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Abstract

We introduce a methodological framework based on the concepts of
safety and optimality to interpret organismal strategies that are intrinsically
related to survival behaviors. We focus on the production of the antibiotic
subtilin by the bacterium Bacillus subtilis, which is one among a set of pos-
sible responses to environmental stress that are elicited by the bacterium,
and we investigate the activation strategies over the genes involved in the
process. We argue that these activation strategies can be synthesized as the
outcome of an optimal control problem that yields a survival probability.
This optimization procedure is generated from a probabilistic safety prob-
lem, which is formally related to the survival probability. We claim that a
proper choice of the value function for the optimization problem that en-
codes the survival analysis can be related to the activation mechanisms for
subtilin production.
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1. Introduction

Bacillus subtilis has been the object of much experimental work. The
investigation of its stress response network offers a detailed explanation of
how the bacterium reacts to adverse environmental conditions [19]. One
of the many options available to B. subtilis cells is the production of the
antibiotic subtilin. The subtilin production pathway has been studied both
in its genetics as well as at its signaling level. As a result, the biological
mechanisms underlying the generation of the antibiotic subtilin are fairly
well understood. The activation/deactivation of the genes involved in the
process and the abrupt increase/decrease in the level of the corresponding
proteins, which initiate the production of the antibiotic, are often interpreted
and modeled by the presence of switching behaviors [18, 24, 25]. These
switching mechanisms are associated to stress factors [2, 19], and have been
explained through structural [4, 14, 22, 27] and survival arguments [13].

The concept of optimum is common and shared between engineering
and biological systems [3]. The biology literature offers numerous examples
where optimality appears to regulate a certain function, or to explain the
properties of a particular entity. [21] represents possibly the first attempt
to systematically frame the concept of optimality in biology. An optimality
interpretation in the context of metabolic networks is used in [23], whereas
[29] looks at dynamical game theory as a means of optimality in the context
of evolution, both at the population level and at the cell level. In [17]
optimality is related to the notion of stability of a strategy. On the other
hand, many notable instances from the same biological domain also caution
about the abuse of this notion [10].

Motivated by a recently developed dynamical model [12] for the genetic
network that describes the biosynthesis of the antibiotic subtilin by the bac-
terium B. subtilis, the goal of this work is to revisit the concept of optimality
and to investigate its use in the study of survival for the bacterium. We put
forward a new approach to study and understand the control mechanisms
for the production of subtilin, and interpret these mechanisms in terms of
an optimization problem.

We first propose a few improvements and modifications to the model in
[12], to bring it in line with newer evidence reported in the literature [24,
25, 28]. The overall dynamical model describing the antibiotic production
is framed in the context of a Stochastic Hybrid System (SHS) [1]. Our aim
is not to shed new light into the actual dynamics of the antibiotic pathway,
but rather, given a model, to propose a new approach to study the control
mechanisms for the production of subtilin in terms of certain optimality
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criteria. The methodology to attain the objective is developed in three

Figure 1: Schematic representation of the methodology. The biology is introduced in Sec-
tion 1; the mathematical models in Sections 2,3.1; safety analysis and its related optimal
control problem in Sections 3.2, 3.3; and the results are discussed in Sections 4 and 5.

steps (Figure 1):

1. We interpret survival analysis as a probabilistic safety analysis problem

2. We deploy optimal control theory tools to solve the safety problem

3. We elucidate its outcomes in relationship to survival analysis

The formal techniques developed in Section 3.2 and based on the SHS model
in [1] allow to reinterpret and study the survival analysis, through its con-
nection with probabilistic safety, as a stochastic optimal control problem.
In the model the available controls are feedback functions of the state-space
and encode the subtilin production strategies: under a proper choice of
the survival function, the solution of this optimal control problem obtains
what we associate with the location and the structure of the switching (ac-
tivation/deactivation) behaviors that characterize the subtilin production
mechanism. We furthermore draw some comparisons on the outcomes of
the above procedure using different survival functions.

