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Abstract
Controllers for dynamical systems that operate in safety-critical settings must account

for stochastic disturbances. Such disturbances are often modeled as process noise in a
dynamical system, and common assumptions are that the underlying distributions are
known and/or Gaussian. In practice, however, these assumptions may be unrealistic and
can lead to poor approximations of the true noise distribution. We present a novel controller
synthesis method that does not rely on any explicit representation of the noise distributions.
In particular, we address the problem of computing a controller that provides probabilistic
guarantees on safely reaching a target, while also avoiding unsafe regions of the state space.
First, we abstract the continuous control system into a finite-state model that captures noise
by probabilistic transitions between discrete states. As a key contribution, we adapt tools
from the scenario approach to compute probably approximately correct (PAC) bounds on
these transition probabilities, based on a finite number of samples of the noise. We capture
these bounds in the transition probability intervals of a so-called interval Markov decision
process (iMDP). This iMDP is, with a user-specified confidence probability, robust against
uncertainty in the transition probabilities, and the tightness of the probability intervals
can be controlled through the number of samples. We use state-of-the-art verification
techniques to provide guarantees on the iMDP and compute a controller for which these
guarantees carry over to the original control system. In addition, we develop a tailored
computational scheme that reduces the complexity of the synthesis of these guarantees on
the iMDP. Benchmarks on realistic control systems show the practical applicability of our
method, even when the iMDP has hundreds of millions of transitions.

1. Introduction
Dynamical systems. Dynamical systems are widely used to model the state dynamics of
complex systems (Kulakowski, Gardner, & Shearer, 2007). For example, an unmanned aerial
vehicle (UAV) can be modeled as a dynamical system, in which the (possibly continuous)
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state reflects its current position and velocity, and the (possibly continuous) control inputs
reflect choices that may change the state over time (Kulakowski et al., 2007). The dynamical
system is linear if the state transition is linear in the current state and control input.

Controller synthesis. Verifying that a controlled dynamical system satisfies a desired
property is of paramount importance, especially in safety-critical applications. Traditional
methods from control theory are powerful tools for addressing properties about stability and
(asymptotic) convergence, but these methods by and large do not provide formal guarantees
about richer, temporal properties (Baier & Katoen, 2008; Fan, Qin, Mathur, Ning, Mitra,
& Viswanathan, 2022), namely requirements on state trajectories of the system in time. A
common example is the reach-avoid property, where the task is to reach a desirable region
within a given time horizon, while always remaining in a (possibly non-convex) safe region.
The general controller synthesis problem is to compute (in an automated fashion) a feedback
controller for the dynamical system, such that any state trajectory that the system generates
satisfies the given reach-avoid property (Kwiatkowska & Parker, 2013).

Modeling process noise. However, for a system such as a UAV, factors including turbu-
lence and wind gusts cause uncertainty affecting the state dynamics of the system (Black-
more, Ono, Bektassov, & Williams, 2010). We model such uncertainty as process noise,
which is an additive random variable (with possibly infinitely many outcomes) entering the
dynamical system and thus affecting state transitions. Due to this additional noise term,
it is generally impossible to guarantee that every state trajectory satisfies a reach-avoid
property. Instead, we reason over the probability that a reach-avoid property is satisfied,
and the synthesis problem is then to compute a controller that maximizes this probability.

Distribution of the noise. A common assumption to achieve computational tractability
for the controller synthesis problem is that the process noise follows a Gaussian distribu-
tion (Park, Serpedin, & Qaraqe, 2013), e.g., as is classically assumed in linear-quadratic-
Gaussian control (Anderson & Moore, 2007). However, in realistic problems, such as a
UAV operating under turbulence, this assumption yields a poor approximation of the un-
certainty (Blackmore et al., 2010). Distributions may even be unknown, meaning that one
cannot derive a set-bounded or a precise probabilistic representation of the noise. In this
case, it is generally hard or even impossible to derive hard guarantees on the probability
that a given controller ensures the satisfaction of the considered reach-avoid property.

Problem statement. In this paper, we consider the controller synthesis problem for dy-
namical systems with additive process noise of an unknown distribution. For the synthesized
controller, we provide a probably approximately correct (PAC) guarantee on the probability
of satisfying a given reach-avoid problem. As such, we solve the following problem:

Given a linear dynamical system perturbed by additive noise of unknown distribution,
compute a controller under which, with a user-specified confidence level, the probability
to satisfy a reach-avoid problem is above a given threshold value.

Finite-state abstraction. We solve this problem by computing a finite-state abstraction
of the original dynamical system (Soudjani & Abate, 2013), which we obtain from a partition
of its continuous state space into a set of disjoint convex regions. Actions in this abstraction
correspond to continuous control inputs that yield transitions between these regions. Due
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to the process noise, the outcome of an action is stochastic, rendering transitions proba-
bilistic. We capture these probabilities in a Markov decision process (MDP) (Puterman,
1994). A defining characteristic of our approach is that we leverage backward reachability
computations on the dynamical system to determine which actions are enabled at each dis-
crete region. By contrast, most other abstraction methods (see the related work in Sect. 7
and the survey article Lavaei, Soudjani, Abate, & Zamani, 2022) rely on forward reachabil-
ity computations, which are associated with errors that grow with the time horizon of the
considered property. Our backward scheme avoids such abstraction errors, at the cost of
requiring slightly more restrictive assumptions on the system dynamics.

Probability intervals. Since the distribution of the noise is unknown, it is not possible
to compute the transition probabilities of the abstract MDP exactly, e.g., as in Soudjani and
Abate (2013). Instead, we estimate the probabilities based on a finite number of samples of
the noise, which may be obtained from a high fidelity (black box) simulator, from historical
data, or from (physical or numerical) experiments. To be robust against estimation errors
in these probabilities, we formulate the error estimation process as a so-called scenario
optimization problem and leverage state-of-the-art tools (Romao, Papachristodoulou, &
Margellos, 2022) from the scenario approach, which is a methodology to deal with stochastic
optimization in a data-driven fashion (Campi & Garatti, 2008; Campi, Carè, & Garatti,
2021). We compute upper and lower bounds on the transition probabilities with a desired
confidence level, which we choose up front. These bounds are PAC, as they contain the true
probabilities with at least this confidence level.

