
Formal Synthesis of Lyapunov Neural Networks

Alessandro Abate, Daniele Ahmed, Mirco Giacobbe, and Andrea Peruffo

Abstract— We propose an automatic and formally sound
method for synthesising Lyapunov functions for the asymptotic
stability of autonomous non-linear systems. Traditional methods
are either analytical and require manual effort or are numer-
ical but lack of formal soundness. Symbolic computational
methods for Lyapunov functions, which are in between, give
formal guarantees but are typically semi-automatic because
they rely on the user to provide appropriate function templates.
We propose a method that finds Lyapunov functions fully
automatically—using machine learning—while also providing
formal guarantees—using satisfiability modulo theories (SMT).
We employ a counterexample-guided approach where a numeri-
cal learner and a symbolic verifier interact to construct provably
correct Lyapunov neural networks (LNNs). The learner trains
a neural network that satisfies the Lyapunov criteria for
asymptotic stability over a samples set; the verifier proves
via SMT solving that the criteria are satisfied over the whole
domain or augments the samples set with counterexamples. Our
method supports neural networks with polynomial activation
functions and multiple depth and width, which display wide
learning capabilities. We demonstrate our method over several
non-trivial benchmarks and compare it favourably against a
numerical optimisation-based approach, a symbolic template-
based approach, and a cognate LNN-based approach. Our
method synthesises Lyapunov functions faster and over wider
spatial domains than the alternatives, yet providing stronger or
equal guarantees.

I. INTRODUCTION

Stability analysis determines whether a dynamical system
never escapes a domain of interest around an equilibrium
point and, possibly, converges asymptotically towards the
point. Stability properties constitute a primary objective for
control engineering, yet designing controllers for systems that
are highly complex is error prone. Automatic stability analysis
computes certificates of stability whose aim is providing
correctness guarantees to the traditional workflow. We address
the stability analysis of systems with given controllers or,
more generally, autonomous systems described by non-linear
ordinary differential equations (ODEs). In particular, we
present a novel method for the automated and formal synthesis
of Lyapunov functions.

Lyapunov functions are formal certificates for the asymp-
totic stability of ODEs. We consider autonomous n-
dimensional systems of non-linear ODEs

ẋ = f(x), x ∈ Rn, (1)

having an equilibrium point at xe and a domain of interest
D ⊆ Rn containing xe. A Lyapunov function is a real-valued
function V : Rn → R such that V (xe) = 0 and, for all states
x ∈ D other than xe, it satisfies the two conditions

V̇ (x) = ∇V (x) · f(x) < 0, V (x) > 0. (2)

A Lyapunov function maps system states x into energy-like
values that, by the first condition, decrease over time along
the model’s trajectories and, by the second condition, are
bounded from below. If one such function exists, then the
system is asymptotically stable within D.

Finding a Lyapunov function is in general a hard problem
and has been the objective of numerous studies. In standard
literature Lyapunov functions are constructed via analyti-
cal methods, which are mathematically sound but require
substantial expertise and manual effort. Algorithmically, for
linear ODEs it is sufficient to use quadratic programming,
as Lyapunov functions are necessarily quadratic polynomi-
als. However, for non-linear ODEs no general method to
automatically construct Lyapunov functions exists [?].

Numerical methods for non-linear autonomous systems
include techniques that reduce the problem to solving a partial
differential equations (PDEs), partition and linearise the vector
field f and then reformulate the problem as a linear program
(LP), or restrict V to be a sum-of-squares (SOS) function and
relax the synthesis problem into a linear matrix inequalities
(LMI) program [11]. Despite their analytical exactness, PDE-
based methods rely on numerical integrators which are bound
to machine precision, LP-based methods linearise f with
finite accuracy, and LMI-based methods employ numerical
convex optimisation—unfortunately, all these methods are
numerically unsound. Conversely, we deal with constructing
a Lyapunov function as a problem of formal synthesis, which
is not only automatic, but also formally sound.