This methodological approach, summarized in Figure 1, allows a quanti-
tative study of survival analysis for B. subtilis and proposes a procedure to
understand its survival strategies. More generally, the study suggests that
certain functions in a biological network may be synthesized as solutions
of optimization problems, which are based on quantitative models of the
dynamics and encode the specific behaviors that the functions elicit.
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The article is structured as follows: Section 2 describes the dynamical
model for the production biosynthesis of subtilin by Bacillus subtilis. Section
3 develops the details of the proposed approach: Section 3.1 reinterprets the
model as a Stochastic Hybrid System, Section 3.2 develops a probabilistic
safety verification procedure for the introduced model, and Section 3.3 inter-
prets the concept of survival as a safety specification, relating survival to the
verification procedure of Section 3.2. Section 4 presents and discusses some
numerical results that associate the outcomes of the optimization problem
with certain survival strategies. Section 5 outlines a number of directions
for future studies.

2. A Model for Antibiotic Biosynthesis

Many biological systems with interacting continuous and discrete com-
ponents are naturally captured by Hybrid Systems models [7, 9]. The use
of such models has indeed been recently advocated in the Systems Biology
literature [5, 7, 9, 11, 16, 20]. Along these lines, we introduce in this Section
a model for the system under study and interpret it as a SHS in Section
3.1, to further develop some analysis on it in Section 3.2. For a thorough
presentation of the SHS framework, the reader is referred to [6].

The model for the antibiotic synthesis is a refinement of that appeared in
[12], according to additional evidence on B. subtilis [24, 25, 28]. The subtilin
biosynthesis network is expressed with two classes of variables (see Figure
2): global/macroscopic variables (population density D and nutrient level
X) and local/microscopic ones (the concentration of the sigma factor SigH,
denoted with [SigH], and that of the protein SpaS, denoted with [SpaS]).
The macro- and microscopic variables interact through the average value of
SpaS within the population (denoted as [SpaS]) and through an activation
function (identified with u) to be defined shortly (Figure 2). For the sake of
simplicity the scheme disregards some of the components in the otherwise
complex subtilin biosynthesis pathway, as well as some ancillary behavior
that is only tangentially of interest at this level. For instance, we disregard
the presence of a few peptides that play a role in the immunity response
[15, 26, 27], and use the presence of the peptide SpaS to represent the actual
antibiotic subtilin. In addition, unlike [12], we do not include the influence
of SpaRK, an additional protein in the biosynthesis pathway.

At the microscopic level, we start with the dynamics of SigH, which is
thought to be the initiator of the subtilin production pathway. The literature
on antibiotic synthesis as a stress response for B. subtilis suggests that the
activation/deactivation of subtilin production follows a “switching” profile
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Figure 2: The decentralized structure of the model under study. The top layer (dashed red
box above) refers to the population dynamics (nutrient level and population size), which
are deterministic. The bottom layer (dashed red box below) refers to the dynamics of a
single cell, which are stochastic and hybrid. Pointed arrows (→) denote direct positive
influence, whereas tagged arrows (a) denote negative effect. Blue connectors indicate a
global influence on the control structure (represented as a light blue box), while green
ones the local effect on the control. The control influences (positively or negatively–hence
the use of a specific arrow) the concentration of the sigma factor SigH.

[12, 24, 25, 28]. Motivated by this observation, we consider general switching
rules of the form:

d[SigH]

dt
= −λ1[SigH] + k3u, (1)

where the control u takes binary values as

u = f(D,X, [SigH], [SpaS]) : D → {0, 1}, (2)

with D = [0, DM ]× [0, XM ]× R2
+ ⊂ R4, and where the quantities DM , XM

represent saturation levels and will be formally introduced shortly. Notice
that we have implicitly assumed a causal and memory-less structure for the
controls: to the best of our knowledge, anticipativity (non-causal behavior)
has not been observed as of yet in biological systems at that scale, and
memory-dependent policies would require an understanding of some sort of
memory structure, which the literature presently does not support.

The sigma factor SigH influences the dynamics of the peptide SpaS: the
higher the concentration level of SigH, the more likely it is that SpaS is pro-
duced. This influence is established through a discrete switching mechanism
[12], namely a two-state Markov chain S1, and influences the continuous dy-
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namics of SpaS as follows:

d[SpaS]

dt
=

{
−λ3[SpaS] if S1 is OFF
−λ3[SpaS] + k5 if S1 is ON.