Interval MDPs. We formalize our abstractions with the PAC probability intervals using
so-called interval Markov decision processes (iMDPs), which are an extension of MDPs with
intervals of probabilities (Givan, Leach, & Dean, 2000). More generally, iMDPs are a par-
ticular case of uncertain or non-deterministic MDPs; see the references in Sect. 7 for more
details. iMDPs have recently been proposed as an alternative to standard MDPs for ab-
stracting stochastic dynamical systems (Cauchi, Laurenti, Lahijanian, Abate, Kwiatkowska,
& Cardelli, 2019; Lavaei et al., 2022). We show explicitly how to lift the PAC guarantees on
individual transition probabilities to a correctness guarantee on the whole iMDP. Policies for
iMDPs have to robustly account for all possible probabilities within the intervals, and one
usually provides upper and lower bounds on maximal or minimal reachability probabilities
or expected rewards (Hahn, Hashemi, Hermanns, Lahijanian, & Turrini, 2017; Puggelli,
Li, Sangiovanni-Vincentelli, & Seshia, 2013; Wolff, Topcu, & Murray, 2012). Note that
given the PAC-correct iMDP, these bounds on the reachability probabilities are exact and
thus do not introduce another error bound. For MDPs, mature tool support exists, e.g., via
PRISM (Kwiatkowska, Norman, & Parker, 2011), and this support was previously extended
to iMDPs in Badings, Abate, Jansen, Parker, Poonawala, and Stoelinga (2022a).

Infinite-horizon properties. One notable feature of our abstraction scheme is that we
can handle reach-avoid properties over infinite-time horizons, also known as unbounded
properties (Tkachev & Abate, 2014). Most existing abstraction-based controller synthesis
methods cause abstraction errors that grow with the time horizon and are thus limited to
finite-horizon properties (Abate, Katoen, Lygeros, & Prandini, 2010; Soudjani & Abate,
2013; Lavaei et al., 2022; Zikelic, Lechner, Henzinger, & Chatterjee, 2022). By contrast, we
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provide a PAC guarantee on each transition probability interval of the iMDP being correct,
without errors that grow with the horizon of the considered properties.

Iterative abstraction improvement. The tightness of the probability intervals in the
iMDP depends on the number of noise samples. Hence, we propose an iterative abstraction
scheme to improve these intervals by sequentially increasing the number of noise samples
used to compute probability intervals. Our scheme can be summarized as follows. We
first compute a robust policy that maximizes the probability of safely reaching the goal
states. Then, we check whether this optimal reach-avoid probability is satisfactory or not
with respect to the pre-defined threshold value on the given property. In case it is not, we
collect additional samples to reduce the uncertainty in the probability intervals; otherwise,
we extract and use the optimal policy to compute “on the fly” a feedback controller for the
original dynamical system. The specified confidence level reflects the likelihood that the
optimal reach-avoid probability on the iMDP is a lower bound for the probability that the
dynamical system satisfies the reach-avoid problem under this derived controller.

Improved policy synthesis scheme. The generated iMDP abstractions can potentially
have hundreds of millions of transitions, especially if the state dimension is high. To reduce
the computational complexity related to the policy synthesis algorithm on the iMDP, we
propose an algorithmic optimization. Instead of employing the large iMDP abstraction, we
soundly merge states that show similar reach-avoid probabilities. In particular, we associate
a merged state with the minimum reach-avoid probability of the set of states it is comprised
of, resulting in a conservative but sound approximation of the original iMDP. This strategy
reduces the overall size of the iMDP significantly and additionally enables us to solve more
complex reach-avoid problems, as shown in our experiments.

Contributions. Our contributions are threefold: (1) We propose a novel method to com-
pute controllers with PAC guarantees for dynamical systems with unknown noise distribu-
tions. Specifically, the probability of satisfying an (in)finite-horizon reach-avoid problem is
guaranteed, with a user-specified confidence probability, to exceed a pre-defined threshold.
(2) We propose a sound and scalable policy synthesis algorithm that allows us to verify ab-
stract models with hundreds of millions of transitions. (3) We apply our method to multiple
realistic control problems and benchmark against two other tools: StocHy and SReachTools.
We demonstrate that the guarantees obtained for the iMDP abstraction carry over to the
dynamical system of interest. Moreover, we show that using probability intervals instead
of point estimates of probabilities yields significantly more robust results.

This paper extends Badings et al. (2022a) in several ways. First, we expand on the
intuition and presentation of our abstraction method, comparing the scenario optimization
with other methods for computing probability intervals. Second, we provide deeper the-
oretical results on the correctness of our method by formalizing the relationship between
the dynamical system and the iMDP. Moreover, we lift the PAC guarantees on individual
transitions, as done in Badings et al. (2022a), to a correctness guarantee on the whole iMDP
abstraction. Finally, we present a new algorithmic extension and an additional experiment
on an autonomous satellite rendezvous problem from Jewison and Erwin (2016).
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2. Foundations and Outline
A discrete probability distribution over a finite set X with cardinality |X| is a function
prob : X → [0, 1] with

∑
x∈X prob(x) = 1. The set of all distributions over X is Dist(X ). A

probability density function over a random variable x conditioned on y is written as p(x|y).
All vectors x ∈ Rn, n ∈ N, are column vectors and are denoted by bold letters. We use the
term controller when referring to a map selecting inputs for dynamical systems, while we
use the term policy for (i)MDPs.

2.1 Linear Dynamical Systems
We consider discrete-time, continuous-state systems, where the progression of the state
x ∈ Rn depends linearly on the current state, on a control input, and on a process noise
term. Given a state xk at discrete time k ∈ N, the successor state at time k + 1 is given as

xk+1 = Axk +Buk + qk +wk, (1)

where uk ∈ U ⊂ Rp is the (continuous) control input at time k, A ∈ Rn×n and B ∈ Rn×p

are appropriate matrices, and qk ∈ Rn is a deterministic disturbance. The term wk ∈ ∆ ⊂
Rn is an arbitrary additive process noise term, which is a random variable defined on a
probability space (∆,D,P), with σ-algebra D and probability measure P defined over D.
In our formulation, the sample space ∆ is an abstract set of possible noise values at any
time k, and the probability measure P is unknown but time-invariant. To deal with this
lack of knowledge, we employ a sampling-based approach, for which it suffices to obtain a
finite number of samples of the process noise, whose distribution is independent of time.
This underlying source of uncertainty induces a probabilistic model over the successor state
xk+1. We denote the probability density function over successor states for a given state xk

and control input uk as pwk
(xk+1 | xk,uk).

