ Chan(A → B) can be written in the Choi-Jamiołkowski representation [61, 112] as a quan-
tum state c ∈ St(A⊗ B), with the isomorphism

c = Choi(C) := I ⊗ C(|Ω〉〈Ω|) ,

C(ρ) = Choi−1(c)(ρ) := TrA
[(
ρT ⊗ IB

)
c
]
,

(2.29)

where c is the Choi operator. Here, I ∈ Chan(A → A) is an identity channel, |Ω〉 :=
∑

n |n〉 ⊗
|n〉 ∈ HA ⊗HA is the un-normalised maximally entangled state, and T is the transpose operation
with respect to the orthonormal basis {|n〉}.

Two quantum channels taking multiple systems as input and output can be sequentially com-
posed by connecting any number of outputs from one channel to inputs of the other channel. In this
case, we write the systems to be connected using the same letter. For example, two channels with
bipartite input and output systems and one connection are denoted C ∈ Chan(F⊗ G → H⊗ J)
and D ∈ Chan(J ⊗ K → L ⊗ M). Mathematically, the composition is done by taking the link
product ∗ of the Choi operators corresponding to the two channels. [51]. That is, the new channel
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E is defined by its Choi operator e:

e = c ∗ d := TrJ[(cFGHJ ⊗ IKLM)TJ(IFGH ⊗ dJKLM)] , (2.30)

where TJ is the partial transposition over the connected system J [51].
The above scheme captures the most general construction of quantum circuits formed from par-

allel and sequential compositions of quantum channels. Note, that quantum states can be con-
nected in the same way, by treating states as channels with a trivial input system.

An equivalent purely graphical formulation of quantum circuits is given in Refs. [64, 65]. This
diagrammatic calculus for representing quantum theory was introduced by Abramsky and Coecke
in Ref. [5] and is grounded in category theory [27, 63, 66]. Specifically, Hilbert spaces and quan-
tum states and channels are described by a dagger-symmetric monoidal category, which can be
faithfully represented by two-dimensional diagrams obeying a set of rules.

2.3.2 Higher-order computation: transforming quantum circuits

In the above, we treated quantum channels as the highest level objects in our framework. That
is, we connected quantum channels together to form a quantum circuit (mathematically, just a big
quantum channel), after which the circuit was considered a fixed object. This fixed quantum circuit
was then able to transform any choice of input quantum states into corresponding output states.
Physically, this could correspond to connecting together either logical gates in computation, or
transmission lines in communication.

However, we could take the idea of transforming quantum channels further than just simple
combinations in parallel and sequence. Specifically, we could consider the possible transforma-
tions of quantum channels and quantum circuits as higher-order transformations [51, 52], which we
study in their own right. We call these higher-order transformations of quantum channels quantum
supermaps (see §2.1).

To illustrate the idea of supermaps, consider first a single quantum channel. One could ask,
what is the most general form of a physically admissible transformation that maps a single quantum
channel into a single quantum channel? To be physically admissible, we require the supermap to
be linear and completely positive, which guarantees that the supermap transforms any input quan-
tum channel (including when acting locally on part of a bipartite quantum channel) into another
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Figure 2.4: The most general quantum supermap transforming a quantum channel C ∈
Chan(A → B) into a new quantum channel S(C) ∈ Chan(F → G). The supermap is imple-
mented through pre and post-processing the channel C with quantum channels E ∈ Chan(F →
A ⊗ Q) and D ∈ Chan(B ⊗ Q → G), respectively, via an interaction with an auxiliary sys-
tem Q. Note that only the channel C is drawn in colour as it represents a communication (or
computation) device, whilst E and D are considered part of the supermap.

quantum channel [52]. Ref. [52] showed that the most general supermap acting on a quantum
channel C can be written as

S(C) = D ◦ (C ⊗ IQ) ◦ E , (2.31)

whereE andD are quantum channels andIQ is the identity channel on an auxiliary systemQ. This
is illustrated in Figure 2.4.

Physically, this question could arise in a communication scenario, where the quantum channel
in question represents a transmission line between the sender and receiver. In this case, channels
E and D above can be thought of as local encoding and decoding operations performed by the
sender and receiver, respectively. Of course, when performing communication with a given trans-
mission line, typically one cannot assume that another transmission line is available. Therefore, in
the communication scenario, the identity channel IQ on the auxiliary system Q would be taken as
trivial (i.e. one-dimensional, which is equivalent to not having Q at all). The question of how one
can transform the original transmission line then reduces to the question of optimising the local
encoding and decoding operations performed by the communicating parties, as described in §2.2.

Building on the idea of a supermap transforming a single quantum channel, one can ask: what
is the most general form of a physically admissible transformation that maps quantum circuits into
quantum circuits? In Ref. [51] it was shown that, in fact, any supermap which transforms a quan-
tum circuit into a quantum circuit is itself another quantum circuit, known as a quantum comb. The
name ‘comb’ is derived from the fact that by rearranging the configuration of inputs and outputs of
a quantum circuit, it can be deformed into the shape of a comb, as illustrated in Figure 2.5, with k
slots in sequence. Instead of all input systems taking states as inputs and all output systems return-
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Figure 2.5: A quantum comb S, which takes a set of quantum channels in Chan(B → C),
Chan(D → E) and Chan(F → G) as input (in between its ‘teeth’) and returns a new quantum
channel in Chan(A → H). This can be decomposed into a sequence of quantum channels
K,L,M,N with ancillary systems Q,R, S.

ing states as outputs, a quantum comb can naturally take quantum channels as inputs, slotted in
between the ‘teeth’ of the comb. Similarly to the most general form of a supermap transforming a
single quantum channel, a quantum comb can always be decomposed into a sequence of quantum
channels, one for each ‘tooth’, connected together via ancillary systems, as shown in Figure 2.5.

In the following, we shall restrict ourselves to quantum combs that take k quantum channels as
input and return a single quantum channel as output, known as quantum k-combs. Mathematically,
a quantum k-comb transforming system Si into system S′i at the i-th step is a k-partite quantum
channel C ∈ Chan(S1 ⊗ · · · ⊗ Sk → S′1 ⊗ · · · ⊗ S′k) satisfying the conditions

TrS′k [C(ρ)] = TrS′k

[
C
(
TrSk [ρ]⊗

ISk
dk

)]
TrS′k−1S

′
k
[C(ρ)] = TrS′k−1S

′
k

[
C
(
TrSk−1Sk [ρ]⊗

ISk−1

dk−1
⊗ ISk
dk

)]
...

TrS′1 ···S′k [C(ρ)] = 1 ∀ρ ∈ St(S1 ⊗ · · · ⊗ Sk) ,

(2.32)

where the last condition is the condition of trace-preservation satisfied by all quantum channels.
The set of all quantum k-combs with the input/output systems above is denoted by
Comb[(S1 → S′1), . . . , (Sk → S′k)]. (Note, that the choice of maximally mixed state in the condi-
tions is arbitrary; any state could have been used.)

We have seen that the most general transformations of quantum channels connected in a quan-

36



tum circuit have been characterised, namely, such transformations can always be realised as a quan-
tum comb. However, given only a set of quantum channels without a predefined configuration, we
may ask whether there exist transformations which are compatible with quantum theory but can-
not be expressed as a quantum comb. Ref. [57] showed that the answer is positive: two quantum
channels can be combined in an indefinite causal order, a composition of channels which goes be-
yond the framework of quantum circuits and combs. This brings us to the next section.

2.4 Indefinite causal order

The idea of performing computations without a definite causal order was first suggested by Hardy
in 2009 [98], as potentially providing advantages over the conventional definite ordering of com-
putations. This idea was further developed with the introduction of the quantum SWITCH [53, 57],
a quantum supermap that combines two quantum channels in a superposition of their two possible
causal orderings. In the years since, the study of indefinite causal order has firmly established itself
as an active research area. The topic has been studied from a variety of perspectives, which can be
broadly classified into two main strands.

The first strand of research is the direct study of its essential features, such as foundational re-
search on causal structures [19, 116, 149, 155] and characterisations of the possible processes with
indefinite causal order [13–15, 20–22, 36, 40, 44, 147, 148, 195]. An important concept in the first
strand of research described above is causal inequalities [149]. These are inequalities designed to
characterise processes which locally obey quantum theory but do not exhibit a global causal struc-
ture. Causal inequalities for causal order can be seen as analogous to the Bell inequalities for local
realism.

The second strand of research on indefinite causal order relates to its potential information-
processing advantages. This typically involves the quantum SWITCH as a method of combining
quantum channels in a way that performs better than combining the channels in parallel or se-
quence. Such advantages have been found in areas such as quantum query complexity [11, 47, 68,
82], quantum communication complexity [95], and quantum metrology [201], as well as in quan-
tum communication [58, 59, 80, 94, 133, 161, 162, 168]. (Note, that these lists of references are
non-exhaustive.)

In the following, causal inequalities, together with the framework of process matrices typically
used for their description, and the quantum SWITCH are discussed in turn.
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2.4.1 Causal inequalities and process matrices

Causal inequalities were first proposed by Oreshkov, Costa and Brukner in 2011, in their seminal
paper on quantum correlations without a predefined causal order [149]. Given that many of the
fundamental notions of classical physics are subject to uncertainty and superposition in quantum
mechanics, the authors suggested the possibility that even causality itself is subject to quantum in-
determinism. The authors considered the situation where two experimenters operating in separate
local laboratories, individually described by quantum mechanics, exchange messages without as-
suming the existence of a spacetime or definite causal order in which the individual laboratories
are embedded. Strikingly, it was found that one could consistently define correlations between the
two parties which are incompatible with a global causal structure, which can be characterised by
the violation of causal inequalities. Causal inequalities test whether correlations are compatible
with a global causal order, similar to the way in which Bell inequalities test whether correlations
are compatible with local realism [25].

To illustrate the idea of a causal inequality, consider the following communication task between
two communication parties, Alice and Bob. Each party receives a system into his/her respective
laboratory exactly once, but no assumption is made on who receives the system first. When a party
receives the system, he/she tosses a coin to obtain a random bit: a for Alice and b for Bob. Bob
additionally generates a second random bit b′ which determines their task: b′ = 0 means Bob
needs to communicate bit b to Alice, while b′ = 1 means Bob has to guess bit a. Overall, their goal
is to maximise the success probability

psucc :=
1
2
[P (x = b|b′ = 0) + P (y = a|b′ = 1)] . (2.33)

Clearly, if the order in which Alice and Bob receive the system is fixed, then only one of the two
alternative tasks can be successfully completed with certainty. Specifically, it can be shown that no
strategy assuming a fixed causal structure can exceed the bound

psucc ≤ 3/4 , (2.34)

which is known as a causal inequality. However, by relaxing this assumption, the bound can be
violated.

The description of processes consistent locally with quantum mechanics but inconsistent with
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a global order of events is typically described by the formalism of process matrices, which are a
generalisation of quantum combs. Consider two parties Alice and Bob, with corresponding input
and output systems AI,AO and BI,BO, respectively. Each party is free to perform any quantum
operation from their input to output system. A quantum operation is described by a set of com-
pletely positive trace-non-increasing (CPTNI) maps {MXIXO

i } labelled by possible outcomes i,
with X ∈ {A,B}, where the sum of the possible maps

∑
i M

XIXO
i is a CPTP map. The joint prob-

ability of Alice obtaining result i and Bob obtaining result j is given by

P
(
MA

i ,MB
j

)
= Tr

[
WAIAOBIBO

(
MAIAO

i MBIBO
j

)]
, (2.35)

where MXIXO
i is the Choi operator of MXIXO

i and WAIAOBIBO is an operator on the tensor product
system AI ⊗AO ⊗ BI ⊗ BO, called the process matrix. In order to obtain non-negative probabilities
which sum up to 1, W is subject to the following constraints:

WAIAOBIBO ≥ 0 , (2.36)

Tr
[
WAIAOBIBO

(
MAIAOMBIBO

)]
= 1 ,

∀MAIAO ,MBIBO ≥ 0 ,TrAO M
AIAO = IAI ,TrBO M

BIBO = IBI .
(2.37)

Any linear operator W on the appropriate spaces satisfying the constraints (2.36)–(2.36) is a valid
process matrix.

Equations (2.36)–(2.37) are equivalent to the constraints on a quantum comb presented in [51],
albeit without the condition of a definite causal order. In Ref. [181], it was shown that the process
matrix formalism is moreover equivalent to the formalism of two-time quantum states [7, 8, 180].
This means that process matrices describe processes with independent initial and final boundary
conditions, both of which occur deterministically.

The process matrix can be seen as a generalisation of a density matrix (i.e. quantum state), with
Eq. (2.35) a generalisation of the Born rule. Indeed, the simplest example of a process matrix is a
density matrix on the input systems, i.e. WAIAOBIBO = WAIBI ⊗ IAO,BO , corresponding to a quantum
state shared by Alice and Bob.

Another example of a process matrix is when a state ρAI initially possessed by Alice is sent to Bob
via a quantum channel C. This is described by the process matrix WAIAOBIBO = IBO ⊗ (cAOBI)T ⊗
ρAI , where cAOBI is the Choi operator of C. More generally, any quantum memory channel (§2.7)
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from Alice to Bob is described by a process matrix with the form WAIAOBI ⊗ IBO . In this case, Alice
can communicate to Bob but Bob cannot communicate to Alice. Process matrices of this form
are denoted WB�A Alternatively, the situation where Bob can communicate to Alice but not vice
versa is described by a process matrix of the form WBIBOAI ⊗ IAO , denoted WA�B. In a definite
causal structure, the most general quantum process occurring between two parties is described by
a convex combination of process matrices of the two above forms:

WAIAOBIBO = qWB�A + (1− q)WA�B , (2.38)

for some probability q, 0 ≤ q ≤ 1.
Quantum processes satisfying Eq. (2.38) are causally separable and represent the most general

bipartite quantum processes where the two parties are localised in closed laboratories within a def-
inite causal structure.

Counterintuitively, Ref. [149] showed that there exist processes which are locally compatible
with quantum mechanics, but are inconsistent with the existence of a global causal structure. These
causally non-separable processes are described by process matrices not of the form of Eq. (2.38),
which cannot be decomposed into a quantum circuit. An example is the process matrix

WAIAOBIBO =
1
4

[
IAIAOBIBO +

1√
2
(
ZAOZBI + ZAIXBIZBO

)]
, (2.39)

where the input and output systems are all two-dimensional and X,Z are the Pauli X and Z op-
erators. Ref. [149] showed that the above process matrix defines a valid strategy (i.e. satisfies the
constraints (2.36)–(2.36)) for the random bit game described above, leading to a success probabil-
ity psucc = (2+

√
2)/4, which violates the causal inequality bound of 3/4 for the case of a definite

causal structure.
The possibility of accomplishing tasks that were impossible under the assumption of a fixed

global causal order has given rise to a large body of works which have further elaborated on the
characterisation of causally non-separable processes via causal inequalities [1, 20–22, 33, 40, 142].
Others works have employed the formalism of process matrices to investigate different aspects of
indefinite causal order, for example, Ref. [44] examines the dynamics of causal structures, while
Ref. [147] analyses the quantum SWITCH, which is described next.
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Figure 2.6: The quantum SWITCH supermap transforming two quantum channels A ∈
Chan(A) and B ∈ Chan(B) into a new quantum channel W(A,B) ∈ Chan(M ⊗ O), where
O is an order qubit determining the causal order of the operations A and B, and M ' A ' B.
In computational or communication protocols, O is initially fixed in a state ω and is inaccessi-
ble to the sender. The dashed and dotted lines depict the alternative orders corresponding to
ω = |0〉〈0| and ω = |1〉〈1|, respectively.

2.4.2 The quantum SWITCH

Perhaps the most prominent example of indefinite causal order is the supermap known as the quan-
tum SWITCH, introduced by Chiribella, D’Ariano and Perinotti in 2009 [53, 57]. The quantum
SWITCH takes two quantum channelsA andB as input, and returns a new quantum channel which
is a coherent superposition of both possible concatenations B ◦ A and A ◦ B of the channels.

Mathematically, the quantum SWITCH acting on two channelsA ∈ Chan(A) andB ∈ Chan(B)
is defined by the supermap

W : Chan(A)× Chan(B) → Chan(M⊗ O)

W(A,B)(ρ⊗ ω) =
∑
i,j

Wij(ρ⊗ ω)W†
ij ,

Wij = BjAi ⊗ |0〉〈0|+ AiBj ⊗ |1〉〈1| ,

(2.40)

where, {Ai} and {Bj} are any Kraus representations of the channels A and B, respectively, M '
A ' B is the message system, and ω is the control qubit O determining the causal order of the
operations A and B, which we call the order qubit. The quantum SWITCH is illustrated in Figure
2.6.

Ref. [57] showed that the quantum SWITCH cannot be realised as a quantum circuit. This proof
relies on the fact that the quantum SWITCH is a supermap which takes as input only one use of
each channel. Nevertheless, a more general model of computation than the circuit model, where

41



the internal wires are movable, is suggested as potentially being able to implement the quantum
SWITCH [57]. This has in fact now been achieved in the routed quantum circuits formalism, in
parallel to the work of this thesis [19, 134, 191, 192]. In relation to the framework of process matri-
ces discussed above, it is interesting to note that the quantum SWITCH does not violate any causal
inequalities [13, 148], however it has been shown to exhibit genuine indefinite causal order in a
device-independent way [13, 23, 40].

The quantum SWITCH has been proven to provide advantages for a wide range of information-
processing tasks, when compared to analogous situations that assume a definite causal order, as
described at the start of this section. In the context of quantum Shannon theory, the combination
of two communication channels via the quantum SWITCH was first shown to offer communica-
tion advantages over standard quantum Shannon theory, where channels can only be combined in
parallel and sequence, in Ref. [80]. This work showed that two completely depolarising channels,
which ordinarily transform any input state into the maximally mixed state I/d and therefore have
zero capacity, can be activated by the quantum SWITCH to transmit classical information. That
is, the quantum SWITCH transformation of two completely depolarising channels results in a new
quantum channel with non-zero classical capacity. The lower bound was found from the Holevo
capacity to be 0.049 bits per channel use, which was later shown to be equal to the classical capacity
[59]. Soon afterwards, similar advantages were found in the communication of quantum informa-
tion: two dephasing channels, which each have zero quantum capacity individually, were shown to
be transformed by the quantum SWITCH into a quantum channel with non-zero quantum capacity
[168], and later for a different choice of dephasing channels, into a quantum channel with perfect
quantum capacity of 1 qubit per channel use [57].

Various proposals for experimentally implementing the quantum SWITCH have been made, us-
ing photonics [160], trapped ions [85] or superconducting qubits [86]. This has resulted in a series
of papers claiming to have realised the quantum SWITCH experimentally using photonic systems
[93, 160, 165], most recently also demonstrating the aforementioned communication advantages
through noisy channels [94, 97]. However, whether these optical demonstrations are genuine im-
plementations of an indefinite causal order or rather simulations of such processes has been a mat-
ter of continued debate [147, 152]. Implementations of the quantum SWITCH in a quantum gravity
scenario involving the superposition of spacetimes have been proposed in Refs. [152, 203]. These
gravitational implementations have been claimed to avoid the criticisms directed at the photonic
experiments, however, it is not yet clear whether such experiments are possible to implement in
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practice.
In the rest of this work, we shall not be concerned further with the experimental implementabil-

ity of indefinite causal order. We shall consider indefinite causal order as motivated from a purely
foundational perspective. This is in contrast to the superposition of channels, described below,
which has a natural physical implementation, and is motivated from both a foundational and prac-
tical perspective.

Soon after the publication of the first results on communication advantages associated with the
quantum SWITCH, the origin of these advantages became the subject of critical analysis. In Ref.
[2] it was noted that the possibility of classical communication through the quantum SWITCH of
two completely depolarising channels could be reproduced by the coherent control of two such
channels within a definite causal order. This has led to a resurgence of interest in the superposition,
or coherent control, of quantum channels, within the research community that had been studying
indefinite causal order [2, 76, 96, 133, 190]. In these works, several similarities and differences
between the coherent control of independent channels and the coherent control of causal orders
have been argued for.

In Chapter 4, we attempt to set the scene for a formal answer to this question, which is finally
dealt with in Chapter 7. This leads us to the next section, where the literature on coherent con-
trol, or superpositions, of quantum channels and unknown quantum operations is systematically
explored, followed by a discussion on the comparisons between the superposition of causal orders
and superposition of channels.

2.5 Superposition, interference or coherent control of

quantum channels

The idea of extending superpositions of quantum states to superpositions of quantum evolutions
was first proposed by Aharonov, Anadan, Popescu and Vaidman in 1990 [9]. In the literature that
followed over the last 30 years, this phenomenon has been called various names, including gluing
of completely positive maps [4], interference of quantum channels [146], channelmultiplexing [91]
and coherent control of quantum channels [2]. In this thesis, we shall use these terms interchange-
ably, but mostly stick with the original notion of superposition of quantum channels.

Superpositions of quantum channels involve several subtleties in definition, namely their appar-
ent dependence on the choice of Kraus representations of the channels, and the impossibility of
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controlling an unknown unitary. Each of these provides a problem for constructing superpositions
of channels in communication and/or computation. In the following, we discuss these two issues
in turn, followed by applications to communication and finally comparisons with the quantum
SWITCH.

2.5.1 Superposition of channels depends on the implementation of the channels

A concrete physical example of the superposition of channels was studied by Åberg [3, 4] and Oi
[146] in 2003, where two independent quantum channels were placed on separate arms of an in-
terferometer. By routing a single particle through a superposition of the two paths of the inter-
ferometer, a superposition of the two channels is induced. It was shown that the overall channel
arising from such a superposition depends not only on the two original channels themselves, but
also on their specific implementation through an interaction with the surrounding environment.
That is, the particular way in which a noisy channel is realised via its extension to a unitary acting on
the system and an environment (Stinespring dilation – see §2.1) affects the way in which it can be
combined in a superposition. This has the consequence that given access only to a standard input-
output description of a set of quantum channels, there is no unique way in which these channels
can be combined in a superposition.

Mathematically, the interferometric scenario can be described in the following way. We start
with a Mach-Zehnder interferometer, with 50:50 beamsplitters on both ends. Let the quantum
channels on the upper and lower arms of the interferometer be denoted A,B ∈ Chan(M), re-
spectively, where M is an internal degree of freedom of the photon. Let U,V be unitaries which
implement respective Stinespring dilations of the two channels, with respective environment sys-
tems E, F, initialised in the states |η〉E , |φ〉F, such that

A(ρ) = TrE
[
UME (ρ⊗ |η〉〈η|)U†

ME

]
B(ρ) = TrF

[
VMF (ρ⊗ |φ〉〈φ|)V†

MF

]
.

(2.41)

We take the spatial path degree of freedom of the photon to be P, where |0〉 corresponds to the
photon being localised on the upper arm and |1〉 corresponds to the photon being localised on the
lower arm. Since U only acts on the upper arm, and V acts only on the lower arm, we have that the

44



overall action of U and V is given by the unitary

W =
(
UME ⊗ IF ⊗ |0〉〈0|P

)
+
(
VMF ⊗ IE ⊗ |1〉〈1|P

)
. (2.42)

We start the protocol by initialising a single photon with an internal degree of freedom M (e.g.
polarisation) in the pure state |ψ〉 ∈ HM. Upon application of the first beamsplitter, the state of
the system is

|ψ〉M ⊗ |+〉P . (2.43)

After passing through the two channels, the state of the whole system is

UME(|ψ〉M ⊗ |η〉E)⊗ |φ〉F ⊗ |0〉P√
2

+
VMF(|ψ〉M ⊗ |φ〉F)⊗ |η〉E ⊗ |1〉P√

2
. (2.44)

From the above, a superposition of the channels A and B, specified by the Stinespring dilations
(U, |η〉) and (V, |φ〉), can be defined as the channel

S(ρM ⊗ ωP) := TrEF
[
W(ρM ⊗ |η〉〈η|E ⊗ |φ〉〈φ|F ⊗ ωP)W†] , (2.45)

taking as input a state ρM on the internal degree of freedom and a stateωP on the path (ωP 6= |+〉〈+|
is achieved by having a non 50:50 initial beamsplitter). Indeed, this construction of a superposition
of two channels depends not only on the channels themselves, but also on the choice of unitary
extension.

In the context of communication, it is important to be able to build any communication proto-
col from a set of given resources. In quantum Shannon theory, the available resources are commu-
nication devices described by quantum channels, specified by their input-output descriptions, but
with the particular realisation through the environment unknown. This means that without further
specification, a superposition of quantum channels is problematic in a theory of communication.

Even if perfect access to the environment is assumed, a further issue remains. Not only should
the communication protocols be constructible from a given set of devices, but also from a given
set of operations on those devices. The same issue holds for computation, where algorithms are
constructed by combining a given set of gates into a circuit. Mathematically, this means that the
operations that can be performed on quantum channels should be valid quantum supermaps [52],
i.e. (in the case of definite causal order) described by a quantum comb with open slots that can take
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any quantum channels as input.
Assuming perfect access to the environment is equivalent to having access to unitary channels.

Indeed, this particular issue was first presented in the context of computation with control over
unknown unitary gates [12, 49, 85, 184, 188, 202]. The problem is that it is impossible to construct
a supermap that is able to perform a universal controlled operation on any unknown unitary. Yet,
given some additional information about the device, this has been shown to be possible. Universal
control over unknown unitaries is presented next.

2.5.2 Controlling an unknown unitary

Controlled-unitary gates are a fundamental element of practically every protocol in quantum com-
putation. They act on a target quantum system and a control quantum system, where the value of
the control system determines whether or not a given unitary V is applied on the target system. A
simple example is the CNOT gate

UCNOT = |0〉〈0| ⊗ I+ |1〉〈1| ⊗ X , (2.46)

which acts as the identity on the target if the control is in state |0〉, and acts as the NOT gate X
on the target if the control is in state |1〉. Here the unitary that is being controlled is the X gate.
In the absence of such control, the X gate is defined only up to a global phase [145]. However,
any controlled operation on the X gate enforces a particular phase to be chosen, in the case of the
CNOT, simply the number 1. This means that the definition of any controlled-unitary gate depends
not only on the unitary that is to be controlled, but also on a choice of phase. In the case of the X
gate, any controlled-gate of the form

UX,θ = |0〉〈0| ⊗ I+ eiθ |1〉〈1| ⊗ X, θ ∈ [0, 2π[ , (2.47)

is a valid gate that coherently controls X.
Consider now that we would like to have a procedure that universally constructs a controlled-

unitary gate from any unknown unitaryV that is given as a black box. Since the unitary is unknown,
what we really have access to is the unitary Veiφ for some unknown phase φ ∈ [0, 2π[ . Given that
the unitary itself has an unknown phase, it is impossible to universally choose a particular phase
with which to control any such unitary. This simple analysis reveals that the coherent control of
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an unknown unitary is impossible in the standard circuit model. This is formally proven in Refs.
[12, 184].

Nevertheless, if certain additional information about the devices modelled as unitary gates is
known, then the no-go theorem for controlling an unknown unitary can be circumvented [85, 86,
188, 202]. This can be done, for example, by extending the Hilbert space of possible states to in-
clude a vacuum sector |vac〉, which is orthogonal to all other information-carrying states [3, 202],
and is guaranteed to be preserved under the unknown unitaries.

For example, given a unitary gate V ∈ Chan(A) on some system A, one could define a new
unitary gate

U := eiφVA ⊕ IVac ∈ Chan(A⊕ Vac) , (2.48)

where Vac is a one-dimensional vacuum system. Since the phase eiφ is now a relative phase with
respect to the additional vacuum system, this phase becomes part of the specification of the ex-
tended unitary U. If every (unknown) unitary is guaranteed to decompose in this block-diagonal
form, then a supermap can be defined to universally control an unknown unitary V with phase φ
with the vacuum:

Scontrol(V , φ) = S(·)S†

S := |0〉〈0| ⊗ I+ |1〉〈1| ⊗ Veiφ .
(2.49)

The abstract notion of vacuum is directly inspired by the vacuum state in quantum optics, where
such protocols have indeed been performed in experiment [125, 202].

2.5.3 Communication through a superposition of paths

The first concrete proposal for communication through two quantum channels combined in a
superposition of paths was presented by Gisan, Linden, Massar and Popescu in 2005 [91]. In
this work, it was shown that when a single particle is sent through a superposition of paths go-
ing through two different noisy channels, the overall amount of noise experienced by the particle
is reduced, compared to going through only one of the two channels. This idea of error filtration has
far-reaching implications for the possibility of communication through quantum noise. However,
in the cases considered, particular forms of noise were always assumed, and the results depend on
the particular physical implementation of the superposition. Thus, the aforementioned desiderata
that any communication protocols should be constructible from only a given set of communication
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channels and fixed operations on those channels are not (yet) satisfied.
This leaves an important problem to be solved, namely, to construct a Shannon-theoretic frame-

work for communication through a superposition of paths, where existing communication devices
can be coherently controlled in a well-defined manner. A solution to this problem is the starting
point of the results presented in Chapters 3, 6 and 8 of this thesis. In Chapter 5, we then present
various Shannon-theoretic communication advantages that can be quantified from our definition
of the superposition of channels.

We note that related communication schemes have been proposed using devices that act coher-
ently with the vacuum, such as two-way classical communication using a single particle [72] and
communication through multiple-access channels with a single particle [200]. However, a funda-
mental difference between these two frameworks and the superposition of channels is that there
is no internal degree of freedom of the particle in those frameworks. These frameworks and their
relationship to the work presented in this thesis are further discussed in Chapter 10.

2.5.4 Superposition of paths vs. superposition of causal orders

The framework of error filtration is similar in spirit to the results on communication enhancements
from combining two quantum channels in a superposition of causal orders. In the former, the
communication channels are combined through a superposition of paths, while in the latter, the
communication channels are combined through a superposition of orders.

The formal similarities between the two paradigms led to the 2018 work of Abbott et al. [2],
where the superposition of orders and superposition of paths is compared. In this work, the authors
showed that the specific communication advantages arising from combining two noisy channels via
the quantum SWITCH, presented in Ref. [80], could be reproduced or even surpassed by combining
the noisy channels in a superposition of paths, as per the construction (2.45) of Oi [146]. Specifi-
cally, combining two completely depolarising channels on the two arms of an interferometer, with
specific choices of Stinespring dilations, was shown to result in an overall channel with a Holevo
capacity up 0.16 bits per channel use, which is greater than the value 0.049 bits per channel use from
the quantum SWITCH. The authors argued that this suggests it is the common element of coherent
control, rather than indefinite causal order, which gives rise to the communication advantages asso-
ciated with the quantum SWITCH. A key difference, however, was noted, in that a superposition of
causal orders depends only on the input-output description of the communication channels them-
selves, whilst a superposition of channels on alternative paths requires the additional specification
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of a choice of unitary dilation. This comparison was further elaborated in the 2018 work of Guérin,
Rubino and Brukner [96], where a set of operations which can be considered superpositions of
processes were compared with the quantum SWITCH.

Chapter 4 of this thesis is devoted to constructing a framework to enable the communication
advantages associated with the two types of superpositions to be formally quantified. We do this
by constructing a resource theory of communication. With this in hand, we argue in Chapter 7,
contrary to Refs. [2, 96], that the communication advantages arising from the quantum SWITCH
and superposition of paths are distinct to a certain extent, and, due to their dependence on different
initial resources, cannot be readily compared on an equal footing. Resource theories are introduced
in the next section.

2.6 Quantum resource theories

In this section, we introduce the notion of resource theories, and their application to quantum in-
formation. In this work, we use the framework of resource theories to describe communication.
To motivate this framework, we begin by illustrating simple examples of resource theories in other
fields, and then qualitatively describe the general framework in the context of quantum informa-
tion, and specifically quantum communication. A quantitative description is left for Chapter 4.

In many areas of science, the concept of resources plays a fundamental role. For example, in in-
dustrial chemistry, an important problem is how to convert abundant raw materials into useful
products. The resources come in two levels: first, there are the ‘objects’ that are available (e.g. the
chemicals abundant in nature), and secondly there are ‘transformations’ which can be performed
on the objects (e.g. chemical reactions). Objects which are abundant are considered ‘free,’ while
those which require effort to produce are considered ‘costly’. Similarly, transformations which are
in some sense easy to perform are considered free. The relation between the objects and transfor-
mations is that costly objects are those which cannot be generated from free objects and free oper-
ations alone [60, 67]. For example, a pharmaceutical drug is costly as it requires a huge amount of
processing to make from abundant raw materials.

In quantum information, the most prominent example of a resource theory is the resource the-
ory of bipartite entanglement. In this theory, the ‘objects’ are quantum states and the ‘transforma-
tions’ are quantum channels. Entangled states between two parties Alice and Bob are considered as
a costly resource, which are used to enable quantum communication between the two parties. In-
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deed, entangled states are generally difficult to produce in the laboratory. Separable states between
the two parties are considered free. The free operations are local operations and classical commu-
nication (LOCC). Given a set of separable states between two parties, LOCC cannot generate an
entangled state between the two parties [67, 196].

Formally, a resource theory can be defined in the language of category theory [27, 63, 66], fol-
lowing the work of Coecke, Fritz and Spekkens [67]. A resource theory is defined as a symmetric
monoidal category, where the ‘objects’ are objects in the category and the ‘transformations’ aremor-
phisms between the objects. The categorical structure is natively equipped with a parallel composi-
tion of objects and transformations, as well as a sequential composition of transformations. Other
formal characterisations of resource theories have also been made [60]. A notable distinction be-
tween different approaches is that in the categorical formulation, a set of free transformations is
defined first, and the set of free objects is defined with respect to the set of free transformations.
Conversely, other works have first defined a set of free objects, and then defined free transforma-
tions as those which preserve the set of free objects [131, 132].

In this thesis, we broadly follow the categorical constructions, but do not directly employ any
category theory, which will not be required for understanding any of the work presented in the
thesis. For our purposes, it is sufficient to define a resource theory as follows: the set of all possible
resources is a set of objects. These objects are equipped with a set of operations M that can act on
them, which are closed under sequential and parallel composition. A subset of operations Mfree ⊆
M, which are regarded as free, is chosen.

In typical applications of resource theories to quantum theory, the objects have been quantum
states and the transformations have been quantum channels. However, in a theory of communica-
tion, the given resources are communication devices described by quantum channels, which then
admit transformations such as encoding, decoding and other operations, described by quantum
supermaps. The first application of a resource-theoretic framework to quantum Shannon theory
was by Devetak, Harrow, and Winter in 2008 [74], which aimed to unify the underlying structures
between the various coding theorems in quantum Shannon theory. In Chapter 4, we present a
resource theory of communication which captures different choices of possible combinations of
communication channels, including the superposition of causal orders and the superposition of
quantum channels.
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Figure 2.7: A two-step quantum channel. The left-hand side depicts a 2-step quantum
channel B taking two input states on systems S(1) and S(2), in succession. The right-hand side
shows the physical implementation of the 2-step channel via two unitary channels W1 and
W2 [51, 54] where the memory between the two uses of the channel is realised by an envi-
ronment E, which is inaccessible to the communicating parties. The ground symbol on a wire
denotes the partial trace over the corresponding system. Note that the two unitary channels
and the state η are all drawn in the same colour because they represent the same communica-
tion channel.

2.7 Quantum channels with correlated noise

2.7.1 Time-correlated processes: k-step quantum channels

Until now, we have always described the single use of a given quantum device, such as a compu-
tational gate or transmission line, by a single quantum channel. This could be a quantum channel
with a single input/output port, or a k-partite quantum channel with k input/output ports, in-
terpreted as acting simultaneously on k spatially separate subsystems. Now, we introduce a new
possibility: we consider a quantum device that can act multiple times in succession, with possible
correlations between successive uses. In this case, the quantum device is described by a k-partite
quantum channel with k input/output ports, where each different port corresponds to a use of the
device at a different time.