(3)

S1 = {OFF,ON} is assumed to be a Markov chain evolving at constant time
interval ∆ > 0, and endowed with the following transition probability ma-

trix: P1 =

[
1− b0 b0
1− b0 b0

]
. The coefficient b0 depends directly on [SigH] as

b0([SigH]) = e−∆Grk/RT [SigH]

1+e−∆Grk/RT [SigH]
. The quantity ∆Grk represents the Gibbs

free energy of the molecular configuration, R is a gas constant and T the envi-
ronment temperature in Kelvin. This choice of P1 as a transition probability
matrix makes S1 a reversible Markov chain with a stationary distribution
[πOFF , πON ]T = [1 − b0, b0]T . Intuitively, SigH promotes the production of
SpaS by increasing the probability of S1 to be in the ON state, where the
concentration of SpaS grows.

At the macroscopic level of the model, the dynamics of both the pop-
ulation size and the nutrient level are influenced by the average amount of
subtilin currently present in the environment. The variation in the popula-
tion size is modeled by a logistic equation:

dD

dt
= rD

(
1− D

D∞

)
, r > 0. (4)

The non-trivial equilibrium depends on the quantity D∞ (the carrying ca-
pacity), taken to be equal to D∞ = X

XM
DM , where DM and XM represent

the maximal values for the population and the nutrient levels in the envi-
ronment. The nutrient level dynamics are:

dX

dt
= −k1DX + k2[SpaS]. (5)

The nutrient level decreases at a rate proportional to its present level and
to the population density. It furthermore increases at a rate proportional
to the average production of subtilin, which is due to the indirect negative
influence of the antibiotic on the population level. The average concentration
of antibiotic is modeled by:

[SpaS] =
D

DM

(
1− X

XM

)
k5
λ3
b0h(X), (6)

where b0 has been defined above and h(X) is equal to 1 if X > 0, and to 0 if
X = 0. The relation in (6) stresses two separate influences: a dependence on
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the “competition” in the environment, modeled by the term D
DM

(
1− X

XM

)
;

and one on the steady state dynamics for [SpaS] (fraction k5/λ3), which in
turn depends on the state of SigH (πON = b0(k3u/λ1), from (1),(3)). In this
work the quantity [SpaS] has a structure which is more complex than the
proportional relation used in [12].

Notice that the macroscopic level of the model, which encompasses the
population and nutrient levels, is deterministic and based on average dynam-
ics. The microscopic one, involving the protein and sigma factor concentra-
tion levels, describes cellular processes and is made up of stochastic and
switching dynamics (concentrated on the switching structure of the Markov
chain S1).

From the dynamical relations in (4),(5) and (6), the steady state [Deq, Xeq]
T

of the population and nutrient level is going to be either

[Deq, Xeq]
T = [0, β]T , β ∈ [0, XM ], or

[Deq, Xeq]
T = [αDM , αXM ]T , where 0 < α ≤ k2k3k5

k2k3k5 + k1λ1λ3DMXM
≤ 1.

It is easy to see that the first equilibrium is unstable, whereas the second is
locally stable for any combination of the model parameters. It can be shown
that the dynamics belong to the positive quadrant and are upper bounded
by the extrema DM , XM .

3. Survival Analysis

We recast the above dynamics as a control-dependent SHS model in
Section 3.1. The SHS model will enable the application of a control synthesis
procedure, described in Section 3.2. We then originally relate such control
synthesis to the problem of interest (survival analysis) in Section 3.3.

3.1. Stochastic Hybrid System Model

In order to relate the model in Section 2 to the SHS framework [1], from
now on we shall work in discrete time, assuming that the dynamics have
been properly approximated, for instance with a first-order forward-Euler
time-discretization method with fixed sampling time ∆ > 0.

The state space S of the SHS is made up of a discrete component q ∈
{OFF,ON} (the state of S1), and a continuous one x ∈ D ⊂ R4, as in (2).
We use the product S = {OFF,ON} × D to denote the hybrid state space.
The dynamics of the continuous variables are characterized by the relations
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in (1),(3),(4), and (5). In particular, SigH depends on a binary function
that expresses, according to (2), a general feedback contribution from the
hybrid state space S.