The linear dynamical system defined by Eq. (1) is controlled by a time-varying linear
feedback controller of the following form:
Definition 1. A piece-wise linear feedback controller is a function ϕ : Rn × N→ U , which
maps a state xk ∈ Rn and a time step k ∈ N to a control input uk ∈ U .
We use time-varying controllers because, for finite-horizon control objectives, the optimal
control generally depends on the time index. For infinite-horizon properties instead, the
optimal control is independent of the time index (Baier & Katoen, 2008).
Example 1. The longitudinal dynamics of a UAV are modeled as

xk+1 =

[
pk+1

vk+1

]
=

[
1 1
0 1

]
xk +

[
0.5
1

]
uk +wk, (2)

where pk and vk are the position and velocity at time k, and the control is bounded by
uk ∈ U = [−4, 4]. The distribution of the noise wk is unknown, thus possibly not Gaussian.
Remark 1 (Restriction to linear systems). Our methods are theoretically amenable to work
with nonlinear drift dynamics rather than the linear drift terms we see in Eqs. (1) and (2).
However, this requires more advanced 1-step reachability computations, which are not core
to our main contributions. Hence, we restrict ourselves to the linear drift of the model in
Eq. (1) and discuss extensions to nonlinear models in Sect. 8.
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2.2 Problem Statement
We consider control objectives expressed as reach-avoid properties over an infinite or a finite
horizon. A reach-avoid property φK

x0
is satisfied if, starting from an initial state x0 ∈ Rn at

time k = 0, the system reaches a desired goal region XG ⊂ Rn within a horizon of K ∈ N∪∞
steps, while avoiding a critical region XC ⊂ Rn. We write the probability of satisfying a
reach-avoid property φK

x0
under a controller ϕ as Prϕ(φK

x0
). We formally state the problem

that we solve in this paper as follows.

Compute a controller ϕ for the dynamical system in Eq. (1) that, with a confidence
probability of at least α ∈ [0, 1], guarantees that Prϕ(φK

x0
) ≥ η, where η ∈ [0, 1] is a

pre-defined probability threshold.

2.3 Markov Decision Processes
We solve the problem above via a finite-state abstraction of the dynamical system, which
we formalize as a variant of MDPs (Puterman, 1994):

Definition 2 (MDP). A Markov decision process (MDP) is a tuple M = (S,Act, sI , P )
where S is a (finite) set of states, Act is a (finite) set of actions, sI is the initial state, and
P : S ×Act ⇀ Dist(S ) is the (partial)1 probabilistic transition function.

The set of actions enabled in state s ∈ S is Act(s) ⊆ Act. We call (s, a, s′) with probability
P (s, a)(s′) > 0 a transition. A time-varying deterministic policy for an MDP M is a
function π : S × N → Act mapping states and time indices to actions (Puterman, 1994).
The set of all possible policies forM is denoted by ΠM.

A probabilistic reach-avoid property Prπ(φK
sI
) for an MDP describes the probability of

reaching a set of goal states SG ⊂ S within K ∈ N ∪∞ steps under policy π ∈ ΠM, while
avoiding a set of critical states SC ⊂ S, where SG ∩ SC = ∅. An optimal policy π⋆ ∈ ΠM
for MDPM maximizes the reach-avoid probability:

π⋆ = argmax
π∈ΠM

Prπ(φK
sI
). (3)

Remark 2 (Dynamical systems as continuous MDPs). The dynamical system in Eq. (1) can
equivalently be seen as an MDP with an uncountably infinite number of states S (representing
all xk ∈ Rn), and an infinite number of actions Act (representing all uk ∈ U). Note that
every action is enabled at any state, i.e. Act(s) = Act, ∀s ∈ S. Moreover, each state-control
pair (xk,uk), i.e., applying control input uk in state xk induces a probability distribution
(or in fact, a density function) over successor states xk+1 ∈ Rn.

We now relax the assumption that the transition probabilities of MDPs are precisely given.

Definition 3 (iMDP). An interval Markov decision process (iMDP) is a tuple MI =
(S,Act, sI ,P) where S, Act, and sI are defined by Def. 2, and where the uncertain (partial)
probabilistic transition function P : S × Act × S ⇀ I ∪ {[0, 0]} is defined over intervals
I = {[a, b] | a, b ∈ (0, 1] and a ≤ b}.

1. The transition function is partial in general, meaning that not all state-action pairs (s, a) ∈ S ×Act are
in the domain of P . We need to define this partial transition function because not all actions may be
enabled in each state.
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Note that an interval cannot have a lower bound of 0 except for the [0, 0] interval. Since
the transition function P is partial, we do not require each action to be enabled at any
state. An iMDP defines a (possibly empty) set of MDPs that vary only in their transition
function. In particular, for an MDP with transition function P , we write P ∈ P if for all
s, s′ ∈ S and a ∈ Act we have P (s, a)(s′) ∈ P(s, a, s′) and P (s, a) ∈ Dist(S ).

Remark 3 (Geometry of uncertainty sets). For each state-action pair (s, a), the set
{P (s, a) | P ∈ P} of feasible probability distributions is a probability simplex with interval
(box) constraints defined by the intervals in P. The resulting uncertainty set {P (s, a) | P ∈
P} is a convex polytope by construction. Moreover, the transition probabilities P (s, a) for
different state-action pairs (s, a) are independent and thus respect the so-called rectangu-
larity assumption, which is common in the literature on robust MDPs (Wiesemann, Kuhn,
& Sim, 2014) and robust optimization (Bertsimas, Brown, & Caramanis, 2011), and is
necessary to guarantee computational tractability.

For iMDPs, a policy needs to be robust against all possible transition functions P ∈ P .
We employ a robust variant of value iteration from Wolff et al. (2012) to compute a policy

¯
π⋆ ∈ ΠMI for iMDP MI that maximizes the lower bound Prπ(φK

sI
) of on the reach-avoid

probability within horizon K:

¯
π⋆ = argmax

π∈ΠMI

Prπ(φK
sI
) = argmax

π∈ΠMI

min
P∈P

Prπ(φK
sI
). (4)

Similarly, we can also maximize an upper bound Pr
π
(φK

sI
) on the reach-avoid probability:

π̄⋆ = argmax
π∈ΠMI

Pr
π
(φK

sI
) = argmax

π∈ΠMI

max
P∈P

Prπ(φK
sI
). (5)

We will use the lower bound in Eq. (4) to compute robust optimal policies, while we use
Eq. (5) to determine if the threshold η specified in the formal problem statement is satisfiable
at all. Note that deterministic policies suffice to obtain optimal values for (i)MDPs (Put-
erman, 1994; Puggelli et al., 2013), and particularly also for reach-avoid properties (Abate,
Prandini, Lygeros, & Sastry, 2008).