To illustrate this idea, consider a quantum device described by a random unitary gate chosen
from a given set {Vm}, e.g. the set of Pauli gates, with some probability distribution {p(m)}. That
is, each time this device is used, it is described by the quantum channel

R1(ρ) =
∑
m

p1(m)VmρV†
m ∈ Chan(S(1)) . (2.50)

However, the specific choice of gate in any two consecutive applications is correlated. Specifically,
two uses of the device at two time steps in succession, t1 and t2, is described by the bipartite quantum
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channel

R(ρ12) =
∑
m,n

p(m, n) (Vm ⊗ Vn) ρ12 (Vm ⊗ Vn)
† ∈ Chan(S(1) ⊗ S(2)) , (2.51)

where Vm and Vn are unitary gates in the given set and p(m, n) is a joint probability distribution,
with its marginal given by p(m). Here, the system S(1) sent at time t1 experiences the unitary gate
Vm, while the system S(1) sent at time t2 experiences the gate Vn. The quantum state ρ12 represents
the joint state of the two systems sent at the two times t1 and t2, that is, ρ12 is a quantum state on the
Hilbert space of the composite system S(1)⊗ S(2). (Note, that in a quantum circuit, the description
of the joint system sent at the two times using the tensor product S(1)⊗S(2) is justified by the wiring
depicted in Figure 2.7. That is, we can start by considering two systems S(1) and S(2) in parallel, with
S(1) sent through the input of the first port of the 2-step channel, whilst the system S(2) undergoes
an identity channel. Then, the output of the first port of the 2-step channel is swapped with the
output of the identity channel, with the latter then entering the input of the second port of the 2-
step channel, and the former now undergoing an identity channel.) The probability distribution
p(m, n) specifies the correlations between the random unitary evolutions experienced by system
S(1) and system S(2).

Generalising from the example of a bipartite random unitary channel, we can construct a general
definition of time-correlated channels. A quantum device that can be used k times in succession
is described by a k-step (correlated) quantum channel [135] (also known as a quantum k-comb [51,
54], quantum memory channel [39, 43, 117], or non-Markovian quantum process [41, 157]).

Formally, a k-step quantum channel is a special type of k-partite quantum channel C with the
additional property that no signal propagates from an input S(i) to any group of outputs S′(j) with
j < i [51]. In this case, S(j) denotes the system sent at the j-th time. A k-step quantum channel
is mathematically equivalent to a quantum k-comb (§2.3.2), although here it describes a device
rather than a higher-order transformation as in §2.3.2. We shall denote the set of k-step quantum
channels as Chan(S(1) → S′(1), . . . , S(k) → S′(k)), or simply Chan(S(1), . . . , S(k)) when the input
and output of each pair coincide. When k is unspecified, we shall refer to these channels as multi-
step quantum channels. For k = 2, an example of a 2-step quantum channel is illustrated in Figure
2.7.

Physically, a time-correlated random unitary channel of the form (2.51) can arise in a photonic
setup where the systems S(1) and S(2) are modes of the electromagnetic field associated with two
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different time bins [77, 78, 111, 129]. The noisy channel can correspond, for example, to the action
of an optical fibre, where the random unitary changes of the photon polarisation arise from random
fluctuations in the birefringence. Correlations between the unitaries at different times can arise
when the time difference t2−t1 between successive uses of the channels is smaller than the timescale
on which the birefringence fluctuates.

2.7.2 Spatially correlated processes: no-signalling quantum channels

The k-step quantum channels described in the previous subsection are a special case of k-partite
quantum channels that represent processes where successive output systems are unable to causally
influence previous input systems. Physically, such a restriction naturally occurs when successive
pairs of input/output systems correspond to actions performed by the same party at successive
moments in time.

Another special case of k-partite quantum channels are k-partite no-signalling quantum chan-
nels, which represent processes where each output system depends only on its corresponding input
system and no others.

Formally, a k-partite no-signalling quantum channel is a special type of k-partite quantum channel
C with the additional property that no signal propagates from an input S(i) to any group of outputs
S′(j) with j 6= i [57]. In the following, we denote the set of all k-partite no-signalling quantum
channels by NSChan(S(1) → S′(1), . . . , S(k) → S′(k)). When the inputs and outputs are arbitrary,
we use the notation NSChan.

Physically, no-signalling channels naturally occur in the context of multi-partite channels, where
each pair of input/output systems corresponds to causally disconnected parties.

Note, that no-signalling quantum channels are a special case of multi-step channels. In fact, the
correlations in the example of Eq. (2.51) describe a no-signalling channel, and are not specific to
time. The same expression can be used also to describe correlated channels acting on two spatially
separated systems, or on any other type of independently addressable systems.

2.7.3 Communication advantages arising from time-correlations

Let us briefly examine an example of a communication protocol which makes use of correlated
quantum channels. Consider a noisy transmission line which exhibits time-correlations in noise.
With knowledge of the structure of the correlations, it can be possible for the sender to encode the
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message over a sequence of particles such that the correlations cancel out the noise overall [135].
The completely depolarising channel Ndep = Tr(ρ)I/d sends any input state to the maximally

mixed state I/d, where d is the dimension of the output system, and hence cannot be used to
transmit information. Now consider a transmission line, where each use in isolation is described
by the completely depolarising channel, but where the noisy processes occurring on successive
uses are correlated. Physically, the completely depolarising channel in dimension d = 2 can be
realised as a uniform randomisation over the identity and Pauli channels, as in Eq. (2.50) with
U0 = I,U1 = X,U2 = Y,U3 = Z and p(m) = 1/4. If the time interval between successive
applications of the device is small, then the application of the device on two consecutive particles,
described by a (possibly entangled) quantum state ρ12 , could result in the choice of unitary being
perfectly correlated. This results in the 2-step quantum channel (2.51), with

p(m, n) =
δ(m, n)
d4

. (2.52)

In Ref. [135], Macchiavello and Palma showed that by encoding ρ12 as one of the four Bell states, it is
possible to achieve perfect classical communication of 2 bits per use of the correlated channel. This
example highlights the potential of more general communication scenarios than the traditional
direct communication from a sender to a receiver using a single uncorrelated transmission line.

In Chapter 6, we extend the use of correlated quantum channels in communication to scenarios
where a single particle is sent at a superposition of different times, in the spirit of the superpositions
of channels discussed in §2.5.1.
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3
Superposition of channels

In this chapter, we formally define a general notion of a superposition of two quantum channels,
which is consistent with previous examples [2–4, 146]. We provide a characterisation of all possi-
ble superpositions of two channels in terms of both their Kraus representations and Hamiltonian
realisations. We discuss how this characterisation clearly shows the non-uniqueness of a super-
position of two channels, which is problematic in the context of communication, as discussed in
§2.5.1. We circumvent these problems by defining the notion of a vacuum extension of a quantum
channel, which enables the construction of supermap that generates a superposition of two inde-
pendent channels. Finally, we extend our construction to a superposition of multiple independent
channels, as well as to a superposition of multipartite channels. First, however, we introduce some
important concepts relating to the action of channels on systems and sectors.
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3.1 Systems and Sectors

In quantum information theory, the degrees of freedom used to carry information are represented
by abstract quantum systems. However, in practice, an abstract quantum system A is only an effec-
tive description of some subset of degrees of freedom, which is accessible to an experimenter in a
given spacetime region [48, 193, 199]. In this case, the Hilbert space HA of the abstract quantum
systemA is a subspace of a larger Hilbert spaceHS, which describes all the degrees of freedom that
could be accessed in principle. In this case,A is called a sector of S, and the states of systemA satisfy
the constraint

Tr[ρPA] = 1 ∀ρ ∈ St(A) , (3.1)

where PA is the projector onto HA.
For example, in quantum optics, a polarisation qubit is defined by the two orthogonal states

|1〉k,H ⊗ |0〉k,V and |0〉k,H ⊗ |1〉k,V, corresponding to a single photon with wavevector k in either
the horizontal (H) or vertical (V) polarisation modes (here, |n〉X is a particle number state with
n particles in mode X). Yet, this description only holds if the state of the electromagnetic field is
constrained to lie within the subspace spanned by these two state vectors.

In general, the evolution of the larger system S is described by a quantum channel C̃ ∈ Chan(S).
The channel C̃ defines an effective evolution on sector A only if it maps all states in A onto states in
A, that is, if it satisfies the No Leakage Condition

Tr
[
PA C̃(ρ)

]
= 1 ∀ρ ∈ St(A) . (3.2)

When equation (3.2) is satisfied, one can always define an effective channel C ∈ Chan(A),
simply given by

C(ρ) := C̃(ρ) ∀ρ ∈ St(A) . (3.3)

In this case, we call C the restriction of C̃ to sector A and say that C̃ is an extension of C. Clearly,
given a channel C̃, C is uniquely defined. However, a given channel C does not have a uniquely
determined extension C̃.

The relationship between a given channel C̃ and its restriction can be written in terms of the
Kraus operators:
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Lemma 1. Let C̃(ρ) =
∑r

i=1 C̃iρC̃†
i be a Kraus representation of channel C̃ ∈ Chan(S). Then,

channel C̃ satisfies the No Leakage Condition with respect to sector A if and only if

PAC̃iPA = C̃iPA ∀i ∈ {1, . . . , r} . (3.4)

The proof is given in Appendix A.1.

Proposition 2. Let C̃(ρ) =
∑r

i=1 C̃iρC̃†
i be a Kraus representation of a channel C̃ ∈ Chan(S), which

satisfies the No Leakage Condition with respect to sector A. Let C be the restriction of C̃ to sector A. Then
a Kraus representation of C is

{Ci := C̃iPA}ri=1 . (3.5)

Proof. Follows directly from the definition of a restriction and Lemma 1.

3.2 General superposition of quantum channels

Consider two abstract quantum systems A and B. If the Hilbert spaces corresponding to the sys-
temsA andB are orthogonal subspaces of a larger Hilbert spaceHS, we can construct a new system
S := A ⊕ B, corresponding to the direct sum Hilbert space HS = HA ⊕ HB. Physically, the
system A ⊕ B represents a quantum system that can be in sector A, in sector B, or in a coherent
superposition of the two sectors.

The possible evolutions of system S given the evolutions of its sectors A and B, motivates a gen-
eral definition of a superposition of channels:

Definition 3. A superposition of two channels A ∈ Chan(A) and B ∈ Chan(B) is any channel
S ∈ Chan(A⊕ B) such that

S(ρ) = A(ρ) ∀ρ ∈ St(A) ,

S(ρ) = B(ρ) ∀ρ ∈ St(B) .
(3.6)

Physically, S represents an evolution that can take an input state in sector A, in sector B, or in a
coherent superposition of the two sectors, and returns an output state in the corresponding sector.

Clearly, two channels A ∈ Chan(A) and B ∈ Chan(B) do not define a unique superposi-
tion channel. To make this point, consider the example of a superposition of two unitary channels
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U(·) = U(·)U† and V(·) = V(·)V†. One possible superposition is given by the unitary channel
S(·) = S(·)S†, with S = U ⊕ V. Another possible superposition is given by the non-unitary
channel S ′(·) = S′1(·)S′

†
1 + S′2(·)S′

†
2 , where S′1 = U⊕ 0B and S′2 = 0A ⊕ V, where 0X denotes the

null operator on system X. The latter example could be implemented in practice by first perform-
ing a non-demolition measurement that distinguishes the two sectors A and B whilst preserving
coherence within each individual sector, followed by performing either the unitary channel U or
V depending on the outcome.

Given two quantum channels A ∈ Chan(A) and B ∈ Chan(B), with some Kraus representa-
tions {Ai}ri=1 and {Bi}ri=1 with the same number of Kraus operators, we can construct a superposi-
tion channel S ∈ Chan(A⊕ B) specified by the Kraus operators

Si := Ai ⊕ Bi i ∈ {1, . . . , r} . (3.7)

Note that two Kraus representations{Ai}rAi=1 and{Bi}rBi=1 with different numbers of Kraus operators
can always be extended to Kraus representations with the same number of operators, for example,
by appending null operators.

In fact, any superposition of channels can be formed with the above construction, as specified
by the following theorem, which also provides a possible physical realisation of any superposition
of channels:

Theorem 4. The following are equivalent:

1. Channel S ∈ Chan(A⊕ B) is a superposition of channelsA ∈ Chan(A) andB ∈ Chan(B).

2. The Kraus operators of S are of the form Si = Ai ⊕ Bi for some Kraus representations {Ai} and
{Bi} of channelsA andB, respectively.

3. There exists an environment E, a pure state |η〉 ∈ HE, two Hamiltonians HAE and HBE, with
supports in the orthogonal subspacesHA ⊗ HE andHB ⊗ HE, respectively, and an interaction
time T, such thatA(ρ) = TrE

[
UAE(ρ⊗η)U†

AE
]
withUAE = exp

[
− iHAET/~

]
, andB(ρ) =

TrE
[
UBE(ρ⊗ η)U†

BE
]
with UBE = exp

[
− iHBET/~

]
, and S(ρ) = TrE

[
U(ρ⊗ η)U†] with

U = exp
[
− i(HAE ⊕ HBE)T/~

]
, where η := |η〉 〈η|.

The proof is given in Appendix A.1.
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Figure 3.1: Hamiltonian realisation of an arbitrary superposition of channels. The system
S and the environment E are jointly routed to one of two regions, RA and RB, depending on
whether the system is in sector A or sector B. In region RA (RB) the system and the environ-
ment interact through a Hamiltonian HAE (HBE). After the interaction, the two paths of both
the system and the environment are recombined, and finally the environment is discarded. In
general, this realisation requires the ability to control the environment.

Condition 3 shows how any superposition of two channels can be implemented in practice: The
system and the environment are jointly routed to two separate regions, RA and RB, depending on
whether the system is in sector A or sector B. Local Hamiltonians HAE and HBE act jointly on the
system and environment in each region. Finally, the two alternative trajectories are recombined
and the environment is discarded. This is illustrated in Figure 3.1.

Theorem 4 highlights a fundamental problem with the superposition of channels from an opera-
tional point of view. In information processing or communication, one would like any combination
of devices to depend on only the original devices themselves. That is, given two devices described
by quantum channels A and B, one would like to be able to construct the superposition of those
channels given only the knowledge of the channels themselves. Mathematically, this amounts to
saying that the superposition of two channels should be a quantum supermap (cf. §2.3.2). How-
ever, it is clear that the characterisation of the superpositions of channels in Theorem 4 does not
uniquely specify the action of a superposition channel S given two constituent channels A and
B. Physically, this non-uniqueness can be attributed to two separate phenomena, as previously
discussed in §2.5.1–2.5.2.

First, the dependence of the superposition of two noisy channels on their Kraus representations
{Ai}ri=1 and {Bi}ri=1 signifies a dependence on the way in which the channels are realised via an
interaction with their environment (cf. §2.5.1) [2, 146]. This is a problem in the context of infor-
mation processing and communication because an agent with access to a noisy quantum channel
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typically does not have access to its environment (otherwise, the description of the device would
simply reduce to a larger unitary channel). Second, even in the case of unitary channels, the univer-
sal control of unitary channels is impossible, since their relative phase is not uniquely determined
(cf. §2.5.2) [12, 184, 188]. This further prevents the possibility of a scenario where agents have
access to a given set of communication devices and can freely combine them in superpositions.

In the next sections, we propose a framework for constructing a superposition of quantum chan-
nels that depends only on an input-output description of the available information-processing de-
vices. We circumvent the above problems by using extensions of the original channels as the initial
descriptions of the devices.

3.3 The vacuum extension of a quantum channel

In information processing, each use of a given device is counted as a resource. For example, a trans-
mission line that can be used only once is modelled as a single quantum channel, whilst a transmis-
sion line that can be used twice independently is modelled as two quantum channels in parallel (cf.
§2.1) [2, 146]. However, the physical apparatus performing the channel exists also in the absence
of processing or transmitting information. For example, consider an optical fibre. When the op-
tical fibre transmits a single photon with variable polarisation, we model it as a quantum channel
A ∈ Chan(A), where A is a two-dimensional system consisting of the horizontal and vertical po-
larisation degrees of freedom of a single photon. When the fibre is not used, we can model it as a
quantum channel acting on a system containing the vacuum of the electromagnetic field [202]. In
general, we assume that the system used for information processing or communicating is a sector
A of a larger system S, which also contains a vacuum sector Vac, which is orthogonal to A.

Thus, we model a communication device as a quantum channel on the direct sum system Ã :=

A⊕Vac. For simplicity, we shall assume that the vacuum sector is one-dimensional with a unique
vacuum state |vac〉. We call this extended description a vacuum extension of the original channel:

Definition 5. Channel Ã ∈ Chan(Ã) is a vacuum extension of channelA ∈ Chan(A) if

Ã(ρ) = A(ρ) ∀ρ ∈ St(A) ,

Ã(ρ) = IVac(ρ) ∀ρ ∈ St(Vac) ,
(3.8)

where IVac is the identity channel on Vac.
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Theorem 4 implies that the Kraus operators of the vacuum extension Ã have the form

Ãi = Ai ⊕ αi |vac〉〈vac| , (3.9)

where {Ai}ri=1 is a Kraus representation of A and {αi}ri=1 are complex numbers, which we call vac-
uum amplitudes, satisfying the normalisation condition∑

i

|αi|2 = 1 . (3.10)

The vacuum extension is an example of a superposition of channels as per Definition 3, and is
therefore non-unique in general. However, the choice of vacuum extension is uniquely determined
by the physics (i.e. Hamiltonian) of the device. The vacuum extension is the complete description
of the computation or communication resource available to an agent. Crucially, it can be deter-
mined experimentally by input-output tomography of the device, without access to the environ-
ment.

Considering the case of quantum optics, a unitary Ṽ can be realised by a Hamiltonian acting on
the two polarisation modes associated to systemsA andB. For example, the unitaryZ⊕eiφ |vac〉〈vac|
can be generated by the Hamiltonian H = ~[(ξ + θ/2)a†HaH + (ξ − θ/2)a†VaV] for θ = π, φ =

ξ + θ/2 and time t = 1 in suitable units, where aH (aV) are the annihilation operators for the
appropriate modes with horizontal (vertical) polarisation.

The action of channel Ã on a generic quantum state ρ ∈ St(Ã) is

Ã(ρ) = A(PAρPA) + 〈vac|ρ|vac〉 |vac〉〈vac|+ F ρ |vac〉〈vac|+ |vac〉〈vac| ρ F† , (3.11)

where the operator

F :=
∑
i

αi Ai , (3.12)

is called the vacuum interference operator. Note that the operator F depends only on the channel Ã,
and not on the choice of Kraus operators, as can be seen by comparing the two sides of Eq. (3.11).

If the vacuum interference operator is zero, then the output state (3.11) is an incoherent mixture
of a state of system A and the vacuum.

61



Definition 6. For F = 0, we say that the vacuum extension Ã has no coherence with the vacuum,
and we call it the incoherent vacuum extension of channel A. For F 6= 0, we say that the vacuum
extension Ã has coherence with the vacuum.

3.4 The superposition of two independent channels

Having defined the notion of a vacuum extension of a quantum channel, we can finally proceed to
build a superposition of two channels that depends only on a description of the devices themselves.
We start with two systems A and B, with HA ' HB, and construct the corresponding vacuum-
extended systems Ã := A⊕ Vac and B̃ := B⊕ Vac. Consider now the composite system formed
by taking the tensor product of the two vacuum-extended systems:

Ã⊗ B̃ = Vac⊗ Vac

⊕ (A⊗ Vac)⊕ (Vac⊗ B)

⊕ A⊗ B .

(3.13)

This contains (1) a no-particle sectorVac⊗Vac, (2) a one-particle sector (A⊗ Vac)⊕(Vac⊗ B),
and (3) a two-particle sectorA⊗B. The one-particle sector is isomorphic to the direct sumA⊕B,
since Vac is one-dimensional. When A ' B, the direct sum A ⊕ B can be physically realised by a
particle with an internal message degree of freedom M ' A ' B, and an external path degree of
freedom P. If P is a qubit of alternative paths |0〉P and |1〉P, then M⊗ P ' A⊕ B.

Consider two channels A and B, with vacuum extensions Ã and B̃. We construct the product
channel Ã ⊗ B̃, which represents the independent action of Ã and B̃. We can now define a su-
perposition of channels A and B, specified by the vacuum extensions Ã and B̃, as the restriction
of the product channel Ã ⊗ B̃ to the one-particle sector (A⊗ Vac)⊕ (Vac⊗ B). We restrict our
attention to the case where A ' B. Formally:

Definition7. Thesuperposition of channelsA ∈ Chan(A)andB ∈ Chan(B) specifiedby the vacuum
extensions Ã ∈ Chan(Ã) and B̃ ∈ Chan(B̃) is the channel

S : Chan(Ã)× Chan(B̃) → Chan(M⊗ P)

S(Ã, B̃)(ρ⊗ ω) = U † ◦ (Ã ⊗ B̃) ◦ U (ρ⊗ ω) ,
(3.14)
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Figure 3.2: The superposition of two independent channels A and B specified by the vac-
uum extensions Ã and B̃. In communication scenarios, a single particle with internal message
degree of freedom M is transmitted through the resulting superposition channel S(Ã, B̃), with
the path degree of freedom fixed in the state ω.

where the isomorphism

U(·) = U(·)U†

U : HM ⊗HP → (HA ⊗HVac)⊕ (HVac ⊗HB)
(3.15)

is defined by

U(|ψ〉M ⊗ |0〉P) := |ψ〉Ã ⊗ |vac〉B̃
U(|ψ〉M ⊗ |1〉P) := |vac〉Ã ⊗ |ψ〉B̃ .

(3.16)

The superposition channel S(Ã, B̃) is constructed from only the vacuum extensions Ã and B̃,
which provide the full relevant descriptions of the two available devices. The map S is a quan-
tum supermap (cf. 2.3.2) from a pair of vacuum-extended channels to a single bipartite quantum
channel. The superposition of two channels specified by vacuum extensions is illustrated in Figure
3.2.

Physically, a superposition of two channels describes a single particle travelling in a superposi-
tion of two alternative trajectories, in each of which it undergoes one of the two alternative pro-
cesses whilst the other process acts on the vacuum.

The following properties of the superpositions of two channels will be useful later. Explicitly, the
action of the superposition of two channels specified by the vacuum extensions Ã and B̃ is given
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by

S(Ã, B̃)(ρ⊗ ω) =〈0|ω|0〉A(ρ)⊗ |0〉〈0|+ 〈1|ω|1〉 B(ρ)⊗ |1〉〈1|

+〈0|ω|1〉 FAρF†B ⊗ |0〉〈1|+ 〈1|ω|0〉 FBρF†A ⊗ |1〉〈0| ,
(3.17)

where FA (FB) is the vacuum interference operator associated with the vacuum extension Ã (B̃).
The Kraus operators of the superposition channel S(Ã, B̃) are

Sij = Ai M βj ⊗ |0〉〈0|P + αi Bj M ⊗ |1〉〈1|P , (3.18)

where Ai M,Bj M are Kraus operators corresponding to channels A and B, respectively, and αi and
βj are the associated vacuum amplitudes. When Ã = B̃, and the path is initialised in the |+〉 state,
the above equation simplifies to

S(Ã, Ã)(ρ⊗ |+〉〈+|) = A(ρ) + FρF†

2
⊗ |+〉〈+|+ A(ρ)− FρF†

2
⊗ |−〉〈−| , (3.19)

where F :=
∑

i αi Ai.

3.4.1 Preview: physical implementation

A simple physical implementation of a superposition of two channels can be performed in the fol-
lowing way using single-photon quantum optics. The message is realised by the polarisation degree
of freedom of a single photon, and the path is realised by the spatial degree of freedom of the same
photon, in a Mach-Zehnder interferometer (see Figure 9.4 in §9.3). The horizontal and vertical
polarisation modes are represented by the logical states |0〉M and |1〉M of the message, while local-
isation in the upper or lower arms of the interferometer are represented by the logical states |0〉P
and |1〉P of the path.

The two devices corresponding to the two vacuum-extended channels are placed one on each
arm of the Mach-Zehnder interferometer. A single photon is sent into one input port of the beam-
splitter (with the vacuum in the other port). The state of the message ρ ∈ St(M) is controlled by
half/quarter wave plates between the single-photon source and the first beamsplitter (i.e. prior to
entering the interferometer). The state of the path ω ∈ St(P) is determined by the parameters of
the first beamsplitter.
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After the two paths are recombined in the second beamsplitter (which is a 50:50 beamsplitter),
finding a particle in one of the two outgoing modes corresponds to a measurement on the path in
the |±〉 basis. A polarising beamsplitter (that splits a beam into its horizontal and vertical com-
ponents) is placed at each of the two output ports of the interferometer. Then, a photon detec-
tor is placed at each of the two output ports of each of the two polarising beamsplitters, resulting
in four photon detectors in total. A particle number measurement (of at most one particle) over
these four photon detectors corresponds to a joint measurement of the message and path in the
basis {|0〉M ⊗ |±〉P , |1〉M ⊗ |±〉P}. If additional half/quarter wave plates are placed between the
polarising beamsplitters and photon detectors, then the output polarisation state can be rotated,
corresponding to a measurement of the message in any chosen basis.

Further detail on the experimental implementations performed as part of this work is provided
in Chapter 9.

3.4.2 Preview: communication using superposition of channels

Before continuing to formulate our framework for superpositions of channels, let us take a brief
preview of its applications to communication, which are elaborated in Chapters 5,6 and 8. In a com-
munication setting, the vacuum-extended channels describe transmission lines, with the input and
outputs corresponding to the (spatially separate) locations of the sender and receiver, respectively.

From Eq. (3.19), we can already start to see how the superposition of independent channels is
useful for reducing errors in communication. Consider the extreme case where A is channel with
(classical or quantum) capacity equal to zero, such that no communication is possible through the
channel on its own. Then, as long as F 6= 0 (i.e. Ã has coherence with the vacuum), the output of
the overall superposition channel (3.19) will have a non-trivial dependence on the input state ρ,
enabling the possibility of (at least classical) communication at a non-zero rate.

Eq. (3.19) also suggests a natural decoding strategy for the receiver. By measuring in the Fourier
basis {|+〉, |−〉}, the receiver can separate the two quantum operations Q± := (A ± F · F†)/2.
The + outcome heralds constructive interference among the noisy processes along the two paths,
while the− outcome heralds destructive interference. This observation is the working principle of
the error filtration technique of Gisin et al. [91], where selecting one of the two operationsQ± that
are less noisy than the original channel enables a probabilistic reduction in noise. This advantage
is quantified in a Shannon-theoretic manner in Chapter 5.
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Ã1

Ã2

ÃN

Figure 3.3: Superposition of N independent channels specified by their vacuum extensions.
An input system A = A1 ⊕ A2 ⊕ · · · ⊕ AN branches out according to its sectors, with the j-th
branch sent through the vacuum extension Ãj. The outputs are finally recombined to form the
overall output of the superposition channel.

3.5 Superposition of multiple independent channels

The superposition of multiple independent channel is defined by a direct generalisation of Defini-
tion 7, and is illustrated in Figure 3.3. Specifically, the superposition of N channels A(1), . . . ,A(N)

specified by the vacuum extensions Ã(1), . . . , Ã(N) is the channel with Kraus operators

Si1···iN =
N⊕
j=1

α(1)i1 · · · α(j−1)
ij−1 A(j)

ij α
(j+1)
ij+1 · · · α(N)iN , (3.20)

where {A(j)
ij } is a Kraus representation of channel A(N), and {α(j)ij } is the corresponding set of vac-

uum amplitudes.

3.6 Superposition of multi-partite channels

The idea of combining multiple independent quantum channels in a superposition can be extended
to correlated quantum channels. In general, correlations can occur between spatially separated
regions acting at the same moment in time, or between different moments of time in same the
region. In the following, we illustrate the main ideas of correlated channels using correlations in
time, but the same ideas can be applied to any types of correlations.

Consider a 2-step correlated channel, for example the random unitary channel (2.51), described
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p(m, n)
Ṽm Ṽn

• •

Figure 3.4: The superposition of times of a time-correlated random unitary channel. A sin-
gle particle is sent at a superposition of two times (red and blue dashed lines), through the
same transmission line (green ovals). The green dotted line represents the correlations be-
tween random unitary processes Vm and Vn taking place with probability p(m, n) at the two
subsequent uses of the transmission line, respectively.

in §2.7.1, and given again here for convenience:

R(ρ12) =
∑
m,n

p(m, n) (Vm ⊗ Vn) ρ12 (Vm ⊗ Vn)
† .

Consider the situation where the input to the channel is a single particle, carrying information in
its internal degrees of freedom. Classically, the particle must be sent either at time t1, or at time t2,
or at some random mixture of t1 and t2. When the particle is sent at time t1, its evolution is given by
the reduced channel R1(ρ) :=

∑
m p1(m)VmρV†

m, where p1(m) :=
∑

n p(m, n) is the marginal
probability distribution of the unitaries at time t1. Similarly, if the particle is sent at time t2, its evo-
lution is given by the channelR2(ρ) :=

∑
m p2(n)VnρV†

n, with p2(n) :=
∑

m p(m, n). A random
choice of transmission times then results into a random mixture of the evolutions corresponding
to channels R1 and R2. Crucially, the evolution of the particle is independent of any correlation
that may be present in the probability distributions p(m, n), that is, of any correlation between the
first and the second use of the device.

More generally, we can consider a device described by an arbitrary 2-step correlated channel

C12(ρ12) =
∑
m

Cmρ12C
†
m ∈ Chan(S(1), S(2)) , (3.21)

not necessarily of the random unitary form, where ρ12 ∈ St(S(1) ⊗ S(2)). The use of this device at
a single time step t1 is given by

C1(ρ1) = Tr2
[
C(ρ12)

]
, (3.22)

where ρ1 = Tr2 ρ12 is the reduced state on system S(1) (this follows the definition of a quantum
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comb, cf. §2.3.2).
In contrast, quantum physics allows for the possibility of transmitting a single particle in a way

that is sensitive to the correlations between noisy processes at different times. The key idea is that
the time when the particle is transmitted can be indefinite, as the particle could be sent through the
transmission line at a coherent superposition of times t1 and t2 (see illustration in Figure 3.4). The
superposition of transmission times could be achieved by adding an interferometric setup before
the transmission line, letting the particle travel on a coherent superposition of two paths, one of
which includes a delay [88]. This results in a time-bin qubit, described by a superposition of am-
plitudes corresponding to localisation at two different points in time, separated by a time difference
much greater than a photon’s coherence time [138].

Before developing the full formalism for describing single particle transmission through time-
correlated channels, let us illustrate the key ideas with an example from quantum optics. Consider
a single photon with degrees of freedom corresponding to the horizontal and vertical polarisation
modes H1,V1 in the first time bin, and H2,V2 in the second time bin. First, the single photon is ini-
tialised in a polarisation state, which carries the message to be transmitted. It is then sent through an
interferometer, with a time delay on one arm but which does not alter the polarisation state, so that
the only role of the interferometric setup is to coherently control the moment of transmission. The
result is a linear combination of (particle number) states of the form (α|1〉H1|0〉V1 + β|0〉H1|1〉V1)⊗
|0〉H2|0〉V2 and states of the form |0〉H1|0〉V1 ⊗ (α|1〉H2|0〉V2 + β|0〉H2|1〉V2), where |α|2 + |β|2 = 1.

The composite system of the two modes in the first (second) time bin can be regarded as an ex-
tension of the system S(1) (S(2)) in the time-correlated channel (3.21), constructed by appending
a one-dimensional vacuum sector, i.e. S̃(1) := S(1) ⊕ Vac(1) (S̃(2) := S(2) ⊕ Vac(2)). The states
produced by the interferometric setup can then be written as a linear combination of states of the
form |ψ〉1 ⊗ |vac〉2 and states of the form |vac〉1 ⊗ |ψ〉2, where |vac〉i := |0〉Hi|0〉Vi is the vacuum
state of the modes in system S̃(i), and |ψ〉i := αi |1〉Hi|0〉Vi + βi |0〉Hi|1〉Vi is a single-photon polar-
isation state, for i ∈ {1, 2} (where |αi|2 + |βi|2 = 1). For example, if the interferometer consists
of 50:50 beamsplitters with a phase of zero between the two arms, then the state of the particle
upon preparation of the time-bin qubit is (|ψ〉1 ⊗ |vac〉2 + |vac〉1 ⊗ |ψ〉2)/

√
2. The action of the

time-correlated channel on the particle is then given by applying the channel to this state.
Generalising the above example, we model the transmission of a single particle through a bipar-

tite channel by considering abstract modes described by the extended systems S̃(1) := S(1) ⊕Vac(1)

and S̃(2) := S(2)⊕Vac(2), each of which can contain a single particle equipped with an internal de-
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gree of freedom, such as a photon’s polarisation, or no particle. This allows us to use the formalism
of vacuum extensions to describe using the ports S(1) and S(2) in a superposition.

Mathematically, we proceed as follows. Consider a mulitport device described by a bipartite
channelB ∈ Chan(S(1)⊗ S(2)). A vacuum extension of the channelB is another bipartite channel
B̃ ∈ Chan(S̃(1)⊗ S̃(2)). In general, the systems S(1), S(2) can represent the systems accessible at dif-
ferent locations at the same time, or the systems accessible at the same location at two consecutive
moments of time (in which case we have a 2-step correlated quantum channel), or more generally,
they can represent any pair of independently addressable systems, representing the input/output
ports of a multiport device.

In order to be able to send the same quantum particle to either of the ports of the device, we
require the isomorphism S(1) ' S(2) ' M, where M is the message-carrying degree of freedom of
the particle. The choice of port is determined by a control qubit C. In this case, we can define the
situation in which a single particle is sent at a superposition of two different ports:

Definition 8. The superposition of ports of a bipartite channelB ∈ Chan(S(1) ⊗ S(2)) specified by the
vacuum extension B̃ ∈ Chan(S̃(1) ⊗ S̃(2)) is the channel

S : Chan(S̃(1))× Chan(S̃(2)) → Chan(M⊗ C)

S(B̃)(ρ⊗ ω) = U † ◦ B̃ ◦ U (ρ⊗ ω) ,
(3.23)

where the isomorphism

U(·) = U(·)U†

U : HM ⊗HC → (HS(1) ⊗HVac)⊕ (HVac ⊗HS(2))
(3.24)

is defined by

U(|ψ〉M ⊗ |0〉C) := |ψ〉S̃(1) ⊗ |vac〉S̃(2)
U(|ψ〉M ⊗ |1〉C) := |vac〉S̃(1) ⊗ |ψ〉S̃(2) .

(3.25)

Note that Definition 8 can be applied in particular to k-step quantum channels, which are a spe-
cial case of k-partite channels. In this case we shall sometimes refer to the superposition of ports
as a superposition of times. The illustration of the supermap S in the general case and in the special
case of a 2-step channels is provided in Figure 3.5.
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Note also, that the original Definition 7 is in fact a special case of Definition 8. In the case where
the two ports represent spatially separated regions, either correlated or independent (as in Defini-
tion 7), we shall sometimes refer to the superposition of ports as a superposition of paths.

Let us briefly return to the example of the bipartite random unitary channel (2.51) in order to
illustrate an application of the above definitions. In §6.1, by applying Definition 8 to this channel,
we find that the use of the bipartite random unitary channel at a superposition of times is described
by

S(R̃)(ρ⊗ ω) =
∑
m,n

p(m, n)Wmn (ρ⊗ ω)W†
mn , (3.26)

where

Wmn := Vm eiφn ⊗ |0〉〈0|+ eiφm Vn ⊗ |1〉〈1| , (3.27)

and eiφm is the vacuum amplitude associated with the unitaryVm (assuming that the vacuum exten-
sion each unitary Vm is another unitary). From these equations, it is clear that, in contrast to the
possibilities allowed by classical physics, the overall evolution in general depends on the correla-
tions p(m, n) between the two uses of the device, even though only a single particle is sent through
the channel.