The solution of the above SHS model over a time horizon [0, N ] is a
stochastic process with two components s(k) = (q(k),x(k)), k ∈ [0, N ]1 [1,
Def. 3]. Given an initial condition at time k = 0, the solution evolves
in either of the two discrete modes until a mode switch is verified (which
reduces to sampling, along the evolution of the trajectory, from the non-
homogeneous probability distribution of the Markov chain S1). Once a
transition is triggered, the discrete state changes mode and the continuous
evolution proceeds from unaltered initial conditions within the new mode.
By construction, given the structure of the binary control and its sole de-
pendence on the present state at each time step, once a control function is
selected the solution process is Markovian (that is, memory-less).

The discrete and finite control space is denoted with U = {0, 1}. As
in [1, Section 4.2], we call a strategy, or a policy, a control profile over a
certain finite time horizon [0, N ], that is a sequence of N mappings µ =
(u0, u1, . . . , uN−1) ∈ UN , uk : D → U , as in (2).

Finally, to be able to formally state the technical result in Theorem 1 on
page 9, let us introduce a stochastic kernel Ts : B(S)× S × U → [0, 1] on S
given S × U , which assigns to any point s = (q, x) ∈ S and control u ∈ U , a
probability measure on the Borel space B(S), according to the dynamics of
the SHS. The kernel Ts defines the dynamical behavior of the SHS, and this
mapping is probabilistic because of the presence of the Markov chain S1.

3.2. Safety Verification for Stochastic Hybrid Systems

The safety verification analysis in this Section relates the SHS model of
Section 3.1 with the issue of survival analysis discussed in Section 3.3.

In general terms, in a stochastic setting a safety verification problem
consists in evaluating the probability that the state of the system remains
inside a certain set deemed to be safe during a given time horizon, starting
from some initial conditions within that set. More formally, for a given
initial state s0 ∈ S, a Markov policy µ ∈ UN , and a (safe) set A ⊆ S, it is of
interest to compute the probability that the execution associated with the
policy µ and with initialization in s0 stays within A during the time [0, N ]:

pµs0(A) := P(s(k) ∈ A, for all k ∈ [0, N ]|s(0) = s0). (7)

1Bold symbols are used to denote processes, whereas normal typeset to denote points
or sample values in the (hybrid) state space.
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The set Sµ(ε) of initial conditions guaranteeing a safety level ε ∈ [0, 1],
when the control policy µ ∈ UN is assigned, Sµ(ε) = {s ∈ S : pµs (A) ≥ ε}, is
referred to as the probabilistic safe set with safety level ε. Notice that the set
Sµ(ε) depends on a particular policy µ ∈ UN . It is then of interest to pick an
“optimal” policy leading to the set S?(ε) = {s ∈ S : maxµ∈UN pµs (A) ≥ ε},
called the maximal probabilistic safe set. A policy µ? ∈ UN is maximally
safe if pµ

?

s (A) = maxµ∈UN pµs (A), ∀s ∈ A. The maximal probabilistic safe
set and the maximally safe policy can be computed using tools from optimal
control (see [1] for a complete treatment).

Let 1A : S → {0, 1} denote the indicator function of set A ⊆ S. Regard
a given set of N + 1 points {sk} to be a realization of the process s(·),
according to a particular policy µ ∈ UN and with initialization in s0 ∈ S.
Observe that

N∏
k=0

1A(sk) =

{
1, if sk ∈ A, for all k ∈ [0, N ]

0, otherwise.

It follows that

pµs0(A) = P

(
N∏
k=0

1A(s(k)) = 1| s(0) = s0

)
= E

[
N∏
k=0

1A(s(k))| s(0) = s0

]
.