2.4 An Iterative Abstraction Scheme
Our approach is summarized in Fig. 1 and consists of an offline planning phase in which we
generate the abstraction and obtain guarantees on the abstract model, and an online control
phase in which we derive a controller for the dynamical system on the fly. We describe in
Sect. 3 how, for a given linear dynamical system, we generate a finite-state abstraction as an
MDP by partitioning the continuous state space. We then describe in Sect. 4 how we obtain
PAC bounds on the MDP’s transition probabilities based on a finite set of N samples of the
noise. The resulting abstraction is an iMDP, for which we use Eqs. (4) and (5) to compute
optimal policies

¯
π⋆ and π̄⋆ that maximize the lower/upper bounds on the probability of

satisfying the given property. We then proceed in one of the following three ways:

1. If Pr¯π
⋆
(φK

sI
) ≥ η, the formal problem is satisfied. Thus, we extract the optimal policy

¯
π⋆, which we use to determine a controller ϕ for the dynamical system on the fly.
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Linear dynamical model
xk+1 = Axk + Buk + qk + wk

Abstract MDP (unknown P )
M = (S,Act, sI , P )

Abstract iMDP
MI = (S,Act, sI ,P)

Guarantees on iMDP
Policy

¯
π⋆ and Pr¯

π⋆

(φK
sI )

Continuous controller
ϕ : X × N → U

Initial state sIConfidence 1− β

Partition R

Reach-avoid
property φK

sI

Threshold satisfaction
probability η

Partition state space
and define actions

Obtain N noise samples
and compute intervals P

Compute robust
optimal policy

Pr¯
π⋆

(φK
sI ) < η ≤ Pr

π̄⋆

(φK
sI )

Increase sample size: N ← γN

Terminate if
η > Pr

π̄⋆

(φK
sI )

(Unsatisfiable)

Pr¯
π⋆

(φK
sI ) ≥ η

Extract
¯
π⋆

Apply controller
(and terminate) Online

control

Offline
planning

Figure 1: Our iterative approach between abstraction and verification, where N is the
number of samples used for the abstraction, and η is the threshold reach-avoid probability.

2. If Pr π̄
⋆

(φK
sI
) < η, the reach-avoid problem is (with high confidence) unsatisfiable. In

this case, increasing the number of samples does not help, so we terminate the scheme.

3. If Pr¯π
⋆
(φK

sI
) < η but Pr

π̄⋆

(φK
sI
) ≥ η, we obtain additional samples by increasing N

by a fixed factor γ > 1. The updated iMDP has tighter probability intervals but may
also have more transitions. However, since the states and actions of the abstraction
are independent of N and defined at the first iteration, the MDP abstraction is only
performed once.

In Sect. 5 we describe each step of our approach in more detail, as well as a complete algo-
rithm for solving the formal problem. We perform numerical experiments on benchmarks
from multiple application domains in Sect. 6. We discuss the related work in Sect. 7.

3. Finite-State MDP Abstraction
In this section, we describe how we generate an MDP abstraction of the linear dynamical
system in Eq. (1). First, we partition the state space into a set of discrete convex regions.
We then use this partition to build a finite-state MDP abstraction of the dynamical system.

3.1 State Space Discretization
We choose a partition R = {R1, . . . , Rv} of a bounded portion X ⊂ Rn of the continuous
state space Rn into a set of v disjoint regions, such that

⋃v
i=1Ri = X . In addition, we define a

single absorbing region R∗, representing Rn\X . The absorbing region R∗ captures the event
that the continuous state leaves the bounded portion of the state space over which we plan.
We consider the regions in R to be n-dimensional bounded, convex polytopes. Thus, each
region Ri ∈ R is the solution set of m linear inequalities parameterized by Mi ∈ Rm×n and
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G(da)

Rs′

Rs

x
(1)
k

x
(2)
k

da

Figure 2: A fragment of a rectangular partitioning of X ⊂ R2, showing the backward
reachable set G(da) of one particular action a ∈ Act with target point da. Action a is
enabled in states s and s′, since Rs ⊆ G(da) and Rs′ ⊆ G(da), respectively.

bi ∈ Rm, yielding Ri =
{
x ∈ Rn |Mix ≤ bi

}
. In addition, the following assumption allows

us to translate properties for the dynamical system to properties on the iMDP abstraction:

Assumption 1. The continuous goal region XG and critical region XC are aligned with
the union of a subset of regions in R, i.e., XG = ∪i∈IRi and XC = ∪j∈JRj for index sets
I, J ⊂ {1, 2, . . . , |R|}.

3.2 MDP Abstractions

We formalize the dynamical system discretized under R as an MDP M = (S,Act, sI , P ),
by defining its states, actions, and transition probabilities. We assume that the initial state
sI ∈ S is known, and we capture time constraints by the reach-avoid property.

States. We define an MDP state for every region of partition R, as well as for the absorb-
ing region R∗. Thus, we obtain the set of MDP states S = {si | i = 1, . . . , |R|}∪{s∗}, which
consists of |S| = |R|+1 states: one for every region in R, plus one state s∗ corresponding to
the absorbing region R∗ where the only outgoing transition leads back to s∗. We denote by
Rs ∈ R the region of the partition associated with MDP state s ∈ S. Formally, we define
a function T : Rn → S that maps continuous states x ∈ Rn to MDP states s ∈ S:2

Definition 4. A continuous state x ∈ Rn and MDP state s ∈ S are related, i.e., T (x) = s,
if x ∈ Rs. The inverse mapping T−1(s) = {x ∈ Rn | (x, s) ∈ T} is equivalent to region Rs.

The function T expresses a relation from any state x ∈ Rn to a (unique) discrete state s ∈ S,
and is, therefore, also called an abstraction function. Moreover, its inverse T−1(s) = Rs

maps any state s ∈ S to a set of continuous states and is equal to the region Rs of s itself.

2. Alternatively, we may define T ⊆ Rn ×S as a binary relation between each continuous state x ∈ Rn and
MDP state s ∈ S. In this paper, we use the function notation since we apply T as a function only.
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Actions. Discrete actions correspond to the execution of a control input uk ∈ U in the
dynamical system in Eq. (1). We define q ∈ N MDP actions, so Act = {a1, . . . , aq}. Let
the noiseless successor state of xk be defined as x̂k+1 = Axk + Buk + qk (i.e., xk+1 under
the assumption that wk = 0). Every action a is associated with a fixed continuous target
point da ∈ Rn, and is defined such that its noiseless successor state x̂k+1 = da. While not
a restriction of our approach, we define one action for every MDP state s ∈ S (except for
the absorbing state s∗), and choose the target point to be the center of its region Rs.3

The MDP must form a sound abstraction of the dynamical system. Thus, action a ∈ Act
only exists in an MDP state s ∈ S if, for every continuous state xk ∈ Rs, there exists a
control uk ∈ U , such that x̂k+1 = da. To impose this constraint, we define the one-step
backward reachable set G(da) of action a ∈ Act:

G(da) = {x ∈ Rn | da = Ax+Buk + qk, uk ∈ U}. (6)

Then, action a ∈ Act exists in state s ∈ S if and only if Rs ⊆ G(da). As an example, Fig. 2
shows the backward reachable set of a particular action a ∈ Act, which contains regions Rs

and Rs′ , and hence this action is enabled in states s and s′. We write the set of actions
that exist in state s ∈ S as Act(s) = {a ∈ Act | Rs ⊆ G(da)}.