Formal methods for the synthesis of Lyapunov functions
guarantee the formal correctness of their result using satisfia-
bility modulo theories (SMT) or a computer algebra system
(CAS). Typically, formal methods assume V to be given
in some parameterised form, i.e., a template (a.k.a. sketch),
and either relax the entire problem into a computationally
tractable abstraction or incrementally construct and check
candidates in a counterexample-guided inductive synthesis
(CEGIS) fashion [22]. Relaxation-based methods typically
assume polynomial templates and reformulate the problem
as a semi-algebraic one [21], [20] or as a linear program
[14], [17], [18] and solve them using a CAS or SMT;
notably, Darboux-based semi-algebraic methods can also relax
problems with transcendental functions [5]. Alternatively,
incremental methods construct, from polynomial templates,
candidates for V using linear relaxations [15], genetic
algorithms [23], fitting simulations or, more directly, spatial
samples [7], [2]; then, they verify the candidates using a
CAS or SMT and, whenever necessary, refine the search
space by learning from generated counterexamples. Notably,
all methods rely on the user to provide a good template

expression. We overcome the limit of manually selecting a
template using, instead of fixed expressions, generic templates
based on neural networks.

Neural networks are widely used in a variety of applications,
such as in image classification and in natural language
processing. Neural networks are powerful regressors and thus
lend themselves to the approximation of Lyapunov functions
[8], [13]. The construction of Lyapunov neural networks
(LNNs) has been previously studied by approaches based
on simulations and numerical optimisation, all of which are
formally unsound [19], [12], [10], [16], [9].

We introduce a method that exploits efficient machine
learning algorithms, while guaranteeing formal soundness.
We follow a CEGIS procedure, where first a numerical learner
trains an LNN candidate to satisfy the Lyapunov conditions
(Eq. (2)) over a samples set and then a formal verifier confirms
or falsifies whether the conditions are satisfied over the whole
dense domain. If the verifier falsifies the candidate, one or
more counterexamples are added to the samples set and
the network is retrained. The procedure repeats in a loop
until the verifier confirms the LNN. Our learner trains neural
networks with multiple layers and polynomial activations
functions of any degree; on the technical side, learning
enjoys better performance when the last layer has quadratic
activation. Our verifier guarantees the formal correctness
of the results using a sound decision procedure for SMT
over theories for polynomial constraints [4], [6]. Besides,
the previous CEGIS methods for LNNs provide weaker
guarantees, namely Lagrange (practical) stability, which
excludes a neighbourhood around the equilibrium xe [3]—
conversely, our novel method guarantees full asymptotic
stability at xe.

We have built a prototype software and compared our
method against a numerical LMI-based method (SOSTOOLS)
[11], a formal template-based CEGIS method [2], and the
cognate CEGIS approach for LNNs [3]. We have evaluated
their performance over four systems of polynomial ODEs
that are challenging as do not admit polynomial Lyapunov
functions over the entire Rn. We have thus measured the
widest domain for which each of the methods succeeded
to find a Lyapunov function. Our method has attained
comparable or wider domains than the other approaches,
in shorter or comparable time. Notably, our method gives
the strongest guarantees within the alternatives (asymptotic
stability) and does not rely on user hints.

Altogether, we present a synthesis method for LNNs that
(i) accounts for the asymptotic stability of systems of non-
linear ODEs, (ii) is sound and automatic, and (iii) is faster
and covers wider domains than other state-of-the-art tools.

II. COUNTEREXAMPLE-GUIDED INDUCTIVE SYNTHESIS
OF LYAPUNOV NEURAL NETWORKS

We introduce a CEGIS procedure for the construction
of Lyapunov functions in the form of feed-forward neural
networks. We consider a network with a number n of input
neurons that corresponds with the dimension of the dynamical
system, followed by k hidden layers with respectively

σ1

σ1

w1

w2

w3

w4

w5

w6

Fig. 1: A feed-forward neural network with one hidden layer.