This expression suggests that the quantity pµs0(A) can be computed through
a backward iterative procedure, as detailed in the following. For each k ∈
[0, N ], define the map V µ

k : S → [0, 1] by:

V µ
k (s) = E

[
N∏
l=k

1A(s(l))| s(k) = s

]
,

with V µ
N (s) = 1A(s). This map denotes the probability of remaining inside

A during the (residual) time horizon [k,N ] starting from a specific s ∈ S
at time k, under the relevant part of the policy µ. It follows that, for
any s ∈ S,pµs (A) = V µ

0 (s). The following theorem describes an algorithm
to compute the quantity maxµ∈UN pµs (A) and ensures the existence of a

maximally safe policy µ? ∈ UN .

Theorem 1 ([1], Theorem 1). Define the maps V ?
k : S → [0, 1], k =

0, 1, . . . , N , with s ∈ S, by the backward recursion:

V ?
k (s) = max

u∈U
1A(s)

∫
S
V ?
k+1(sk+1)Ts(dsk+1|s, u),
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initialized with V ?
N (s) = 1A(s). Then, V ?

0 (s) = maxµ∈UN pµs (A),∀s ∈ S.
Moreover, there exists a maximally safe policy µ? = (u?0, . . . , u

?
N−1), with

u?k : S → U , k ∈ [0, N − 1], given ∀s ∈ S by

u?k(s) = arg max
µ∈U

1A(s)

∫
S
V ?
k+1(sk+1)Ts(dsk+1|s, u).

�

The procedure in Theorem 1 can be implemented via a dynamic program-
ming algorithm on a discretization of the state space, as discussed in [1].

3.3. Survival Analysis as a Probabilistic Safety Verification

According to the biological interpretation discussed in Section 1 and to
support from the literature on B. subtilis [13, 19], it is assumed that an
organism activates or deactivates the “production pipeline” for the antibi-
otic subtilin with the main objective of maximizing its own probability of
survival. It is possible to reinterpret the survival objective as a safety speci-
fication by introducing appropriate safety regions within the state space and
using the machinery developed in Section 3.2 to compute and maximize the
associated safety probabilities. The validity of this procedure, schematically
recapitulated in Figure 1, clearly hinges on the relationship between survival
and safety. If the survival mechanism is expressed in terms of the variables
of the model, this connection is immediate. A number of educated guesses
on the proper relationship between survival and safety for the instance under
study are introduced below and tested numerically in Section 4.

Interpreting the survival mechanism that leads to the production of the
antibiotic subtilin as a stress response (as discussed in the Introduction
and in Section 2), we can regard safety as the verification of the following
condition:

“ safe if [SpaS] > [SpaS] ” (8)

Informally, (8) says that if the subtilin production level for a cell is higher
than the average level of antibiotic present in the environment, then the
organism is deemed to be safe: (8) encodes a higher probability for the
organism to kill other bacteria, rather than being killed by their antibiotic
production. By (6) and (8), the associated safe region, called A1, is then:

A1 =

{
s ∈ S : [SpaS] >

D

DM

(
1− X

XM

)
k5
λ3
b0h(X)

}
.

We additionally designate a second survival mechanism, which depends on
a simple feedback structure that accounts for the competition coming from
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the environment. This second feedback corresponds to the observation that
the bacterium adjusts its behavior according to quorum sensing [12, 28],
that is according to a global measure of population or nutrient level:

“ safe if nutrient level is high or if population density is low ” (9)

Accordingly, the second safe region A2 is defined to be the set of points:

A2 =

{
s ∈ S :

D

DM

(
1− X

XM

)
< thresh

}
, 0 ≤ thresh ≤ 1.

Recall that the subtilin level influences the nutrient level and indirectly also
the population level. Finally, let us consider a safety condition defined over
the nutrient level, as suggested in [12]:

“ safe if nutrient level is higher than threshold ” (10)

Accordingly, the third safe set A3 has the following shape:

A3 =

{
s ∈ S :

X

XM
> thresh

}
, 0 ≤ thresh ≤ 1.

The application of the procedure described in Theorem 1 computes the
optimal policies for the safety sets selected above. This output represents
the synthesized control feedback functions for the relation in (1). We expect
to be able to associate the presence of activation/deactivation thresholds
(which represent a “switching” behavior) for the production of subtilin to a
particular survival mechanism.