Note that the existence of an action in an MDP state merely implies that for every
continuous state in the associated region, there exists a feasible control input that induces
this transition. Intuitively, this means that any possible transition in the MDP must also
be possible (with the same probability) in the dynamical system. We make the following
assumption on the controllability of the dynamical system (Ogata et al., 2010).

Assumption 2. The dynamical system in Eq. (1) is controllable, meaning that the matrix
C =

[
B AB A2B · · · An−1B

]
has full row rank.

Intuitively, the dynamics of a controllable system can be ‘excited’ (that is, we can make
state transitions) to a subset of the n-dimensional state space that has a nonempty interior
over a finite number of time steps. As a result, under Assumption 2 we can, by construction,
derive a dynamical system for which the backward reachable set G(da) has a non-empty
interior. For instance, in Eq. (2), the dimension of the control space (p = 1) is lower than
the dimension of the state space (n = 2). In this case, the backward reachable set G(da)
is a line segment in R2 and thus has an empty interior. Hence, no region Rs ∈ R of the
partition can be contained in G(da), so no action can ever exist in the MDP. However, since
the system is assumed to be controllable (note that Assumption 2 is indeed satisfied for
Eq. (2)), we can group together two discrete time steps, such that the dimension of the
control space becomes equal to that of the state space, i.e., p = n = 2. Concretely, we
redefine the dynamical system in Eq. (2) as

xk+2 = A2xk +
[
AB B

] [ uk

uk+1

]
+Awk +wk+1

= Āxk + B̄uk,k+1 +wk,k+1,

(7)

where xk and uk,k+1 now have equal dimension, making G(da) have a non-empty interior.

3. If, on the one hand, this choice for defining actions results in an MDP that is too large, we may reduce
the number of actions; if on the other the results are unsatisfactory, we may define additional actions.
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Transition probabilities. To compute the control input uk associated with action a in
a continuous state xk at time k, we replace the successor state xk+1 by target point da in
Eq. (1) and solve for uk, yielding a control parameterized by state xk and action a:

uk(xk, a) = B+(da − qk −Axk), (8)

where B+ is the pseudoinverse of B.4 It is easily verified that for every state xk ∈ Rs where
action a ∈ Act(s) exists, there exists a uk such that Eq. (8) holds (depending on B, it may
not be unique). Due to the process noise wk, the continuous successor state xk+1 upon
choosing an action a ∈ Act(s) in state s ∈ S is a random variable, which is written as

xk+1 = Axk +Buk(xk, a) + qk +wk

= da +wk.
(9)

Remark 4 (Independence of density functions). Recall that the probability density function
of xk+1 under action a is denoted by pwk

(xk+1 | xk,uk(xk, a)). Importantly, we observe
that by construction of Eq. (9), the continuous successor state xk+1 (and thus also the
probability density function) upon choosing any action a ∈ Act(s), with s = T (xk), is
independent of the current state xk (as long as a is enabled in s). We shall see how this
simplifies the complexity of the abstract MDP.

To define the transition probability function P of the MDP, we want to determine, for every
pair of states s, s′ ∈ S and action a ∈ Act(s), the probability that the state-action pair (s, a)
leads to a continuous successor state xk+1 ∈ Rs′ . This transition probability is equal to the
cumulative density function Pwk

(xk+1 ∈ Rs′ |xk,uk(xk, a)) that the successor state xk+1

takes on a value in region Rs′ upon choosing action a.

Definition 5. The transition probability P (s, a)(s′) for s, s′ ∈ S, a ∈ Act(s) is defined as

P (s, a)(s′) = Pwk
(xk+1 ∈ Rs′ |xk,uk(xk, a))

=

∫
Rs′

pwk
(xk+1 | xk,uk(xk, a)) dxk+1.

(10)

where uk(xk, a) is defined as per Eq. (8).

Due to its importance in the arguments of this paper, note that the cumulative density
function, denoted by capital Pwk

(xk+1 ∈ Rs′) ∈ [0, 1] and being a probability, is the integral
of the probability density function over region Rs′ , denoted by small pwk

(xk+1) and being
a function that assigns a probability to every possible value of xk+1.

Remark 5 (Number of transition probabilities of the MDP). For a given action a ∈ Act
and successor state s′ ∈ S, the transition probability P (s, a)(s′) is equal for any MDP state
s for which a ∈ Act(s). In other words, for any two states s, s̃ ∈ S and an action a for
which a ∈ Act(s) and a ∈ Act(s̃), we have that P (s, a)(s′) = P (s̃, a)(s′) for any s′ ∈ S.
Thus, the MDP has at most |Act| · |S| unique transition probabilities (rather than at most
|S| · |Act| · |S| probabilities), which reduces the complexity of generating abstractions.
4. Even though we assume B to be full row rank, it may have more columns than rows, so we use the

pseudoinverse in Eq. (8).
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3.3 Soundness of the MDP Abstractions

The generated abstract MDP M is an underapproximation of the dynamical system, in
the sense that every transition (s, a, s′) of M is contained in the dynamical system (note
that the opposite is not true: the dynamical system contains transitions that are not in
the MDP). We formalize this observation using the concept of probabilistic (bi)simulation,
originally proposed for probabilistic transition systems by Larsen and Skou (1991).

Bisimilar states. We claim that any two continuous states xk,x
′
k ∈ T−1(s) = Rs are

probabilistically bisimilar under the set of discrete actions Act(s). Intuitively, a sufficient
condition for states xk,x

′
k to be probabilistically bisimilar, is that the probability of transi-

tioning to any xk+1 ∈ Rs′ , s′ ∈ S is the same for all actions a ∈ Act(s) (Desharnais, Edalat,
& Panangaden, 2002). Mathematically, this is written as follows.

Corollary 1. Any two states xk,x
′
k ∈ T−1(s) = Rs are probabilistically bisimilar, because

for all actions a ∈ Act(s) and for all successor states s′ ∈ S, it holds that

Pwk
(xk+1 ∈ Rs′ | xk,uk(xk, a)) = Pwk

(
xk+1 ∈ Rs′ |x′

k,uk(x
′
k, a)

)
. (11)

The proof of Corollary 1 follows directly from Remark 4, which states that the density
function pwk

(xk+1 | xk,uk(xk, a)) dxk+1, and thus also its integral over any discrete region
of partitionR, is independent of the current state. Corollary 1 carries an important message:
we can abstract any continuous state xk ∈ Rs into a single MDP state s ∈ S without losing
any information about the probabilistic behavior of the model.