h1, . . . , hk neurons, and finally followed by one output
neuron. Nodes of adjacent layers are fully interconnected:
a matrix W1 ∈ Rh1×n encompasses the weights from input
to first hidden layer, a matrix Wi ∈ Rhi×hi−1 the weights
from any other (i− 1)-th to i-th hidden layer, and a matrix
Wk+1 ∈ R1×hk the weights from k-th layer to the last neuron.
Neurons have no additive bias. Every i-th hidden layer comes
with a non-linear activation function σi : R → R and the
output neuron is activation free. The valuation of output and
hidden layers are given by

zk+1 =Wk+1zk, zi = σi(Wizi−1), i = 1, . . . , k, (3)

where each σi is applied element-wise to its hi-dimensional
argument and z0 is the input layer. Upon assigning the
argument x ∈ Rn to the input layer, the neural network
evaluates Eq. (3) layer by layer, resulting in the function

V (x) = zk+1, z0 = x. (4)

Figure 1 depicts a neural network of this kind with k = 1,
n = h1 = 2, and the weights w1, . . . , w6. Unlike the standard
definition, we assume here to have no additive bias and require
σi(0) = 0 for i = 1, . . . , k, which results in the condition
V (0) = 0.

Our procedure takes as input an n-dimensional vector
field f : Rn → Rn with equilibrium point (w.l.o.g.) xe = 0,
a domain D ⊆ Rn, and the desired depth k and width
h1, . . . , hk for the hidden layers of the network. Upon
termination, the procedure returns a neural network V : Rn →
R that satisfies the Lyapunov conditions in Eq. (2), which is
an LNN for the asymptotic stability of f within region D.

Figure 2 outlines the architecture which consists of a learner
and a formal verifier interacting in a CEGIS loop. The learner
trains a candidate neural network V to satisfy the conditions
in Eq. (2) over a discrete set of samples S ⊂ D, which is
initialised randomly. The outcome from the learner satisfies
V (0) = 0, V̇ (s) < 0, and V (s) > 0 over all samples s ∈ S,
but not necessarily over the entire dense domain D. Thus the
formal verifier checks whether the resulting V violates the

Learner Verifier
V

cex CS ← S ∪ C

h1, . . . , hk

f,D

V
valid

Fig. 2: CEGIS architecture for the synthesis of LNNs.

Initial guess. After the first counterexample. After the second counterexample.
(a) (b) (c)

Fig. 3: The evolution of V̇ (x, y) with the corresponding level sets through three CEGIS iterations for certifying the asymptotic
stability of the system in Eq. 5 within a circle of radius γ = 100, using the neural network in Fig. 1. The synthesis loop finds
two counterexamples, shown as crosses, and succeeds after three iterations.

same conditions within the whole D and, if so, produces a set
of samples C ⊂ D containing one or more counterexamples
c that violate either V̇ (c) < 0 or V (c) > 0. We add C to the
samples set S, hence forcing the learner to newly produce a
different candidate function, which will later be passed again
to the verifier. The loop repeats indefinitely, until the verifier
proves that no counterexamples exist: this outcome proves
that V is an LNN over the entire D. We cannot however
guarantee termination of this procedure in general, rather we
are interested in its performance in practice.

Example: We demonstrate the workflow of our procedure
with the planar dynamical system described by{

ẋ = −x+ xy
ẏ = −y. (5)

The system is asymptotically stable at the origin [1]. We
aim at proving its stability within the circle of radius 100
centred at the origin, that is D = {x : ||x||2 ≤ γ} for
γ = 100. First, we select the neural network in Fig. 1, for
which k = 1 and hk = 2, and use the quadratic activation
function σ1(x) = x2. Second, we also impose w5 = w6 = 1,
which makes the training of V faster (see Sec. III). Finally,
our CEGIS procedure trains a provably correct LNN after
three learner/verifier iterations; Figure 3 shows the evolution
of V̇ after each iteration. At the beginning, the procedure
samples a set S of random points from D and then invokes
the learner. The learner keeps the samples in state space
fixed, while it searches over the parameter space w1, . . . , w4

using numerical gradient descent. In particular, it computes
a network candidate that satisfies the Lyapunov conditions