Finally, Definition 8 can be extended to the transmission of a single particle through anN-partite
multiport device. In this case, the device is represented by an N-partite quantum channel B ∈
Chan(S(1) ⊗ · · · ⊗ S(N)), with S(1) ' S(2) ' · · · ' S(N), and with vacuum extension B̃ ∈
Chan(S̃(1) ⊗ · · · ⊗ S̃(N)). The superposition channel is then defined as the restriction of B̃ to the
one-particle sector

N⊕
j=1

Vac(1)⊗· · ·⊗Vac(j−1) ⊗ S(j) ⊗Vac(j+1)⊗· · ·⊗Vac(N) ' M⊗ C , (3.28)

where C is now an N-dimensional control system.
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Figure 3.5: (a) Transmission of a single particle through a bipartite quantum channel B̃
(red). (b) Transmission of a single particle through a 2-step quantum channel B̃ (green). In
both cases, the particle is represented by a composite system M ⊗ C, where M represents the
degrees of freedom used as the message, and C represents the degrees of freedom used as the
control. The isomorphism U converts the composite system M⊗ C into the one-particle sector
(S(1) ⊗ Vac) ⊕ (Vac ⊗ S(2)) of S̃(1) ⊗ S̃(2). The inverse map U† converts the output state back
into M ⊗ C. For applications to communication, we take the input of the control system C to
be fixed in the state ω whilst the message system M is accessible to the sender.
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4
Resource theories of communication

In this chapter, we formulate communication with superpositions of trajectories and communica-
tion with superpositions of causal orders as resource theories. To do this, we construct a general
framework for resource theories of communication. Our general framework includes a minimal re-
quirement that all communication paradigms must satisfy in order to form a meaningful resource
theory. We show that standard quantum Shannon theory, quantum Shannon theory with superpo-
sitions of trajectories, and quantum Shannon theory with superpositions of causal orders all satisfy
this requirement. Additionally, we consider the communication paradigm proposed in Ref. [96],
which we call quantum Shannon theory with superpositions of encoding and decoding operations.
In contrast, we show that this paradigm does not satisfy our minimal requirement, and therefore,
we argue, does not constitute a meaningful paradigm of communication.
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4.1 StandardquantumShannontheoryasaresourcetheoryofcommu-

nication

We begin by formulating standard quantum Shannon theory as a resource theory, setting the scene
for its extension to more general resource theories of communication.

4.1.1 Quantum Shannon theory as a theory of resources

A central task in information theory is to quantify the amount of information that a given commu-
nication device can transmit. In general, the amount of information can be classical or quantum,
or of other types. In this work, we shall focus on classical and quantum information. To make the
quantification unambiguous, it is essential to specify how the given device can be used. The device
represents a resource, and the rules on the possible uses of this resource can be formulated as a
resource theory [60, 67].

A resource-theoretic approach to standard quantum Shannon theory was initiated by Devetak,
Harrow, and Winter [74]. Further resource-theoretic formalisations have been put forward in Refs.
[80, 131, 132, 186] in a variety of communication scenarios. Related resource theories of quantum
devices have been recently formulated in Refs. [26, 169, 187] for purposes other than the theory
of communication.

In this work we shall adopt the general framework for resource theories proposed by Coecke,
Fritz, and Spekkens [67]. In this framework, the set of all possible resources is described by a
set of objects, equipped with a set of operations acting on them. The set of operations is closed
under sequential and parallel composition. For example, the set of operations, hereafter denoted
byM, could be the set of all quantum channels acting on finite-dimensional quantum systems (the
objects). The central idea of the resource-theoretic framework is to define a subset of operations
Mfree ⊆ M, which are regarded as free. The notion of resource is then defined relative to the set
of free operations: a state or an operation is a non-trivial resource if and only if it is not free, and a
resource is more valuable than another if the former can be converted into the latter by means of
free operations.

Different choices of free operations generally define different resources. Intuitively, the set of free
operations is meant to capture some operational restriction, which makes some operations ‘easy to
implement’. In principle, however, Mfree could be any subset of operations, as long as it is closed
under sequential and parallel composition. In this respect, the resource-theoretic approach is a
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conceptual tool to understand the power of the set Mfree, irrespectively of whether implementing
the operations in it is easy or not.

In quantum Shannon theory, the input resources are communication channels, or, more pre-
cisely, uses of communication channels. For example, the ability to transfer a single qubit from a
sender to a receiver is modelled as a single use of a single-qubit identity channel.

To cast quantum Shannon theory in the resource-theoretic framework of Ref. [67], one has to
regard the various types of quantum channels as objects, and to define the allowed operations that
transform input channels into output channels, that is quantum supermaps (cf. §2.3.2) [52, 54, 57].
In the following, we shall define the sets of free supermaps Mfree for some of the basic scenarios
in quantum Shannon theory, setting the scene for the generalisations studied in the rest of this
chapter.

4.1.2 Direct communication from a sender to a receiver through a single channel

Consider the basic communication scenario where a sender (Alice) communicates directly to a
receiver (Bob). At the fundamental level, the possibility of communication consists of two in-
gredients: the availability of a piece of hardware that serves as a communication device, and the
placement of that piece of hardware between the sender and the receiver. For example, the piece
of hardware could be an optical fibre, and the placement could be provided by a communication
company that laid the fibre between the sender’s and the receiver’s locations. In some situations,
the placement is implicit: for example, the sender and receiver could be communicating through a
medium, such as the air between them, which has been placed there, as it were, by Nature itself.

Mathematically, the communication device is described by a quantum channelN ∈ Chan(X →
Y), which transforms systems of type X into systems of type Y. For example, the systems could be
single qubits, encoded in the polarisation of single photons. At this level, the systems are not as-
signed a specific location in spacetime. Accordingly, we shall call the systems X and Y unplaced
systems, and the channel N ∈ Chan(X → Y) an unplaced channel.

The placement of the device can be described by introducing a placement operation, which corre-
sponds to putting the input (output) system at the sender’s (receiver’s) location. Mathematically,
a placement operation is a supermap that transforms channels in Chan(X → Y) into channels in
Chan(A → B), where system A (B) is of the same type (i.e. corresponds to a Hilbert space with
the same dimension) as system X (Y), denoted as A ' X (B ' Y), and is placed at the sender’s
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N WV

A B

Figure 4.1: Basic placement supermap SA,B
place(N ) := WB ◦ N ◦ VA. In this chapter, the

unplaced communication channels N are drawn in red, while the placement supermaps (i.e.
supermaps from unplaced channels to placed channels) are drawn in blue.

(receiver’s) end, as illustrated in Figure 4.1. Explicitly, we define the basic placement supermap as:

SA,B
place(N ) := WB ◦ N ◦ VA , (4.1)

where VA ∈ Chan(A → X) and WB ∈ Chan(Y → B) are unitary channels implementing the
isomorphisms A ' X and Y ' B, respectively.

We shall call the systemsA andBplaced systems, and the channelC := SA,B
place(N ) aplaced channel.

In the following, we shall use the letters N and C for unplaced and placed channels, respectively.
Similarly, we shall use letters at the end of the alphabet (e.g. X, Y) to represent unplaced systems,
and letters from the beginning or middle of the alphabet (e.g. A,B,R, S) to represent placed sys-
tems. In the figures in this Chapter (as well as in Chapter 7, where the distinction between placed
and unplaced channels is important), we shall represent unplaced channels as red boxes, and placed
channels as green boxes. This choice of colours reflects the fact that the placed channels are ready to
be used by the communicating parties, while the unplaced channels have yet to be made available
to them.

Once a device is in place, the sender and receiver can use it to communicate to one another.
Typically, communication is achieved by connecting the communication device with other de-
vices present at the sender’s and receiver’s locations. For example, one end of an optical fibre could
be connected to a computer, used by the sender to type an email, and the other end of the fibre
could be connected to another computer, used by the receiver to read the email. The operations
performed by the sender and receiver can be described by a supermap transforming placed chan-
nels in Chan(A → B) into placed channels in Chan(A′ → B′), where A′ and B′ are two new input
and output systems, also placed in the sender’s and receiver’s locations, respectively.

As reviewed in §2.3.2, Ref. [52] showed that the most general supermapS transforming a generic
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BA
C DE

A′ B′

Figure 4.2: Encoding-decoding supermap SE,D(C) := D ◦ C ◦ E . In this chapter, the placed
quantum channels are drawn in green, while the encoding-decoding supermaps are drawn in
violet.

input channel C ∈ Chan(A → B) into an output channel S(C) ∈ Chan(A′ → B′) has the form

S(C) = D ◦ (C ⊗ IAux) ◦ E , (4.2)

where Aux is an auxiliary quantum system, and E ∈ Chan(A′ → A⊗ Aux) and D ∈ Chan(B⊗
Aux → B′) are quantum channels. These supermaps define the set of all possible operations on
input channels, and play the role of the setM in the general resource-theoretic framework described
in §4.1.1.

To specify the set of free operations, one has to specify a subset of the set of all supermaps. The
standard choice (in the absence of additional resources such as shared entanglement or shared ran-
domness) is to require the free operations to have the form

SE,D(C) := D ◦ C ◦ E (4.3)

(see Figure 4.2 for an illustration). Operationally, this choice ofMfree is justified by the fact that the
supermaps (4.3) can be achieved by performing a local encoding operation E at the sender’s side
and a local decoding operation D at the receiver’s side, without requiring the transmission of any
system other than the system sent through the channel C.

Note that while the supermaps (4.3) are the standard choice, other choices could be made. For
example, one could consider quantum communication with the assistance of classical communi-
cation [30], or classical communication with the assistance of shared entanglement [32]. In these
scenarios, the set of free supermaps is larger than the set of supermaps of the form (4.3), and con-
tains supermaps that can be achieved with the additional resources under consideration. For com-
pleteness, the characterisation of such supermaps is provided in §4.1.6. In the following, however,
we shall predominantly stick to the simplest choice of free supermaps, namely the choice in (4.3).

In general, we shall refer to supermaps from unplaced channels to placed channels as placement
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supermaps, and we shall interpret them as being performed either by a communication provider,
or by Nature itself. We shall refer to supermaps from placed channels to placed channels as party
supermaps, and shall interpret them as being performed by the communicating parties.

4.1.3 Direct communication from a sender to a receiver through multiple chan-
nels

So far, we have considered operations on a single quantum channel. We now extend the resource-
theoretic formulation to scenarios where multiple communication channels (or multiple uses of
the same communication channel) are available.

Consider a communication protocol that uses k communication devices, described by k un-
placed channels N1, . . . ,Nk, with Ni ∈ Chan(Xi → Yi) for i ∈ {1, . . . , k}. We denote by
(N1, . . . ,Nk) the resource corresponding to a single use of each device. Again, the list (N1, . . . ,Nk)

is interpreted as a description of the hardware before it is placed between the sender and receiver.
For example, the hardware could be a list of optical fibres with some given specifications, such as
attenuation coefficient, bandwidth, birefringence and length.

In Appendix B.1 we show that the list (N1, . . . ,Nk) can be interpreted as an equivalent notation
for the product channelN1⊗· · ·⊗Nk, viewed as an element of a suitable set of channels (namely,
k-partite no-signalling channels). In the following, we shall use the list notation (N1, . . . ,Nk) as a
visual reminder that the channels N1, . . . ,Nk are unplaced.

In the direct communication scenario, it is understood that all the input systems are placed in
Alice’s laboratory, and all the output systems are placed in Bob’s laboratory. Equivalently, this means
that the communication devices are placed in parallel between the sender and the receiver. The
operation of placing the devices in parallel is described by the parallel placement supermap SA,B

par

defined by
SA,B
par (N1, . . . ,Nk) := SA1,B1

place (N1)⊗ · · · ⊗ SAk,Bk
place (Nk) . (4.4)

whereA := (A1, . . . ,Ak) [B := (B1, . . . ,Bk)] is a list of quantum systems placed in Alice’s (Bob’s)
laboratory, with Ai ' Xi and Bi ' Yi for every i ∈ {1, . . . , k}. The result of the supermap is a
placed quantum channel in Chan(A1 ⊗ · · · ⊗ Ak → B1 ⊗ · · · ⊗ Bk).

A large body of results in standard quantum Shannon theory refers to channels combined in
parallel as in Equation (4.4). For example, as discussed in §2.2.3, Smith and Yard [182] showed
that, surprisingly, the parallel composition of two channels with zero quantum capacity can give
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rise to a channel with non-zero quantum capacity. This phenomenon became known as activation
of the quantum capacity.

4.1.4 Network communication from a sender to a receiver

Let us now consider a communication scenario where the sender (Alice) and receiver (Bob) com-
municate through a network of communication devices. To begin with, we focus on the simple case
where Alice and Bob communicate through two devices, which are connected by an intermediate
party (Ray), who serves as a ‘repeater’ passing to Bob the information received from Alice.

The initial resource is described by a pair of unplaced channels (N1,N2) ∈ Chan(X1 → Y1)×
Chan(X2 → Y2). The operation of placing channel N1 between Alice and Ray, and channel N2

between Ray and Bob is described by the sequential placement supermap SA,R,R′,B
seq defined by

SA,R,R′,B
seq (N1,N2) := SA,R

place(N1)⊗ SR′,B
place(N2) , (4.5)

where system A ' X1 is placed in Alice’s laboratory, systems R ' Y1 and R′ ' X2 are placed in
Ray’s laboratory, and system B ' Y2 is placed in Bob’s laboratory.

Note that the sequential placement (4.5) is formally identical to the parallel placement (4.4): in
both cases, the placement of multiple channels is the tensor product of the placement of individual
channels. The difference between parallel and sequential placement arises from the different space-
time locations in which the inputs and outputs of the channels are placed. In the parallel placement,
all the input systemsA are at the sender’s location, and all the output systemsB are at the receiver’s
location. In the sequential placement, the systems A,R,R′,B appear in a strict sequential order: A
before R, R before R′, R′ before B. This difference is crucial when it comes to specifying how the
output of the placement supermap is to be used: in the case of parallel placement, the output of the
supermap can be connected with local operations at the sender’s and receiver’s ends. In the case of
sequential placement, intermediate operations are possible.

The difference between sequential and parallel placements is reflected by the different type of
channels they generate. The output of the sequential placement supermap (4.5) is a 2-step quan-
tum channel (see §2.7.1), where the first step represents the transfer of information from A to R,
and the second step corresponds to the transfer of information fromR′ to B. Recall, that the differ-
ence between a two-step channel and a generic bipartite channel is that the two-step channel has
to satisfy the additional condition (2.32) of quantum combs, which ensures compatibility with the
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R′
2 B2
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A′ B′

Figure 4.3: Encoding-repeater-decoding supermap SE,R,D(C1 ⊗ C2) := D ◦ C2 ◦ R ◦ C1 ◦ E .
In this chapter, party supermaps (i.e. supermaps from placed channels to placed channels) are
drawn in violet.

causal ordering of the systems S1, S′1, S2, and S′2.
The sequential placement supermap (4.5) transforms a pair of unplaced channels (N1,N2) into

a placed 2-step quantum channel C1 ⊗ C2, with C1 := SA,R
place(N1) and C2 := SR′,B

place(N2). Note that,
in general, the set of 2-step quantum channels also contains maps that are not of the product form
C1 ⊗ C2. These maps correspond to two-step processes where a memory is passed from the first
step to the second.

Once the devices have been placed, the sender, repeater, and receiver can connect them with
their local devices, thus establishing a single channel that transfers information directly from the
sender to the receiver. The most general supermaps from multi-step quantum channels to quan-
tum channels have been characterised in Ref. [54]. Their action on product multi-step quantum
channels C1 ⊗ C2 is given by

S(C1 ⊗ C2) = D ◦ (C2 ⊗ IAux2) ◦ R ◦ (C1 ⊗ IAux1) ◦ E , (4.6)

where Aux1 and Aux2 are auxiliary systems, and E , R, and D are arbitrary channels in Chan(A′ →
A⊗ Aux1), Chan(R⊗ Aux1 → R′ ⊗ Aux2), and Chan(B⊗ Aux2 → B′), respectively.

The standard choice of free supermaps is the supermaps that are achievable without the auxiliary
systems Aux1 and Aux2, that is, the supermaps of the form

SE,R,D(C1 ⊗ C2) := D ◦ C2 ◦ R ◦ C1 ◦ E , (4.7)

illustrated in Figure 4.3.
Communication through a network of k ≥ 2 devices is described by a direct generalisation of

the above example. Consider the situation where a sender communicates to a receiver with the
assistance of k − 1 intermediate repeaters. The communication devices are described by a list of
unplaced channels (N1, . . . ,Nk) ∈ Chan(X1 → Y1) × Chan(X2 → Y2) × · · · × Chan(Xk →
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C3
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A′ R′
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R′
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B′

Figure 4.4: A composite supermap. The figure shows the placement of k = 3 channels be-
tween a sender, a single repeater (r = 1), and a receiver. The placement is then followed by an
encoding-repeater-decoding supermap (in violet), representing the local operations performed
by the sender, repeater, and receiver.

Yk). The placement of the devices between the sender, repeaters, and receiver is described by the
supermap

SA,R1,R′1 ,...,Rk−1,R′k−1,B
seq (N1, . . . ,Nk)

:= SA,R1
place(N1)⊗ SR′1 ,R2

place (N2)⊗ · · · ⊗ SR′k−1,B
place (Nk) , (4.8)

where system A ' X1 is placed in the sender’s laboratory, system B ' Yk is placed in the receiver’s
laboratory, and systems Ri ' Yi and R′

i ' Xi+1 are placed in the laboratory of the i-th repeater, for
i ∈ {1, . . . , k− 1}. The output of the supermap SA,R1,R′1 ,...,Rk−1,R′k−1,B

seq is a k-step quantum channel.
Once the available devices have been placed, the communicating parties can connect their local

devices to the placed communication channels. The corresponding supermap has the form

SE,R1,...,Rk−1,D(C1 ⊗ · · · ⊗ Ck)

:= D ◦ Ck ◦ Rk−1 ◦ Ck−1 ◦ · · · ◦ R1 ◦ C1 ◦ E ,
(4.9)

where E ∈ Chan(A′ → A) is the encoding operation performed by the sender,Ri ∈ Chan(Ri →
R′
i) is the repeater operation performed by the i-th intermediate party, and D ∈ Chan(B → B′) is

the decoding operation performed by the receiver.
More generally, one can consider any placement of k ≥ 2 devices with r ≤ k − 1 intermedi-

ate repeaters. This includes placing some channels in parallel between two subsequent parties, in
which case the placed channel is a (r + 1)-step quantum channel. An example of this situation is
illustrated in Figure 4.4. The most general placement supermaps corresponding to a definite causal
structure of communicating parties are described in the following section.
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Y1X1
N1 WR1VA1

A1 R1

Y3X3
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A3 S3

Y2X2
N2 WB2VR′2
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2 B2

Y4X4
N4 WT4VS4
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Y5X5
N5 WB5VT5

T′
5 B5

(a)

C1
A1 R1

C3
A3 S3

C2
R′
2 B2

C4
S′4 T4

C5
T′
5 B5
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S T
E D

B′A′

(b)

Figure 4.5: (a) An illustration of the placement supermap SA1R1R′2B2A3S3S′4T4T′
5B5

network , described by
Eq. (4.10), acting on a list of five unplaced channels (N1, . . . ,N5). (b) An illustration of the
encoding-repeater-decoding supermap SE,R,S,T ,D, described by Eq. (4.12), acting on the re-
sulting placed channel of (a).

4.1.5 Placement of channels in an arbitrary (definite) causal structure

Communication through a network of k ≥ 2 devices, connected via r ≤ k−1 intermediate parties,
is described by specifying the causal structure of the communicating parties, and by considering
supermaps that are compatible with that causal structure. In the case of a sender A, receiver B and
a single repeater R (where a boldface letter R is identified with the list of input/output systems
(R1, . . . ,Rk,R′

1, . . . ,R′
l) accessible to a given communicating party), the causal structure is implic-

itly given by the totally ordered set {A � R,R � B}, where A � B denotes that B is in the future
light cone of A. In this case, it is clear that only placements between A and R, A and B, or R and B
are allowed.

In the case of r ≥ 2 repeaters, a general causal structure is described by a partially ordered set
(poset), with a choice of possible relations between the intermediate parties {R,S, …,T}. Formally,
a poset is a set endowed with a binary relation, which is reflexive, antisymmetric and transitive. The
latter two properties ensure that loops in the causal structure are not allowed, i.e. if A precedes R
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and R precedes S, then A precedes S, and therefore S cannot also precede A (unless A = R = S).
Physically, the description of causal structure as a poset is motivated by the structure of spacetime
as described by special relativity [79].

Overall, the placement of communication devices between the communicating parties is de-
scribed by a tensor product of basic placement supermaps, with the constraint that a placement
from Chan(Xi → Yi) to Chan(S′i → Ti) is only possible if S � T in the causal structure.

We illustrate the scheme for a network of multiple repeaters with an example. Consider the
communication scenario with a sender, a receiver, and r = 3 intermediate parties {R,S,T}, arranged
in a causal structure described by the poset {A � R,R � B,A � S, S � T,T � B}. Suppose
that the communicating parties have access to k = 5 devices, described by the list of unplaced
channels (N1, . . . ,N5) ∈ Chan(X1 → Y1) × · · · × Chan(X5 → Y5). The use of the devices is
specified by placing them in a particular configuration between the sender, receiver, and repeaters.
One possible placement is given by

SA1R1R′2B2A3S3S′4T4T′
5B5

network (N1, . . . ,N5)

= SA1R1
place(N1)⊗ SR′2B2

place(N2)⊗ SA3S3
place(N3)⊗ SS′4T4

place (N4)⊗ ST′
5B5

place(N5)

= WR1◦N1◦VA1 ⊗WB2◦N2◦VR′2 ⊗WS3◦N3◦VA3 ⊗WT4◦N4◦VS′4 ⊗WB5◦N5◦VT′
5 ,

(4.10)

essentially consisting of two sequences through repeaters, R and (S,T), placed in parallel between
the sender and receiver, as illustrated in Figure 4.5a.

Note, that here the different intermediate parties are labelled R, S, . . . ,T. The subscript i (j)
of the placed system Ri (R′

j) at the communicating party R labels which input system Xi (output
system Yj) it corresponds to. In contrast, in the previous sections where each party only had access
to a single system, Ri (R′

i) denoted the single input (output) system of the i-th repeater party.
With the devices placed within the network of communicating parties, we once again consider

the free operations on the placed channels. Consider a subset of l ≤ k placed channels C1 ⊗ · · · ⊗
Cl ∈ Chan(· → R1)× · · · × Chan(· → Rm)× Chan(R′

m+1 → ·)× · · · × Chan(R′
l → ·), where

the first m ≤ l channels have output systems at R (and any arbitrary placed input systems), and
the remaining l − m channels have input systems at R (and any arbitrary placed output systems).
The final k − l channels have neither input nor output systems at R. The free operations that can
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be performed at R are taken to be those of the form

SR(C1 ⊗ · · · ⊗ Ck) := [(Cm+1 ⊗ · · · ⊗ Cl) ◦ R ◦ (C1 ⊗ · · · ⊗ Cm)]⊗ (Cl+1 ⊗ · · · ⊗ Ck) ,
(4.11)

where R ∈ Chan(R1 ⊗ · · · ⊗ Rm → R′
m+1 ⊗ · · · ⊗ R′

l). This includes as a special case the free
operations SE and SD that can be performed by the sender and receiver, respectively, in which
case m = 0 or m = l. Overall, the choice of free operations on placed channels is taken to be any
sequential or parallel composition of (local) party supermaps of the form of Eq. (4.11). When two
supermaps SR and ST commute, we use the shorthand SR,T := ST ◦ SR = SR ◦ ST .

As an example, consider the placed channels given in Eq. (4.10) and let Ci = W ◦Ni ◦V . Then
the action of the most general free supermap on the placed channels C1 ⊗ · · · ⊗ C5 is given by

SE,R,S,T ,D(C1 ⊗ · · · ⊗ C5) = D ◦ [(C2 ◦ R ◦ C1)⊗ (C5 ◦ T ◦ C4 ◦ S ◦ C3)] ◦ E , (4.12)

and is illustrated in Figurde 4.5b.

4.1.6 Free supermaps in assisted communication scenarios

For completeness, in this section we provide examples of supermaps that arise in communication
scenarios involving the assistance of classical communication or entanglement.

Let us consider first the assistance of free classical communication [30], as illustrated in Figure
4.6. In this case, the free supermaps on placed channels have the form

SE,D,clas(C) := D ◦ (C ⊗ Iclas
Aux) ◦ E , (4.13)

BA
C

DE

A′ B′

Iclas
Aux Aux

Figure 4.6: Supermap describing encoding and decoding operations assisted by free classical
communication.
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Figure 4.7: Supermap describing encoding and decoding operations assisted by shared en-
tanglement. The blue dashed line denotes the partition between Alice (top) and Bob (bot-
tom).

where Iclas
Aux is the classical identity channel, defined as Iclas

Aux(ρ) =
∑

j |j〉〈j| 〈j|ρ|j〉 for some or-
thonormal basis {|j〉}, and E ∈ Chan(A′ → A ⊗ Aux) and D ∈ Chan(B ⊗ Aux → B′) are
quantum channels.

Let us consider now classical communication with the assistance of shared entanglement [32].
In this case, the free operations on placed channels are those that can be achieved by performing
encoding and decoding operations that act on a shared entangled state, as shown in Figure 4.7.
Mathematically, these operations correspond to free supermaps of the form

SE,D,ent(C) := DBBaux ◦ (CA ◦ EA′Aaux ⊗ IBaux) ◦ (IA′ ⊗ φAauxBaux) , (4.14)

where φAauxBaux is an entangled state on system Aaux ⊗ Baux, E ∈ Chan(A′ ⊗ Aaux → A) and
D ∈ Chan(B⊗ Baux → B′) are encoding and decoding channels, respectively, and the subscripts
indicate the input systems of all channels.

4.1.7 Communication with correlated channels

So far, we have described each use of each communication device as a single unplaced quantum
channel. However, as discussed in §2.7, we know that in general, multiple uses of the same com-
munication device can be correlated. Similarly, simultaneous uses of two separate devices could
exhibit correlations through space. Therefore, our resource-theoretic framework should include a
description of the use of correlated quantum channels.

In fact, we already mentioned that a list of k unplaced channels can be viewed as a single k-partite
no-signalling channel (cf. §4.1.3 and Appendix B.1). This means that the parallel and sequential
placements described above can be directly applied to any no-signalling channel.

Specifically, the parallel placement places the device N1,...,k ∈ NSChan(A1 → B1, . . . ,Ak →
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Bk) as:
SA,B
par (N1,...,k) := (SA1,B1

place ⊗ · · · ⊗ SAk,Bk
place )(N1,...,k) , (4.15)

whereA := (A1, . . . ,Ak) [B := (B1, . . . ,Bk)] is a list of quantum systems placed in Alice’s (Bob’s)
laboratory, with Ai ' Xi and Bi ' Yi for every i ∈ {1, . . . , k}, and NSChan is defined in §2.7.2.
As before, the result of the supermap is a placed quantum channel in Chan(A1 ⊗ · · · ⊗ Ak →
B1 ⊗ · · · ⊗ Bk), representing the use of the correlated device with all ports used simultaneously.

Similarly, the sequential placement places the device N1,...,k ∈ NSChan(A1 → B1, . . . ,Ak →
Bk) as:

SA,B
seq (N1,...,k) := (SA1,B1

place ⊗ · · · ⊗ SAk,Bk
place )(N1,...,k) , (4.16)

whereA := (A1, . . . ,Ak) [B := (B1, . . . ,Bk)] is a list of quantum systems placed in Alice’s (Bob’s)
laboratory, with Ai ' Xi and Bi ' Yi for every i ∈ {1, . . . , k}, where in particular, the system A1

is sent before system A2, which is sent before system A3, etc. As before, the result of the supermap
is a placed k-step quantum channel in Chan(A1 → B1, · · · ,Ak → Bk), representing the use of the
correlated device with the ports used in a sequential order.

4.1.8 Terminology

In the rest of this work, the study of communication protocols involving only parallel placement
between a sender and a receiver shall be called standard quantum Shannon theory for direct commu-
nication. The study of communication protocols involving both parallel and sequential placements
between a sender, a receiver, and intermediate parties will be called standard quantum Shannon the-
ory for network communication, or simply, standard quantum Shannon theory. We shall not consider
assisted scenarios, such as entanglement-assisted communication, further in this work.

4.2 General resource theories of communication

Here we extend the framework of standard quantum Shannon theory to general resource theories
of communication, arguing that any such theory must not include operations that enable com-
munication independently of the communication devices initially available to the communicating
parties.
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4.2.1 Basic structure

The resource-theoretic formulation of standard quantum Shannon theory, discussed in the previ-
ous section, suggests a general scheme for constructing new resource theories of communication.
The basic scheme is as follows:

1. One use of each communication device is described by an unplaced quantum channel, spec-
ifying how a given system type is transformed into another system type, but without as-
signing these system types to specific locations in spacetime. These system types are called
unplaced systems.

2. The (uses of the) available communication devices are described by a list of unplacedquantum
channels.

3. The sender, receiver, and possibly a set of intermediate parties are assigned spacetime re-
gions, whose causal structure specifies who can send messages to whom. The physical sys-
tems accessed by the communicating parties are placed systems, that is, systems assigned spe-
cific locations in spacetime.

4. The placement of the communication devices in between the communicating parties is de-
scribed by a placement supermap, that is, a supermap transforming lists of unplaced quantum
channels into placed quantum channels. A placed quantum channel has placed systems as
inputs and outputs, and can in general be a multistep process, represented by a multi-step
quantum channel.

5. The operations performed by the sender, receiver, and intermediate parties are described by
a party supermap, that is, a supermap on the set of placed quantum channels.

In the above scheme, a resource theory of communication is formulated by specifying which oper-
ations are considered as ‘free’ in points 4 and 5 above.

Free operations on placed channels (party supermaps) are interpreted as being implemented by
the sender, the receiver, or intermediate parties. Free operations from unplaced to placed channels
(placement supermaps) are interpreted as being performed by an external agent, e.g. a communi-
cation provider, or Nature itself. This is consistent with the intuitive idea that a communication
infrastructure has to be set up before communication takes place. Overall, a resource theory of
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communication describes the actions performed by the communicating parties and by an external
agent that places the communication devices between them.

In principle, one could also consider a third type of operations, from unplaced channels to un-
placed channels. These operations would be performed by the third party before the channels are
placed between the sender and receiver. For completeness, we shall include the possibility of these
‘pre-placement operations’ in our general scheme.

For example, the third party could decide to discard one of the devices in the list (N1, . . . ,Nk),
and use only the remaining devices. This operation is given by the discarding supermap

Sm
discard(N1, . . . ,Nk) := (N1, . . . ,Nm−1,Nm+1, . . . ,Nk) , (4.17)

which discards the m-th channel from a list of k channels. Intuitively, the discarding supermap
should always be included in the set of free supermaps, as the communication provider can always
decide to discard a communication device in the construction of a communication network. We
say that the set of free supermaps from unplaced channels to unplaced channels is trivial if it consists
only of discarding supermaps and identity supermaps.

4.2.2 Resource theories of communication

For a resource theory of communication, the broader set of operations M from which the free op-
erations Mfree are chosen consists of (1) supermaps from unplaced channels to unplaced channels,
(2) supermaps from unplaced channels to placed channels, and (3) supermaps from placed chan-
nels to placed channels. A detailed mathematical characterisation of all valid quantum supermaps
of these three types is given in Appendix B of Ref. [119].

A resource theory of communication is then specified by fixing the set of free operations:

Definition 9. (Resource theory of communication.) A resource theory of communication is specified
by a set of free supermaps Mfree ⊂ M, closed under sequential and parallel composition, containing
(1) free supermaps from unplaced channels to unplaced channels, called pre-placement supermaps, (2)
free supermaps from unplaced channels to placed channels, called placement supermaps, and (3) free
supermaps from placed channels to placed channels, called party supermaps.

In diagrams, we represent the placement supermaps by blue boxes, and the party supermaps by
violet boxes.
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Mathematically, the different channel types are objects in a symmetric monoidal category, and
the free operations Mfree correspond to the morphisms between them. This scheme matches the
general framework of Coecke, Fritz and Spekkens [67].

The setMfree can be specified by a generating set of operations [67]. For example, standard quan-
tum Shannon theory is the resource theory of communication where the free operations Mstandard

are generated from the following types of free operations:

(i) Basic placement: For a single channel N ∈ Chan(X → Y), the map

SA,B
place(N ) := WB ◦ N ◦ VA,

whereV ∈ Chan(A → X) [W ∈ Chan(Y → B)] is the unitary channel implementing the
isomorphism between the unplaced system X (Y) and the placed system A (B).

(ii) Insertion of local devices: For l placed channels C1 ⊗ · · · ⊗ Cl ∈ Chan[(A → R1), (R′
1 →

R2), . . . , (R′
l−1 → B)], the encoding map

SE(C1 ⊗ · · · ⊗ Cl) := (C1 ◦ E)⊗ C2 ⊗ · · · ⊗ Cl , (4.18)

the repeater map

SRm(C1 ⊗ · · · ⊗ Cl) := C1 ⊗ · · · ⊗ Cm−1 ⊗ (Cm+1 ◦ Rm ◦ Cm)⊗ Cm+2 ⊗ · · · ⊗ Cl ,
(4.19)

and the decoding map

SD(C1 ⊗ · · · ⊗ Cl) := C1 ⊗ · · · ⊗ Cl−1 ⊗ (D ◦ Cl) , (4.20)

where E ∈ Chan(A′ → A), Rm ∈ Chan(Rm → R′
m), and D ∈ Chan(B → B′) are

quantum channels representing local devices at the sender’s, m-th repeater’s, and receiver’s
end, respectively.

Note that we omitted pre-placement supermaps, because the set of such supermaps is trivial in
standard quantum Shannon theory.

The other supermaps shown earlier in Section 4.1 can be decomposed into the basic supermaps
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(i)–(ii). For example, the parallel placement (4.4) and sequential placement (4.8) are just the prod-
uct of basic placement supermaps (i), which place individual channels in the appropriate config-
uration. Similarly, the encoding-decoding supermap (4.3) and the encoding-repeater-decoding-
supermap (4.7) are just the result of multiple insertions of local devices (ii).

4.2.3 Generalised channel capacities

In standard quantum Shannon theory, the classical (quantum) capacity of a quantum channel N
is defined as the maximum number of bits (qubits) that can be transmitted over k parallel uses of
N , per channel use and with vanishing error in the asymptotic limit k → ∞. This is equivalent to
the maximum number of classical (quantum) identity channels Iclas (I) that the k parallel uses of
N can simulate, per channel use and with vanishing error in the asymptotic limit k → ∞, using
arbitrary encoding/decoding channels [196]. (The classical identity channel Iclas is defined as the
perfectly dephasing channel (cf. §2.2.3) with respect to a given orthonormal basis).

The standard definition of classical (quantum) capacity is appropriate for placed channels, which
have already been arranged in between the sender and receiver, and therefore can only be used in
parallel. However, unplaced channels could be arranged in more general configurations, generating
a broader class of communication protocols.

In a general resource theory of communication, we define the generalised classical (quantum)
capacity of a quantum channel N as the maximum number of classical (quantum) identity chan-
nels Iclas (I) that can be generated by performing free operations of Mfree, per channel use and
with vanishing error in the asymptotic limit of k → ∞ channel uses. Other types of generalised
capacities can be defined similarly, with respect to some given ideal reference channel.

The generalised capacity is (trivially) a resource monotone [60, 67], meaning that it cannot be
increased by applying free operations. Moreover, the generalised capacity increases (or stays the
same) whenever the set of free operations is enlarged. Examples of this situation are the capacity
enhancements observed in the presence of quantum control over the causal orders [58, 80, 94,
161, 162, 168]: in these protocols, the set of placements of standard quantum Shannon theory is
enlarged to include placements in a superposition of alternative orders, and consequently various
channel capacities have been shown to increase.
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4.2.4 A minimal requirement for any resource theory of communication

Formally, every set of free supermaps defines a resource theory of communication. However, such
a resource theory may not be a meaningful one. We argue that every meaningful resource theory
of communication should at least satisfy a minimal requirement: the free operations should not
allow the sender and receiver to communicate independently of the communication devices from
which their communication protocol is built.