Probabilistic simulations. Second, we claim that our abstraction procedure creates
a probabilistic feedback refinement relation (and thus a probabilistic simulation relation;
see Hermanns, Parma, Segala, Wachter, & Zhang, 2011) from the generated MDP to the
dynamical system (Reissig, Weber, & Rungger, 2017; Haesaert, Soudjani, & Abate, 2017).5
Intuitively, a sufficient condition for such a relation to exist is that for any pair (x, s) of
related states, i.e., for which T (x) = s, and for all actions a ∈ Act(s), there exists a control
input u ∈ U such that the probability of transitioning to any state s′ in the MDP equals the
probability of transitioning to any x′ ∈ T−1(s′) = Rs′ in the dynamical system. Based on
the definition from Reissig et al. (2017),6 we mathematically write this condition as follows.

Corollary 2. The abstraction function T : Rn → S induces a probabilistic feedback refine-
ment relation from the MDP to the dynamical system, because T (x0) = sI (i.e., the initial
states match), and for any pair (xk, s) of states related as T (xk) = s, it holds that

∀a ∈ Act(s), ∀s′ ∈ S : P (s, a)(s′) =

∫
Rs′

pwk
(xk+1 | xk,uk(xk, a)) dxk+1. (12)

5. The latter article employs alternating approximate relations, rather than simulation relations. The
resulting refinement step is, however, very similar.

6. The definition in Reissig et al. (2017) also contains a condition for matching observations between the two
models, which we drop because we consider fully observable systems. Similarly, Haesaert et al. (2017) has
an error metric on observations that does not apply to our setting. We also expand the original definition
from non-probabilistic to probabilistic systems. Note that Corollary 2 defines sufficient conditions for a
feedback refinement relation, which are stricter than those in Reissig et al. (2017).
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Corollary 2 follows directly from Def. 5. Crucially, this probabilistic feedback refinement
relation implies that any reach-avoid problem satisfiable for the MDP is also satisfiable for
the dynamical system with the same probability bound (Hermanns et al., 2011).

4. Sampling-Based Probability Intervals

Recall that the probability density function pwk
(xk+1 | xk,uk(xk, a)) is unknown, making

a direct evaluation of Eq. (10) impossible. In this paper, we use a sampling-based method
to estimate the transition probabilities described in Eq. (10), which requires a finite set of
N observations of the process noise, w(i)

k ∈ ∆, i = 1, . . . , N . Each sample has a unique
index i = 1, . . . , N and is associated with a possible successor state x(i)

k+1 = da+w
(i)
k under

a particular action a. We assume that these samples are available from experimental data
or simulations. As such, we can generate these samples by inferring the process noise from
obtained state trajectories of the dynamical system in Eq. (1), or we may sample from the
noise distribution directly (e.g., if a simulator is available). Thus, in our setting, samples
of the noise can be obtained at a relatively low cost.

Recall that the process noise affecting Eq. (1) is considered to be independent and iden-
tically distributed (i.i.d.). Due to the importance of this practically reasonable assumption
to the arguments we develop in this section, we formally enshrine it in the following.

Assumption 3. The process noise wk is i.i.d., and we assume to have a collection of N
samples from it, which we denote by the discrete set w(i)

k ∈ ∆, i = 1, . . . , N .

Due to Assumption 3, the set w
(1)
k , . . . ,w

(N)
k of N samples is a random element from the

probability space ∆N equipped with the product probability PN and the product σ-algebra.

A frequentist approach to estimation. As an example, we want to estimate the prob-
ability P (s, a)(s′) that some enabled state-action pair (s, a) induces a transition to state
s′ ∈ S. A common approach to approximate the transition probability is to count the
number of samples N in

s′ ≤ N leading to a transition to state s′ and divide it by the total of
N samples. This approach is known as a frequentist approach, and is statistically justified
by the strong law of large numbers. Concretely, the value of N in

s′ is obtained as follows.

Definition 6. The cardinality N in
s′ ∈ {0, . . . , N} of the index set of the samples leading to

a successor state xk+1 ∈ Rs′ associated with MDP state s′ ∈ S is defined as

N in
s′ =

∣∣∣{i ∈ {1, . . . , N} | (da +w
(i)
k ) ∈ Rs′}

∣∣∣. (13)

Similarly, we define Nout
s′ = N −N in

s′ as the number of samples for which da +w
(i)
k /∈ Rs′.

Note that N in
s′ and Nout

s′ depend on both the set of noise samples w(1)
k , . . . ,w

(N)
k and on the

action taken. The frequentist approach is simple, but may lead to estimates that deviate
critically from their true values if the number of samples is limited (we illustrate this issue
in the UAV experiment in Sect. 6.2). In what follows, we discuss how to render our method
robust against such estimation errors.
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4.1 Sampling Techniques From the Scenario Approach
As a key contribution, we present a method based on the scenario approach (Campi &
Garatti, 2018) to compute intervals of probabilities instead of precise estimates. Specifically,
for every transition (s, a, s′), we compute an upper and lower bound, i.e., an interval, that
contains the quantity P (s, a)(s′) with a user-specified (high) confidence probability. We
formalize the resulting abstraction as an iMDP, where these intervals enter the uncertain
transition function P : S × Act × S ⇀ I. As the intervals are PAC, this iMDP is a robust
abstraction of the dynamical system.

Outline: PAC intervals for transition probabilities. Intuitively, we recast the es-
timation of transition probabilities into a convex optimization problem that includes a
constraint for each element of a subset of noise samples. To obtain PAC intervals on transi-
tion probabilities, we leverage recent results from Romao et al. (2022) on the probability of
constraint violation for such optimization problems. Crucially, we show that the problem
can be solved based on its geometry by an analytical counting argument. This counting
argument makes our approach applicable to abstractions with hundreds of millions of tran-
sitions, as we do not have to solve any optimization problem explicitly. Toward our main
result for computing probability intervals (which is presented in Theorem 1), we introduce
a number of core concepts of the scenario approach. Interestingly, due to the counting
argument, Theorem 1 does not directly involve these concepts (only its derivation does,
which we provide in Appendix A), so the reader may decide to skip directly to Sect. 4.2.