4. Numerical Results and Discussion

We have selected the following parameters for the dynamics introduced
in Section 2: r = 0.8, k1 = 2, k2 = 4, k3 = 2.5, k5 = 0.8, λ1 = 0.5, λ3 =
0.2,∆Grk/RT = 1.1. The time horizon for the optimization problem has
been set to N = 40, which allows to assess the dynamics and the structure
of the synthesized controls in their steady state. We have first considered
the safety condition expressed in (8), its corresponding safety set A1, and
performed the computations as in Theorem 1 after discretizing uniformly
the state space. In Figure 3, the plots of the maximal probabilistic safety
level sets, with safety level ε = 0.95, are shown for a few different time
samples (initial time on the left, transient centrally, steady state on the
right). Colored hues have been added only to enhance the perspective and
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Figure 3: Maximal probabilistic safety level set corresponding to ε = 0.95 for different
time samples (initial time on the left, transient centrally, steady state on the right). The
points above the level surfaces are safe with a probability of at least 95%. The sigma
factor level has been fixed to [SigH] = 1, the discrete state is in the OFF mode. The
coordinates represent horizontally the nutrient level X and the population density D, and
vertically the level of subtilin [SpaS].

the height of the level curves. The maximal probabilistic safe sets are thus
made up of the points above the plotted level curves. More precisely, given
the choice of the safety level ε, all the points in the plots above the level
surfaces are considered to be safe with a probability of at least 95%. For the
sake of visualization (being the continuous state space four-dimensional),
we plotted the results corresponding to a fixed value of the sigma factor
[SigH] = 1 (the three dimensions represent the nutrient level X ∈ [0, XM ]
and the population level D ∈ [0, DM ] on the horizontal plane, and the
level of subtilin [SpaS] ≥ 0 on the vertical axis), and the discrete state
being in the OFF mode. Results that are similar to those displayed, in
that they single out a distinct partition of the state space, are obtained for
other choices of coordinates, and analogous outputs are displayed for the
ON mode. In Figure 3 notice that, as expected, the safe set shrinks (that
is, the curve raises) as we proceed backwards in time (towards the steady
state condition): this in fact translates to a longer safety requirement for
the trajectories of the system.

Figure 4 shows the different maximal probabilistic safety level sets at
steady state for a few values of the safety probability ε (decreasing towards
the right). As expected, the lower the probabilistic safety level, the lower
the level surface, and the larger the safety region.

Finally, Figure 5 represents vertical pairs of plots referring to maximal
probabilistic safety level sets (for ε = 0.95, in the top row) and corresponding
optimal actions (bottom row), for a few different time samples (initial time
on the left, transient in the center, and steady state on the right). More
precisely, the plots on the top row are obtained similarly as Figure 3, whereas
the plots on the bottom row represent the regions in the state space that
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Figure 4: Maximal probabilistic safety level set corresponding to different safety levels
(decreasing along the left-right direction: ε = 0.9, ε = 0.5, ε = 0.1) for a particular time
sample (in steady state): the points above the level surfaces are safe with a probability of
at least 100ε%. The spatial coordinates are organized as in Figure 3.

are associated with a switching condition over the binary control (that is,
where the control commutes as OFF → ON or as ON → OFF), and are to
be matched with the safety level sets plotted directly above them.

Central to the argument of this work, it is interesting to realize that the
optimal control functions that are associated with the activation/deactivation
conditions for the production of the antibiotic (that is, the set of points as-
sociated with a binary switch of the control u in (2)) have a characteristic
“onion layer” shape that varies in time and is concentrated on a surface. It
can be thus asserted that the optimal controls synthesized by the problem
according to the specific survival specification single out switching surfaces
corresponding to certain safety levels. These surfaces have profiles that fol-
low the variation in safety probability (or, according to our interpretation, in
survival probability) for the bacterium, as appears by comparing the curves
for the switching control with the safety level sets plotted above them in
Figure 5. Notice that in general these surfaces are not hyper-rectangular, as
assumed in [8, 12], which also sought to identify the production thresholds.
Instead, they are rather nonlinear functions of the state space, showing a
manifest but non-explicit dependence with the change in safety level of the
single organism.