To illustrate this idea, consider the situation where two parties, Alice and Bob, communicate
through a noisy telephone line. In the standard theory of communication, the key question is how
to use this communication resource to transmit information reliably. Now, if Alice were to walk
into Bob’s lab, he would clearly be able to hear her through the air, but this would not be a new way
to use the telephone line. Rather, it would be a way to bypass it. The air would act as a side-channel,
allowing Alice and Bob to communicate to each other independently of how good or how bad their
telephone line is.

The telephone line example has the following structure. Initially, Alice and Bob have access to a
noisy communication channel N ∈ Chan(A → B). The operation of Alice moving into Bob’s lab
can be modelled as a side-channel supermap

S(E,E′)
side : Chan(A → B) → Chan(A⊗ E → B⊗ E′)

S(N ) : N 7→ N ⊗ IE,E′ ,
(4.21)

which juxtaposes the noisy channel N with a side-channel IE,E′ ∈ Chan(E → E′) acting on
some additional systems E and E′ (the air in the proximity of Alice and Bob, respectively). If the
channel IE,E′ is ideal, then the supermap S(E,E′)

side would let Alice communicate perfectly to Bob.
This communication ‘enhancement’, however, is independent of the original channel N . Every
operation of the form (4.21) trivialises the notion of communication enhancement, and therefore
should not be allowed in a resource theory of communication.

Building on the above example, we now propose a general notion of a side-channel generating
operation:

Definition 10. (Side-channel generating operations.) A supermap S ∈ M generates a classical
(quantum) side-channel if there exist two free supermaps S1 ∈ Mfree and S2 ∈ Mfree and a placed
quantumchannelC withnon-zero classical (quantum) capacity, such that, for all choices of input channels
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(N1, . . . ,Nk) for supermap S1, we have that

(S2 ◦ S ◦ S1)(N1, . . . ,Nk) = C . (4.22)

The above definition captures the idea that the supermap S can be used to construct a commu-
nication protocol that works independently of the communication devices originally available to
the communicating parties. In the telephone line example, the channel C is the ideal channel IE,E′

describing the transmission of a message through the air between Alice and Bob.
We demand that any sensible resource theory of communication should forbid side-channel

generating operations:

Condition 11. (No Side-Channel Generation.) In a resource theory of classical (quantum) commu-
nication, no free operation S ∈ Mfree should generate a classical (quantum) side-channel.

We stress that Condition 11 is a minimal requirement, and that, in particular cases, one may
want to impose even stronger conditions on the allowed operations. In other words, we are not
claiming that every resource theory of communication satisfying Condition 11 is an interesting
one. Rather, Condition 11 is a bottom line that has to be satisfied when defining new resource
theories of communication.

It is immediate to verify that standard quantum Shannon theory satisfies Condition 11. In the
following, we shall show that

1. quantum Shannon theory with superpositions of causal orders satisfies Condition 11

2. quantum Shannon theory with superpositions of trajectories satisfies Condition 11

3. quantum Shannon theory with superpositions of encoding and decoding operations violates
Condition 11.

In §4.5, we comment on the difference between our framework and the frameworks of Refs.
[131, 132, 186], discussing an alternative to Condition 11, where the free supermaps are required
to transform constant channels into constant channels.

4.3 Superposition of causal orders and superposition of trajectories

Here we formulate the resource theories of quantum Shannon theory with superpositions of causal
orders and quantum Shannon theory with superpositions of trajectories, and we show that both
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theories satisfy the requirement of No Side-Channel Generation.

4.3.1 Quantum Shannon theory with superpositions of causal orders

As discussed in §2.4.1, indefinite causal order has been shown to provide various advantages in
quantum information processing, such as in quantum query complexity [11, 47], quantum com-
munication complexity [95], quantum metrology [201] and non-local games [149]. In all the
above works, the combination of quantum devices in an indefinite causal order was shown to offer
performances that cannot be matched by any quantum protocol that uses the input devices in a
definite order.

A different category of advantages arises in the context of quantum communication [58, 59, 80,
94, 133, 161, 162, 168]. Here, protocols that combine communication channels through the quan-
tum SWITCH have been shown to offer advantages with respect to the protocols allowed in standard
quantum Shannon theory, as defined earlier in this chapter. These advantages are not advantages
with respect to all possible protocols with definite causal order. They cannot be so, because the
set of all protocols with definite causal order includes also trivial protocols where the original com-
munication channels are juxtaposed with noiseless channels, as in the telephone line example of
Equation (4.21).

The proper way to interpret the communication advantages shown in Refs. [58, 59, 80, 94, 133,
161, 162, 168] is to regard them as a comparison between two different resource theories of com-
munication: standard quantum Shannon theory, and an extended resource theory that includes
the quantum SWITCH among its placements.

Here we explicitly define such a resource theory, which we call quantum Shannon theory with
superpositions of causal orders (SCO). The corresponding set of free operations shall be denoted
by MSCO. The generating free operations are operations (i)–(ii) of standard quantum Shannon
theory, plus an additional placement supermap, based on the quantum SWITCH:

(iii) The quantum SWITCH placement SA,B,ω
SWITCH maps a pair of unplaced quantum channels

(N1,N2) ∈ Chan(X)× Chan(X) into a placed quantum channel
SA,B,ω
SWITCH(N1,N2) ∈ Chan(A → B⊗O), whereA ' X (B ' X) is a quantum system placed

at the sender’s (receiver’s) end, and O is a qubit system, called the order qubit, placed at the
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Figure 4.8: Communication through the quantum SWITCH. The quantum SWITCH placement
SA,B,ω
SWITCH (in blue) places two quantum channels (N1, N2) in a superposition of causal orders,

determined by the fixed state ω ∈ St(O), between a sender and receiver, and is followed by the
encoding-decoding supermap SE,D (in violet). The dashed and dotted lines illustrate the two
alternative orders of applying N1 and N2, respectively.

receiver’s end. Explicitly, the quantum channel SA,B,ω
SWITCH(N1,N2) is defined as

SA,B,ω
SWITCH(N1,N2)(ρ) =

∑
i,j

Sij(ρ⊗ ω)S†ij , (4.23)

where ω ∈ St(O) is a state of the order qubit, and

Sij := N(2)
i N(1)

j ⊗|0〉 〈0|+ N(1)
j N(2)

i ⊗|1〉 〈1| , (4.24)

{|0〉, |1〉} being an orthonormal basis for the order qubit.

The quantum channelSA,B,ω
SWITCH(N1,N2) is independent of the Kraus decomposition of the chan-

nels N1 and N2.
A communication protocol using the quantum SWITCH placement is given in Figure 4.8. Note

that the initial state of the order qubit is fixed as part of the placement, and is thus inaccessible to
the sender [80, 168].

We stress that the quantum SWITCH placement should be understood here as an abstract su-
permap from two quantum channels to a new quantum channel. Whether this supermap can be
physically realised, and how it can be realised, is another matter, which we do not consider in this
work. Various ways to reproduce the action of the quantum SWITCH have been proposed, using
conventional physics [93, 94, 97, 160, 165, 185], closed timelike curves [57], or quantum gravity
scenarios [152, 203]. However, the resource theory MSCO should be considered as the abstract re-
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source theory associated with the quantum SWITCH transformation, without reference to a specific
physical implementation.

The motivation for including the quantum SWITCH among the free operations is to understand
how the world could be, if quantum devices could be combined in a superposition of alternative or-
ders. The study of quantum Shannon theory with the addition of the quantum SWITCH is similar in
spirit the study of information tasks assisted by the Popescu-Rohrlich box [158], a fictional device
that generates stronger than quantum correlations. Like the Popescu-Rohrlich box, the quantum
SWITCH serves as a conceptual device, used to better understand standard quantum theory by com-
paring it to possible alternatives.

4.3.2 Quantum Shannon theory with superpositions of trajectories

The superposition of alternative evolutions was defined in Refs. [3, 4, 9, 146], and applied to quan-
tum communication in Refs. [91, 123], where the ability to send quantum particles along a super-
position of different trajectories provided the working principle for a new technique called error
filtration. Shannon-theoretic advantages of the superposition of trajectories are demonstrated in
Chapters 5, 6 and 8, as well as independently in Refs. [2, 133].

Here, we formulate the resource theory of quantum Shannon theory with superpositions of tra-
jectories (ST), grounding the advantages presented in Chapters 5, 6 and 8 on a formal footing. The
set of free operations in this resource theory, denoted byMST, is generated by the standard free op-
erations (i)–(ii), with the addition of a superposition placement (iii*), based on the superposition of
channels specified by vacuum extensions (cf. Definition 7), which creates a superposition of two
alternative communication channels.

In order to define the superposition placement, we model the communication hardware by
vacuum-extended quantum channels (cf. §3.3). Vacuum-extended channels represent communi-
cation devices that can act on the information carrier, or on the vacuum, or on any coherent su-
perposition of the two. Using this feature, it is possible to coherently control the choice of channel
through which the information carrier is sent. The result can be interpreted as a placement of the
given different channels in a superposition of being on the path of the information carrier:

(iii*) The superposition placement SA,B,ω
sup maps a pair of unplaced vacuum-extended channels

(Ñ1, Ñ2) ∈ Chan(X̃)× Chan(X̃) into a placed quantum channel
SA,B,ω
sup (N1,N2) ∈ Chan(A → B⊗ P), where A ' X (B ' X) is a quantum system placed
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at the sender’s (receiver’s) end, and P is a qubit system, called the path qubit, placed at the
receiver’s end. Explicitly, the quantum channel SA,B,ω

sup (Ñ1, Ñ2) is defined as

SA,B,ω
sup (Ñ1, Ñ2)(ρ) = U † ◦ (N1 ⊗N2) ◦ U(ρ⊗ ω) , (4.25)

whereU is the isomorphism defined in Eq. (3.16) and ω ∈ St(P) is a state of the path qubit.

Note, that the definition of the supermap describing the superposition placement (4.25) differs
from the definition of the supermap describing the superposition of channels specified by vacuum
extensions (3.14), in that the output of the former is a channel in Chan(A → B ⊗ P), whilst the
output of the latter is a channel in Chan(A ⊗ P → B ⊗ P). In other words, the initial state of
the path qubit is considered part of the superposition placement. This is because in a physically
motivated resource theory, the choice of path qubit should be considered part of the placement
of the communication devices. If, instead, the path qubit were under the control of the sender,
then the distinction between the path and the message disappears, and quantum Shannon theory
with superpositions of trajectories would reduce simply to standard quantum Shannon theory with
a larger message Hilbert space. Thus, the paradigm of quantum Shannon theory with superposi-
tions of trajectories should be seen as exploring the Shannon-theoretic benefits of using a control
system purely to combine alternative channels in a superposition, but where this control system is
inaccessible to the sender.

A simple experimental setup implementing the superposition placement is that of a single-photon
generator and a Mach-Zehnder interferometer, as described in §3.4.1. The two vacuum-extended
channels are placed one on each arm of the interferometer. The sender controls a polarisation-
shifter, which is placed between the single-photon generator and the input to the interferometer,
determining the initial state of the message ρ. The parameters of the first beamsplitter in the inter-
ferometer determine the value of the path qubit ω. This results in a clear distinction between the
placement of the path qubit, and the encoding of the message by the sender. The output state of
the interferometer is then given by the composite message-path output state of the superposition
channel (4.25).

An example of a communication protocol using the superposition placement is shown in Fig-
ure 4.9. Since the superposition placement is physically implementable, for example, in photonic
systems, the resource theory MST is interesting both from a purely information-theoretic point of
view as well as from a practical point of view.
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Figure 4.9: Communication through a superposition of quantum channels. The supermap
SA,B,ω
sup (in blue) places two vacuum-extended channels (Ñ1, Ñ2) on two alternative paths, and

lets the transmitted system travel along both paths (dashed line and dotted line, respectively)
in a quantum superposition, determined by the state ω ∈ St(P). The resulting channel then
undergoes the encoding-decoding supermap SE,D (in violet), describing the local operations
performed at the sender’s and receiver’s ends.

The superposition placement can, just as the parallel and sequential placements, also be applied
to correlated devices, described by no-signalling quantum channels. In particular, we can describe
the transmission of a single particle at a superposition of different times, travelling through a time-
correlated channel (cf. §3.6). Explicitly, the action of the superposition placement on a vacuum-
extended unplaced no-signalling channel Ñ1,2 ∈ NSChan(X̃1 → Ỹ1, X̃2 → Ỹ2) is given by

SA,B,ω
sup (Ñ1,2)(ρ) = U † ◦ N1,2 ◦ U(ρ⊗ ω) , (4.26)

where U is the isomorphism defined in Eq. (3.16), resulting in a placed quantum channel in
Chan(A → B⊗C), whereA ' X (B ' X) is a quantum system placed at the sender’s (receiver’s)
end, and C is a control qubit, initialised in state ω ∈ St(C), placed at the receiver’s end.

Formally, Eq. (4.26) is based on the superposition of ports of a bipartite channel (cf. Definition
8), and could thus in principle be extended to take as input any 2-step channel, or even any bipartite
channel. However, for the purposes of this work, we shall stick with considering unplaced chan-
nels as no-signalling channels only; in the applications presented in later chapters, our examples of
correlated channels are all no-signalling channels.

For simplicity of presentation, here we considered only superpositions of two channels, both
for the superposition of trajectories and for the superposition of orders. Both the superposition
placement (iii*) and the quantum SWITCH placement (iii) can be straightforwardly generalised to
N channels. The corresponding definitions can be found in Chapter 3 and Ref. [68], respectively.
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4.3.3 Superpositions of causal orders and superpositions of trajectories do not
generate side-channels

We now show that the supermaps (iii) or (iii*), combined with (i)–(ii), do not generate side-
channels.

Proposition 12. No supermap composed from the quantum SWITCH placement (iii), basic placement
(i), and insertion of local devices (ii) generates side-channels.

Proof. The supermaps (i)–(ii) of standard quantum Shannon theory do not generate side chan-
nels. Hence, it is sufficient to prove that the quantum SWITCH does not generate side-channels.

This is done by finding a choice of adversarial channels N1 and N2 such that SA,B,ω
SWITCH(N1,N2) is

a channel with zero classical capacity. One such choice is to pick N1 to be the identity channel I
(with a single Kraus operatorN(1)

i = I, i = 1) andN2 to be the constant channelN2(ρ) = |ψ0〉〈ψ0|
(with Kraus operators N(2)

j = |ψ0〉〈j|, for some orthonormal basis {|j〉}). With this choice, the
Kraus operators (4.24) in the definition of the channel SA,B,ω

SWITCH(N1,N2) are

Sij = |ψ0〉〈j| ⊗ I , (4.27)

and therefore one has

SA,B,ω
SWITCH(N1,N2)(ρ) :=

∑
i,j

Sij(ρ⊗ ω)S†ij = |ψ0〉〈ψ0| ⊗ ω ∀ρ ∈ St(A) . (4.28)

Since the output of the channel SA,B,ω
SWITCH(N1,N2) is independent of its input, the channel has zero

capacity (both classical and quantum), and no combination of it with the other supermaps (i)–(ii)
can generate a channel with non-zero capacity.

Proposition 13. No supermap composed from the superposition placement (iii*), basic placement (i),
and insertion of local devices (ii) generates side-channels.

Proof. As in the proof of Proposition 12, it is sufficient to prove that the superposition place-
ment (iii*) does not generate side-channels. This is done by finding a choice of adversarial vacuum-
extended channels Ñ1 and Ñ2 such that SA,B,ω

sup (Ñ1, Ñ2) is a channel with zero classical capacity.
One such choice is to pick the vacuum-extended channels Ñ1 and Ñ2 defined by

Ñ1(ρ) = Ñ2(ρ) = ρ0 Tr[ρ (I− |vac〉〈vac|)] + |vac〉〈vac|ρ|vac〉〈vac| ∀ρ ∈ St(X̃) . (4.29)
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In other words, Ñ1 = Ñ2 is the incoherent vacuum-extension (cf. Definition 6) of the constant
channel that maps every state into the fixed state ρ0 . For the vacuum-extended channels Ñ1 and
Ñ2, the vacuum interference operators are F1 = F2 = 0, and the superposition placement then
yields the channel

SA,B,ω
sup (Ñ1, Ñ2)(ρ) = ρ0 ⊗ diag(ω) , (4.30)

with diag(ω) := 〈0|ω|0〉 |0〉〈0|+ 〈1|ω|1〉 |1〉〈1|, as one can verify from Equation (3.17). Since the
channel SA,B,ω

sup (Ñ1, Ñ2) is constant, it has zero (classical and quantum) capacity.

Propositions 12 and 13 show that both quantum Shannon theory with superpositions of causal
orders and quantum Shannon theory with superpositions of trajectories satisfy the requirement of
No Side-Channel Generation, as stated in Condition 11.

4.4 Superpositions of encoding and decoding operations

A recent paper by Guérin, Rubino, and Brukner [96] argues that in order to claim meaningful com-
munication advantages, the quantum SWITCH should be compared to a general class of operations
termed ‘superpositions of direct pure processes’. In this section, we analyse their arguments and
examples, concluding that they rest on a communication model that violates the basic resource-
theoretic framework.

4.4.1 The framework of SDPPs

The authors of Ref. [96] argue that quantum Shannon theory with superpositions of causal or-
ders should be considered within a general framework of ‘superpositions of direct pure processes’
(SDPPs), which includes the quantum SWITCH: ‘It seems that any reasonable resource theory that
contains the quantum switch—a superposition of direct pure processes with different causal orders—
should also allow superpositions of direct pure processes with the same causal order’ [96]. It is claimed,
therefore, that the advantages of the quantum SWITCH should be compared to SDPPs with a def-
inite causal order. In the following, we analyse the above claim, showing that, while the quan-
tum SWITCH and the SDPPs considered in Ref. [96] share a similar mathematical structure, they
have different operational features: in particular, the specific SDPPs compared with the quan-
tum SWITCH in Ref. [96] generate side-channels, making the proposed advantages trivial from the
resource-theoretic point of view.
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In the language of this work, the SDPPs of Ref. [96] are supermaps that take two channels
(N1,N2), and return a superposition of k channels (cf. §3.2) which are individually of the form
Dj ◦N2 ◦Rj ◦N1 ◦Ej orD′

j ◦N1 ◦R′
j ◦N2 ◦E ′

j , j ∈ {1, 2, . . . , k}, for some encoding, repeater and
decoding operations Ej, E ′

j ,Rj,R′
j,Dj and D′

j . SDPPs with a definite causal order are defined as
SDPPs which are superpositions of terms where the input channels N1 and N2 occur in the same,
fixed order.

In the resource-theoretic scheme of this chapter, the SDPPs should be regarded as a set of free
operations. One could, for example, consider them as a broader set of party supermaps, or alterna-
tively, as a set of placement supermaps with internal encoding, decoding, and repeater operations,
which are in a quantum superposition controlled by some quantum degree of freedom that is part
of the placement.

The resource theory based on SDPPs is different from the resource theory of quantum Shannon
theory with superpositions of trajectories. An important difference is that SDPPs are supermaps
acting directly on the original channels, rather than their vacuum extensions. In this respect, SDPPs
and the quantum SWITCH operate on the same type of input resource, and a comparison between
them would indeed be even. However, in the following we shall show that building a resource
theory of communication where all SDPPs are taken as free operations is problematic, because it
violates the requirement of No Side-Channel Generation. This fact will be illustrated by analysing
the specific examples of SDPPs proposed in Ref. [96].

4.4.2 Some SDPPs generate classical side-channels

One of the SDPPs proposed in Ref. [96] is the supermap depicted in Figure 4.10. This supermap
corresponds to a protocol where two qubit channelsN1 andN2 are applied after a CNOT gate, acting
on the message qubit and on an additional control qubit C. The supermap, here denoted as F :

(N1,N2) 7→ F(N1,N2), produces the output channel defined by

F(N1,N2)(ρ) = [(N2 ◦ N1)⊗ IC] ◦ UCNOT(ρ⊗ |+〉〈+|), (4.31)

where UCNOT := UCNOT†(·)UCNOT is the unitary channel corresponding to the CNOT gate

UCNOT := IM ⊗ |0〉〈0|C + XM ⊗ |1〉〈1|C , (4.32)
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Figure 4.10: An SDPP that transfers classical information through a side-channel, bypass-
ing the original communication devices. A control qubit C is prepared in the state |+〉 and is
sent together with the message M through a CNOT gate. If the message is initialised in either
of the states |±〉, then its interaction with the control through the CNOT will output the state
|±〉 in C. The receiver is thus able to decode the original message by measuring the control
qubit, irrespectively of the channels N1 and N2. Overall, this SDPP fails to satisfy the require-
ment of No Side-Channel Generation, which we regard as a minimal requirement for a sensible
resource theory of communication.

X being the NOT gate. To avoid overloading the notation, here we have omitted the isomorphisms
between unplaced and placed systems, and simply denoted the (placed and unplaced) message
system by M.

Now, the map F enables perfect classical communication of one bit independently of the com-
munication channelsN1 andN2 [96]. Using the phase kickback mechanism of the CNOT gate [62],
information encoded in the states |±〉 := (|0〉± |1〉)/

√
2 is transferred from the messageM to the

control C before the noisy channels N1 and N2 are applied. Then, the information is safely carried
by the control system to the receiver, completely bypassing the communication channels N1 and
N2, and avoiding the resulting noise. In other words, this example of an SDPP is analogous to the
example of the noisy telephone line discussed in §4.2.4: it achieves communication by completely
bypassing the original channels.

More formally, one can see that the operation F generates a classical side-channel in the sense
of Definition 10. Indeed, one can consider the party supermap corresponding to the encoding
channel E = IM and the decoding channel D = TrM, which discards the message qubit. The
result is the channel

C(·) = D ◦ F(N1,N2) ◦ E(·)

= |+〉〈+| · |+〉〈+|+ |−〉〈−| · |−〉〈−| ,
(4.33)

which is independent ofN1 andN2 and provides a perfect transmission line for classical communi-
cation. In conclusion, the ‘communication enhancement’ of the SDPP (4.31) arises from a classical
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Figure 4.11: An SDPP that transfers quantum information through a side-channel, for any
noisy channels acting on the message. Two control qubits C and D are both prepared in the
state |+〉. A message M in state ρ is to be communicated. The composite system M ⊗ C is
sent through a CNOT gate, followed by the composite system M ⊗ D going through a CPHASE
gate. As shown in Equation (4.36), the receiver is able to recover the original input by mea-
suring the control qubit D and performing a conditional correction on C, independently of the
choice of noisy channels N1 and N2 that act on the message itself.

side-channel, which completely bypasses the original communication devices.
The authors of Ref. [96] also consider a specific interferometric implementation of the operation

F , which they claim avoids the criticism above. In Appendix G of Ref. [119] (the contents of which
are omitted in this thesis for brevity), the arguments of Ref. [96] are analysed, concluding that, in
fact, the above criticism still applies.

4.4.3 Some SDPPs generate quantum side-channels

In Appendix B of Ref. [96], the authors present an SDPP, stating that it ‘allows us to perfectly trans-
mit one qubit of quantum information, for all channels […]’. This statement is an explicit acknowl-
edgement that the SDPP model permits the strongest possible kind of side-channels: perfect side-
channels for quantum communication.

The example in Appendix B of Ref. [96] is presented as one that ‘generalises, and improves upon,
the observations made in the main text,’ the improvement being that only four control qubits are
used instead of eight, which is the number of qubits used by the protocol in the main text. Here we
review the example, showing that, in fact, one can improve it even further: the same perfect qubit
side-channel can be generated by an SDPP that uses only two control qubits, instead of four.

Our improved version of the SDPP in Ref. [96] is depicted in Figure 4.11. It uses two control
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qubits C and D, in addition to the message qubit M. The corresponding supermap is given by

Gω,ξ : (N1,N2) 7→ Gω,ξ(N1,N2)

Gω,ξ(N1,N2)(ρM) = [(N2 ◦ N1)⊗ IC ⊗ ID] ◦ (UCPHASE
MD ⊗ IC)

◦ (UCNOT
MC ⊗ ID)(ρM ⊗ ωC ⊗ ξD) ,

(4.34)

where ω and ξ are the initial quantum states of the control qubits C and D, respectively, and UCNOT

and UCPHASE are the CNOT and CPHASE gates, respectively, defined by

UCNOT
MC := IM ⊗ |0〉〈0|C + XM ⊗ |1〉〈1|C

UCPHASE
MD := IM ⊗ |0〉〈0|D + ZM ⊗ |1〉〈1|D ,

(4.35)

X and Z being Pauli gates.
Explicit calculation reveals that for both control qubits initialised in the |+〉 state, one obtains

TrM
[
G |+⟩⟨+|, |+⟩⟨+|(N1,N2)(ρM)

]
= ρC ⊗ |+〉〈+|D + XρXC ⊗ |−〉〈−|D .

(4.36)

Therefore, the initial state ρ can be perfectly recovered independently of the noisy channels N1

and N2, by measuring D in the Fourier basis and then applying a NOT gate on C if the outcome is
|−〉. The supermap defined by Equation (4.34) is an example of an SDPP that generates a perfect
quantum side-channel, as it can perfectly transmit one qubit of quantum information for any choice
of noisy channels.

The authors of Ref. [96] conclude with regard to their protocol: ‘This example shows that SDPPs
[...] can be used to perfectly send one qubit of information, essentially trivialising the problemof enhancing
quantum and classical channel capacity if one were to take the set of all SDPPs as a resource’. We agree,
and argue that this is the reason why the set of all SDPPs does not define a sensible resource theory
of communication.

A possible direction of future research would be to compare the quantum SWITCH with the sub-
set of SDPPs that have definite causal order and do not generate side-channels. This may shed light
on the mechanism that leads to enhancements in the quantum SWITCH, and on whether or not the
characteristics of this mechanism can be reproduced by SDPPs with definite causal order.

More interestingly, it would be important to compare the side-channel non-generating SDPPs
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with definite causal order with all the side-channel non-generating SDPPs with indefinite causal
order, rather than just restricting the comparison to the quantum SWITCH. For a given pair of
channels, the maximum communication capacity achievable with indefinite causal order is—by
definition—always larger than or equal to the maximum communication capacity achievable with
definite causal order. The interesting question is whether there is a gap between the two, meaning
that there exist communication advantages that can be achieved only with indefinite causal order.

4.5 Comparisonwith other frameworks

Our framework is based on the approach of Coecke, Fritz, and Spekkens [67], where the set of
free operations is taken as the starting point from which the notion of resource is defined. An
alternative approach is to start from a set of ‘zero resources’ and to define the free operations as
those that preserve this set. For resource theories of quantum channels, this approach was adopted
in Refs. [131, 132, 186], where free channels were specified first, and free operations were defined
as those supermaps that transform free channels into free channels.

In standard quantum Shannon theory, a natural choice for the set of free channels is the set of
constant channels: no communication protocol in standard quantum Shannon theory can achieve
communication using only constant channels. The set of supermaps that transform constant chan-
nels into constant channels was characterised in Ref. [186], where the authors showed that a su-
permap preserves the set of constant channels if and only if it is of the form S(N ) =

∑
i ci Di ◦

N ◦Ei, whereEi andDi are suitable channels, and (ci) are real (possibly negative) coefficients, such
that the map

∑
i ci Ei ⊗ Di is a quantum channel. Physically, these supermaps correspond to the

transformations that can be achieved with the assistance of free no-signalling channels between the
sender’s and receiver’s locations.

Going from standard quantum Shannon theory to its extensions, it is not clear whether constant
channels should still be regarded as free. Clearly, a placed constant channel is useless for commu-
nication, because it does not transfer any information from the sender’s laboratory to the receiver’s
laboratory. Hence, placed constant channels should still be considered as free. On the other hand,
an unplaced constant channel may still be useful, depending on how it interacts with the place-
ments allowed by the theory. This is indeed what happens when the allowed placements include
the quantum SWITCH [80].

One might insist that operations that transform constant channels (placed or unplaced) into
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non-constant channels should not be allowed in a resource theory of communication. This re-
quirement would amount to the following:

Condition 11’. (No Activation of Constant Channels.) In a resource theory of communication, no
free operation S ∈ Mfree should be able to transform a constant channel into a non-constant channel.

Note that Condition 11’ (No Activation of Constant Channels) is stronger than Condition 11
(No Side-Channel Generation). If a supermap violated Condition 11, by allowing the sender and
receiver to communicate independently of the input channels, then in particular it would allow the
sender and receiver to communicate with constant channels, thus violating Condition 11’. In fact,
Condition 11’ is strictly stronger than Condition 11. The quantum SWITCH placement transforms
two completely depolarising channels into a non-constant channel [80], thereby violating Con-
dition 11’. On the other hand, the quantum SWITCH placement does not permit the sender and
receiver to communicate independently of the input channels: for example, if the input channels
are the completely depolarising channel and the identity, the quantum SWITCH placement outputs
the channel

SA,B,ω
SWITCH(Ndep, I) = Ndep ⊗ ω , (4.37)

which is constant and does not permit any communication. Hence, the quantum SWITCH place-
ment satisfies Condition 11, while it violates Condition 11’.

One motivation for assuming Condition 11’ would be the idea that the communication provider
could ‘break’ some of the available devices, by turning them into constant channels, before placing
them between the sender and receiver. This pre-placement operation would be described by a constant
supermap, of the form

SN0 : N 7→ N0 ∀N ∈ Chan(X → Y) , (4.38)

whereN0 is a constant channel. If such constant supermaps were allowed, then Conditions 11 and
11’ would become equivalent: a placement supermap that transforms some constant channel into
a non-constant channel could be preceded by a constant supermap, thus enabling communication
independently of the input channels. However, it is not obvious why constant supermaps should
be regarded as free. Ultimately, assuming constant supermaps to be free is equivalent to assuming
by fiat that constant channels are zero-resource channels, and therefore can be generated for free.
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In summary, it is important to distinguish between two requirements: (a) constant channels
should not be transformed into non-constant channels, and (b) it should not be possible to com-
municate independently of the input devices. While requirement (b) may still be too weak to guar-
antee that a resource theory of communication is interesting, it appears that there are interesting
resource theories of communication that violate the requirement (a) and still lead to non-trivial
Shannon-theoretic structures.

4.6 Summary

We established a general framework of resource theories of communication. In our framework,
the input resources are communication devices, which can be placed between the communicating
parties, and combined with local operations performed by the communicating parties. A resource
theory is specified by a choice of placement operations, describing how the communication de-
vices are arranged, and by a choice of party operations, describing the action of the communicating
parties.

We formulated a minimal requirement that every resource theory of communication should sat-
isfy: no combination of the allowed operations should be able to bypass the communication de-
vices initially available to the communicating parties. We showed that quantum Shannon theory
with superpositions of causal order of communication channels [80] and quantum Shannon the-
ory with superpositions of trajectories of information carriers satisfy this requirement, while quan-
tum Shannon theory with superpositions of encoding and decoding operations [96] does not.

Overall, the resource-theoretic framework proposed in this chapter allows for rigorous compar-
isons between different resource theories of communication, and can be used for the exploration
of new models of quantum communication, with both foundational and practical implications.
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5
Communication through independent channels in

a superposition of trajectories

In the previous two chapters, we defined the superposition of two quantum channels, and con-
structed a resource theory to use the placement of two channels in superposition for communica-
tion. Here we finally present concrete examples of the communication advantages over standard
quantum Shannon theory from using independent channels in a superposition. We present exam-
ples of classical communication through a superposition of two pure erasure channels, quantum
communication through a superposition of two pure dephasing channels, as well as perfect clas-
sical and quantum communication through a superposition of an asymptotically large number of
such channels. First, we discuss the definitions of communication capacities in this setting.
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5.1 Communication capacities assisted by superpositions of trajecto-

ries

In §4.2.3, we defined the generalised classical or quantum capacity of an unplaced quantum channel
as the maximum number of classical or quantum identity channels that can be generated by per-
forming any combination of the chosen set of free operations, per channel use in the asymptotic
limit of k → ∞ channel uses. In practice, however, we typically deal with placed channels, which
have already been constructed using the free operations. Therefore, let us make a few comments
on the relationship between these two types of capacities.

In the resource theory that includes the superposition placement of two channels with a fixed
path state ω, the generalised classical (quantum) capacity of a vacuum-extended channel Ñ cor-
responds to the scenario where the k uses of Ñ are first combined in pairs and placed in a super-
position, and the resulting k/2 placed channels are used in parallel. The resulting capacity is by
definition equal to half of the standard classical (quantum) capacity of the corresponding placed
channel Sω

sup(Ñ , Ñ ). (In this and following chapters, we shall suppress the superscripts of the
placed input and output systems A,B for brevity.)

More broadly, the generalised classical (quantum) capacity of a vacuum-extended channel Ñ in
the resource theory that contains the superposition placement ofN channels with a fixed path state
ω is by definition equal to 1/N times the standard classical (quantum) capacity of the corresponding
placed channel Sω

sup(Ñ⊗N).
When the sender has access to multiple non-identical transmission lines, which can be com-

bined together in a superposition, the relationship between the capacity of the resulting placed
channel and the generalised capacities of the individual constituent unplaced channels becomes
highly non-trivial. To enable these cases to be treated on an equal footing, in the remainder of this
work, we shall mostly discuss only the capacities of placed channels.

A circuit diagram corresponding to the communication scenario with two unplaced channels
Ñ1, Ñ2 placed in a superposition is shown in Figure 5.1. The placed channelSω

sup(Ñ1, Ñ2) is used k
times, with a global encoding operation Ek and decoding operation Dk. Its capacity is determined
by case when k → ∞.
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Figure 5.1: Communication of a message encoded in k particles, with each particle travelling
in a superposition of two paths. The sender encodes the state of a quantum system A′

k onto
the internal state of k particles, using a global encoding operation Ek. Each particle is sent
through one of the channels Ñ1 and Ñ2, with the choice of the channel controlled by the state
ω of the particle’s external degree of freedom. Finally, the receiver applies a global decoding
operation Dk on the output particles, returning a quantum state in system B′k.
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5.2 Classical communication through a superposition of pure erasure

channels

Consider a direct communication scenario between a sender and a receiver that wish to commu-
nicate classical information. Suppose that they have access to two communication channels, each
of which are described by the pure erasure channel

E(ρ) = |ψ0〉〈ψ0| , (5.1)

where both ρ, |ψ0〉〈ψ0| ∈ St(A), which has zero classical capacity. Clearly, standard quantum
Shannon theory does not permit any information to be sent to the receiver using these two channels
in any combination. Note that a convex combination (i.e. an incoherent mixture) of these two
channels is still a zero-capacity channel. In the following, we show that, in contrast, a coherent
superposition of the two channels can lead to an effective channel with non-zero classical capacity.

Consider now, that the communication devices used in the protocol can take the vacuum as in-
put, and are described by a vacuum extension Ẽ with Kraus operators{Ẽi = |ψ0〉〈i|⊕αi |vac〉〈vac|},
and vacuum amplitudes {αi}, for i ∈ {1, . . . , d}. In this case, the sender can transmit the message
in a superposition of travelling through each of the two channels by initialising the path in the |+〉
state. The output state of the overall superposition channel can be computed using Eq. (4.25),
which gives

S |+⟩⟨+|
sup (Ẽ , Ẽ)(ρ) = |ψ0〉〈ψ0| ⊗

(
p|+〉〈+|+ (1− p)

I
2

)
(5.2)

p = 〈α|ρ|α〉, |α〉 =
∑
i

αi|i〉 .