for all random initial points: the result is shown in Fig. 3a.
Next, the verifier fixes the current instance of parameters
w1, . . . , w4 as constants, and the SMT solver accepts a first-
order logic formula whose variables are the state-space points
x ∈ D that violate the Lyapunov conditions. The solution
returned by the SMT solver is the counterexample c that is
depicted in Fig. 3a as a cross, for which V̇ (c) ≥ 0. At the
second iteration, the counterexample is added to S and the
network retrained over the extended batch, obtaining the V̇
of Fig. 3b. Now the network satisfies the conditions over all
initial samples plus the newly added point, yet it violates it
over a different counterexample, which is depicted in Fig. 3b.
The verifier identifies this counterexample and adds it to
S. At the third and last iteration, the learner retrains the
neural network, which yields Fig. 3c. The verifier re-checks
it, but this time it fails at producing any counterexamples,
thus proving their absence. Consequently, the neural network
satisfies the Lyapunov conditions over the entire continuous
domain D, and the CEGIS loop terminates successfully. �

The formal synthesis of LNNs consists of finding an
instance of weights for which the neural network satisfies the
Lyapunov conditions of Eq. (2). Our CEGIS loop tackles
this general problem by solving two separate problems
interactively: the first is learning and the second is verifying.
We capitalise on the power of neural networks for learning
from data (see Sec. III), and on the power of SMT solving
for verifying or for producing counterexamples accordingly
(see Sec. IV).

III. TRAINING OF LYAPUNOV NEURAL NETWORKS

The first active CEGIS component is the learner, which
uses gradient descent to train LNN candidates. The learner
instantiates a candidate using the hyper-parameters k and
h1, . . . , hk (depth and width of the network), trains it over
the discrete set of samples S, and refines its training whenever
the verifier adds counterexamples.

The training procedure performs the minimisation of a loss
function that depends on V and V̇ , both evaluated on the
data points in S. The Lyapunov requirements split the sample
set S into two partitions S− and S+, such that all points
s ∈ S− satisfy both conditions V̇ (s) < 0 and V (s) > 0,
whereas all data points s ∈ S+ violate either of them. The
loss function should penalise all data points in the S+partition,
while rewarding the S− partition. To this end, we employ
the Leaky ReLU function, which is defined as

LR(p, a) =

{
p if p ≥ 0

ap otherwise,
(6)

where a is a (small) positive constant and p is the variable
of interest. We thus minimise the sum of LR over the values
p1 = V̇ (s) and p2 = −V (s), as in (7). Additionally, to
enhance the numerical stability of the training, we apply a
small offset ε to p1 and p2, therefore rewarding data points
s where V̇ (s) ≤ −ε and V (s) ≥ ε, and penalising them
otherwise. Altogether, our loss function is

L(s) = LR(V̇ (s) + ε, a)︸ ︷︷ ︸
L1

+LR(−V (s) + ε, a)︸ ︷︷ ︸
L2

, (7)

where L1 accounts for training V̇ (x) < 0, L2 accounts for
training V (x) > 0, and where a and ε are hyper-parameters
defined above. In contrast to a standard ReLU formulation, a
Leaky ReLU rewards S− by a, which induces training below
zero, improves learning, and yields a numerically robust LNN
candidate.

We evaluate the expression of V̇ (x) = ∇V (x) · f(x)
directly from the matrices Wi, thus avoiding a symbolic
differentiation of V (x). Let us recall the value of the i-th
layer, zi = σi(Wizi−1), so that z0 = x, whereas the output
layer is activation free, hence zk+1 =Wk+1zk. To compute
the gradient of V (x) over x we use the chain rule

∇V (x) =
∂V

∂x
=

k+1∏
i=1

∂zi
∂zi−1

. (8)

After a few algebraic steps, the factors result in

∂zi
∂zi−1

=
∂σi(Wizi−1)

∂zi−1
= diag[σ′i(Wizi−1)] ·Wi, (9)

for i = 1, . . . , k, whereas for the last layer ∂zk+1/∂zk =
Wk+1; σ′i is the full derivative of function σi and diag[v]
represents a diagonal matrix whose entries are the elements
of vector v. Finally, the gradient results in

∇V (x) =Wk+1 ·
k∏

i=1

diag[σ′i(Wizi−1)] ·Wi. (10)

We compute the values of zi recursively from z0 = x using
Eq. (3). For every point s in S, we thus evaluate ∇V (s) using
simple matrix-vector operations, and, along with the value
of f(s), finally obtain V̇ (s) = ∇V (s) · f(s).