Risk of violation. First, we introduce the concept of risk (or violation probability), which
is a measure of the probability that a successor state xk+1 is not in a certain subset R̃ ⊂ Rn

upon choosing an action a ∈ Act(s) in state s ∈ S (Campi & Garatti, 2008).

Definition 7. The risk Pwk

(
xk+1 /∈ R̃ |xk,uk(xk, a)

)
that xk+1 is not in region R̃ is

Pwk

(
xk+1 /∈ R̃ |xk,uk(xk, a)

)
= P{wk ∈ ∆ : da +wk /∈ R̃}. (14)

Crucially, observe from Eq. (10) that the transition probability P (s, a)(s′) that we aim to
estimate is the complement of the violation probability over the fixed region Rs′ , i.e.,

P (s, a)(s′) = Pwk
(xk+1 ∈ Rs′ |xk,uk(xk, a)) = 1− Pwk

(xk+1 /∈ Rs′ |xk,uk(xk, a)) . (15)

Scenario optimization problem. The scenario approach enables us to bound the risk
over the feasible set of the optimal point of a so-called scenario optimization problem. Specif-
ically, we consider scenario problems with discarded constraints; see Campi and Garatti
(2011) for details. Roughly speaking, solving this problem amounts to finding, over a scalar
decision variable λ ∈ R+, a convex set Rs(λ) of minimal size that contains a particular num-
ber of successor state samples (shortly, we shall define the geometry of Rs(λ) in relation to
state s ∈ S and λ). Concretely, the optimization problem is given as

LQ : minimize
λ∈R+

λ (16)

subject to da +w
(i)
k ∈ Rs(λ) ∀i ∈ {1, . . . , N}\Q,
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Rs′

Rs′(1.2)

h̃s′

x(1)

x(2)

Figure 3: Polytope Rs′ of state s′ ∈ S
has a Chebyshev center h̃s′ (note that it
is not unique, as the circle can be shifted
while remaining within Rs′). Polytope
Rs′(1.2) is scaled by a factor λ = 1.2
and is computed using Eq. (17).

−2 −1 0 1 2

Rs′(λ
⋆
Nout

s′ −1
)

Rs′(λ
⋆
Nout

s′
)

Rs′

Figure 4: Bounding region Rs′ = [−1, 1] using
N = 10 successor state samples (Nout

s′ = 5).
Discarding Nout

s′ = 5 samples defines the red re-
gion Rs′(λ

⋆
Nout

s′
) ⊆ Rs′ ; discarding one less sam-

ple defines the blue region Rs′(λ
⋆
Nout

s′ −1
) ⊃ Rs′ .

where we explicitly write the dependency on the set Q ⊂ {1, . . . , N}, which is a subset of
samples whose constraints have been discarded. The optimal solution λ⋆

|Q| to problem LQ

parameterizes a feasible set Rs(λ
⋆
|Q|) over which we can bound the risk using the scenario

approach theory. However, to compute a transition probability P (s, a)(s′), we must shape
the feasible set such that Rs(λ

⋆
|Q|) is closely related to the fixed region Rs′ . As explained

below, we achieve this by 1) defining Rs(λ) as a scaled version of Rs, and 2) appropriately
choosing the subset of discarded samples Q.

Scaled polytopes. We define Rs(λ) as a version of polytope Rs ∈ R (recall from Sect. 3
that Rs is defined by matrix Ms and vector bs) which is scaled by a factor λ ≥ 0 relative to
a so-called Chebyshev center h̃s ∈ Rn (Boyd & Vandenberghe, 2014). As such, we obtain

Rs(λ) = {x ∈ Rn | Msx ≤ λ(bs + h̃s)− h̃s}. (17)

Note that Rs(1) = Rs, and that shifting by h̃s ensures that we are scaling around a point
that is by construction contained in Rs, such that Rs(λ1) ⊂ Rs(λ2) for every 0 ≤ λ1 < λ2.
A visualization of the scaling for an arbitrary region Rs′ ∈ R associated with a discrete
successor state s′ ∈ S is shown in Fig. 3. Note that, in this example, the Chebyshev center
is not unique since the circle can be shifted while remaining within Rs′ .

Set of discarded samples. Let us now determine the subset Q of samples whose con-
straints have been discarded from problem LQ. We obtain this set by iteratively removing
individual samples based on the following rule:

Proposition 1. The sample removal set Q ⊂ {1, . . . , N} is obtained by iteratively removing
the active constraints from Eq. (16). Thus, given N samples and any two removal sets with
cardinalities |Q1| < |Q2|, it holds that Q1 ⊂ Q2. Moreover, any discarded sample i ∈ Q

violates the solution λ⋆
Q to Eq. (16), i.e., da +w

(i)
k /∈ Rs′(λ

⋆
|Q|), with probability one.
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Intuitively, the successor state of a sample associated with an active constraint is on
the boundary of the optimal solution Rs′(λ

⋆
|Q|) of Eq. (16). Under the following non-

accumulation assumption, an active constraint exists and is unique, as long as |Q| < N
(i.e., not all samples have been discarded).
Assumption 4. Given a noise sample wk ∈ ∆, the probability that the successor state
xk+1 is on the boundary of any polytope Rs′(λ) is zero, for any s′ ∈ S and λ ∈ R+.
Note that Assumption 4 holds for most of the smooth probability distributions commonly
encountered in practice, e.g., Gaussian distributions, and is thus easily satisfied. Assump-
tion 4 implies that the solution to Eq. (16) is unique with probability one and that the
number of active constraints is equal to one (given N > 0 and |Q| < N), as samples
accumulate on the boundary of the polytope with probability zero.

Under/over-approximating regions. Recall from Def. 6 that Nout
s′ is the number of

samples leading to a successor state outside of region Rs′ for discrete state s′ ∈ S. The
following lemma uses Nout

s′ to define an under- or over-approximation of region Rs′ .
Lemma 1. When discarding |Q| = Nout

s′ noise samples as per proposition 1, it holds that
Rs′(λ

⋆
Nout

s′
) ⊆ Rs′. When discarding |Q| = Nout

s′ −1 samples, it holds that Rs′(λ
⋆
Nout

s′ −1
) ⊃ Rs′

Proof. proposition 1 states that at every step, we may only discard the sample of the active
constraint. By construction, after discarding |Q| = Nout

s′ samples, all remaining successor
state samples lie within Rs′ , so λ⋆

Nout
s′
≤ 1, so Rs′(λ

⋆
Nout

s′
) ⊆ Rs′ . When we discard one less

sample, i.e., |Q| = Nout
s′ − 1, we must have one sample outside of Rs′ , so λ⋆

Nout
s′ −1

> 1,
meaning that Rs′(λ

⋆
Nout

s′ −1
) ⊃ Rs′ . This concludes the proof.