Since the output state depends on the input state ρ, the receiver will be able to decode some of
the information in the original message. More specifically, the overall channel is a measure and re-
prepare channel, equivalent to the measurement with orthogonal projectors {|α〉〈α|, I − |α〉〈α|}
followed by a re-preparation of the states |+〉〈+| or I/2, depending on the outcome. This is in
turn equivalent to a classical binary asymmetric channel, with 0 mapped deterministically to 0,
and 1 mapped to a uniform mixture of 0 and 1. The classical capacity of this channel is log2(5/4) ≈
0.32 bits [163] and can be achieved using polar codes [105]. In a quantum setting, the sender can
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encode 0 in the state |α〉 and 1 in an orthogonal state |α⊥〉, and then use the optimal classical code.
The essential feature that enabled communication through vacuum-extended pure erasure chan-

nels is the fact that the channels preserved coherence between the message and the vacuum. If, on
the other hand, we had chosen an incoherent vacuum extension, e.g. the vacuum extension with
Kraus operators {Ẽ′

i := |ψ〉〈i| ⊕ 0Vac}, i ∈ {1, . . . , d} and Ẽ′
d+1 := 0A ⊕ |vac〉〈vac|, the overall

channel would be equivalent to a measurement on the path followed by an erasure channel on the
message. The output state (calculated from Eq. (4.25)) would have been

S |+⟩⟨+|
sup (Ẽ ′, Ẽ ′)(ρ) = |ψ0〉〈ψ0| ⊗

I
2
, (5.3)

which is independent of the input state ρ, and therefore has zero classical capacity.
Ref. [2] presents similar communication advantages for a superposition of two independent

completely depolarising channels, and was completed independently from this work.

5.3 Quantumcommunicationthroughasuperpositionofentanglement-

breaking channels

Recall the output of a superposition of two identical channels, given in Eq. (3.19). This equation
shows that it can be possible to obtain probabilistic noiseless transmission of a quantum state, if
the destructive interference term A− F · F† is proportional to a unitary gate.

For example, consider the completely dephasing channel

D(ρ) = |0〉〈0|ρ|0〉〈0|+ |1〉〈1|ρ|1〉〈1| , (5.4)

which has zero quantum capacity. For a vacuum extension described by Kraus operators {|i〉〈i| ⊕
1√
2 |vac〉〈vac|}

1
i=0, the vacuum interference operator is F = I/

√
2. For a superposition of two such

completely dephasing channels, this means that the destructive interference term is proportional
to the unitary gate Z = |0〉〈0| − |1〉〈1|, which can be undone by the receiver. The probability
of obtaining this term is 1/4, which means that the superposition of channels enables the perfect
transmission of single qubit with 25% probability. In the remaining cases, we obtain constructive
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interference, with the conditional evolution of the message described by the channel

2
3
(A(ρ) + FρF†) =

2
3
(|0〉〈0|ρ|0〉〈0|+ |1〉〈1|ρ|1〉〈1|+ ρ/2) =

2
3
ρ +

1
3
ZρZ , (5.5)

whose quantum capacity is 1−h(1/3) ≈ 0.08 qubits, where h(x) = −x log2 x− (1−x) log(1−x)
is the binary entropy [196]. Since the same encoding works in both cases, the overall quantum
capacity of the superposition channel is at least 0.08 qubits.

5.4 Perfect communication through asymptotically many paths

Having seen that the superposition of paths can enable the transfer of both classical and quantum
information at a non-zero rate through zero-capacity channels, one might wonder whether the su-
perposition of independent channels can enable perfect noiseless communication through noisy
channels. To answer this question, we look again at Equation (3.19). In order for the superposition
channel to be completely noiseless (i.e. a unitary), both maps A ± FρF† must be proportional to
unitary channels. However, the map A + F · F† is proportional to a unitary channel if and only
if the original channel A is a unitary channel itself. From Eq. (3.17), we see that the same result
holds for the superposition of two different channels A and B, and, from Eq. (3.20), more gener-
ally for a superposition of N independent channels. That is, a superposition of a finite number of
independent noisy channels can never lead to a perfectly noiseless channel [58].

Yet, such extreme destructive interference of the noise can in fact occur in the asymptotic limit
of a superposition of N independent channels.

Consider the transmission of a single particle through a superposition of N independent and
identical transmission lines, each described by the vacuum extension Ã of some channel A. With
the path initialised in the maximally coherent state |e0〉 =

∑N−1
j=0 |j〉/

√
N, the output of the super-

position channel is

S |e0⟩⟨e0|
sup (Ã⊗N)(ρ) =

A(ρ) + (N− 1) FρF†

N
⊗ |e0〉〈e0|+

A(ρ)− FρF†

N
⊗
(
I− |e0〉〈e0|

)
, (5.6)

withF :=
∑

i αi Ai. As before, the output state of the path is diagonal in the Fourier basis, heralding
the possibility of constructive or destructive interference. In the large N limit, the superposition
channel tends to a mixture of the two quantum operations F · F† and A − F · F†. This limiting
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behaviour leads to extreme possibilities for the correction of noise:

5.4.1 Asymptotically large number of pure erasure channels

Consider a communication scenario where the communicating parties have access to N → ∞
independent copies of the pure erasure channel E(ρ) = |ψ0〉〈0|ρ|0〉〈ψ0|+ |ψ0〉〈1|ρ|1〉〈ψ0| , with
vacuum extension described by Kraus operators Ẽ0 = |ψ0〉〈0|⊕ α0 |vac〉〈vac| and Ẽ1 = |ψ0〉〈1|⊕
α1 |vac〉〈vac|. In this case, the vacuum interference operator F = |ψ0〉〈α| and Equation (5.6) gives

S |e0⟩⟨e0|
sup (Ẽ⊗N)(ρ) → 〈α|ρ|α〉 |ψ0〉〈ψ0| ⊗ |e0〉〈e0|+ 〈α⊥|ρ|α⊥〉 |ψ0〉〈ψ0| ⊗ ω⊥ , (5.7)

with 〈α⊥|α〉 = 0 and ω⊥ := (I− |e0〉〈e0|)/(N− 1). This channel is equivalent to a measurement
in the basis {|α〉, |α⊥〉}, followed by a preparation of one of the orthogonal states |e0〉〈e0| and ω⊥,
conditional on the outcome. Since these two states are orthogonal, the superposition channel acts
as a perfect noiseless channel for the communication of classical bits.

5.4.2 Asymptotically large number of completely depolarising channels

Suppose, that the communicating parties have access to N → ∞ independent copies of the com-
pletely depolarising channelD(ρ) = (ρ+XρX+YρY+ZρZ)/4with vacuum extension described
by Kraus operators D̃0 = (I⊕1)/2, D̃1 = (X⊕i)/2, D̃2 = (Y⊕i)/2, and D̃3 = (Z⊕i)/2. Then, the
vacuum interference term is proportional to a unitary channel, since F = (cos θ I− i sin θS) /2,
with cos θ = 1/2 and S = (X+Y+Z)/

√
3. As a result, when the measurement on the path heralds

the quantum operation F ·F†, which occurs with 25% probability, a qubit is noiselessly transmitted
from the sender to the receiver. That is, noiseless quantum communication with 25% probability
is possible in the N → ∞ limit.

5.4.3 Asymptotically large number of completely dephasing channels

Finally, suppose that the communicating parties have access toN → ∞ independent copies of the
completely dephasing channel A(ρ) = |0〉〈0|ρ|0〉〈0| + |1〉〈1|ρ|1〉〈1|, with the vacuum extension
described by Kraus operators |0〉〈0| ⊕ |vac〉〈vac|/

√
2 and |1〉〈1| ⊕ |vac〉〈vac|/

√
2. This gives F =

I/
√
2 and A(ρ) − FρF† = ZρZ/2, such that both quantum operations F · F† and A− F · F† are

proportional to unitary channels. By measuring the path, the receiver can find out which unitary
channel acted and correct it, enabling perfect noiseless quantum communication.
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5.5 Optimal control state for maximizing the communication rate

In the previous subsections, we presented all of the communication advantages from a superposi-
tion of channels with the path initialised in the maximally coherent Fourier state, which for qubits
is the state |+〉. This leads to the question whether such a state is always optimal. Here, we show
that for a superposition of two identical channels (cf. Eq. (4.25)) the Holevo capacity (a useful
lower bound to the classical capacity – cf. §2.2) is indeed maximised for the path initialised as
ω = |+〉〈+|.

We prove this in the following lemma:

Lemma 14. Let Cω be an arbitrary channel of the form

Cω(ρ) = L+(ρ)⊗ ω + L−(ρ)⊗ ZωZ , (5.8)

where L± are arbitrary linear maps. Then, for every quantum state ω, the Holevo capacity satisfies the
bound χ (Cω) ≤ χ

(
C|+⟩⟨+|

)
.

Proof. The Holevo capacity is known to be monotonically decreasing under the addition of
quantum channels, namely χ(E) ≥ χ(F ◦ E) for every pair of channels E and F . For every
channel Cω of the form (5.8), we have the relation

Cω = (IM ⊗ Pω) ◦ C|+⟩⟨+| , (5.9)

where Pω is the quantum channel defined by

Pω(γ) := 〈+|γ|+〉 ω + 〈−|γ|−〉ZωZ (5.10)

for an arbitrary state γ. Hence, we have χ(Cω) = χ
[
(IM ⊗ Pω) ◦ C|+⟩⟨+|

]
≤ χ(C|+⟩⟨+|).

Since Eq. (4.25) is of the form (5.8), the Holevo information of a superposition of two identical
and independent channels is, in particular, maximised when the path is initialised in the |+〉 state.

In the next section, we consider the superposition of correlated quantum channels. We compare
the performance of a superposition of correlated channels with that of a superposition of indepen-
dent channels, where we shall make use of Lemma 14.
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6
Communication through correlated channels at a

superposition of times

In this chapter, we explore the communication enhancements possible when a time-correlated
quantum device is used at a superposition of different times. First, we discuss enhancements in
classical communication, and show that a transmission line which is completely depolarising on the
message at any definite moment in time can be transformed into a perfect communication channel
for classical information, for specific choices of the physical parameters.

Then, we extend this result to networks of multiple time-correlated transmission lines. The ac-
tion of the quantum SWITCH can be reproduced in this setting. We show that (1) time-correlations
are essential in order to reproduce the communication advantages of the quantum SWITCH, and (2)
more sophisticated patterns of time correlations in the same setting can surpass the communica-
tion capacity associated with the quantum SWITCH.

Finally, we discussed enhancements in quantum communication, and find that a transmission
line which is completely dephasing on the message at any definite moment in time can, for partic-
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ular parameters, be transformed into a perfect communication channel for qubits.

6.1 Sending a single particle through a time-correlated channel

In this section, we consider a single particle sent at a superposition of two moments of time through
a time-correlated channel. For the transmission of the particle, we consider channels that conserve
the number of particles, i.e. that map states of a given sector into states of the same sector. This is
the case, for example, for linear optical elements, which preserve the photon number.

In the following, we specialise to the case of correlated channels of the random unitary form

R =
∑
m,n

p(m, n)Vm ⊗ Vn ∈ Chan(S(1), S(2)) , (6.1)

where Vm(·) := Vm(·)V†
m is a unitary channel, {Vm} is a set of unitary gates, and p(m, n) is a joint

probability distribution. (Recall, that Chan(S(1), S(2)) is shorthand for a 2-step channel
Chan(S(1) → S(1), S(2) → S(2)) – see notation introduced in §2.7.1.) The vacuum extension of
each unitary Vm is taken to be another unitary

Ṽm := Vm ⊗ eiφm |vac〉〈vac| , (6.2)

where the vacuum amplitude is given by a complex phase, representing the coherent action of each
possible noisy process on the one-particle and vacuum sectors. This leads to the vacuum extension

R̃ =
∑
m,n

p(m, n) Ṽm ⊗ Ṽn ∈ Chan(S̃(1), S̃(2)) , (6.3)

with Ṽm(·) := Ṽm(·)Ṽ†
m.

The use of the channel R, specified by the vacuum extension R̃, at a superposition of times (cf.
the superposition placement (4.25)) is given by:

Sω
sup(R̃) =

r−1∑
m,n=0

p(m, n)U †◦
(
Ṽm ⊗ Ṽn

)
◦ U . (6.4)
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Explicitly, this is equivalent to the effective channel

Cω(ρ) := Sω
sup(R̃)(ρ) =

∑
m,n

p(m, n)Wmn (ρ⊗ ω)W†
mn , (6.5)

where ρ (respectively, ω) is an arbitrary state of the message (respectively, control), and

Wmn := Vm eiφn ⊗ |0〉〈0|+ eiφm Vn ⊗ |1〉〈1| , (6.6)

where eiφm is the vacuum amplitude in Eq. (6.2).
It is useful to consider the case where the probability distribution p(m, n) is symmetric, that

is, p(m, n) = p(n,m) for every m and n. In this case, the superposition channel has the simple
expression

Cω(ρ) = Sω
sup(R̃)(ρ) =

R1(ρ) + G(ρ)
2

⊗ ω +
R1(ρ)− G(ρ)

2
⊗ ZωZ , (6.7)

where R1 is the reduced channel defined by

R1(ρ) :=
∑
m

p1(m)VmρV†
m p1(m) :=

∑
n

p(m, n) , (6.8)

and G is the linear map defined by

G(ρ) :=
∑
m,n

p(m, n) ei(φn−φm) VmρV†
n . (6.9)

Here, the channel R1 is the quantum channel representing the evolution of the message when it
is sent at a definite time (either t1 or t2). It depends only on the marginal probability distribution
p1(m) :=

∑
n p(m, n) and is independent of the correlations. In contrast, the mapG generally de-

pends on the correlations between the evolution of the particle at two mutually exclusive moments
of time. We call G the interference term.
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6.2 Classical communication through correlatedwhite noise

6.2.1 Correlated white noise

Consider the case where the evolution at any definite time step is completely depolarising on the
message-carrying sector M, that is,

C|j⟩⟨j|(ρ) = Tr(ρ)
I
d
⊗ |j〉〈j| ∀ρ ∈ St(M) ,∀j ∈ {0, 1} , (6.10)

where C|j⟩⟨j| is the quantum channel obtained by plugging ω = |j〉〈j| into Eq. (6.7). Eq. (6.10)
implies that whenever the particle is sent at a definite moment of time, the message is replaced
by white noise. Accordingly, the channel R1 in Eq. (6.8) is a completely depolarising channel (cf.
2.2.2).

When the probability distribution p(m, n) is symmetric, Eq. (6.7) becomes

Cω(ρ) =
I/d+ G(ρ)

2
⊗ ω +

I/d− G(ρ)
2

⊗ ZωZ . (6.11)

In the realisation of the random unitary channel, we shall take the unitaries {Vm} to be an orthog-
onal basis for the space of d × d matrices. Accordingly, the set {Vm} will contain d2 unitaries,
labelled by integers from 0 to d2 − 1. For qubits, we shall take {Vm} to be the four Pauli matrices
{I,X, Y,Z}, labelled as V0 = I, V1 = X, V2 = Y, and V3 = Z.

In terms of the probability distribution p(m, n), the condition (6.10) amounts to requiring that
the marginal probability distributions p1(m) and p2(n) be uniform, that is

p1(m) = p2(n) =
1
d2

∀m, n ∈ {0, ..., d2 − 1} . (6.12)

The probability distributions p(m, n) satisfying Eq. (6.12) form a convex polytope whose extreme
points are probability distributions of the form p(m, n) = δm,σ(n)/d2, where σ is a permutation of
the set {0, . . . , d2 − 1} [35].

For the identity permutation, satisfying σ(m) = m for all values of m, the probability distribu-
tion p(m, n) is symmetric, and the interference term (6.9) is the completely depolarising channel
G(ρ) = Tr(ρ)I/d ∀ρ. Hence, the channel Cω in Eq. (6.11) is completely depolarising, and no
information can be transmitted through it, no matter what state ω is used. In the following, we
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shall show that, instead, other types of permutations enable the perfect transmission of classical
information.

6.2.2 Perfect communication through correlated completely depolarising chan-
nels

Here we focus on the case where the message is a qubit (d = 2). Let σ be a permutation that swaps
two pairs of indices, for example mapping (0, 1, 2, 3) into (1, 0, 3, 2). In this case, the probability
distribution p(m, n) = δm,σ(n)/4 is symmetric, and the interference term is

G(ρ) = ρXei(φ1−φ0) + YρZei(φ3−φ2) + h.c.
4

, (6.13)

where h.c. denotes the Hermitian conjugate of the preceding matrices.
Note that G(ρ) depends only on the differences φ1 − φ0 and φ3 − φ2. We now show that, by

suitably choosing the differences φ1 − φ0 and φ3 − φ2, and the state ω, it is possible to achieve a
perfect transmission of classical information. Whenφ1−φ0 = 0 and φ3−φ2 = π/2, the interference
term becomes

G(ρ) = {ρ,X} − {ZρZ,X}
4

, (6.14)

where {A,B} = AB + BA denotes the anticommutator of two generic operators A and B. In
particular, choosing ρ = |±〉〈±|, with |±〉 := (|0〉 ± |1〉)/

√
2, we obtain

G(|±〉〈±|) = ± I
2
. (6.15)

Combining this relation with the depolarising condition C(|±〉〈±|) = I/2, and inserting these
two relations into into Eq. (6.7), we obtain

Cω(|±〉〈±|) = I
2
⊗ ω± , (6.16)

with ω+ := ω and ω− := ZωZ. In other words, the net effect of the superposition of correlated
depolarising channels is to transfer information from the message to the output state of the control.

Putting the control in the state ω = |+〉〈+|, one obtains the orthogonal output states ω± =
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|±〉〈±|. Hence, a sender can encode a bit into the states |±〉, and a receiver will be able to decode
the bit in principle without error, by measuring the control system in the basis {|+〉, |−〉}.

In summary, there exist time-correlated channels that look completely depolarising when the
message is sent at any definite moment of time, and yet allow for a perfect transmission of classical
information by sending messages at a coherent superposition of different times.

6.2.3 Maximum capacity in the lack of correlations

We now show that correlations in the probability distribution p(m, n) are essential in order to
achieve the perfect communication task discussed in the previous subsection. Specifically, we
prove that no perfect communication is possible in the lack of correlations, that is, when the proba-
bility distribution factorises as p(m, n) = p1(m) p2(n) = 1/d4 (cf. Eq. (6.12)). For qubit messages
(d = 2), we show that, in the lack of correlations,

1. the classical capacity of the channel Cω is upper bounded by 0.5 bits, meaning that it is im-
possible to transmit more than 0.5 bits per use of the channel,

2. the maximum classical capacity of the channelCω over arbitrary statesωof the control system
and over arbitrary (not necessarily random-unitary) realisations of the completely depolar-
ising channel is equal to 0.16 bits.

The first result follows from an analytical upper bound on the classical capacity, while the second
result follows from numerical optimisation.

We begin by deriving the form of the superposition of two uncorrelated depolarising channels.
Note, the superposition of times of the correlated depolarising channel (6.11) is mathematically
equivalent to the superposition of paths of two independent completely depolarising channels. Let
D : ρ 7→ Tr(ρ)I/d be the completely depolarising channel, with vacuum extension D̃. Using the
superposition placement (4.25), we obtain, for a fixed state ω of the control system,

Cω,F(ρ) := Sω
sup(D̃, D̃)(ρ) =

I/d+ FρF†

2
⊗ ω +

I/d− FρF†

2
⊗ ZωZ , (6.17)

where F is the vacuum interference operator associated with D̃.
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Analytical bound on the classical capacity

The derivation of the bound consists of three steps:

1. The first step is to prove that, in the lack of correlations and for message dimension d = 2,
the channel Cω,F is entanglement-breaking [107], i.e. it transforms all entangled states into
separable states. This is formally stated in Proposition 15 below and proven in Appendix
A.2. For entanglement-breaking channels, it is known that the classical capacity coincides
with the Holevo capacity [179].

2. The second step is to observe that state of the control that maximises the Holevo capacity
of the channel Cω,F is ω = |+〉〈+|. This follows from Lemma 14 and the result holds for
arbitrary message dimension d ≥ 2. In fact, it holds even in the presence of correlations, as
long as the probability distribution p(m, n) is symmetric.

3. Finally, the third step is to show that, in the lack of correlations and for arbitrary message
dimension d ≥ 2, the Holevo capacity of the channel C|+⟩⟨+|,F is upper bounded by 1/d.
This follows from the more general result of Proposition 16 below.

Proposition 15. The channel Cω,F defined in Eq. (6.17) is entanglement-breaking for d = 2.

The proof is given in Appendix A.2.

Proposition 16. TheHolevo capacity of the channel Cω,F defined in Eq. (6.17) is upper bounded as

χ(Cω,F) ≤
log(2d)

d
+

1
d + ||F|| 2∞

2
log

1
d + ||F|| 2∞

2
+

1
d − ||F|| 2∞

2
log

1
d − ||F|| 2∞

2
, (6.18)

where F is the vacuum interference operator defined in Eq. (3.12).

The proof is provided in Appendix A.3.
Putting the three steps together, we obtain that, in the lack of correlations and for qubit messages,

the classical capacity of the channel Cω,F is upper bounded by 1/2 for every possible state ω:

Corollary 17. The classical capacity of the channel Cω,F defined in Eq. (6.17) is upper bounded as
C(Cω,F) ≤ 1/d. In particular, for d = 2, one has the bound C(Cω,F) ≤ 0.5.
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Proof. Immediate from the fact that the right-hand-side of Eq. (6.18) is monotonically decreas-
ing with ‖F‖∞, and that ‖F‖∞ is upper bounded by 1/

√
d (Lemma 22), together with Lemma 14

and the fact that Cω,F is entanglement-breaking.
Hence, the perfect transmission of 1 bit achieved in §6.2.2 is impossible in the lack of correla-

tions.

Numerical evaluation of the capacity

The evaluation of the Holevo capacity involves an optimisation over all possible input ensembles.
For quantum channels with d-dimensional input, the optimisation can be restricted to ensembles
with up to d2 linearly independent pure states [71]. In practice, however, the optimisation is often
hard to carry out even in dimension d = 2. To make the optimisation feasible, we found that in
our case the optimisation can be reduced to an optimisation over ensembles that depend only on
three real parameters q, p0, p1 ∈ [0, 1].

Theorem 18. The classical capacity of the superposition of two independent qubit completely depolar-
ising channels, Cω,F [Eq. (6.17)] is given by

C(Cω,F) ≤ max
0≤q,p0,p1≤1

H
[
Cω,F
(
ρq
)]

− qH
[
Cω,F′(|ψ0〉〈ψ0|)

]
− (1−q)H

[
Cω,F′(|ψ1〉〈ψ1|)

]
,

|ψ0〉 =
√p0 |0〉+

√
1− p0 |1〉 ,

|ψ1〉 =
√p1 |1〉+

√
1− p1 |1〉 ,

ρq = [qp0 + (1− q)p1] |0〉〈0|

+[q(1− p0) + (1− q)(1− p1)] |1〉〈1|
(6.19)

where F′ = a |0〉〈0|+ b |1〉〈1|, with a, b being the singular values of F.

Proof. Follows directly from Lemma 23, which is proven in Appendix A.4, and Lemma 24,
which is given in Appendix A.4 and proven in Ref. [121].

Corollary 19. For every vacuum extension of the completely depolarising channel and for every state of
the control qubit, the classical capacity of any channel of the form Eq. (6.17) resulting from the superpo-
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sition of two independent qubit completely depolarising channels is upper bounded as

C(Cω,F) ≤ max
a≥0,b≥0
a2+b2≤1/2

max
0≤q,p0,p1≤1

H
[
Cω,F
(
ρq
)]

− qH
[
Cω,F(|ψ0〉〈ψ0|)

]
− (1−q)H

[
Cω,F(|ψ1〉〈ψ1|)

]
,



|ψ0〉 =
√p0 |0〉+

√
1− p0 |1〉 ,

|ψ1〉 =
√p1 |1〉+

√
1− p1 |1〉 ,

ρq = [qp0 + (1− q)p1] |0〉〈0|+ [q(1− p0) + (1− q)(1− p1)] |1〉〈1| ,

F = a |0〉〈0|+ b |1〉〈1|
(6.20)

Proof. Follows from Theorem 18, which shows that only channels with a vacuum interference
operator that is diagonal in the computational basis are relevant for maximising the capacity, and
the fact that any vacuum interference operator F must satisfy the condition Tr F†F ≤ 1/d [2],
which implies the inequality |a|2 + |b|2 ≤ 1/d for an operator of the form F = a |0〉〈0|+ b |1〉〈1|.

Using Theorem 18, we numerically evaluate the largest value of the Holevo capacity, and there-
fore the classical capacity, for all possible qubit channels (i.e. d = 2) of the form (6.11) with
p(m, n) = 1/16. We set the state of the control to ω = |+〉〈+|, which we know to guarantee
the maximum Holevo capacity (cf. Lemma 14).

The resulting value of the Holevo capacity is a function of the phases {φm}m∈{0,1,2,3} in Eq. (6.9).
One phase, say φ0, can be set to 0 without loss of generality, as it represents a global phase. In
Figure 6.1a, we provide a 3-dimensional plot showing the exact values of the Holevo capacity, and
therefore by the arguments above, the classical capacity, for all possible values of the phases φ1, φ2,
and φ3. The maximum over all possible choices of phases is 0.16 bits.

More generally, using the results of Corollary 19, we also find that 0.16 bits is the maximum
capacity achievable with arbitrary (not necessarily random unitary) channels that reduce to the
depolarising channel in the one-particle sector. The value 0.16 was previously found to be a lower
bound to the classical capacity [2], and our result shows that the lower bound is actually tight: 0.16
is the best classical capacity one can obtain by sending a single particle through a superposition of
paths traversing two identical, independent channels that are completely depolarising in the one-
particle sector.
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Figure 6.1: Performance in the transmission of a single particle through a correlated depo-
larising channel. (a) Classical capacity in the lack of correlations. Without loss of general-
ity, φ0 = 0. The maximum capacity is 0.016 bits. (b) Lower bound to the classical capacity
achieved with the correlated probability distribution p(m, n) = δn,σ(m)/4, where σ is the permu-
tation that exchanges 0 with 1, and 2 with 3. Without loss of generality, we set φ0 = φ2 = 0.
The maximum lower bound is 1 bit.

6.2.4 Lower bound to the classical capacity in the presence of correlations

In the correlated case, we do not have a proof that the classical capacity coincides with the Holevo
capacity. On top of that, the evaluation of the Holevo capacity generally requires an optimisation
over all possible ensembles of d2 linearly independent pure states, which is computationally chal-
lenging. Here, we circumvent this problem by computing a lower bound to the Holevo capacity,
obtained by restricting the optimisation to the set of all orthogonal ensembles, that is, input en-
sembles consisting of two orthogonal qubit states. In general, this lower bound may not be tight
[87, 99, 115], but it is nevertheless interesting as it quantifies the maximum performance of a nat-
ural set of encoding strategies. Since the Holevo capacity is always a lower bound to the classical
capacity, the above lower bound is also a lower bound to the classical capacity.

Here, we evaluate the lower bound for the correlated channel with p(m, n) = δn,σ(m)/4, where
σ is the permutation that exchanges 0 with 1, and 2 with 3. This particular choice is interesting
because as we have seen in §6.2.2, it can reach the maximum capacity of 1 bit. We now inspect how
the lower bound depends on the phases.
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Ã(1) Ã Ã(1) Ã(2)Ã(2)

B̃ B̃(1) B̃(2)B̃(1) B̃(2)

Figure 6.2: The channel Z(Ã, B̃), obtained by connecting two vacuum-extended 2-step
channels Ã (green) and B̃ (red) such that output of the first port of each channel is con-
nected to the input of the second port of the other channel.

Since the interference term (6.13) depends only on the differences φ1 − φ0 and φ3 − φ2, we set
φ0 = φ2 = 0 and scan the possible values of φ1 and φ3. For the state of the control system, we again
choose ω = |+〉〈+|, as it maximises the Holevo capacity (cf. Lemma 14). The lower bound to the
Holevo capacity is shown in Figure 6.1b for all values of φ1 and φ3.

6.3 Communication throughmultiple time-correlated channels

Time-correlated channels can be used to mimic the use of ordinary quantum channels in a super-
position of different causal orders [50, 147]. In this section we show that time correlations are a
necessary resource for reproducing the benefits of the superposition of orders in quantum com-
munication, and that, in fact, time correlations are an even more powerful resource than the ability
to combine channels in a superposition of orders.

6.3.1 A network of time-correlated channels

Suppose that two time-correlated channels are arranged as in Figure 6.2, and that a single particle
is sent through a superposition of two alternative paths visiting each of the two channels exactly
once. We describe this mathematically as follows: LetA andB be two-step channels, with vacuum
extensions Ã ∈ Chan(Ã(1), Ã(2)) and B̃ ∈ Chan(B̃(1), B̃(2)). For simplicity, here we take all the
systems Ã(1), Ã(2), B̃(1), B̃(2) to be isomorphic.

We now connect the 2-step channels Ã and B̃ in such a way that the output of the first port of
each channel is fed into the input of the second port of the other channel, as in Figure 6.2. This
particular composition of two 2-step channels is described by a supermap Z that maps pairs of
channels in Chan(Ã(1), Ã(2)) × Chan(B̃(1), B̃(2)) into bipartite channels in Chan(Ã(1) ⊗ B̃(1) →
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Ã Ã(1) Ã(2)Ã(2)

B̃ B̃(1) B̃(2)B̃(1) B̃(2)

Figure 6.3: The superposition channel S[Z(Ã, B̃)] of two 2-step channels A and B, spec-
ified by the vacuum extensions Ã (green) and B̃ (red), where the alternative paths traverse
the two correlated channels in the opposite order.

B̃(2) ⊗ Ã(2)).

We can now consider the scenario in which a single particle is sent in a superposition of going
through the A-port and the B-port of the channel Z(Ã, B̃). Following the superposition place-
ment (4.25), the evolution of the particle is described by the superposition channel

Sω
sup

[
Z(Ã, B̃)

]
(·) := U † ◦ Z(Ã, B̃) ◦ U(· ⊗ ω) , (6.21)

withU defined as in Eq. (3.16). The superposition channelSω
sup

[
Z(Ã, B̃)

]
is illustrated in Figure

6.3.
Let us apply the above construction to the special case where the channels Ã and B̃ are of the

random unitary form

Ã = R̃A :=
∑
m,n

pA(m, n) Ṽ(A)
m ⊗ Ṽ(A)

n

B̃ = R̃B :=
∑
k,l

pB(k, l) Ṽ(B)
k ⊗ Ṽ(B)

l , (6.22)

where Ṽ(A)
m and Ṽ(B)

k are the unitary channels corresponding to the unitary operators

Ṽ(A)
m := V(A)

m ⊕ eiφ
(A)
m |vac〉〈vac|

Ṽ(B)
k := V(B)

k ⊕ eiφ
(B)
k |vac〉〈vac| , (6.23)

125



respectively. With this choice, we have

Z(R̃A, R̃B) =
∑
m,n,k,l

pA(m, n)pB(k, l) (Ṽ(B)
l ◦ Ṽ(A)

m )⊗ (Ṽ(A)
n ◦ Ṽ(B)

k ) . (6.24)

When the control system is initialised in the stateω, the overall evolution of the message and the
control is then described by the effective channel Eω defined as

Eω(ρ) := Sω
sup

[
Z
(
R̃A, R̃B

)]
(ρ) =

∑
m,n,k,l

pA(m, n) pB(k, l)Wmnkl (ρ⊗ ω)W†
mnkl , (6.25)

with

Wmnkl := V(B)
l V(A)

m ei(φ
(B)
k +φ(A)n ) ⊗ |0〉〈0|+ V(A)

n V(B)
k ei(φ

(A)
m +φ(B)l ) ⊗ |1〉〈1| . (6.26)

Expanding out, we obtain

Sω
sup

[
Z
(
R̃A, R̃B

)]
(ρ)=

∑
m,n,k,l

pA(m, n) pB(k, l)Wmnkl(ρ⊗ ω)W†
mnkl (6.27)

=
∑
m,n,k,l

{
pA(m, n) pB(k, l) V

(B)
l V(A)

m ρV(A)†
m V(B)†

l ⊗ ω00 |0〉〈0|

+ pA(m, n) pB(k, l) V(A)
n V(B)

k ρV(B)†
k V(A) †

n ⊗ ω11 |1〉〈1|

+ pA(m, n) pB(k, l) V
(B)
l V(A)

m ρV(B) †
k V(A)†

n ei
[
φ(A)n +φ(B)k −φ(A)m −φ(B)l

]
⊗ ω01 |0〉〈1|+ h.c.

}
= RBRA(ρ)⊗ω00 |0〉〈0|+RARB(ρ)⊗ω11 |1〉〈1|+K(ρ)⊗ω01 |0〉〈1|+ [K(ρ)]†⊗ω10 |1〉〈0| ,

where ωmn := 〈m| ω |n〉 and K is the linear map defined by

K(ρ) :=
∑
m,n,k,l

pA(m, n) pB(k, l) V
(B)
l V(A)

m ρV(B) †
k V(A)†

n ei
[
φ(A)n +φ(B)k −φ(A)m −φ(B)l

]
. (6.28)

We now restrict our attention to the case where

1. the two channelsR̃A and R̃B are identical (this implies that one can choose without loss of
generality pA(m, n) = pB(m, n) := p(m, n) for every m and n, V(A)

m = V(B)
m := Vm, and

φ(A)m = φ(B)m =: φm for every m),
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2. the probability distribution p(m, n) is symmetric, namely p(m, n) = p(n,m) for everym, n.

Under these conditions, the operator K(ρ) is self-adjoint for every density matrix ρ, and the effec-
tive channel can be rewritten as

Sω
sup

[
Z
(
R̃A, R̃B

)]
(ρ)=

(R1)
2(ρ) +K(ρ)

2
⊗ ω +

(R1)
2(ρ)−K(ρ)

2
⊗ ZωZ , (6.29)

with

R1(ρ) :=
∑
m,n

p(m, n)VmρV†
m . (6.30)

Thus, we have found the output of the superposition of two identical 2-step random unitary chan-
nels with symmetric probability distributions, connected as in Figure 6.3. Notably, Equation (6.29)
has the same form as Equation (6.7) describing a superposition of a single 2-step random unitary
channel, with R1 replaced by (R1)

2 and G(ρ) replaced by K = G2.

6.3.2 Reproducing the quantum SWITCH

An interesting special case occurs when the probability distributions pA(m, n) and pB(k, l) are per-
fectly correlated, that is

pA(m, n) = p1A(m)δmn ∀m, n

pB(k, l) = p1B(k) δkl ∀k, l ,
(6.31)

where p1A(m) and p1B(k) are the marginal probability distributions of pA(m, n) and pB(k, l), respec-
tively. Under this condition, the network in Figure 6.3 reproduces the action of two random unitary
channels in a superposition of two alternative orders [50].

In particular, here we are interested in the case where the channelsA andB are random unitary,
with Kraus operators Am :=

√
p1A(m)V(A)

m and Bk :=
√p1B V

(B)
k . With this choice, the output of

the quantum SWITCH placement (Eq. (4.23), which we shall call Wω), coincides with the channel
Eω in Eq. (6.25) under the condition that the probability distributions pA(m, n) and pB(k, l) are
perfectly correlated (cf. Eq. (6.31)).

When the channelsA andB are completely depolarising, Ref. [80] showed that the channelWω

resulting from the quantum SWITCH can transmit 0.049 bits of classical information, provided that
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the control is initialised in the state ω = |+〉〈+|. Later, the value 0.049 was proven to be exactly
equal to the classical capacity [59]. Since the channels Eω and Wω coincide, we conclude that the
time-correlated network in Figure 6.3 can achieve a capacity of 0.049 bits.

In the following, we provide two new results:

1. We show that time correlations are strictly necessary in order to achieve the quantum SWITCH
capacity of 0.049 bits. Specifically, we show numerically that the maximum classical capac-
ity in the uncorrelated case is 0.018 bits for random-unitary realisations of the completely
depolarising channel, and 0.024 bits for arbitrary realisations. This result shows that, when
the quantum SWITCH is reproduced by the network in Figure 6.3, the origin of the commu-
nication enhancement is not just the interference of paths, but rather the combined effect
of the interference of paths and of the time correlations. We discuss this point further in
Chapter 7.

2. We show that there exist time correlations that achieve a classical capacity of at least 0.31
bits. This result shows that the access to time correlations is generally a stronger resource
than the ability to combine ordinary channels in a superposition of orders.