Training benefits from candidate networks that satisfy or
likely satisfy one of the Lyapunov conditions V̇ (x) < 0 or
V (x) > 0 a priori. An example are neural networks for which
the last hidden layer has quadratic activation and positive
output, i.e., σk(x) = x2 and Wk+1 > 0. For a generic
selection of weights, these networks are likely to satisfy
V (s) > 0 over the samples s ∈ S. As a result, the component
L2 becomes negligible with respect to L1 during most of
the training. Imposing these simple conditions to the network
improves the overall training performance considerably.

IV. VERIFICATION OF LNNS USING SMT SOLVING

Satisfiability modulo theories (SMT) comprises diverse
methods for deciding the satisfiability of first-order logic
formulae. SMT solvers combine combinatorial and symbolic
algorithms which, unlike common numerical solvers and
optimisers, provide formal guarantees about their results that
are equivalent to those of analytical proofs. We employ SMT
solving for deciding whether a neural network is a Lyapunov
function, or for finding counterexamples otherwise, which is
the core of our verifier architecture.

Deciding whether a neural network V is a Lyapunov
function for a system with equilibrium (w.l.o.g.) xe = 0
and within the domain D amounts to deciding the formula

∀x : (x ∈ D ∧ x 6= 0)⇒ (V̇ (x) < 0 ∧ V (x) > 0). (11)

The formula verifies the Lyapunov conditions (see Sec. I);
note that we omit the condition V (0) = 0 because we
guarantee it in advance by selecting biases (see Sec. II). If
the formula is true, then V is a valid Lyapunov function.
However, solving large and quantified formulae can be hard
in general. For this reason, we rephrase the problem into
smaller and existential satisfiability queries that can be SMT
solved efficiently in practice. To this end, we consider the
dual falsification problem, which is a standard approach in
formal verification.

The falsification problem is the logical negation of the
verification problem in (11) and corresponds to the formula

∃x :

ϕ1︷ ︸︸ ︷
(x ∈ D ∧ x 6= 0 ∧ V̇ (x) ≥ 0)∨

(x ∈ D ∧ x 6= 0 ∧ V (x) ≤ 0)︸ ︷︷ ︸
ϕ2

, (12)

which determines whether a counterexample exists. If the
falsification formula is true then V is invalid. Equivalently,
it is true if either ϕ1 or ϕ2 are satisfiable, independently of
one another. Thanks to this, our verifier checks each of the
two sub-formulae with an independent satisfiability query to
an SMT solver. If the query for ϕ1 produces a satisfying
assignment c1 or that for ϕ2 produces a satisfying assignment
c2, then either of c1 and c2 constitutes a counterexample. The
verifier adds either or both counterexamples to the samples set

γ
h 2 5 10 50 100 200 [5, 2] [5, 5] [10, 5] [50, 10] [100, 50]

10 0.06 0.14 0.23 1.63 1.87 11.41 0.56 1.62 2.28 3.68 9.74
20 0.14 0.67 0.21 2.99 11.85 63.03 8.86 1.34 5.64 14.32 59.28
50 0.11 2.27 1.96 7.02 21.65 110.25 121.30 21.78 3.26 82.44 158.09
100 3.68 1.90 3.03 11.46 51.63 119.40 oot oot 222.12 oot oot
200 48.17 23.10 53.17 30.89 165.99 301.71 oot oot oot oot oot
500 oot 70.65 72.09 12.01 33.91 371.65 oot oot oot oot oot

TABLE I: Performance results in terms of computational time [sec] varying the number of hidden neurons h and the radius
γ of the domain D. The fastest outcomes for one- and two hidden-layer LNN are highlighted; oot indicates timeout.

S and the CEGIS loop continues. Conversely, if both queries
determine that the respective formulae are unsatisfiable, then
this means that V is a valid Lyapunov function, and the
overall loop terminates successfully.