The simulations based on the second survival condition expressed in (9)
are important to rule out “false positives” for the proposed procedure. We
have experimented a number of threshold levels and report here the outputs
for thresh = 0.3. The outcomes of the simulations are shown in Figure 6.
Notice that the survival probabilities (top plots) and the optimal actions
(bottom plots) are now interpreted as curves, rather than level sets (as in
Figures 3, 4, and 5), because of the lower dimensionality (two, rather than
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Figure 5: Maximal probabilistic safety level sets and optimal switching control, for a few
time samples (initial time on the left, transient centrally, steady state on the right) and
a safety level ε = 0.95. On the top row, the points above the level surfaces are safe with
a probability of at least 95%. On the bottom row, the curves represents points in the
state space that are associated with a switching condition. The spatial coordinates are
organized as in Figure 3.

four) of the figure of merit in A2. While the safety levels appear to remain
similar in time to the initial safe set A2, the outputs do not seem to yield
any activation/deactivation threshold for the production mechanism (i.e.,
the points in the space associated to an optimal control that commutes do
not result in a specific curve).

Similarly, experiments performed by considering the safe set A3, defined
on the food coordinate as per (10), did not show any particular threshold for
the optimal controls, thus suggesting that a condition along that coordinate
may not be the actual discriminant for the subtilin production mechanism.

These observations stress that, as expected, a meaningful outcome of
the proposed interpretation and associated technique critically hinges on a
correct choice of the survival function. For the problem under study and
the developed dynamical model, the survival criterion in (8) has produced
the most reasonable outcomes.

5. Conclusions and Future Work

This article suggests that the problem of survival of an organism, whose
dynamics are described by a quantitative model, can be investigated via a
safety analysis study, and that the strategies related to this problem can be
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Figure 6: Maximal probabilistic safety level sets (top plots) and optimal controls (bottom
plots), backwards in time (from left to right), based on a survival condition encoding com-
petition in the environment. The horizontal coordinates denote nutrient and population
level, whereas the vertical coordinate respectively survival probability (top) and optimal
control (bottom).

synthesized by an optimal control approach. The mathematical framework
of Stochastic Hybrid Systems, which is proposed in this work and formalized
in [1], is endowed with generality and can be potentially applied to numerous
other models in the literature.

For the specific study of the production mechanisms of the antibiotic
subtilin as a stress-related response elicited by Bacillus subtilis, the ar-
gument developed in this work leads to conclude that the observed acti-
vation/deactivation mechanism displays a threshold feature over the state
space, which is expected from the literature. This behavior is specifically
associated with a condition on the organism and its environment, which is
to be interpreted in terms of a particular level of its survival probability.

The wider applicability of the present study and the validity of the con-
cept of optimality must of course raise a few caveats worthy of attention.
Clearly, this approach subsumes the ability to define a meaningful survival
function (and a corresponding safety region) for the system under study. In
general, the figures of merit related to survival in (8), (9), and (10) ought
to incorporate some energy-related term at the cellular level. Since we are
interested in focusing on the possible presence of thresholds to be associated
with the switching production mechanisms, rather than in the understanding
their complete structure, this limitation plays a second role in the present
contribution. However, it is critical to understand that a wrong choice for
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this function may result in misleading conclusions, as discussed in Section
4.

From a biological perspective, it is necessary to understand what the ex-
ogenous “signals” are that the organism is able to sense, and which signals
can presumably build up the survival function. Our choice of an average
feedback signal from the environment may not be valid in general. Further-
more, the present study assumes that each cell independently maximizes its
survival chances, thus ruling out any possible cooperative behavior.

As an extension to the present work, it would be instructive to under-
stand what is the critical safety level that corresponds to the activation and
the deactivation of the production of subtilin. Considering a more complex
stress response network is also desirable, provided this trades off properly
with the computational overhead and that modeling generality does not hide
the understanding of the particular function under study. Furthermore, the
use of randomized control structures, as suggested in other biological work
[29], may make biological sense and can be accommodated within the pre-
sented SHS framework [1]. Finally, an ad hoc experimental study could
actually verify the correctness of the predictions for the activation thresh-
olds obtained by the presented methodology.
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