6.3.3 Maximum capacity in the lack of correlations

Here we evaluate the maximum amount of classical information that can be transmitted through
the network in Figure 6.3 when the channels are completely depolarising and no correlation is
present. That is, in the case of random unitary channels, the probabilities distribution factorises
as pA(m, n) = pA,1(m)pA,2(n) = pB(k, l) = pB,1(k)pB,2(l) = 1/4 · 1/4 = 1/16 ∀m, n, k, l ∈
{0, 1, 2, 3}.

Consider the scenario of Figure 6.3, in the special case where the 2-step channels Ã and B̃ are
of the product form Ã = Ã1 ⊗ Ã2 and B̃ = B̃1 ⊗ B̃2, respectively. In this case, the combination
of the channels in the network of Figure 6.2 gives the bipartite channel

Z(Ã, B̃) = B̃2Ã1 ⊗ Ã2B̃1 . (6.32)

When a single particle is sent into one of the two ports of this channel, the resulting evolution is
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Figure 6.4: Performance in the transmission of a single particle through a network of cor-
related depolarising channels, arranged as in Figure 6.3. (a) Classical capacity in the lack of
correlations. Without loss of generality, φ0 = 0. The maximum capacity is 0.018 bits. (b)
Lower bound to the classical capacity achieved with maximal correlations corresponding to the
probability distributions pA(m, n) = pB(m, n) = δn,σ(m)/4, where σ is the permutation that ex-
changes 0 with 1, and 2 with 3. Without loss of generality, φ0 = φ2 = 0. The maximum lower
bound is 0.31 bits.
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described by the superposition channel

Sω
sup

[
Z(Ã, B̃)

]
= Sω

sup(B̃2Ã1 ⊗ Ã2B̃1) . (6.33)

We now restrict our attention to the case where the channels Ã1, Ã2, B̃1, and B̃2 are all equal to
each other, and are all equal to D̃, a vacuum extension of the completely depolarising channel. In
this case, the action of the superposition channel is

Eω = Sω
sup(D̃2 ⊗ D̃2)(ρ) =

I/d+ F2ρF2 †

2
⊗ ω +

I/d− F2ρF2†

2
⊗ ZωZ , (6.34)

where F is the vacuum interference operator associated to channel D̃. The above equation follows
from Eq. (6.17) and from the observation that the vacuum interference operator of D̃2 is F2.

Note that one has the equality

Sω
sup(D̃2 ⊗ D̃2)(ρ) ≡ Cω,F2(ρ) , (6.35)

using the notation of Eq. (6.17). That is, in the lack of correlations, the configuration of channels
depicted in Figure 6.3 gives rise to the effective channel in Equation (6.17), with F replaced by F2.

The evaluation of the maximum capacity follows the same steps as in §6.2.3. The main observa-
tions are:

1. in the lack of correlations, the channelEω in Eq. (6.25) is entanglement-breaking, and there-
fore its classical capacity coincides with the Holevo capacity

2. the control state ω that maximises the Holevo capacity of the channel Eω is ω = |+〉〈+|

3. without loss of generality, the maximisation of the Holevo capacity can be reduced to en-
sembles that depend only on three real parameters q, p0, and p1 in [0, 1].

Observations 1.–2. follow from the same results used to prove the analogous claims in §6.2.3.
Observations 3 follows from the following. The equality (6.35) means that Theorem 18 and Corol-
lary 19 apply to this scenario as well, with F replaced by F2. In particular, the classical capacity can
be determined numerically using Corollary 19, with the maximisation constraint now being for the
vacuum interference operator F2 = g |0〉〈0|+h |1〉〈1|, g+h ≤ 1/d, where g, h ≥ 0. This proves
Observations 3.
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Having established observations 1.–3. above, we use Theorem 18 to evaluate the capacity of the
channel Eω in Eq. (6.25) by scanning all possible values of the phases {φm}3m=0. The result is the
plot shown in Figure 6.4a. The largest classical capacity over all random unitary realisations is 0.018
bits, which is strictly smaller than the value 0.049 bits achieved by the superposition of orders.

Finally, we extend the optimisation from random unitary realisations to arbitrary realisations of
the completely depolarising channel, using Corollary 19. For this broader class of realisations, we
numerically obtain that the maximum capacity is 0.024 bits.

In summary, the best classical capacity that can be obtained by sending a single particle through
the network described by Eq. (6.34), in the lack of correlations between the two paths, is 0.024
bits, and when restricted to random unitary realisations of the completely depolarising channel is
0.018 bits.

6.3.4 Time correlations surpassing the quantum SWITCH capacity

We now show that the classical capacity of 0.049 bits, achieved by the quantum SWITCH, can be
surpassed using more general time correlations. We prove this result explicitly, by exhibiting a pair
of time-correlated channels that achieve a capacity at least 0.31 bits.

In particular, suppose that the unitaries {Vm}d
2−1
m=0 form an orthogonal basis, and that the proba-

bility p(m, n) has the form p(m, n) = δn,σ(m)/d2, for a permutation σ that makes p(m, n) symmet-
ric. In this case, the marginal probabilities p(m) = p(n) = 1/d2, i.e. we recover the completely
depolarising channel at each individual time step, and Eq. (6.29) becomes

Eω(ρ) := Sω
sup

[
Z
(
R̃A, R̃B

)]
(ρ)=

I/d+K(ρ)
2

⊗ ω +
I/d−K(ρ)

2
⊗ ZωZ , (6.36)

with

K(ρ)=
1
d4
∑
m,k

V(B)
σ(k)V

(A)
m ρV(B)†

k V(A)†
σ(m) e

i
[
φ(A)σ(m)+φ(B)k −φ(A)m−φ(B)σ(k)

]
. (6.37)

We now specialise further to the case where d = 2 and σ is the permutation that exchanges 0
with 1, and 2 with 3. This choice is motivated by the fact that the permutation σ guarantees the
maximum communication capacity in the case where a single time-correlated channel is used (cf.
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§6.2.2). With this choice, we obtain

K(ρ) :=
1
8
{[
cos 2(φ1 − φ0) + cos 2(φ3 − φ2)

]
ρ +2XρX

}
. (6.38)

Note that the channel Eω depends only on the phase differences φ1−φ0 and φ3−φ2, via Eq. (6.38).
We now provide a lower bound to the classical capacity of the channel Eω. As we did in §6.2.4,

we lower bound the classical capacity by the Holevo capacity, and, in turn, we lower bound the
Holevo capacity by restricting the maximisation to orthogonal input ensembles. For the state of
the control qubit, we pick ω = |+〉〈+|, which is the choice that maximises the Holevo capacity
(cf. Lemma 14).

The lower bound to the classical capacity is shown in Figure 6.4b for all possible values of the
phasesφ1 andφ3. The highest lower bound over all combinations of phases{φm}3m=0 is given by0.31
bits. This value is larger than the classical capacity of 0.049 bits achieved by the quantum SWITCH,
corresponding to perfect correlations pA(m, n) = pB(m, n) = δm,n/4. This result implies that not
only can time correlations reproduce the superposition of causal orders, but they can also surpass
its advantages.

6.4 Quantum communication through correlated dephasing noise

In this section, we consider enhancements in the communication of quantum information through
correlated superpositions of channels. As in the previous sections, we consider 2-step random uni-
tary channels of the form (6.1) with vacuum extensions of the form (6.3). We begin by presenting
a result very similar to the dephasing example of §5.3, this time formulated as a realisation in terms
of random unitary channels. This shows that the superposition placement can transform two in-
dependent zero-quantum-capacity dephasing channels into a channel with non-zero quantum ca-
pacity. We then present an extension of this result to the case of correlated channels, showing that
correlations can enable dephasing channels with zero quantum capacity when used at a definite
time step to be transformed into a perfect quantum communication channel when used at an indef-
inite time.
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6.4.1 Probabilistic correction of dephasing noise on independent paths

Consider the dephasing channel (cf. §2.2.3)

D1(ρ) =
1
2
ρ +

1
2
ZρZ, (6.39)

which implements completely dephasing noise on the message degree of freedom. This has zero
quantum capacity, i.e. cannot transmit any quantum information.

The full physical description of this process including its action on the vacuum is given by the
vacuum-extended channel

D̃1(ρ) =
1
2
(I⊕ eiφ0IVac)ρ(I⊕ e−iφ0IVac) +

1
2
(Z⊕ eiφ3IVac)ρ(Z⊕ e−iφ3IVac), (6.40)

for some phasesφ0, φ3, where the second term of each direct sum corresponds to the one-dimensional
vacuum sector with IVac = |vac〉〈vac|.

Consider now two such channels, where the noise probabilities on each channel are independent
(i.e. p(m, n) = p(m)p(n) = 1/2 · 1/2 = 1/4). When used in a superposition of paths with the
path initialised in the |+〉 state, this results in the effective channel

C|+⟩⟨+|(ρ) = S |+⟩⟨+|
sup (D̃1, D̃1)(ρ) =

D1 (ρ) + FρF†

2
⊗ |+〉〈+|+ D1 (ρ)− FρF†

2
⊗ |−〉〈−| ,

(6.41)
where

F =
1
2

∑
m=0,3

e−iφm Vm =
Ie−iφ0 + Ze−iφ3

2
, (6.42)

with V0 = I, V3 = Z.
We quantify the transmission of quantum information through this channel by its quantum ca-

pacity. However, the quantum capacity is hard to evaluate and has only been computed in very
few cases [126, 127]. A useful lower bound can be found by considering the coherent informa-
tion of the channel (§2.2), which in turn has a useful lower bound given by the coherent informa-
tion of the bipartite state resulting from sending half of the maximally entangled state |Φ+〉 :=

(|00〉 + |11〉)/
√
2 through the channel. We shall call this quantity the coherent information with

respect to the maximally entangled state.
The coherent information with respect to the maximally entangled state is plotted against the
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Figure 6.5: Coherent information (with respect to the maximally entangled state) Q against
the phase φ3 for independent dephasing noise. W.l.o.g., we set φ0 = 0.

phase φ3 in Figure 6.5. Since FρF† depends only on the phase difference φ3 − φ0, we can set φ0 =
0 without loss of generality. This shows that the effective channel C|+⟩⟨+| has non-zero quantum
capacity for all but a vanishingly small region of the phase differences.

In particular if φ3 − φ0 = 3π/2, then

C|+⟩⟨+|(ρ) =

(
D1 (ρ)

2
+

Q+ρQ†
+

4

)
⊗ |+〉〈+|+ Q−ρQ†

−

4
⊗ |−〉〈−| , (6.43)

where
Q± :=

I± iZ√
2

. (6.44)

Q± is proportional to a unitary, so upon measurement of the control in the |−〉 state, which occurs
with 25% probability, the effective channel enables perfect correction of the noise.

A similar result holds for φ3 − φ0 = π/2, with Q+ ↔ Q−.
However, note that this superposition of independent channels can never lead to an effective

channel with perfect quantum capacity, as per the observation in §5.4. We now show that, in con-
trast, this is possible for a superposition of correlated channels.
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6.4.2 Perfect correction of dephasing noise on correlated paths

Consider now the 2-step random unitary channel

D12(ρ) =
1
2
I⊗ ZρI⊗ Z+

1
2
Z⊗ IρZ⊗ I , (6.45)

which reduces to the dephasing channel (6.39) above when used at a definite time step. This is
equivalent to a random unitary channel of the form (6.1), with maximal correlations described by
the probability distribution p(m, n) = δm,σ(n)/2, withm, n ∈ {0, 3}, where σ is a permutation that
maps 0 ↔ 3. Again, if a single photon is sent at a definite time through the channel, no quantum
information can be transmitted. We again take the vacuum extension of each unitary to be another
unitary, so that the full physical process is described by the vacuum extension

D̃12(ρ) =
1
2
(I⊕ eiφ0IVac)⊗ (Z⊕ eiφ3IVac)ρ(I⊕ e−iφ0IVac)⊗ (Z⊕ e−iφ3IVac)

+
1
2
(Z⊕ eiφ3IVac)⊗ (I⊕ eiφ0IVac)ρ(Z⊕ e−iφ3IVac)⊗ (I⊕ e−iφ0IVac) .

(6.46)

When used at a superposition of times, this results in the effective channel

C|+⟩⟨+|(ρ) = S |+⟩⟨+|
sup (D12)(ρ) =

D1(ρ) + G(ρ)
2

⊗|+〉〈+|+ D1(ρ)− G(ρ)
2

⊗|−〉〈−| , (6.47)

where
G(ρ) := 1

2

∑
m=0,3

ei[φσ(m)−φm]VmρV†
σ(m). (6.48)

For this particular pattern of maximal correlations, when a single particle is sent through a su-
perposition of times through the 2-step channel, the effective channel has up to perfect quantum
capacity of 1 qubit per channel use, depending on the phase difference φ3 − φ0. The coherent
information plotted against the phase φ3 is shown in Figure 6.6.

In particular if φ3 − φ0 = 3π/2, then

C|+⟩⟨+|(ρ) =
Q+ρQ†

+

2
⊗ |+〉〈+|+ Q−ρQ†

−

2
⊗ |−〉〈−| , (6.49)
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Figure 6.6: Coherent information (with respect to the maximally entangled state) Q against
the phase φ3 for correlated dephasing noise with maximal correlations described by the proba-
bility distribution p(m, n) = δm,σ(n)/2, for m, n ∈ {0, 3}, where σ is the permutation that maps
0 ↔ 3. W.l.o.g., we set φ0 = 0.

where
Q± :=

I± iZ√
2

. (6.50)

A similar result holds for φ3 − φ0 = π/2, with Q+ ↔ Q−. Both Q+ and Q− are proportional to a
unitary, so the effective channel (6.49) has perfect quantum capacity of 1 qubit per channel use.

Thus we have shown that a time-correlated transmission line, which has zero quantum capac-
ity when used at any definite time, can be transformed into a perfect communication channel for
qubits, by coherently controlling the time of transmission of a single particle.
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7
Superpositions of causal orders vs. superpositions

of trajectories

In this chapter, we return to the question of comparing the superpositions of causal orders and the
superposition trajectories, first mentioned in §2.5.4. This comparison was first raised in Ref. [2],
where Abbott et al. gave an example of a communication protocol where two completely depolar-
ising channels are coherently superposed.

The authors quantified the transmission of information in terms of the Holevo capacity, and
showed that the Holevo capacity achievable by combining the two channels in a superposition is
greater than the Holevo capacity achievable by combining them using the quantum SWITCH. The
value of the former Holevo capacity is 0.16 bit [2] (which we in fact showed is equal to the classical
capacity in Chapter 6), whilst the value of the latter Holevo capacity is 0.049 bits [80] (which was
later shown to be equal to the classical capacity in Ref. [59]). As a result, the authors argued that
the communication advantages of the quantum SWITCH ‘should therefore rather be understood as
resulting from coherent control of quantum communication channels,’ as opposed to being specifically
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due to indefinite causal order.
In the following, we shall analyse this claim in detail, and argue that from a resource-theoretic

point of view, the underlying assumptions of this claim do not hold water. Finally, we make a com-
parison between the superposition of independent channels and the corresponding superposition
of correlated channels that can reproduce the action of the quantum SWITCH (as shown in Chap-
ter 6). We argue that this comparison suggests that the communication advantages associated with
the quantum SWITCH in fact arise from an interplay between coherent control and the correlations
created by an indefinite causal order.

7.1 Resource-theoretic comparison

The above observation of Abbott et al. is presented as a comparison between two alternative ways
to transform two completely depolarising channels into a new quantum channel with non-zero
capacity. However, we shall argue that their conclusions do not follow from their observation.

First, it is not clear how a comparison between the values of the Holevo capacity (or classical
capacity) for the quantum SWITCH and for the superposition of channels could be used to make a
definite statement about the ‘origin’ of their respective advantages. At most, the comparison could
show that the ability to control trajectories is more powerful than the ability to control causal or-
ders.

Second, the comparison made in Ref. [2] is uneven, because

1. it does not compare supermaps acting on the same input channels, and

2. it does not compare superpositions of channels where the depolarising channels act the
same number of times.

A detailed analysis of these two points is provided in the following.

1. Different input channels. In quantum Shannon theory with superpositions of trajectories, the
input resources are vacuum-extended channels, while in quantum Shannon theory with superpo-
sitions of causal orders the input resources are ordinary (non-vacuum-extended) channels.

A vacuum-extended channel is a stronger resource than the corresponding channel, because it
can have coherence with the vacuum, in the sense of Definition 6. We now argue that coherence
with the vacuum is indeed the underlying resource implicit in the communication advantages of
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Ref. [2]. Suppose that a particle is sent in a superposition of two paths, going through two commu-
nication devices, each of which acts as a completely depolarising channels on the internal degree
of freedom of the particle. The two devices are described by vacuum extensions of the completely
depolarising channel, and act as

Ñdep(ρ) =(1− 〈vac|ρ|vac〉) I
d
+ 〈vac|ρ|vac〉 |vac〉〈vac|

+ F ρ |vac〉〈vac|+ |vac〉〈vac| ρ F† , (7.1)

where F is the vacuum interference operator defined in Equation (3.12). Now, if the channels have
no coherence with the vacuum (that is, if F = 0), then their superposition yields the constant
channel

Sω
sup(Ñdep, Ñdep)(ρ) =

I
d
⊗ diag(ω) , (7.2)

following from Equation (4.30) with ρ0 = I/d. Since the output is independent of the input, the
channel Sω

sup(Ñdep, Ñdep) cannot be used to communicate.
The above analysis shows that the presence of coherence with the vacuum is necessary for the

advantages observed by Abbott et al. [2]. In contrast, the presence of coherence with the vacuum
is, in principle, unnecessary for the advantages of the quantum SWITCH. For example, the imple-
mentation of the quantum SWITCH via closed timelike curves [53, 57], illustrated in Figure 7.1,
does not require any coherence with the vacuum.

In summary, the advantages of the superposition of causal orders and the superposition of trajec-
tories arise from different input resources, with the resources used in the latter (vacuum-extended
channels exhibiting coherence with the vacuum) being strictly stronger than the resources used in
the former (ordinary, non-vacuum-extended channels).

2. Different numbers of uses of the depolarising channel. Superpositions of trajectories and super-
positions of causal orders refer to two different communication scenarios:

(a) in superpositions of trajectories, the particle travels through only one depolarising channel
(eitherN1 orN2),

(b) in superpositions of causal orders the particle travels through two depolarising channels
(bothN1 andN2).
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Figure 7.1: An implementation of the quantum SWITCH placement (in blue) using closed
timelike curves. A quantum state ρ ∈ St(A) is routed through one of the two channels N1 or
N2 by a SWAP gate controlled by the state of the order qubit ω ∈ St(O). A second SWAP gate
(controlled in the opposite way) routes the state to a closed timelike curve, which transfers
the incoming system back through the first SWAP gate, and through one of the two channels
N2 or N1.

From this point of view, there is little surprise that Scenario (a) allows more communication than
Scenario (b), given that in Scenario (b) the particle is exposed twice to depolarising noise, as ac-
knowledged also in Ref. [2].

One may argue that the difference between Scenarios (a) and (b) is irrelevant, because the com-
pletely depolarising channel Ndep(·) := Tr(·)I/d satisfies the equality

Ndep ◦ Ndep = Ndep , (7.3)

meaning that applying the channel twice in a row is the same as applying it once.
However, the input resource for the superposition of two channels is not two depolarising chan-

nels themselves, but rather their vacuum extensions. Crucially, algebraic identities like the one in
Equation (7.3) do not carry over to the vacuum extensions: in general, the relation N1 ◦N2 = N3

does not imply the relation Ñ1 ◦ Ñ2 = Ñ3. In the particular case of depolarising channels, we have
the following result:

Proposition 20. The condition Ñdep ◦ Ñdep = Ñdep is satisfied if and only if the vacuum extension
Ñdep has no coherence with the vacuum.

The proof is given in Appendix A.5.
In summary, the only case in which the equation Ñdep◦Ñdep = Ñdep would justify a comparison
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between the Holevo (or classical) capacity with a single depolarising channel and the Holevo (or
classical) capacity with two depolarising channels is exactly the case in which the vacuum extension
Ñdep has no coherence with the vacuum, and therefore the superposition of channels provides no
advantage.

In order to make a more even comparison with the quantum SWITCH, one should analyse the
scenario where information is sent along a superposition of two paths, each visiting two depolaris-
ing channels. Mathematically, this superposition is described by the channel
Sω
sup(Ñdep ◦ Ñdep, Ñdep ◦ Ñdep), instead of the channel Sω

sup(Ñdep, Ñdep) considered in Ref. [2].
The Holevo capacity of the channel Sω

sup(Ñdep ◦ Ñdep, Ñdep ◦ Ñdep) was studied in Chapter 6,
where we found that the maximum value of the Holevo capacity over all possible vacuum exten-
sions is 0.024 bits, which we also proved was equal to the classical capacity. This is in fact less than
the classical capacity of 0.049 bits associated with the quantum SWITCH.

To illustrate the difference between the channel Sω
sup(Ñdep ◦ Ñdep, Ñdep ◦ Ñdep) and the chan-

nel Sω
sup(Ñdep, Ñdep), we calculate the Holevo capacity (which is equal to the classical capacity in

this specific case) for both cases when the depolarising channel is implemented by a uniform ran-
domisation of Pauli channels (cf. Eqs. (6.5) and (6.25), respectively), where the vacuum amplitude
corresponding to each unitaryVm is simply a complex phase eiφm . Figure 7.2 show a scatter plot with
the capacities of both channels in the same graph against the norm of the corresponding vacuum
interference operator, F or F2, for the same combination of phases φ1, φ2, φ3 as shown in Figures 6.1
and 6.4. This shows that the capacity generally increases with the norm of the vacuum interference
operator, which is consistent with the idea that coherence with the vacuum is responsible for the
capacity enhancement. Since ||F2||∞ < ||F||∞ for allF constructed from random unitary channels
with unitary vacuum extensions of the form (6.3), this provides an explanation of why the capacity
of Sω

sup(Ñdep ◦ Ñdep, Ñdep ◦ Ñdep) is always less than the capacity of Sω
sup(Ñdep, Ñdep).

For the above reasons, we argue that the comparison between the quantum SWITCH and super-
position of independent communication channels presented in Ref. [2] is uneven.

7.2 Further discussion

The initial question posed in Ref. [2], namely to what extent indefinite causal order per se, as op-
posed to coherent control on its own, is responsible for the communication advantages of the quan-
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Figure 7.2: Green: A plot of the classical capacity against the norm of the vacuum in-
terference operator ||F||∞ for the channel Sω

sup(Ñdep, Ñdep). Red: A plot of the classical
capacity against the norm of the vacuum interference operator ||F2||∞ for the channel
Sω
sup(Ñdep ◦ Ñdep, Ñdep ◦ Ñdep). In both cases F =

∑3
m=0

1
4 e

−iφmVm and is sampled over the
phase parameters {φ1, φ2, φ3} with a numerical precision of π/8 for each parameter. We set
φ0 = 0 without loss of generality, as FρF† is invariant under the phase group U(1). The classi-
cal capacity is here equal to the Holevo capacity and the Holevo capacity was calculated using
Theorem 18.
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tum SWITCH is an important one. We address this question in the following way. As argued above,
a direct resource-theoretic comparison between the superposition of causal orders and superposi-
tion of trajectories is difficult to make. However, as shown in §6.3, the quantum SWITCH of two
channels can always be reproduced by a superposition of paths through two 2-step correlated chan-
nels, connected as in Figure 6.3. This means that we can instead make a direct comparison using
the superposition of paths through two 2-step correlated channels, as in Figure 6.3, between (a)
the case with correlations that reproduce the quantum SWITCH and (b) the case with trivial corre-
lations, where the two uses of each channel factories into independent uses.

First, consider the case of classical communication through completely depolarising noise. Re-
call from §6.3, that Sω

sup(Ñdep ◦ Ñdep, Ñdep ◦ Ñdep) = Sω
sup

[
Z
(
R̃A, R̃B

)]
, as defined in Eq. (6.29)

with the probability distributions in bothR̃A, R̃B given by p(m, n) = p(m)p(n) = 1/4 × 1/4 =

1/16, for m, n ∈ {0, 1, 2, 3}. We showed that the maximum classical capacity achievable by a chan-
nel of this form is 0.024 bits.

However, for the same channel with the probability distributions in bothR̃A, R̃B given by
p(m, n) = δmn/4 for m, n ∈ {0, 1, 2, 3}, we recover the ability to reach the quantum SWITCH
capacity of 0.049 bits.

Second, consider the case of quantum communication through completely dephasing noise.
Refs. [58, 168] showed that the quantum SWITCH enables noiseless quantum communication
through two dephasing channels of the form (XρX+ YρY)/2. This can be reproduced by a pair of
2-step channels of the form (6.46), with I → X, Z → Y and any choice of {φm}, placed in a super-
position as in Eq. (6.29), corresponding to a correlated probability distribution p(m, n) = δmn/2
for m, n ∈ {1, 2}.

However, as shown in §5.4, the superposition of two independent channels can never lead to a
noiseless channel, unless the original channels are themselves unitary channels. This means that
the corresponding superposition of independent channels, that is, with p(m, n) = 1/2×1/2 = 1/4
for m, n ∈ {1, 2}, will never reach the advantages associated with the correlated case.

This shows that when correlations are present in the probability distribution, the superposition
of channels can achieve noiseless transmission of both classical and quantum information, which
is impossible in the analogous scenarios without correlations. Therefore, we conclude that the
communication advantages in the correlated case are not merely due to the coherent control of
the channels, but rather due to the non-trivial interplay between coherent control and the time-
correlations in the noise.
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The superposition of causal orders introduces correlations between the two branches of the su-
perposition that are equivalent to the correlations induced by using two time-correlated channels
in a superposition of paths. Therefore, although we may not be able to make a formal resource-
theoretic comparison between the superposition of causal orders and the superposition of trajec-
tories, we argue that it is reasonable to understand the communication advantages achievable by
the quantum SWITCH as arising from a combination of the correlations due to indefinite causal
order and coherent control.
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8
Communication networks with superpositions of

paths

Communicating classical or quantum information over large distances via single photons is a cru-
cial feature of many quantum protocols, such as quantum key distribution [28, 81] or superdense
coding [29]. Yet, the distance at which information can be transmitted via quantum states is lim-
ited by both photon loss and noise, with the probability of each of these errors scaling exponentially
with distance [42]. This means that in a quantum communication network, information can travel
over only a finite number of nodes before the detection probability of the photon becomes effec-
tively zero.

In this chapter, we present a scheme involving quantum repeaters on intermediate nodes that
can mitigate noisy processes on the internal degree of freedom of a quantum particle. The central
feature of our scheme is the transmission of a single quantum particle in a superposition of alterna-
tive paths through the communication network. In the idealised case, the protocol enables classical
communication at a finite rate through asymptotically long sequences of noisy quantum channels.
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Figure 8.1: Quantum network with coherent control of the communication paths. The ver-
tices represent the communicating parties, while the arrows represent the available communi-
cation channels. When multiple communication paths are available, the information carriers
can propagate in a superposition of alternative paths.

In more realistic scenarios, our scheme provides a finite classical capacity advantage for various
sequences of noisy channels.

8.1 Erasure error model

We begin with a simple, physical model of noise on a d-dimensional internal degree of freedom of
a quantum particle, e.g., for d = 2, the polarisation of a single photon. Consider the case where
the particle propagates from an input node via several intermediate nodes to an output node in a
communication network (Figure 8.1). We specialise to the case where transmission from one node
to another is given by a quantum erasure channel¹

E(ρ) = p |η〉〈η|+ (1− p)ρ, (8.1)

which acts on the internal degree of freedom carrying the message. Here, ρ ∈ St(M) is the input
quantum state on the d-dimensional system M of the message, |η〉 ∈ HM is some fixed error state,

¹Here we take the erasure state to lie in the same Hilbert space as the message, which differs from some sources in
the literature that define the erasure state in the quantum erasure channel to lie outside of the message Hilbert space
[31].
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and p is the erasure probability. After the particle propagates through n nodes, its state is

En(ρ) = [1− (1− p)n] |η〉〈η|+ (1− p)nρ , (8.2)

where the probability of detecting the original input state ρ exponentially decays to zero as the
number of nodes n increases.

8.2 Superposition of sequences of identical channels

We now generalise the above scenario to the possibility of sending the particle through a superpo-
sition of alternative paths through the network. As such, we now model the transmission between
any two nodes by a vacuum extension Ẽ of the quantum erasure channel.

Consider the transmission of a single particle in a superposition of two paths, each through n
copies of independent identical channels Ẽ , as depicted in Figure 8.2. If the control is initialised in
the |+〉 state, then the output state is

S |+⟩⟨+|
sup (Ẽn, Ẽn)(ρ) =

En(ρ) + FnρF†n

2
⊗ |+〉〈+|+ En(ρ)− FnρF†n

2
⊗ |−〉〈−| . (8.3)

(This can be found by applying Eq. (4.25) n times.) Consider this output state in the asymptotic
limit n → ∞. It is apparent from Eq. (8.2) that En → |η〉〈η| in this limit (assuming p > 0).
If the largest eigenvalue of F has modulus strictly less than 1, then FnρF†n → 0; in this case, the
output state is |η〉〈η| ⊗ IC, which has only a trivial dependence on the input state ρ. If, however,
F has an eigenvector |φ〉 with eigenvalue 1, then Fn → |φ〉〈φ|, FnρF†n → 〈φ| ρ |φ〉 |φ〉〈φ|, and
the output state has a non-trivial dependence on the input state ρ. As such, one expects that the
superposition channel can transmit information at a non-zero rate, even in the asymptotic limit of
an infinite sequence of noisy channels.

8.3 Communication through a superposition of asymptotically long

sequences of identical erasure channels

Let us consider what a physically motivated vacuum extension of the erasure channel could look
like. An erasure process whereby any input state is replaced, with probability p, by some fixed error
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Ẽ

A⊕ Vac

Ẽ
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Ẽ

Ẽ

Figure 8.2: A circuit diagram of a superposition of two sequences of n channels E , specified
by the vacuum extensions Ẽ . The message is encoded in system M ' A ' B. Note that each
channel is drawn in a different colour because they each represent an independent transmis-
sion line.

state |η〉 occurs, for example, upon a swap interaction between the messageM and an environment
E initially in state |η〉 (where M ' E). That is, the message-environment system is subject to the
unitary interaction WME = SWAPME with probability p. Since no interaction occurs if the vacuum
state is input in place of the message, the overall vacuum-extended interaction is

W̃M̃E = SWAPME ⊕ IVacE , (8.4)

where M̃ = M⊕ Vac. The vacuum extension Ẽ of the erasure channel is then

Ẽ(ρ)=TrE
(
p W̃M̃Eρ⊗ |η〉〈η|E W̃

†
M̃E

+ (1−p)ρ⊗ |η〉〈η|E
)
, (8.5)

with Kraus operators

Ẽi =
√
p|η〉〈i| ⊕ √

p 〈i|η〉 IVac for i = 0, . . . , r− 1 ,

Ẽr =
√

1− pIM̃ ,
(8.6)

where we can identify Ei =
√p|η〉〈i| and αi =

√p 〈i|η〉 for i = 0, . . . , r− 1, and Er =
√
1− pIM,

αr =
√
1− p.

From this physical realisation of an erasure channel and its vacuum extension, we obtain a vac-
uum interference operatorF = |η〉〈η|+(1−p)(IM−|η〉〈η|), whose eigenvector |η〉has eigenvalue
1. Assuming p > 0, Fn → |η〉〈η| as n → ∞. If the path is initialised in the |+〉 state, then, accord-
ing to Eq. (8.3), the superposition of two asymptotically long sequences of identical channels Ẽ is
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given by

lim
n→∞

S |+⟩⟨+|
sup (Ẽn, Ẽn)(ρ) = |η〉〈η| ⊗

[
qρ,η|+〉〈+|+ (1− qρ,η)

I
2

]
, (8.7)

where qρ,η = 〈η|ρ|η〉. This channel is equivalent to a classical binary asymmetric channel², which
has classical capacity log2(5/4) ≈ 0.32 [163].

Thus, by sending a single particle through a superposition of alternative paths through a commu-
nication network subject to erasure errors, one can achieve classical communication with a non-
zero capacity of 0.32 bits, even in the extreme limit of an asymptotically long sequence of channels.
This possibility relies upon the fact that the vacuum interference operator F has an eigenvalue of 1,
so that the terms ±FnρF†n do not exponentially decay to zero with the sequence length n.

8.4 Communication through a superposition of asymptotically long

sequences of non-identical erasure channels with repeaters

So far, we have considered only networks whose errors arise from identical erasure channels, each
with the same erasure probability p and error state |η〉. However, in practice, it is reasonable to
expect variations within the error parameters between different parts of the network. For any cho-
sen path through the network, the sequence of errors acting on the particle could be modelled as a
sequence of (possibly) non-identical erasure channels En ◦ En−1 ◦ · · · ◦ E1, with

Ek(ρ) = pk |ηk〉〈ηk|+ (1− pk)ρ , (8.8)

where k ∈ {1, . . . , n}, pk is a probability and |ηk〉 an error state.
Let Ẽk be a vacuum extension of the channel Ek. A superposition of two identical sequences

Ẽn ◦ Ẽn−1 ◦ · · · ◦ Ẽ1 yields a concatenated vacuum interference operator F = FnFn−1 . . . F1, where
each Fk = |ηk〉〈ηk| + (1 − pk)(IM − |ηk〉〈ηk|) is the vacuum interference operator for Ẽk. As-
suming that for all k, pk > 0 and | 〈ηk+1|ηk〉 | < 1, F approaches zero as n → ∞. This de-
cay of the vacuum interference operator can be circumvented by inserting, at each node in the
network, an intermediate repeater R̃k engineered to have its own vacuum interference operator

²Interestingly, this expression is equal to that of a superposition of two single erasure channels (i.e., n = 1) with
erasure probability p = 1 (cf. §5.2)
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Figure 8.3: A circuit diagram of a superposition of two sequences of n channels (E1, . . . En),
specified by the vacuum extensions (Ẽ1, . . . , Ẽn), with intermediate repeaters (R̃1, . . . , R̃n−1).
The message is encoded in system M ' A ' B.

Gk = |ηk+1〉〈ηk|+Grest
k , where Grest

k is any operator such that Gk is a valid vacuum interference op-
erator satisfying Gk |ηk〉 = |ηk+1〉. It is always possible to construct such a repeater R̃k by defining
the unitary channel R̃k = R̃k(·)R̃†

k , with R̃k =
(
|ηk+1〉〈ηk|+ Grest

k

)
⊕ |vac〉〈vac|. This construc-

tion yields an effective vacuum interference operator for the whole sequence of erasure channels
and repeaters: Feff = FnGn−1Fn−1 . . .G1F1.

The superposition of two identical sequences of non-identical erasure channels concatenated
with repeaters is depicted in Figure 8.3. If the path is initialised in the |+〉 state, then the output
state of the superposition channel is

S |+⟩⟨+|
sup

[(
ẼnR̃n−1Ẽn−1 · · · R̃1Ẽ1

)
,
(
ẼnR̃n−1Ẽn−1 · · · R̃1Ẽ1

)]
(ρ)

=
En ◦ Rn−1 ◦ En−1 ◦ · · · ◦ R1 ◦ E1(ρ) + FeffρF†eff

2
⊗ |+〉〈+|

+
En ◦ Rn−1 ◦ En−1 ◦ · · · ◦ R1 ◦ E1(ρ)− FeffρF†eff

2
⊗ |−〉〈−| .

(8.9)

If pk > 0 for all k and if the sequence {|ηk〉}∞k=1 has a well-defined limit |η∗〉 := limk→∞ |ηk〉, then,
in the asymptotic limit n → ∞, the output state in Eq. (8.9) becomes

|η∗〉〈η∗| ⊗
[
qρ,η1 |+〉〈+|+ (1− qρ,η1)

I
2

]
, (8.10)

where qρ,η1 = 〈η1|ρ|η1〉. This expression has the same form as Eq. (8.7), enabling classical commu-
nication at a non-zero rate through asymptotically long sequences of non-identical erasure chan-
nels.
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8.5 General case

In the previous two sections, we showed that for erasure channels, superposing asymptotically long
sequences of quantum channels enables the transmission of classical information at a non-zero rate.
In this section, we present necessary and sufficient conditions for this phenomenon to be realised
with a generic sequence of identical quantum channels.