The communication between verifier and learner is crucial
for converging quickly. Adding one or two counterexamples
at a time might make the learner overfit each of them, which
often induces long sequences of counterexamples that are
close to one another. For this reason, after producing every
counterexample c, we augment the samples set with a number
of random additional points from a neighbourhood of c. While
these additional points do not necessarily satisfy (12), this
expedient enhances the information sent to the learner, helps
it to generalise a Lyapunov function more quickly, and does
not hinder its overall soundness.

The expressions for D, V , and V̇ determine the predicates
that appear in the formulae ϕ1 and ϕ2, and hence the theory
for the SMT solver that the verifier has to adopt. Note that,
ultimately, the class of V and V̇ functions are determined
by the activation functions σ and by the vector field f .
We experiment with polynomial D and σ, and with several
polynomial systems of ODEs (see Sec. V) which, in their
turn, induce polynomial V and V̇ . For this reason, we employ
SMT solving over non-linear real arithmetic (NRA) which,
for polynomials, is sound and complete [6]. Consequently,
our verifier is correct both when it determines that V is valid
and when it provides counterexamples. Notably, the cognate
δ-complete method satisfies the earlier condition (soundness),
but may in general produce spurious counterexamples [3].

V. CASE STUDIES AND EXPERIMENTAL RESULTS

We provide a portfolio of benchmarks and evaluate our
method experimentally. In our experiments we use quadratic
activations, i.e., σ(p) = p2, but our framework supports any
polynomial. Since CEGIS may not terminate in general, we
set a timeout of 100 iterations and limit the verification time
to 30 seconds. We use ε = 0.01 for the loss function (see
Sec. III) and set a to be proportional to the domain and
the system dynamics. Specifically, we consider the largest
magnitude point sM in S and compute its value f(sM); we
then approximate a = f(sM)−1 to the closest power of 10.
As for the verifier, we sample 20 additional random points
for every counterexample (see Sec. IV). We use PyTorch to
implement and train LNNs, and Z3 [4] to verify them.

We test the performance of our method varying the depth
and width of the LNN and the input domain D. We consider

the system in Eq. (5) and six spherical domains, with radius
γ ranging from 10 to 500. The LNN is either composed
by a single hidden layer with the number of neurons h1
in {2, 5, 10, 50, 100, 200}, or by two layers with neurons
(h1, h2) within {(5, 2), (5, 5), (10, 5), (50, 10), (100, 50)}.
The outcomes of the computational times are reported in Table
I. Intuitively, enlarging the domain makes the search of a
valid Lyapunov function harder, as the verifier understandably
suffers from larger domains. Our results show that a single-
layer fits best the synthesis of Lyapunov functions for the
system in Eq. (5): a quadratic activation function is sufficiently
expressive, and surely has the least computational overhead.
Furthermore, we highlight a dependence between the size
of the LNN and the domain diameter: a small number of
neurons might not provide the necessary flexibility to the
NN to compute a Lyapunov function over a large domain.
For this reason, utilising a multi-layer network is promising,
although it must be still optimised towards generalisation in
learning and towards scalability in verification.

We compare our approach against Neural Lyapunov Control
(NLC) [3], which is similar to our method, against a
constraint-based synthesis (CBS) method [2], and against
SOSTOOLS [11]. We challenge our procedure by considering
systems that do not admit a global polynomial Lyapunov
function and , as in [5], we focus on the positive orthant of
the state space. Data points close to xe represent a numerical
and analytical challenge to the NLC algorithm. Thus, as per
[3], we remove a sphere around the origin from the domain,
hence considering D(ρ, γ) = {xi ≥ 0, ∀i, ρ ≤ ||x||2 ≤ γ},
where ρ and γ represent the radii of inner and outer spheres,
respectively. A Lyapunov function valid on such a domain
proves practical (or Lagrange) stability, which is weaker than
Lyapunov asymptotic stability obtained in our work. We
report results in terms of computational time and maximum
γ in Table II. We consider the system in Eq. (5), together
with the following models [5]:

{
ẋ = −x+ 2x2y

ẏ = −y,
(13)