Recall, that without repeater channels, we expect to be able to communicate non-zero classical
information through a superposition of sequences of identical channels if and only if the vacuum
interference operator F has eigenvalue 1. If this expectation is correct, then an even stronger state-
ment should also hold: with repeater channels, one can communicate non-zero classical informa-
tion through a superposition of sequences of identical channels if and only if F has singular value 1.
Specifically, if the vacuum interference operator G of a repeater channel renders an effective vac-
uum interference operator Feff := GF with eigenvalue 1, then the stronger statement reduces to
the weaker one. An example of such a pair F and G is given in the following.

Consider a qubit amplitude damping channelAwhose vacuum extension Ãhas Kraus operators
{(|0〉〈0|+√

1− γ|1〉〈1|)⊕α0 |vac〉〈vac| ,
√γ|0〉〈1|⊕α1 |vac〉〈vac|}. For complete damping γ = 1,

we recover a qubit erasure channel with vacuum interference operator F = |0〉〈α|, where |α〉 :=

α0|0〉 + α1|1〉. F does not have eigenvalue 1 (unless α0 = 1) but does have singular value 1, since
||F†F||∞ = 1. Now consider a repeater channelRwhose vacuum extension R̃has Kraus operators
{|α〉〈0| ⊕ |vac〉〈vac| , |α⊥〉〈1| ⊕ 0}, where |α⊥〉 := ᾱ1|0〉 − ᾱ0|1〉 is a state orthogonal to |α〉.
Observe that R(|0〉〈0|) = |α〉〈α| and that the vacuum interference operator G of R̃ satisfies G =

|α〉〈0| = F†. Importantly, GF = |α〉〈α| has eigenvalue 1. Furthermore, for all n,

S |+⟩⟨+|
sup [(R̃Ẽ)

n
, (R̃Ẽ)

n
](ρ) = |0〉〈0| ⊗

[
qρ,α|+〉〈+|+ (1− qρ,α)

I
2

]
, (8.11)

where qρ,α = 〈α|ρ|α〉. Since this output state has the same form as Eq. (8.7), we conclude that the
channel (R̃Ẽ)

n
has non-zero classical capacity for all n.

Motivated by the above discussion, we establish the following theorem for asymptotically long
sequences of identical quantum channels E .

Theorem 21. Let E : Chan(X → Y) be a quantum channel. Let Ẽ be a vacuum extension of E , with
vacuum interference operator F andKraus representation {Ẽi := Ei⊕αi |vac〉〈vac|}r−1

i=0, where {Ei}r−1
i=0

is a Kraus representation of E , and {αi}r−1
i=0 are vacuum amplitudes. Assume that for every repeater chan-
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nelQ : Chan(Y → X), the classical capacity of the concatenated channel E ◦ (Q◦ E)n−1 tends to zero
as n → ∞. Then, the following are equivalent:

1. There exists a repeater channelR : Chan(Y → X)with vacuum extension R̃ and vacuum inter-
ference operator G, such that the superposition of two independent identical sequences of channels
S |+⟩⟨+|
sup [Ẽ ◦ (R̃ ◦ Ẽ)n−1, Ẽ ◦ (R̃ ◦ Ẽ)n−1] : Chan(X → Y⊗ C) has classical capacity strictly

greater than zero as n → ∞.

2. The vacuum interference operator F has singular value 1.

Moreover, the above conditions hold only if

3. There exist two pure states |φ〉 ∈ HX and |ζ〉 ∈ HY such that E(|φ〉〈φ|) = |ζ〉〈ζ|, and there
exists θ ∈ R such that αi = eiθ

√
〈φ|E†

i Ei|φ〉 for all i = 0, 1, . . . , r− 1.

The proof is given in Appendix A.6.

8.6 Relaxation of assumptions and practical communication

advantages

In the above, we have provided a general characterisation of the quantum channels which allow
communication at a finite rate when used in asymptotically long paths traversed in a coherent su-
perposition. However, the above results relied on three crucial assumptions: (a) the path degree
of freedom remains completely noiseless throughout the whole sequence, (b) there is no loss of
particles, and (c) we are only interested in asymptotically long sequences of channels. However, in
practice, these assumptions are only justified as idealisations of more complex scenarios; realistic
transmission lines are not lossless and do not in general retain perfect coherence on the path degree
of freedom, nor will they always have a vacuum interference operator with singular value of exactly
1.

In the following, we examine what happens when the idealisation (c) relaxed, whilst the relax-
ation of idealisations (a)–(b) are examined in Chapter 9. We perform numerical simulations of
various superpositions of channels to calculate lower bounds to their classical capacity. We do this
by computing the maximum Holevo capacity of the superposition of channels over all input en-
sembles consisting of two orthogonal states (cf. §6.2.4). This gives a lower bound to the Holevo
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capacity, which in turn gives a lower bound to the classical capacity [104]. We compare this with
upper and lower bounds of the classical capacity of the same sequence of channels without super-
position. The lower bounds are found in the same way as for the superposition case. The upper
bounds are found from the analytically known capacity of the quantum erasure channel with era-
sure state orthogonal to the input Hilbert space [31], given by (1−p)n, which always gives an upper
bound to the capacity of the corresponding erasure channel of the form of Eq. (8.1).

Non-unit singular value F

Here we relax the initial requirement of obtaining finite-capacity communication in the asymptotic
limit of infinitely many channels. We instead turn our attention to using a superposition of paths to
transmit information through a finite number of channels.

For illustration, we again consider an erasure channel E of the form (8.1), but this time con-
sider a general form of possible vacuum extensions (without assuming a specific implementation
as above). Such a general vacuum extension Ẽ has Kraus operators

Ẽi =
√
p|η〉〈i| ⊕ √

p 〈i|α〉 IVac for i = 0, . . . , r− 1 ,

Ẽr =
√

1− pIM̃ ,
(8.12)

where |α〉 :=
∑r−1

i=0 αi |i〉 (note that the global phase of |α〉 is a physical parameter here), and has
vacuum interference operator F = p |η〉〈α|+ (1− p)IM. Therefore, we have that

Fn= f(n, E) |η〉〈α|+ (1−p)nI , (8.13)

where f(n, E) :=
∑n−1

k=0

(
n
k

)
pn−k(1−p)k 〈α|η〉n−k−1 is the vacuum decay function that determines

the amount of vacuum interference left after n channels.
We investigate the use of qubit erasure channels with non-unit singular values of F numeri-

cally by varying the parameters p, α0, α1. These are re-parametrised as α0 = eiφ0 cos(θ/2), α1 =
eiφ1 sin(θ/2), 0 ≤ θ ≤ π, 0 ≤ φ0 ≤ 2π, 0 ≤ φ1 ≤ 2π. When |α〉 = |η〉 (including the global
phase), then F has a singular value of 1. Without loss of generality, we set |η〉 = |0〉.

Figure 8.4 shows the (lower bound to) the classical capacity as a function of sequence length
n for the parameters chosen as p = 0.5, φ1 = 0, for various values of θ. A stark contrast is seen
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between (a) φ0 = 0 (in which case F has a singular value of 1 when θ = 0) and (b) φ0 = π (in
which caseF never has a singular value of 1). In the latter case, no significant advantage is observed,
which is due to the terms in the sum in f(n, E) cancelling each other out as the sign of 〈α|η〉n−k−1

alternates. In the former case, 〈α|η〉n−k−1 is always positive, and the superposition of paths provides a
non-trivial increase in the coherence terms±γ(FnρF†n). With no superposition of paths, the upper
bound of the classical capacity goes below 0.01 for n ≥ 7, whilst the lower bound of the classical
capacity stays above 0.01 until n = 21 with a superposition of paths, for θ . π/4.
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(a)

(b)

Figure 8.4: Lower bounds to the classical capacity against sequence length n for a superposi-
tion of two identical sequences of qubit erasure channels, with erasure probability p = 0.5, for
(a) φ0 = 0, φ1 = 0 and (b) φ0 = π, φ1 = 0, with various values of θ. Both figures also show a
comparison with using the same sequence of n qubit erasure channels without a superposition
of paths. It can be seen that the parameters in (a) enable a significant enhancement of the
classical capacity for θ . π/4, whilst in (b) no value of θ provides a significant advantage over
no superposition.
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9
Practical considerations and experimental

implementation

In this chapter, we discuss some of the additional considerations that need to be taken into account
when a superposition of channels is implemented in practice. First, we discuss the possibility of
dephasing noise on the path degree of freedom, both for independent and correlated channels.
Then, we discuss the possibility of particle loss on each path. Finally, we present some key features
of the experimental design in the proof-of-principle experimental collaborations of Refs. [166] and
[173].

9.1 Dephasing on the path

9.1.1 Independent channels

Here, we relax the assumption that the path is completely noiseless in the superposition of channels.
In particular, we consider a dephasing error on the path. That is, between each pair of nodes, the
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path qubit undergoes the dephasing channel

P(ω) = sZωZ+ (1− s)ω , (9.1)

where s ∈ ]0, 1/2[ is a probability and ω ∈ St(C) is the initial state of the path. This is equivalent
to applying a dephasing channel between the one-particle sector B and the vacuum sector Vac on
one of the two paths: Ẽ → Qs ◦ Ẽ = Ẽ ◦ Qs, where

Qs ∈ Chan(B⊕ Vac)

Qs = s(I⊕−|vac〉〈vac|)ρ(I⊕−|vac〉〈vac|) + (1− s)ρ ,
(9.2)

with no dephasing on the other path.
Accordingly, we define a placement supermap called the dephased superposition placement by

Sω
deph sup(Ã, B̃;Qs)(ρ) := U † ◦ [Ã ⊗ (Qs ◦ B̃)] ◦ U (ρ⊗ ω) , (9.3)

whereU is defined by Eq. (3.16). (Note, thatQs commutes with any vacuum extended channel B̃,
because any vacuum extended channel is block diagonal with respect to the one-particle/vacuum
sector partition.) The evolution experienced by a single particle under the dephased superposition
of channels is described by the effective channel

C ′
ω = (IM ⊗ PC)Cω , (9.4)

where Cω is the output of the corresponding standard superposition placement.
Now consider the case where the message travels in a superposition of two independent identical

channelsA, with vacuum extensions Ã and the control qubit is initialised in the |+〉 state. A direct
calculation (e.g. by substituting the Kraus operators {Ai ⊕ αi |vac〉〈vac|}r−1

i=0 of Ã into Eq. (9.3)),
reveals that

S |+⟩⟨+|
deph sup(Ã, Ã;Qs)(ρ) =

A(ρ) + (1− 2s)FρF†

2
⊗ |+〉〈+|

+
A(ρ)− (1− 2s)FρF†

2
⊗ |−〉〈−| ,

(9.5)

where F :=
∑

i αiAi.
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For a network of channels as considered in Chapter 8, we apply Eq. (9.3) n times, to obtain the
dephased superposition of channels

S |+⟩⟨+|
deph sup(Ãn, Ãn;Qn

s )(ρ) =
An(ρ) + γFnρF†n

2
⊗ |+〉〈+|+ An(ρ)− γFnρF†n

2
⊗ |−〉〈−| ,

(9.6)

where γ = (1− 2s)n.
This shows that the magnitude of the coherence terms±γ(FnρF†n)decreases exponentially with

sequence length n. However, for finite n and small enough dephasing probability s, communication
is still possible – in stark contrast to using the channels individually without a superposition of
paths.

To illustrate the effect of dephasing, Figure 9.1 shows a numerical plot of (lower bounds to) the
classical capacity against sequence lengthn for a dephased superposition of two identical sequences
of qubit erasure channels Ẽ with error probability p = 0.5, for various dephasing parameters s on
the path. Note that s = 0 corresponds to no dephasing, while s = 0.5 corresponds to complete
dephasing on the path so that the final state of the path is simply the maximally mixed state; this is
equivalent to using a single sequence of n channels without a superposition of paths. We see that
for every value of n, the lower bound to the capacity monotonically increases as s decreases from
0.5 to 0, and an observable advantage over no superposition of paths is still present for low n when
s . 0.1.

9.1.2 Correlated channels

For completeness, we briefly consider the effects of dephasing on the correlated superposition of
channels presented in Chapter 6. For simplicity, here we focus on the communication scenario
involving a single transmission line, specifically, the superposition of times of a correlated random
unitary channel, with vacuum extension R̃, given by Eq. (6.4). By substituting Eq. (6.4) into Eq.
(9.4), it is immediate to see that the effect of dephasing is to dampen the interference termG in the
effective channel (6.7): specifically, the interference term changes from G to (1 − 2s)G, and the
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Figure 9.1: Lower bounds to the classical capacity against sequence length n for a dephased
superposition of two identical sequences of qubit erasure channels, with erasure probability
p = 0.5, for dephasing on the path with parameter s. The numerical values are calculated as
described in §8.6.

effective channel, with the control initialised in the |+〉 state, becomes

C|+⟩⟨+|(ρ) = S |+⟩⟨+|
deph sup(R̃)(ρ)

=
R1(ρ) + (1− 2s)G(ρ)

2
⊗ |+〉〈+|+ R1(ρ)− (1− 2s)G(ρ)

2
⊗ |−〉〈−| .

(9.7)

This is the same as the damping by factor (1− 2s) for the case of independent channels (9.6).
In the case of completely depolarising channels on the message degree of freedom, the presence

of a non-zero interference term means that, as long as the dephasing of the control is not complete
(s 6= 1/2), the superposition of evolutions can still allow for a non-zero amount of classical infor-
mation to be transmitted, thereby offering an advantage over the transmission at a definite moment
of time.

Figure 9.2 shows the behaviour of the classical capacity as a function of the dephasing parameter
s. The figure shows that correlations between two uses of the channel offer an enhancement of the
classical capacity. To make this point, we first evaluate numerically the maximum capacity achiev-
able in the lack of correlations, with arbitrary vacuum extensions of the completely depolarising
channel (blue curve). Notably, the maximum capacity for every fixed value of s is achieved by the
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Figure 9.2: Blue: Maximum classical capacity in the absence of correlations, as a function
of the dephasing parameter s. The maximum is computed over all possible vacuum extensions
of the completely depolarising channel, and is achieved by the random unitary vacuum exten-
sion with the choice of phases {φm} that give the maximum capacity of 0.16 bits when s = 0.
Orange: Lower bound to the maximal classical capacity in the presence of correlations, as a
function of the dephasing parameter s. The lower bound is computed by considering the cor-
related probability distribution p(m, n) = δn,σ(m)/4, where σ is the permutation that exchanges
0 with 1, and 2 with 3, and φ0 = φ1 = φ2 = 0, φ3 = π/2.
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same vacuum extension of the completely depolarising channel that achieves the maximum capac-
ity in the ideal s = 0 case. We then show that a higher capacity can be achieved with the dephased
version of the superposition of times of the correlated channel described in Eqs. (6.11) and (6.14).
To this purpose, we numerically evaluate a lower bound to the Holevo capacity (and therefore
to classical capacity), obtained by restricting the maximisation to orthogonal input ensembles (or-
ange curve). Note that both the blue and orange curves are above 0 for every non-maximal amount
of dephasing (s 6= 1/2), meaning that the single particle transmission at a coherent superposition
of times always offers an advantage over the transmission at a definite time.

9.2 Loss of particles

In this section, we briefly discuss the performance of the superposition of channels in the pres-
ence of particle loss. In realistic communication channels, the probability of particle loss increases
exponentially with distance. This means that even if the amount of loss is negligible in individual
channels, such as in the protocols considered in Chapters 5–6, loss will inevitably play a role in real-
istic implementations of protocols involving long sequences of channels, such as those considered
in Chapter 8.

We shall model loss of particles in the following way. Consider a particle propagating through
a channel A ∈ Chan(A), for some internal degree of freedom A, with vacuum extension Ã ∈
Chan(Ã). In the presence of loss with probability p, the evolution of the particle is given by

Ã′ := Lp ◦ Ã = (1− p)Ã+ pL1 , (9.8)

where Lp is the loss channel given by

Lp ∈ Chan(A⊕ Vac)

Lp(ρ) := (1− p)ρ + pTr(ρ) |vac〉〈vac| .
(9.9)

In order to describe the use of two such channels in a superposition, we need to update the
definition of the isomorphismU in Eq. (3.16) between the composite message-path systemM⊗P
and the one-particle sector (A⊗Vac)⊕ (Vac⊗B). With the added possibility of loss of particles,
we are no longer restricted to the one-particle sector. Instead, the output of the superposition of
channels is constrained to lie in the direct sum of the one-particle sector (A⊗ Vac)⊕ (Vac⊗ B)
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and the no-particle sector (Vac⊗ Vac). As such, we define a new isomorphism

U′ : (HM ⊗HP)⊕Hfail → (HA ⊗HVac)⊕ (HVac ⊗HB)⊕ (HVac ⊗HVac) (9.10)

defined by

U′(|ψ〉M ⊗ |0〉P) := |ψ〉A ⊗ |vac〉B
U′(|ψ〉M ⊗ |1〉P) := |vac〉A ⊗ |ψ〉B

U′(|fail〉) := |vac〉A ⊗ |vac〉B ,

(9.11)

where Hfail is a one-dimensional Hilbert space spanned by the unique failure state |fail〉, corre-
sponding to the failure of having any particle at all.

With this, we define the placement supermap called the lossy superposition placement by

Sω
loss sup(Ã, B̃;LA

p ,LB
p)(ρ) := (U ′)† ◦ (LA

p ◦ Ã)⊗ (LA
p ◦ B̃) ◦ U (ρ⊗ ω) , (9.12)

where both Ã and B̃ are vacuum extensions of some channels A ∈ Chan(A) and B ∈ Chan(B),
and LA

p ,LB
p are some loss channels of the form (9.9).

For two independent identical vacuum-extended channels Ã, with independent and identical
loss processes on both paths, and with the path initialised in the |+〉 state, the lossy superposition
of channels gives

S |+⟩⟨+|
loss sup(Ã, Ã;Lp,Lp)(ρ) = (1− p)

[
A(ρ) + FρF†

2
⊗ |+〉〈+|+ A(ρ)− FρF†

2
⊗ |−〉〈−|

]
+ p |fail〉〈fail|+ off-diagonal terms ,

(9.13)

where ‘off-diagonal terms’ refer to terms proportional to |fail〉〈±| or its Hermitian conjugate. The
off-diagonal terms are not important, because the receiver will typically perform a non-demolition
measurement in the particle-number basis, before proceeding to decode the message.

This result can be generalised to superpositions of sequences of multiple independent channels,
and to superpositions of correlated channels, in a natural way.

This shows that for a probability of loss p at each port, the lossy superposition of channels re-
turns the corresponding superposition of channels without loss with probability (1 − p) and no
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particle with probability p. That is, the superposition of channels is affected by loss exactly as much
as the original channels themselves. This means that although (a) the superposition of channels
itself cannot be used as a protocol to circumvent loss, (b) the superposition of channels still pro-
vides an advantage over using the channels in a classical configuration for every fixed value of loss
probability p. In particular, it provides the same advantage as without loss, but this can now only
be obtained by postselection on the one-particle sector with probability p.

9.3 Experimental design

In this section, we provide a brief overview of the methods used to experimentally implement the
superposition of channels and its associated communication advantages presented in earlier chap-
ters. The following is based on the experimental collaboration with the University of Vienna [166]
and the experimental collaboration with Imperial College London [173].

Since this is a theoretical work, we shall only discuss the conceptual elements of the experimental
implementation. The details of the experimental components and methods, as well as the detailed
results including discussions of experimental errors, are out of the scope of this work, and can be
found in the above references. We only consider implementations based on the superposition of
paths, as the superposition of times is more challenging to implement in experiment. The super-
position of times is an important task for future experimental work on this topic. All of the results
on time-correlated channels presented in Chapter 6 can also be formulated in terms of spatially
correlated channels (since the correlated channels we considered were all no-signalling channels),
which is indeed how those results have been experimentally implemented in the first instance.

Ref. [166] performed an implementation of the superposition of (various combinations of) two
independent random unitary channels. Each channel consists of a randomisation over (a subset of)
the four Pauli unitaries, with the identity occurring with probability p. The figure of merit for com-
munication was chosen to be the coherent information of the channel, with respect to inputting
one half of the maximally entangled state. This is a lower bound to the coherent information of the
channel, which in turn is a lower bound to the quantum capacity of the channel (cf. §6.4).

By combining the two channels in a superposition of paths, the theoretical value of the coher-
ent information with respect to the maximally entangled state is larger than that of each of the
constituent channels individually [166]. These communication advantages are similar to that of
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Figure 9.3: Diagram of the experimental setup of the collaboration with the University of
Vienna. Figure modified from Ref. [166]. The noisy channels are labelled C1 and C2 in the
diagram. HWP is a half wave plate, QWP is a quarter wave plate, LCWP is a liquid-crystal
wave plates; all three are optical devices that rotate the polarisation. BS denotes a beamsplit-
ter and PBS denotes a polarising beamsplitter.
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the communication protocols presented in §5.3 and §6.4.1. The experiment verified the theoret-
ical results, up to experimental errors. However, each unitary operator Vm was simply vacuum-
extended to another unitary with the same phase (of 0) between the one-particle and vacuum sec-
tors: Ṽm = Vm ⊕ |vac〉〈vac|. This means that the whole space of possible vacuum-extensions was
not explored, and as a result, the optimal communication capacity could not be retrieved.

The experimental setup of Ref. [166] is based on a simple Mach-Zehnder interferometer, as
described earlier in §3.4.1. Single photons were generated using a type-II spontaneous paramet-
ric down-conversion source. The noisy channels were realised by performing the appropriate ran-
domisation over the Pauli unitaries, which were individually implemented using liquid-crystal wave
plates (LCWP). LCWPs can be tuned to the appropriate unitary within 100 ms, meaning that the
randomisation can be done on-the-fly, without averaging during data analysis. A diagram of the full
experimental setup is given in Figure 9.3. The coherent information of the superposition channel,
with respect to the maximally entangled state, was found by performing quantum process tomog-
raphy [159] on the output of the interferometer.

Ref. [173] performed an implementation of the superposition of two random unitary chan-
nels, both independent and correlated, corresponding exactly to the communication protocols pre-
sented in §6.1 and §6.4. Crucially, all possible unitary vacuum extensions Ṽm = Vm⊕eiφm |vac〉〈vac|
of each unitary Vm were explored. This enabled the communication enhancements for both classi-
cal and quantum communication to be formally quantified as a function of the choice of the vac-
uum amplitudes {eiφm}.

The experimental setup of Ref. [173] is based on a displaced Sagnac interferometer, as shown
in Figure 9.4. This is structurally analogous to a Mach-Zehnder interferometer but was chosen
because it provides better phase stability. Single photons were again generated by a type-II sponta-
neous parametric down-conversion source, and sent to the input of the interferometer. The Holevo
capacity and coherent information, with respect to the maximally entangled state, can be calculated
using quantum process tomography on the output of the interferometer.

The noisy channels were realised by performing the appropriate randomisation over the Pauli
unitaries, this time individually implemented using combinations of quarter and half wave plates.
This results in unitaries with a fixed phase with the vacuum, of the form Ṽ′

m = Vm⊕ eiξm |vac〉〈vac|.
In order to scan over all possible phases, an adjustable phase-shifter was inserted on one of the arms
of the interferometer. If the phase-shifter is described by a unitary U = I⊕ eiζ |vac〉〈vac|, then its
concatenation with the vacuum-extended unitary Ṽ′

m on the same arm is described by the overall
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Figure 9.4: Schematic diagram of the experimental setup of the collaboration with Imperial
College London. Figure taken from Ref. [173]. The acronyms for the various experimental
components are as follows: BP1 and BP2 are band-pass filters, LP is a longpass filter, ppKTP
is a periodically poled potassium titanyl phosphate, TDC is a time-to-digital converter, and
the other acronyms are as in the previous figure. The black pin-shaped object on the orange
arm is a small piece of glass mounted on a motorised rotation stage, which implements an
adjustable phase shifter; this is used to scan over all possible phases between the one-particle
and vacuum sectors of each unitary.

unitary Ṽm = Vm⊕ eiφm |vac〉〈vac|, where φm = ξm+ ζ. Scanning over all ζ ∈ [0, 2π[ is equivalent
to scanning over all possible phases φm of the original vacuum amplitude eiφm .

Moreover, note that the superposition of two unitaries Ṽm = Vm ⊕ eiφm |vac〉〈vac| and Ṽn =

Vn ⊕ eiφn |vac〉〈vac| has, by Eq. (3.17), the form

Sω
sup(Ṽm, Ṽn)(ρ) =〈0|ω|0〉 Vm(ρ)⊗ |0〉〈0|+ 〈1|ω|1〉 Vn(ρ)⊗ |1〉〈1|

+〈0|ω|1〉 ei(φn−φm)VmρV†
n ⊗ |0〉〈1|+ 〈1|ω|0〉 ei(φm−φn)VnρV†

m ⊗ |1〉〈0| ,
(9.14)

which depends only on the phase differences φm − φn. Since in this experiment each run consists
of a fixed choice of unitaries (with the randomisation performed in post-processing), the above
equation implies that a phase-shifter only needs to be used on one of the two arms in order to scan
over all possible vacuum extensions of both channels.

The data analysis for this experiment is currently in progress.
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10
Discussions and conclusions

In this section, we summarise the main results of the thesis and discuss the connections with related
works, in particular, highlighting the use of the methods we have developed in other fields. We
comment on possible research directions for future work in the second-quantised Shannon theory
itself, as well as in other areas including quantum computation, foundations, gravity and causality.

10.1 Summary

In this thesis, we formalised a second level of quantisation of Shannon’s theory of information,
where both the information carriers and their trajectories in spacetime are treated in a quantum
manner. Using the tools of higher-order transformations, we defined the notion of a superposition
of two quantum channels, constructed by coherently routing a single particle in a superposition of
travelling through one channel or the other. We constructed a resource theory of communication,
which formalises the resources available to the different parties in a communication scenario, and
specified a minimal requirement that all meaningful communication models should satisfy. We
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cast both standard quantum Shannon theory and its second level of quantisation in this form, as
well as a related paradigm where communication channels can be combined in an indefinite causal
order.

We provided several examples of the novel possibilities for communication achievable in this
extended setting, including enhancements in both the classical and quantum capacity of commu-
nication channels, with both independent and correlated noise. We extended the framework to
examples of communication networks, where further advantages can be found in the asymptotic
limit of an infinite sequence of channels. Finally, we studied the robustness of communication in
a superposition of trajectories to various sources of errors, and outlined the design of two recent
experiments which demonstrated our results in practice.

10.2 Outlook for the second-quantised Shannon theory

We envisage that our framework for a second-quantised Shannon theory opens up a new paradigm
for the study of communication in a quantum setting. Various directions for further research are
apparent.

First, it would be interesting to explore the possibilities arising when multiple particles are si-
multaneously transmitted on a superposition of (the same set of) paths. This would lead to multi-
particle interference between the different paths, as described by the Hong-Ou-Mandel effect [106],
in addition to the interference caused by a single particle on multiple paths. The study of such
a physical scenario would be important in applying the noise-reduction techniques of the second-
quantised Shannon theory to practical applications in photonic quantum computation, where mul-
tiple interacting single photons are typically used [37].

Second, the extent to which the results of Chapter 8 could be applied to quantum communi-
cation across long sequences of channels would be an interesting avenue of study. In the case of
quantum communication, unlike for classical communication, it is not sufficient for the vacuum
interference operator to have a singular value of 1. However, it may be that a weaker result holds,
which could potentially still, to some extent, suppress the exponential degradation of quantum in-
formation over large distances.

Third, it is important to extend the tabletop proof-of-principle experiments of the novel commu-
nication advantages to practical demonstrations of communication through actual long-distance
optical fibres. Additionally, the use of correlated channels at a superposition of times would be in-
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teresting task to explore in practice. In conjunction with such demonstrations, an important task
would be to pinpoint the precise scenarios where communication with a superposition of trajecto-
ries can provide real-life practical advantages for communication through noisy transmission lines.

10.3 Relatedworks and possible future directions

We begin by reviewing two related communication protocols, where the amount of information a
single particle can convey is enhanced by considering the quantum properties of an external degree
of freedom. This is followed by a discussion on work completed in parallel to this thesis, in part
guided by the results presented in the previous chapters, on topics in quantum gravity and quantum
foundations. Finally, we discuss potential applications in quantum computation.

10.3.1 Single-particle communication

In Ref. [200], Zhang, Chen and Chitambar constructed a multiple-access channel using a single
quantum particle, with a Shannon-theoretic study provided in Ref. [46]. In this scheme, multiple
senders transmit information to a single receiver, using only a single quantum particle between
them. This is done by first transmitting a single particle through a superposition of N paths, and
letting N senders act locally, one on each path. The authors showed that the multiple senders can
simultaneously transmit classical information to the receiver in this setting, which is impossible
with a single classical particle [46].

The formalism of these works has several similarities to that of this thesis, in particular the de-
scription of a single particle coherently routed to the inputs of multiple channels, with the absence
of an input described by the vacuum. However, a fundamental difference is that the internal de-
grees of freedom of the particle are not considered at all. Instead, the senders encode information
in the phase between the different paths, and are also allowed to destroy the particle.

The protocol of two-way communication with a single quantum particle, due to del Santo and
Dakić [72, 140], shares similar features to Refs. [46, 200]. In this scheme, two parties simultane-
ously send information to one another, with only the transmission of a single particle overall. The
authors showed that such two-way communication is possible, in stark contrast to the possibilities
offered by a single classical particle. Again, the protocol relies on the particle being initialised in a
superposition of locations between the two parties, with the absence of the particle being described
by the vacuum.
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As in Refs. [46, 200], the protocol of Refs. [72, 140] does not consider an internal degree of
freedom of the particle, and in fact does not consider noise in transmission at all.

An interesting avenue for future research would be to apply the methods developed in this the-
sis to study the scenarios of the above works, including their formalisation in a resource-theoretic
setting. In particular, it would be interesting to extend the above scenarios to cases where informa-
tion is encoded in an internal degree of freedom of the particle, and where this degree of freedom
undergoes a noisy evolution.

10.3.2 Quantum communication with a superposition of spacetimes

The superposition of quantum channels has so far mostly been applied to physical scenarios involv-
ing single-photon evolutions. However, the formalism can, in principle, be applied to any physical
processes described by quantum channels. In Ref. [110], we considered the performance of quan-
tum communication protocols near a black hole. Traditionally, a black hole described by classical
physics had been shown to cause decoherence on quantum states in its vicinity, thus degrading
the performance of any quantum communication protocol [10, 139]. Yet, a black hole is expected
to be a fundamentally quantum object. In this work, we showed that by considering a black hole
in a superposition of alternative states (for example, mass states), the resulting superposition of
evolutions, or equivalently the superposition of spacetimes induced by the black hole, can allay the
decoherence, and therefore the degradation of quantum information protocols in its vicinity. Thus,
using the methods of superpositions of channels, we showed that quantum gravity can be used as
a resource for communication.

10.3.3 Quantum circuits with superpositions of wires

The standard formalism of quantum circuits [5, 6, 65, 73, 145], which lies at the heart of quantum
computation in both theory and practice, enables quantum channels to be combined in parallel
and in sequence. Until recently, this structure of parallel and sequential composition appeared to
be sufficient for describing quantum processes for all practical purposes. However, as the work of
this thesis shows, the placement of devices can itself be described in a quantum manner, which goes
beyond standard placements in parallel and sequence. Ultimately, a second level of quantisation of
Shannon theory calls for a second level of quantisation of the circuit model: not only should the
gates of the circuit describe quantum operations, but the wires between the gates should be able to
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describe the coherent routing of information through alternative paths.
In Ref. [191] we provide such an extended circuit model called routed quantum circuits. In this

framework, the composition of quantum systems in any combination of direct sums and tensor
products can be depicted in a graphical manner, with the addition of Boolean matrices specifying
appropriate constraints.

The constructions of routed quantum circuits are motivated in part by Definition 7 of a super-
position of channels. In Definition 7, the isomorphismU between the message-path systemM⊗P
and the one particle sector (A⊗ Vac)⊕ (Vac⊗ B), with M ' A ' B, is in fact an isometry onto
the full Hilbert space Ã⊗ B̃ describing the independent action of the two vacuum-extended chan-
nels. Thus, even though only the one-particle sector can be populated, this cannot be seen from its
representation in standard quantum circuits: the circuit in Figure 3.2 makes it look as though the
two vacuum-extended channels are used in parallel.

In routed quantum circuits, the same physical scenario is depicted in Figure 10.1 (we shall stick
to the case of unitary channels for simplicity; non-unitary channels can be described in an analo-
gous way with a slightly more elaborate version of the formalism). In this framework, a system is
explicitly decomposed into its sectors, depending on a physically meaningful partition. For exam-
ple, the vacuum-extended system Ã is written as Ak = A0 ⊕ A1, where A0 := Vac and A1 := A;
similarly B̃ is written as Bl = B0 ⊕ B1. Each channel is appended with a Boolean matrix called
the route, which describes which sectors of the incoming Hilbert spaces can be connected to which
sectors of the outgoing Hilbert spaces. For example, the isomorphism U is appended with the
Kroenecker delta route δk̄l, (with l̄ meaning ‘not l’) which specifies that only the composite sectors
A0 ⊗ B1 or A1 ⊗ B0 can be populated at once, i.e. the one-particle sector. Similarly, the fact that
each unitary Ṽ preserves the number of particles is depicted by appending it with the Kroenecker
delta route δmk between its input system Ak and output system Am. More generally, a route will be
given by a Boolean matrix that can relate any combination of input sectors to any combination of
output sectors.

The advantage of routed quantum circuits is that they make clear which combination of sec-
tors in a large composite Hilbert space can be simultaneously populated, thus giving a better un-
derstanding of the compositional structure of various physical scenarios. In turn, a more detailed
compositional structure could potentially result in a more efficient design of future quantum al-
gorithms or communication protocols, for example, in the spirit the second-quantised Shannon
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Figure 10.1: The superposition of two independent unitary channels V and W specified by
the vacuum extensions Ṽ and W̃, depicted in the formalism of routed quantum circuits. Each
gate is appended with a Boolean matrix that determines which sectors of its input systems
(lower indices) are consistent with which sectors of its output systems (upper indices).

theory.

Quantum causality

On the foundational side, routed quantum circuits were also inspired by the earlier work of Lorenz
and Barrett [134], and Barrett, Lorenz and Oreshkov [19] on causal decompositions of unitaries.
These works studied the causal structure of unitary transformations and attempted to decompose
unitaries into a unitary quantum circuit that explicitly depicts their causal structure. It was found
that the causal structure of some unitaries cannot be depicted as a standard circuit diagram where
the compositional structure is equivalent to the causal structure. That is, it is not always possible to
draw a standard circuit diagram where the connectivity of wires between two unitaries determines
whether or not signalling can happen between them. Yet, it turns out that such causally faithful cir-
cuit diagrams are possible, at least for a large class of unitaries, using an extended circuit formalism
[134], which is encompassed by routed quantum circuits. (In essence, the formalism of Ref. [134]
can be viewed as routed quantum circuits where only Kroenecker delta routes are allowed.)

With the development of the full formalism of routed quantum circuits, which was guided by
the mathematical structures encountered in the superposition of quantum channels, an interesting
avenue for future research would be to see if there exist unitary transformations for which the full
machinery of routed quantum circuits is necessary to depict the causal structure, i.e. where the
formalism of Ref. [134] is not sufficient. An answer to this question would constitute a significant
gain in our understanding of the causal structures of quantum theory.

In turn, an understanding of the causal structures of quantum theory can be expected to play
an important role in understanding the ultimate potential of quantum physics for information-
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processing applications such as quantum machine learning [34, 194], just as current research in
classical causality [153] has been instrumental in the understanding of classical machine learning
algorithms [16, 164, 170, 171, 175].