ẋ = −x
ẏ = −2y + 0.1xy2 + z

ż = −z − 1.5y,

(14)

ẋ = −3x− 0.1xy3

ẏ = −y + z

ż = −z.
(15)

Both NLC and CBS successfully synthesise Lyapunov
functions for domains of radius γ = 1 but time out with
larger γ. Our method shows faster results and synthesises
over wider domains: we successfully synthesise Lyapunov
function with domains of radius γ ≥ 100 for all models.
In three out of four benchmarks we are faster than NLC,
whilst coping with wider domains. SOSTOOLS synthesises
Lyapunov functions numerically but does not provide a sound
verification check; for this reason, we pass its result to Z3
for computing its validity domain. Whilst SOSTOOLS is fast,
it generally returns Lyapunov functions with ill-conditioned
coefficients that affect the verification step, which times out
in two of the case studies.

Neural networks can be regarded as templates: every
hidden neuron represents a single quadratic instance, whereas
more layers generalise the LNN to higher-order polynomials.
However, we have demonstrated that LNNs have superior
performance with respect to classic template-based methods
(i.e., CBS). Besides, the choice of polynomial σ maintains
the intuition of Lyapunov functions as energy-like functions
for ODEs, whilst remaining within the range of functions
that are verifiable algorithmically.

VI. CONCLUSIONS

We have proposed a neural approach to automatically
synthesise provably correct Lyapunov functions for poly-
nomial systems. We have employed a CEGIS architecture,
where a learner trains Lyapunov Neural Networks using
machine learning and the verifier validates them or finds
counterexamples using SMT solving. We have compared our
method against alternative approaches on 4 case studies. Our
method has computed Lyapunov functions faster than NLC,
over wider domains than NLC and CBS, and giving stronger
guarantees than NLC and SOSTOOLS. Our method offers
ease of implementation, because learner and verifier use black-
box machine learning and verification techniques and are
independent of one another. However, CEGIS can in general
suffer from unreasonably (or infinitely) many iterations.

We have tackled the stability analysis of autonomous
systems. Automated control synthesis requires considering
additional inputs variables, and the performance of the verifier
is sensitive to the system dimensionality: as such, scalable
verification of neural networks is subject of active research
and matter for future work.

REFERENCES

[1] A. A. Ahmadi, M. Krstic, and P. A. Parrilo, “A globally asymptotically
stable polynomial vector field with no polynomial lyapunov function,”
in CDC-ECE. IEEE, 2011, pp. 7579–7580.

[2] D. Ahmed, A. Peruffo, and A. Abate, “Automated and sound synthesis
of lyapunov functions with SMT solvers,” in TACAS (1), ser. LNCS,
vol. 12078. Springer, 2020, pp. 97–114.

[3] Y. Chang, N. Roohi, and S. Gao, “Neural lyapunov control,” in NeurIPS,
2019, pp. 3240–3249.

[4] L. de Moura and N. Bjørner, “Z3: An efficient SMT solver,” in TACAS,
ser. LNCS, vol. 4963. Springer, 2008, pp. 337–340.

[5] E. Goubault, J. Jourdan, S. Putot, and S. Sankaranarayanan, “Finding
non-polynomial positive invariants and lyapunov functions for polyno-
mial systems through darboux polynomials,” in ACC. IEEE, 2014,
pp. 3571–3578.

[6] D. Jovanovic and L. de Moura, “Solving non-linear arithmetic,” in
IJCAR, ser. LNCS, vol. 7364. Springer, 2012, pp. 339–354.

[7] J. Kapinski, J. V. Deshmukh, S. Sankaranarayanan, and N. Aréchiga,
“Simulation-guided lyapunov analysis for hybrid dynamical systems,”
in HSCC. ACM, 2014, pp. 133–142.

[8] Y. Long and M. Bayoumi, “Feedback stabilization: Control lyapunov
functions modelled by neural networks,” in CDC. IEEE, 1993, pp.
2812–2814.

[9] M. Mittal, M. Gallieri, A. Quaglino, S. S. M. Salehian, and J. Koutnı́k,
“Neural lyapunov model predictive control,” CoRR, vol. abs/2002.10451,
2020.

[10] N. Noroozi, P. Karimaghaee, F. Safaei, and H. Javadi, “Generation
of lyapunov functions by neural networks,” in World Congress on
Engineering, 2008.

[11] A. Papachristodoulou, J. Anderson, G. Valmorbida, S. Prajna, P. Seiler,
and P. Parrilo, “Sostools version 3.03. sum of squares optimization
toolbox for matlab,” 2018.

[12] V. Petridis and S. Petridis, “Construction of neural network based
lyapunov functions,” in IJCNN. IEEE, 2006, pp. 5059–5065.

[13] D. V. Prokhorov, “A lyapunov machine for stability analysis of nonlinear
systems,” in ICNN, vol. 2. IEEE, 1994, pp. 1028–1031.

[14] S. Ratschan and Z. She, “Providing a basin of attraction to a
target region of polynomial systems by computation of lyapunov-like
functions,” SIAM J. Control and Optimization, 2010.

[15] H. Ravanbakhsh and S. Sankaranarayanan, “Counter-example guided
synthesis of control lyapunov functions for switched systems,” in CDC.
IEEE, 2015, pp. 4232–4239.

[16] S. M. Richards, F. Berkenkamp, and A. Krause, “The lyapunov neural
network: Adaptive stability certification for safe learning of dynamical
systems,” in CoRL, ser. Proceedings of Machine Learning Research,
vol. 87. PMLR, 2018, pp. 466–476.

[17] S. Sankaranarayanan, X. Chen, and E. Abraham, “Lyapunov function
synthesis using handelman representations,” IFAC Proceedings Volumes,
vol. 46, no. 23, pp. 576–581, 2013.

[18] M. A. B. Sassi, S. Sankaranarayanan, X. Chen, and E. Ábrahám,
“Linear relaxations of polynomial positivity for polynomial lyapunov
function synthesis,” IMA J. Math. Control & Information, vol. 33,
no. 3, pp. 723–756, 2016.

[19] G. Serpen, “Empirical approximation for lyapunov functions with
artificial neural nets,” in Proceedings. International Joint Conference
on Neural Networks, 2005., vol. 2. IEEE, 2005, pp. 735–740.

[20] Z. She, H. Li, B. Xue, Z. Zheng, and B. Xia, “Discovering polynomial
lyapunov functions for continuous dynamical systems,” Journal of
Symbolic Computation, vol. 58, pp. 41–63, 2013.

[21] Z. She, B. Xia, R. Xiao, and Z. Zheng, “A semi-algebraic approach
for asymptotic stability analysis,” Nonlinear Analysis: Hybrid Systems,
vol. 3, no. 4, pp. 588–596, 2009.

[22] A. Solar-Lezama, L. Tancau, R. Bodik, S. Seshia, and V. Saraswat,
“Combinatorial sketching for finite programs,” ACM Sigplan Notices,
vol. 41, no. 11, pp. 404–415, 2006.

[23] C. F. Verdier and M. M. Jr., “Formal synthesis of analytic controllers
for sampled-data systems via genetic programming,” in CDC. IEEE,
2018, pp. 4896–4901.

Test LNN Total LNN Ver. LNN NLC Total NLC Ver. NLC CBS CBS Ver. CBS SOS SOS
Eq. # Time [sec] Time [sec] γ Time [sec] Time [sec] Domain Time [sec] Time [sec] γ Time [sec] γ

(5) 12.01 1.28 500 6.28 0.29 D(0.1, 1) 0.22 0.08 1 6.67 800
(13) 0.29 0.08 100 5.45 0.22 D(0.1, 1) 0.30 0.09 1 7.76 25
(14) 0.32 0.29 1000 54.12 23.70 D(0.1, 1) 2.22 0.58 1 11.80 oot
(15) 33.27 33.11 1000 37.80 13.45 D(0.1, 1) 0.42 0.09 1 9.65 oot

TABLE II: Comparison between proposed approach (LNN), CBS and NLC approaches, and SOSTOOLS: total computation
time, verification time, and domain width. Timeouts are indicated with oot.