Indefinite causal order

In Refs. [53, 57], Chiribella, D’Ariano, Perinotti and Valiron first defined the quantum SWITCH.
They noted that the quantum SWITCH supermap cannot be represented in the standard quantum
circuit formalism, yet could potentially be depicted in a more general circuit formalism where the
wires are themselves movable. Of course, any process with indefinite causal order (cf. §2.4.1) can
be drawn as a standard quantum circuit with the addition of a feedback loop; however, only a small
subclass of processes that can be drawn with feedback loops are logically consistent. Moreover, the
ability to draw processes as circuits is an important step in understanding why they are consistent.
Therefore, an ideal tool for the study of indefinite causal order is a circuit formalism that enables the
construction of such processes in a way that ensures, and explains why, they are logically consistent.

Routed quantum circuits provides precisely such a formalism. In Ref. [192], we applied the
framework of routed quantum circuits to processes with indefinite causal order. We provided a
general method to construct (unitarily extendable [14]) processes with indefinite causal order,
starting from elementary graphs depicting a given causal structure. Our method defines a set of
basic rules to check that any elementary graph is logically consistent, and therefore any (routed)
quantum circuit formed from it. The method yields an intuitive understanding of the causal rela-
tions within a process, and why they do not lead to logical inconsistencies.

Again, a principal construction in this formalism is directly based on the work of this thesis. That
is, the way in which wires can be split into combinations of direct sums and tensor products (typi-
cally, representing alternative possible causal structures) is by using the unitaryU of Eq. (3.16) and
its generalisations. A related work by Ormrod, Vanrietvelde and Barrett uses similar techniques to
study the causal structure of the quantum SWITCH itself [150]. From a historical perspective, this
brings us full circle: the study of communication advantages arising from indefinite causal order
[58, 80, 168] was the initial inspiration to study communication with a superposition of trajecto-
ries, the methods of which have now in turn paved the way for a deeper understanding of indefinite
causal order itself.
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10.3.4 Quantum computation with superpositions of gates

In classical computation, a fundamental ingredient is the IF clause, which performs an operation
conditional on the state of a control register. In quantum computation, however, the direct general-
isation to a quantum IF clause, which coherently performs arbitrary unitary operations depending
on a quantum control state, is not possible, as described earlier in §2.5.2. Yet, within the framework
of superposition of channels specified by vacuum extensions, the coherent control of arbitrary op-
erations is possible, given the additional parameters defined by the vacuum extension. This enables
us to build a form of a quantum IF clause [85, 144] with the appropriate resources. Experimental
realisations of the coherent control of unknown unitaries have been demonstrated in both photonic
[202] and superconducting [86] systems.

A recent work by Dong, Nakayama, Soeda and Murao has extended earlier studies on the control
of unknown unitaries to the coherent control of both quantum channels and quantum supermaps
[76]. Another recent work by Vanrietvelde and Chiribella [190] has further developed some of
the formal superposition of channels constructions in this thesis, from a more computational per-
spective. In particular, they formalised the coherent control of arbitrary quantum channels as a
quantum supermap on routed quantum channels, in the spirit of Refs. [134, 191].

At the same time, several recent works have proposed algorithms, for example in quantum ma-
chine learning, whose advantages are purported to arise from sending information on a superposi-
tion of alternative trajectories [130, 151]. An interesting avenue of research would be to formalise
these works using the methods of higher-order transformations and resource theories applied to
superpositions of channels, in an analogous way for computation as was done for communication
in this thesis.

We envisage that the formal methods developed in this thesis and subsequent works, enhanced
by further research in this area, could lead to a new ‘second-quantised’ paradigm of computation,
where resource theoretically well-defined advantages are proven in tasks ranging from simple algo-
rithms to quantum machine learning.
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A
Proofs ofTheorems

A.1 Proof of Theorem 4 and Lemma 1

Proof of Lemma 4. The No Leakage Condition can be rewritten as

Tr

[(∑
i

PAC̃†
i PAC̃iPA

)
ρ

]
= Tr[PAρ] ∀ρ ∈ St(A) ,

which is equivalent to ∑
i

PAC̃†
i PAC̃iPA = PA . (A.1)

The normalisation of Kraus operators implies the inequality

PA = PA

(∑
i

C̃†
i C̃i

)
PA

=
∑
i

PAC̃†
i
(
PA + P⊥A

)
C̃iPA P⊥A := I− PA

≤
∑
i

PAC̃†
i PAC̃iPA , (A.2)
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where the equality sign holds if and only if∑
i

PAC̃†
i P⊥A C̃iPA = 0 , (A.3)

or equivalently ∑
i

(
P⊥A C̃iPA

)† (
P⊥A C̃iPA

)
= 0 , (A.4)

The fact that every term in the sum is a positive semidefinite operator implies that the equality holds
if and only if each term is zero, that is, if and only if P⊥A C̃iPA = 0 for all i.

Putting these results together, we obtain

∀i : C̃iPA = (PA + P⊥A )C̃iPA = PAC̃iPA , (A.5)

as stated in Equation (3.4).

Proof of Theorem 4. 1 =⇒ 2. Let S ∈ Chan(A ⊕ B) be a superposition of channels A ∈
Chan(A) and B ∈ Chan(B), and let S(ρ) =

∑
i SiρS

†
i be a Kraus decomposition of S . Since S

satisfies the No Leakage Condition for A, we have by Lemma 1 that

SiPA = PASiPA ∀i ∈ {1, . . . r} . (A.6)

Similarly, since S satisfies the No Leakage Condition for B, we have that

SiPB = PBSiPB ∀i ∈ {1, . . . r} . (A.7)

Combining Equations (A.6) and (A.7) we obtain Si = Si(PA + PB) = Ai ⊕ Bi, with Ai := PASiPA
and Bi := PBSiPB. By the definition of a superposition of channels, the restriction of S to sector
A is the channel A, and thus S(PAρPA) = A(PAρPA). Hence, we conclude that {Ai}ri=1 is a Kraus
representation of A. Similarly, since the restriction of S to sector B is the channel B, and therefore
{Bi}ri=1 is a Kraus representation of B.

2 =⇒ 1 is immediate.
2 =⇒ 3. Consider the Stinespring representation of the channel S , obtained by introducing an

environment E of dimension r, equal to the number of Kraus operators of S . Explicitly, the Stine-
spring representation is given by the isometry V =

∑r
i=1 Si ⊗ |i〉, where {|i〉}ri=1 is the canonical

basis for E. Since each Si is of the form Si = Ai ⊕ Bi, the isometry V is of the form V = VA ⊕ VB,
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where VA : HA → HA ⊗HE and VB : HB → HB ⊗HE are the isometries

VA :=
r∑

i=1

Ai ⊗ |i〉 (A.8)

VB :=
r∑

i=1

Bi ⊗ |i〉 . (A.9)

Each isometryVA andVB can be extended to a unitaryUA andUB, so thatVA = UA(IA⊗|ηA〉) and
VB = UB(IB ⊗ |ηB〉), where |ηA〉 and |ηB〉 are unit vectors in HE.

Without loss of generality, we can choose |ηA〉 = |ηB〉 = |η〉. Each unitary UA and UB can be
realised as a time evolution for a time T with Hamiltonian HAE and HBE, respectively. Therefore,
we can define the unitary evolutions UA := exp[−iHAE T/~], UB := exp[−iHBE T/~], and

U := exp[−i(HAE ⊕ HBE)T/~] = UA ⊕ UB . (A.10)

With these definitions, we obtain

TrE
[
UAE(ρ⊗ |η〉〈η|)U†

AE

]
=
∑
i

KiρK†
i , (A.11)

where

Ki :=
(
IA ⊗ 〈i|

)
UAE

(
IA ⊗ |η〉

)
=
(
IA ⊗ 〈i|

)
VA

= Ai , (A.12)

using Eq. (A.8) in the last equality. Similarly, we obtain

TrE
[
UBE(ρ⊗ |η〉〈η|)U†

BE

]
=
∑
i

LiρL†
i , (A.13)

with

Li :=
(
IB ⊗ 〈i|

)
UBE

(
IB ⊗ |η〉

)
=
(
IB ⊗ 〈i|

)
VB

= Bi , (A.14)
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using Eq. (A.9) in the last equality, and finally

TrE
[
U(ρ⊗ |η〉〈η|)U†] =∑

i

MiρM†
i , (A.15)

with

Mi :=
(
IS ⊗ 〈i|

)
U
(
IS ⊗ |η〉

)
=
(
IA ⊗ 〈i|

)
UAE

(
IA ⊗ |η〉

)
⊕
(
IB ⊗ 〈i|

)
UBE

(
IB ⊗ |η〉

)
= Li ⊕ Ki

= Ai ⊕ Bi , (A.16)

where S := A⊕ B.
3 =⇒ 1. Let E be an environment, let |η〉 ∈ HE be a pure state, and let HAE,HBE be Hamilto-

nians with supports in HA ⊗HE and HB ⊗HE, respectively, such that

A(ρ) = TrE[UAE(ρ⊗ η)U†
AE] UAE = exp[−iHAE T/~]

B(ρ) = TrE[UBE(ρ⊗ η)U†
BE] UBE = exp[−iHBE T/~]

S(ρ) = TrE[U(ρ⊗ η)U†] U = exp[−i(HAE ⊕ HBE)T/~] ≡ UAE ⊕ UBE . (A.17)

By construction, if ρ has support in HA, then

S(ρ) = TrE[UPAE (ρ⊗ η) PAEU†] PAE := PA ⊗ IE
= TrE[UAE (ρ⊗ η)U†

AE]

= A(ρ) . (A.18)

Similarly, if ρ has support in HB, then

S(ρ) = TrE[UPBE (ρ⊗ η) PBEU†] PBE := PB ⊗ IE
= TrE[UBE (ρ⊗ η)U†

BE]

= B(ρ) . (A.19)

Therefore, S is a superposition of A and B.

A.2 Proof of Proposition 15

The proof uses the following lemma:
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Lemma 22. LetD be a completely depolarising channel with vacuum extension D̃ and vacuum inter-
ference operator F. Then, the operator norm of F satisfies the inequality ||F||∞ ≤ 1√

d
.

Proof. Let the Kraus operators and vacuum amplitudes of D be given by {Ai}, {αi}, respec-
tively. By definition,

||F||∞ = max
{|v⟩:|||v⟩||=1}

max
{|w⟩:|||w⟩||=1}

〈v|F|w〉 (A.20)

and

|〈v|F|w〉| =

∣∣∣∣∣∑
i

αi〈v|Ai|w〉

∣∣∣∣∣
≤

√√√√√(∑
i

|αi|2
)∑

j

〈v|Aj|w〉〈w|A†
j |v〉


=
√
〈v|D (|w〉〈w|) |v〉

(A.21)

If D is the completely depolarising channel, then D(|w〉〈w|) = I/d and therefore the bound be-
comes |〈v|F|w〉| ≤

√
1/d which implies ||F||∞ ≤

√
1/d.

We are now ready to provide the proof of Proposition 15.
Proof of Proposition 15. To prove that a channel is entanglement-breaking, it is sufficient to

show that it transforms a maximally entangled state into a separable state [107]. We use the maxi-
mally entangled state |Φ+〉 :=

∑d−1
k=0 |k〉⊗|k〉/

√
d. When the channelCω,F is applied to this state,

the output state is

(Cω,F ⊗ I)(|Φ+〉〈Φ+|) =
(
I⊗ I
d2

+ GF

)
⊗ ω

2
+

(
I⊗ I
d2

− GF

)
⊗ ZωZ

2
, (A.22)

where GF := (F⊗ I)(|Φ+〉〈Φ+|)(F⊗ I)†.
We now show that the operators I⊗ I/d2 ±GF are proportional to states with a positive partial

transpose. To show this, we find that the partial transpose of GF on the second space is

GT2
F = (F⊗ I)

SWAP

d
(F⊗ I)† . (A.23)
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Therefore, for every unit vector |Ψ〉, we obtain the following bound:

〈Ψ|GT2
F |Ψ〉 = 〈Ψ|(F⊗ F†)|Ψ〉

d

≤ 〈Ψ|(FF† ⊗ I)|Ψ〉
d

≤ ‖FF†‖∞
d

=
‖F‖2∞
d

≤ 1
d2

, (A.24)

where the first inequality follows from the Cauchy-Schwarz inequality and the last inequality fol-
lows from Lemma 22.

Eq. (A.24) implies that

〈Ψ|
(
I⊗ I
d2

± GF

)T2

|Ψ〉 ≥ 1
d2

− 〈Ψ|GT2
F |Ψ〉 ≥ 0 . (A.25)

Since |Ψ〉 is an arbitrary vector, we conclude that the operator
( I⊗I

d2 ± GF
)T2 has positive partial

transpose. For d = 2, the Peres-Horodecki criterion [108, 154], guarantees that I⊗I
4 ± GF is pro-

portional to a separable state. Therefore, the output state (A.22) is separable.

A.3 Proofs of Proposition 16

Proof of Proposition 16. For a fixed vacuum extension, and therefore for a fixed vacuum interfer-
ence operator F, the Holevo capacity of the channel Cω,F is upper bounded by the Holevo capac-
ity of the channel C|+⟩⟨+|,F (Lemma 14). Hence, it is enough to prove the bound for the channel
C|+⟩⟨+|,F.

Note that the output of channel C|+⟩⟨+|,F has dimension 2d. For a generic channel E with (2d)-
dimensional output, the Holevo capacity is upper bounded as [103]

χ(E) ≤ log(2d)−min
ρ

H [E(ρ)] , (A.26)

whereH(ρ) := −Tr[ρ log ρ] is the von Neumann entropy, and the minimisation can be restricted
without loss of generality to pure states.

We now upper bound the right-hand-side of Eq. (A.26) for E = C|+⟩⟨+|,F. The action of the
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channel C|+⟩⟨+|,F on a generic input state ρ is

C|+⟩⟨+|,F(ρ) =
I
d+FρF†

2
⊗ |+〉〈+|+

I
d−FρF†

2
⊗ |−〉〈−| . (A.27)

In the case of a pure state ρ = |ψ〉〈ψ|, we write F|ψ〉 = k |ϕ〉, where |ϕ〉 is a unit vector and k is
a normalisation constant. With this notation, we obtain

C|+⟩⟨+|,F(|ψ〉〈ψ|) =
( 1d + k2) |ϕ〉〈ϕ|+ 1

dP⊥
2

⊗ |+〉〈+|

+
( 1d − k2) |ϕ〉〈ϕ|+ 1

dP⊥
2

⊗ |−〉〈−| ,
(A.28)

with P⊥ := I− |ϕ〉〈ϕ|. The von Neumann entropy of this state is

H
[
C|+⟩⟨+|,F(|ψ〉〈ψ|)

]
= −

1
d + k2

2
log

1
d + k2

2
− d− 1

2d
log

1
2d

−
1
d − k2

2
log

1
d − k2

2
− d− 1

2d
log

1
2d

=
d− 1
d

log(2d)−
1
d + k2

2
log

1
d + k2

2
−

1
d − k2

2
log

1
d − k2

2

(A.29)

Now, note that

k = ‖F |ψ〉‖ ≤ ‖F‖∞ ≤ 1√
d
, (A.30)

where the last inequality follows from Lemma 22. The expression (A.29) is monotonically decreas-
ing for k in the interval [0, 1/

√
d]. Hence, we obtain the lower bound

H
[
C|+⟩⟨+|,F(|ψ〉〈ψ|)

]
≥ d− 1

d
log(2d)

−
1
d + ‖F‖2∞

2
log

1
d + ‖F‖2∞

2

−
1
d − ‖F‖2∞

2
log

1
d − ‖F‖2∞

2

. (A.31)

Inserting this expression into Eq. (A.26) with E = C|+⟩⟨+|,F, we obtain Eq. (6.18).
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A.4 Lemmas for proof of Theorem 18

Lemma 23. Let F be a vacuum interference operator. Let Cω,F be a superposition of two independent
qubit completely depolarising channels with vacuum interference operator F, as given by Eq. (6.17). Let
a, b be the singular values of F.Then F′ = a |0〉〈0|+b |1〉〈1| is also a vacuum interference operator asso-
ciatedwith the qubit completely depolarising channel, withCω,F′ the corresponding superposition channel,
and furthermore the classical capacity of the channel Cω,F is equal to that of the channel Cω,F′ .

Proof. Using the singular value decomposition, F can be written as F = UF′V, where U and
V are suitable unitary matrices, and F′ is diagonal in the basis {|0〉, |1〉}. From Ref. [2], we know
that any linear operator on a d-dimensional Hilbert space is a valid vacuum interference opera-
tor of the completely depolarising channel if it satisfies Tr F†F ≤ 1/d. Therefore, if F is a vac-
uum interference operator of the completely depolarising channel, then so is F′, since Tr F′†F′ =
Tr
[
(U†FV†)†U†FV†] = Tr F†F ≤ 1/d.

Now, we have that the channel Cω,F′ can be obtained from Cω,F via the unitary transformation
Cω,F′ = (U ⊗IC)

† ◦Cω,F ◦V†, whereU † andV† are the inverses of the unitary channels associated
to the unitary matrices U and V, respectively, and IC is the identity channel on the control system.
The classical capacity of a channel is preserved under unitary transformations; therefore Cω,F and
Cω,F′ have equal classical capacity.

Lemma 24. When the operator F is diagonal in the computational basis, the Holevo capacity of the
channel Cω,F is given by

χ(Cω,F) = max
{px ,|ψx⟩}

{
H

[
Cω,F

(∑
x,m

px |〈m|ψx〉|
2 |m〉〈m|

)]
−
∑
x

pxH
[
Cω,F(|ψx〉〈ψx|)

]}
,

(A.32)

where the maximum is over the ensembles of d pure states with positive coefficients in the computational
basis.

The proof of this result, which relies on group-theoretic methods, is beyond the scope of this
thesis, and is provided in Appendix C of Ref. [121].

A.5 Proof of Proposition 20

Here we provide a proof of Proposition 20. The proof follows from the following Lemmas, proven
at the end of this Appendix.

Lemma25. LetN1 ∈ Chan(X) andN2 ∈ Chan(X) be two quantum channels, and let Ñ1 and Ñ2 be
their vacuum extensions. Then, Ñ1 ◦ Ñ2 is a vacuum extension ofN1 ◦ N2, and its vacuum interference
operator is F1F2, where F1 (F2) is the vacuum interference operator of Ñ1 (Ñ2).
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Proof. Using Equation (3.11) for the vacuum-extended channels Ñ1 and Ñ2, we obtain the
relation

(Ñ1◦Ñ2)(ρ) =(N1◦N2)(PXρPX) + 〈vac|ρ|vac〉 |vac〉〈vac|
+ F1F2ρ|vac〉〈vac|+ |vac〉〈vac|ρF†2F†1 ,

(A.33)

which is valid for every ρ ∈ St(X̃). From Equation (A.33) we see that Ñ1 ◦ Ñ2 is a vacuum
extension ofN1 ◦N2. Moreover, comparison of Equation (A.33) with Equation (3.11) shows that
the vacuum interference operator of Ñ1 ◦ Ñ2 is F1F2.

Lemma 26. Let F ∈ L(HX) be the vacuum interference operator associated to a generic vacuum-
extended channel C̃ ∈ Chan(X̃). Then, ‖F‖∞ ≤ 1.

Proof. By the definition (3.12), the vacuum interference operator of the vacuum-extended
channel C̃ can be expressed as F =

∑
i γ iCi, where {C̃i := Ci ⊕ γ i|vac〉〈vac|} is an arbitrary

Kraus representation of C̃.
By definition,

‖F‖∞ := max
{|φ⟩∈HX,∥|φ⟩∥=1}

‖F |φ〉‖ . (A.34)

Let |φ〉 ∈ HX be a unit vector such that ‖F‖∞ = ‖F|φ〉‖. Then, we obtain the following series of
(in)equalities:

‖F‖2∞ = ‖F|φ〉‖2

= 〈φ| F†F |φ〉

=
∑
ij

γ iγ̄ j 〈φ|C
†
i Cj |φ〉

≤
∑
ij

|γ i|
∣∣∣γ j∣∣∣∣∣∣〈φ|C†

i Cj |φ〉
∣∣∣

≤
∑
ij

|γ i|
∣∣∣γ j∣∣∣√〈φ|C†

i Ci |φ〉 〈φ|C†
j Cj |φ〉

=

(∑
i

|γ i|
√
〈φ|C†

i Ci |φ〉

)2

≤

(∑
i

〈φ|C†
i Ci |φ〉

)2

= 1 , (A.35)
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where the first inequality is the triangle inequality for the modulus, and the second and third in-
equalities are Cauchy-Schwarz inequalities.

Lemma 27. Let C ∈ Chan(X) be a quantum channel on a quantum system of dimension d ≥ 2, and
let C̃ ∈ Chan(X̃) be an arbitrary vacuum extension of C . If the Choi operator

c :=
∑
i,j

|i〉〈j| ⊗ C(|i〉〈j|) , (A.36)

has full rank, then the vacuum interference operatorFassociated to C̃ satisfies the strict inequality‖F‖∞ <
1.

Proof. Lemma 26 shows that the norm of F is smaller than or equal to 1. The equality ‖F‖∞ =
1 holds if and only if all the inequalities in Equation (A.35) hold with the equality sign. In the
following we show that saturating the second inequality is impossible when c has full rank.

The second inequality in Equation (A.35) is saturated if and only if

Ci |φ〉 ∝ Cj |φ〉 ∀i, j , (A.37)

that is, if and only if

Ci |φ〉 = λi|φ0〉 ∀i , (A.38)

where |φ0〉 ∈ HX is a fixed unit vector, and {λi} are complex numbers.
Let A =

∑
i αi Ci be an arbitrary linear combination of the operators {Ci}, with complex coef-

ficients {αi}. Then, one has

A |φ〉 =
∑
i

αi Ci|φ〉

=

(∑
i

αiλi

)
|φ0〉 .

(A.39)

In other words, every linear combination of the operators {Ci}must map |φ〉 into a vector propor-
tional to |φ0〉.

Now, the Choi operator c has full rank if and only if the operators Ci are a spanning set for the
vector space L(HX). This means, in particular, that there exist coefficients {αi} such that A =∑

i αi Ci = |φ⊥0 〉〈φ|, where |φ⊥0 〉 is a unit vector orthogonal to |φ0〉 (such a vector exists because the
Hilbert space HX is at least two-dimensional). In this case, A|φ〉 = |φ⊥0 〉, meaning that Equation
(A.39) cannot be satisfied. This implies that Equation (A.37) cannot be satisfied, and that the
bound ‖F‖∞ ≤ 1 cannot hold with the equality sign.
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Proof of Proposition 20. Let Ñdep be an arbitrary vacuum extension of the completely depo-
larising channel Ndep. By Lemma 25, the relation

Ñdep ◦ Ñdep = Ñdep (A.40)

implies the relation F2 = F, where F is the vacuum interference operator of Ñdep. In turn, the
relation F2 = F implies the relation F = Fn for every integer n ∈ N. In terms of the norm, this
condition gives the bound

‖F‖∞ = ‖Fn‖∞
≤ ‖F‖n∞ ∀n ∈ N . (A.41)

Now, the Choi operator of the completely depolarising channel Ndep is c = I⊗ I/d and has full
rank. Hence, Lemma 27 implies ‖F‖∞ < 1. This means that Eq. (A.41) implies that ‖F‖∞ = 0,
and therefore F = 0. In summary, the only vacuum extension satisfying the condition (A.40) is
the incoherent one.

A.6 Proof of Theorem 21

Proof. Recall that the largest singular value of an operator H is equal to its operator norm ||H||∞.
Recall also that the superposition of two independent identical sequences of channels S |+⟩⟨+|

sup [Ẽ ◦
(R̃ ◦ Ẽ)n−1, Ẽ ◦ (R̃ ◦ Ẽ)n−1] : L(HX) → L(HY ⊗HP) is given by

S |+⟩⟨+|
sup [Ẽ ◦ (R̃ ◦ Ẽ)n−1, Ẽ ◦ (R̃ ◦ Ẽ)n−1](ρ)

=
E ◦ (R ◦ E)n−1(ρ) + F(GF)n−1ρF(GF)n−1

2
⊗ |+〉〈+|

+
E ◦ (R ◦ E)n−1(ρ)− F(GF)n−1ρF(GF)n−1

2
⊗ |−〉〈−| .

(A.42)

1 ⇒ 2: We prove the contrapositive. First, note that for any vacuum interference operator H,
||H||∞ ≤ 1 (see Lemma 26, or Eq. (A.44) below). Let G be a vacuum interference operator of
a quantum channel R : L(HY) → L(HX). Suppose ||F||∞ 6= 1. Then ||F||∞ < 1. Since
the operator norm is sub-multiplicative, ||GF||∞ ≤ ||G||∞||F||∞ < 1. It follows that as n →
0, (GF)n−1 → 0 and hence F(GF)n−1 → 0. Therefore, the off-diagonal path terms vanish, and
S |+⟩⟨+|
sup [Ẽ ◦ (R̃ ◦ Ẽ)n−1, Ẽ ◦ (R̃ ◦ Ẽ)n−1](ρ) → E ◦ (R◦E)n−1(ρ)⊗ I/2, which has capacity zero

as n → ∞.
2 ⇒ 3: By definition,

‖F‖∞ := max
{|φ⟩∈HX,∥|φ⟩∥=1}

‖F |φ〉‖ , (A.43)
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where, as usual,‖·‖ denotes the Euclidean norm. Now, letting |φ〉 ∈ HX be a unit vector such that
‖F‖∞ = ‖F|φ〉‖, we obtain the following (in)equalities:

||F||∞ = ||ᾱ0E0|φ〉+ ᾱ1E1|φ〉+ · · ·+ ᾱr−1Er−1|φ〉||
≤ ||ᾱ0E0|φ〉||+ ||ᾱ1E1|φ〉||+ · · ·+ ||ᾱr−1Er−1|φ〉||

=

∣∣∣∣ᾱ0√〈φ|E0
†E0|φ〉

∣∣∣∣+ · · ·+
∣∣∣∣ᾱr−1

√
〈φ|Er−1

†Er−1|φ〉
∣∣∣∣

≤
√

(|α0|2 + |α1|2 + · · ·+ |αr−1|2)

·
√

〈φ|E0
†E0|φ〉+ 〈φ|E1

†E1|φ〉+ · · ·+ 〈φ|Er−1
†E0|φ〉

= 1 ·

√√√√〈φ|
r−1∑
i=0

E†
i Ei|φ〉

= 1 (A.44)

The first inequality follows from the triangle inequality and is saturated if and only if there exists a
pure state |ζ〉 ∈ L(HY) such that

ᾱ0E0|φ〉
||ᾱ0E0|φ〉||

=
ᾱ1E1|φ〉

||ᾱ1E1|φ〉||
= · · · = ᾱr−1Er−1|φ〉

||ᾱr−1Er−1|φ〉||
= |ζ〉 . (A.45)

If this equation is satisfied, then for all i ∈ {0, 1, ..., r− 1},

|ζ〉〈ζ| = ᾱiEi|φ〉
||ᾱiEi|φ〉||

· αi〈φ|E†
i

||αi〈φ|E†
i ||

=
Ei|φ〉〈φ|E†

i

〈φ|E†
i Ei|φ〉

. (A.46)

This implies that

E(|φ〉〈φ|) =
r−1∑
i=0

Ei|φ〉〈φ|E†
i =

(
r−1∑
i=0

〈φ|E†
i Ei|φ〉

)
|ζ〉〈ζ| = |ζ〉〈ζ| . (A.47)

That is, ||F||∞ = 1 only if there exists a pure state in HX which is mapped to a pure state in HY by
E .

The second inequality follows from the Cauchy-Schwarz inequality. It is saturated if and only if

there exists θ ∈ R such that αi = eiθ
√

〈φ|E†
i Ei|φ〉 for all i ∈ {0, 1, ..., r− 1}.

2 ⇒ 1: If ||F||∞ = 1, then there exist two states |φ〉 ∈ HX and |ζ〉 ∈ HY such that F |φ〉 = |ζ〉.
Thus, (|φ〉 〈ζ| F)n |φ〉 = |φ〉 for all n ∈ N.

Let R : Chan(Y → X) be a quantum channel with vacuum extension R̃. Let the Kraus opera-
tors of R̃ be {R̃0 = |φ〉〈ζ| ⊕ |vac〉〈vac|} ∪ {R̃i = |φ〉〈i| ⊕ 0}r−1

i=1 , where {|i〉}r−1
i=0 is a basis of HY
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with the definition |0〉 := |ζ〉.
Let G be the vacuum interference operator of R̃. Then G = |φ〉〈ζ| and thus GF |φ〉 = |φ〉. It

follows that the effective vacuum interference operator Feff = F(GF)n−1 satisfies Feff |φ〉 = |ζ〉 and
hence ||Feff||∞ = 1.

Furthermore, there exists a state |ξ〉 ∈ HX orthogonal to |φ〉 such that Feff |ξ〉 6= |ζ〉; otherwise,
Feff

|φ⟩+|ξ⟩√
2 =

√
2 |ζ〉 , which implies ||Feff||∞ 6= 1, a contradiction.

SinceE◦(R◦E)n−1 has classical capacity that approaches zero asn → ∞, then for all ρ ∈ St(X),
(E ◦ (R ◦ E)n−1)(ρ) = σ for some σ ∈ St(Y⊗ C). Therefore

S |+⟩⟨+|
sup [Ẽ ◦(R̃◦Ẽ)n−1, Ẽ ◦(R̃◦Ẽ)n−1](|φ〉〈φ|) 6= S |+⟩⟨+|

sup [Ẽ ◦(R̃◦Ẽ)n−1, Ẽ ◦(R̃◦Ẽ)n−1](|ξ〉〈ξ|) ,
(A.48)

i.e., the superposition channel yields distinct output states for two distinct input states. This result
proves that the superposition channel has a classical capacity strictly greater than zero as
n → ∞.
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B
Mathematical subtleties

B.1 Placed and unplaced channels

Here we specify the mathematical structure of placed and unplaced channels. In the following, the
subset of completely positive (CP) maps will be denoted by CP(A → B) ⊂ Map(A → B), and
the subset of trace-preserving (TP) maps will be denoted by TP(A → B) ⊂ Map(A → B).

For a single use of a single device, the distinction between placed and unplaced channels con-
cerns only the type of inputs and outputs. Mathematically, placed and unplaced channels are both
described by completely positive trace-preserving maps.

When multiple devices are involved, the distinction is more substantial. As described in §4.1.3–
4.1.4, k devices can be placed in parallel, giving rise to a multipartite quantum channel, or in se-
quence, giving rise to a k-step quantum channel, or, more generally, in any combination of parallel
and sequence, giving rise to an l-step quantum channel, with any l from 1 to k.

In contrast, unplaced channels belong to a different set of completely positive maps. We will now
specify this set explicitly. So far, we represented unplaced channels by lists, such as (N1, . . . ,Nk).
However, the set of lists is not closed under probabilistic mixtures, which arise quite naturally when
some of the parameters of the communication devices are subject to random fluctuations.

Probabilistic mixtures can be described by convex combinations of the form∑L
i=1 pi (N1,i, . . . ,Nk,i), where (pi)Li=1 is a probability distribution, and, for every i ∈ {1, . . . , L},

(N1,i, . . . ,Nk,i) ∈ Chan(X1 → Y1) × · · · × Chan(Xk → Yk) is a list of channels. The convex
combination

∑L
i=1 pi (N1,i, . . . ,Nk,i) must satisfy a basic consistency requirement: if a channel

in the list (N1, . . . ,Nk) is a convex combination of channels, say N1 =
∑

i pi N1,i, then the list
(N1, . . . ,Nk) should be equal to the corresponding convex combination

∑
i pi(N1,i,N2, . . . ,Nk).
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Requiring this consistency property to hold for every entry of the list implies that the convex com-
binations

∑L
i=1 pi (N1,i, . . . ,Nk,i) can be represented as elements of the tensor product space

TP(X1 → Y1)⊗TP(X2 → Y2)⊗ · · · ⊗TP(Xk → Yk), which consists of all linear combinations
of the form

M =
L∑
i=1

ci N1,i ⊗N2,i ⊗ · · · ⊗ Nk,i , (B.1)

where (ci)Li=1 are real coefficients, and each Nj,k is a trace-preserving map in TP(Xj → Yj).
In summary, the unplaced channels can be regarded as elements of the tensor product space

TP(X1 → Y1) ⊗ TP(X2 → Y2) ⊗ · · · ⊗ TP(Xk → Yk). Precisely, the list (N1, . . . ,Nk) can be
regarded as the product channelN1⊗· · ·⊗Nk. In this work, we use the list notation (N1, . . . ,Nk)
and the tensor product notation N1 ⊗ · · · ⊗ Nk, interchangeably, depending on which represen-
tation is more convenient.

As can be seen from Equation (B.1), the tensor product space TP(X1 → Y1) ⊗ TP(X2 →
Y2)⊗ · · · ⊗TP(Xk → Yk) also contains channels that are not of the product form. In fact, the set
of all channels in this tensor product space is in one-to-one correspondence with the set of k-partite
no-signalling channels NSChan(X1 → Y1, . . . ,Xk → Yk) (cf. §2.7.2).

This means that unplaced channels can, most generally, represent correlated devices. Such a
multi-partite unplaced channel shall be represented in the usual way as a channel
N ∈ NSChan(X1 → Y1, . . . ,Xk → Yk). If some parts of the overall channel factorise, we can
write it as a product of no-signalling channels, e.g. N1,2 ⊗N3 ∈ NSChan(X1 → Y1,X2 → Y2) ×
Chan(X3 → Y3), or as the list (N1,2,N3).

This suggests, that multi-partite unplaced channels should be able to be placed either between
multiple parties at separate locations, or between a single party at different moments in time, as
long as these correlations do not lead to signalling between the different systems. Such scenarios
are considered in §4.1.7.

205


	Abstract
	Acknowledgements
	Preface
	Introduction
	Background on selected topics in quantum information and foundations
	Basic concepts and notation
	Key concepts from quantum Shannon theory
	Quantum circuits and higher-order transformations
	Indefinite causal order
	Superposition, interference or coherent control of quantum channels
	Quantum resource theories
	Quantum channels with correlated noise

	Superposition of channels
	Systems and Sectors
	General superposition of quantum channels
	The vacuum extension of a quantum channel
	The superposition of two independent channels
	Superposition of multiple independent channels
	Superposition of multi-partite channels

	Resource theories of communication
	Standard quantum Shannon theory as a resource theory of communication
	General resource theories of communication
	Superposition of causal orders and superposition of trajectories 
	Superpositions of encoding and decoding operations
	Comparison with other frameworks
	Summary

	Communication through independent channels in a superposition of trajectories
	Communication capacities assisted by superpositions of trajectories
	Classical communication through a superposition of pure erasure channels
	Quantum communication through a superposition of entanglement-breaking channels
	Perfect communication through asymptotically many paths
	Optimal control state for maximizing the communication rate

	Communication through correlated channels at a superposition of times
	Sending a single particle through a time-correlated channel
	Classical communication through correlated white noise
	Communication through multiple time-correlated channels
	Quantum communication through correlated dephasing noise

	Superpositions of causal orders vs. superpositions of trajectories 
	Resource-theoretic comparison
	Further discussion

	Communication networks with superpositions of paths
	Erasure error model
	Superposition of sequences of identical channels
	Communication through a superposition of asymptotically long sequences of identical erasure channels
	Communication through a superposition of asymptotically long sequences of non-identical erasure channels with repeaters
	General case
	Relaxation of assumptions and practical communication  advantages

	Practical considerations and experimental implementation
	Dephasing on the path
	Loss of particles
	Experimental design

	Discussions and conclusions
	Summary
	Outlook for the second-quantised Shannon theory
	Related works and possible future directions

	References
	Appendix Proofs of Theorems
	Proof of Theorem 4 and Lemma 1
	Proof of Proposition 15
	Proofs of Proposition 16
	Lemmas for proof of Theorem 18
	Proof of Proposition 20
	Proof of Theorem 21

	Appendix Mathematical subtleties
	Placed and unplaced channels