Intuitively, Rs′(λ
⋆
Nout

s′
) contains exactly those samples in Rs′ , while Rs′(λ

⋆
Nout

s′ −1
) additionally

contains the sample closest outside of Rs′ , as visualized in Fig. 4 for a 1-dimensional example.
By using the scenario approach theory to bound the risk over these regions, we can thus
also obtain bounds on the transition probability P (s, a)(s′), as per Eq. (15).

4.2 Bounds for the Transition Probabilities
Based on the techniques from the scenario approach introduced above, we state the main
contribution of this section, as a non-trivial variant of Romao et al. (2022, Theorem 5),
adapted to our new context. Specifically, for a given transition (s, a, s′) and the resulting
number of samples Nout

s′ outside of region Rs′ (as per Def. 6), Theorem 1 returns an interval
[
¯
p, p̄] that contains P (s, a)(s′) with at least a pre-defined confidence probability (1− β).
Theorem 1 (PAC probability intervals). For N ∈ N samples of the noise, fix a confidence
parameter β ∈ (0, 1). Given Nout

s′ , the transition probability P (s, a)(s′) is bounded by

PN
{
¯
p ≤ P (s, a)(s′) ≤ p̄

}
≥ 1− β, (18)

where
¯
p = 0 if Nout

s′ = N , and otherwise
¯
p is the solution of

β

2N
=

Nout
s′∑

i=0

(
N

i

)
(1−

¯
p)i

¯
pN−i, (19)
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and p̄ = 1 if Nout
s′ = 0, and otherwise p̄ is the solution of

β

2N
= 1−

Nout
s′ −1∑
i=0

(
N

i

)
(1− p̄)ip̄N−i. (20)

We present the proof in Appendix A. Theorem 1 states that, with a probability of at least
1 − β, the probability P (s, a)(s′) is bounded by the obtained interval [

¯
p, p̄]. Importantly,

this claim holds for any ∆ and P (given the previous assumptions), so we can bound the
probability in Eq. (10), even when the probability distribution of the noise is unknown.

Remark 6 (Beta distribution). Note that Eqs. (19) and (20) are cumulative distribution
functions of a beta distribution with parameters Nout

s′ + 1 (or Nout
s′ ) and N − Nout

s′ (or
N−Nout

s′ −1), respectively (Campi & Garatti, 2018), which can directly be solved numerically
for

¯
p or p̄ up to arbitrary precision. To speed up the computations at run-time, we apply a

tabular approach to compute the intervals for all relevant values of N , β, and Nout
s′ upfront.

Counting argument. As explained in Appendix A, the proof of Theorem 1 is based on
the solutions to a set of N optimization problems. Interestingly, as also shown in the proof,
we can solve these optimization problems analytically based on their geometry. As a result,
Theorem 1 only requires the sample count Nout

s′ , the total number of samples N , and the
confidence parameter β, which are all quantities that are independent of the solutions to
these optimization problems. Remarkably, this implies that we can compute PAC probability
intervals without solving any optimization program explicitly using a solver. Since we
only need the values of Nout

s′ , N , and β, our method is in practice almost as simple as
the frequentist approach but has the notable advantage that we obtain robust intervals of
probabilities. As shown in our experiments in Sect. 6, this means we can use our abstraction
procedure to generate iMDPs with hundreds of millions of transitions.

4.3 Tightness of Probability Intervals
Let us now explore the tightness of the obtained probability intervals. We can interpret a
transition probability P (s, a)(s′) as the probability of a Bernoulli random variable. In this
context, we may use Hoeffding’s inequality, a well-known concentration inequality, to infer
PAC bounds on this probability (Boucheron, Lugosi, & Massart, 2013). In particular, given
N successor state samples of which N in

s′ are contained in region Rs′ , Hoeffding’s inequality
states that, for a pre-defined β ∈ (0, 1), it holds that

PN

{
N in

s′

N
− ε ≤ P (s, a)(s′) ≤

N in
s′

N
+ ε

}
≥ 1− β, (21)

where ε =
√

1
2N log( 2β ). In what follows, we evaluate the tightness of our intervals obtained

from Theorem 1, versus those obtained from Hoeffding’s inequality.

Number of noise samples N . To illustrate how the choice for the number of samples N
affects the tightness of the intervals, consider a system with a 1-dimensional state xk ∈ R,
where the probability density function pwk

(xk+1 | xk,uk(xk, a)) for a specific action a ∈ Act
with target point da is given by a uniform distribution over the domain [−4, 4]. For a
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Figure 5: Probability intervals (with stan-
dard deviation) obtained from Theorem 1
versus Hoeffding’s inequality, with β = 10−3

or 10−9 on a transition with a true proba-
bility of 0.25 (note the log scale).
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Figure 6: Probability intervals obtained
from Theorem 1, with β = 10−9 and dif-
ferent values for Nout

s′ ∈ [0, N ], versus prob-
ability intervals obtained from Hoeffding’s
inequality for the same value of β.

given region Rs′ = [−1, 1] (also shown in Fig. 4), we want to evaluate the probability
that xk+1 ∈ Rs′ , which is 0.25. To this end, we apply Theorem 1 for different numbers
of samples N ∈ [25, 12 800] and a confidence level of β = 10−3 or 10−9. The obtained
probability bounds are random variables through their dependence on the samples, so we
repeat each experiment 100 000 times, resulting in the probability intervals shown in Fig. 5.
We observe that the uncertainty in the transition probability is reduced by increasing the
number of samples. Moreover, the lower bounds obtained from Theorem 1 are better than
those obtained from Hoeffding’s inequality, while the converse holds for the upper bounds.

Sample count Nout
s′ . To explain why Theorem 1 yields tighter lower bounds, while Ho-

effding’s inequality yields tighter upper bounds, we plot in Fig. 6 the resulting proba-
bility intervals for N = 800 samples and different values of Nout

s′ ∈ [0, N ] (recall that
N = Nout

s′ + N in
s′ ). We observe our scenario-based approach results in significantly tighter

intervals for values of Nout
s′ close to 0 and N . On the other hand, Hoeffding’s inequality

leads to slightly better intervals for moderate values of Nout
s′ around N

2 . As observed from
Eq. (21), Hoeffding’s inequality yields bounds given by the sample mean N in

s′ , plus or minus
a fixed value of ε which is independent of the sample mean. This property explains why
Hoeffding’s inequality leads to poor probability intervals if the probability P (s, a)(s′) is
close to zero or one.

4.4 iMDP Abstractions With PAC Guarantees
We describe how we apply Theorem 1 to solve the overall problem statement. Since the
process noise is independent of the state and time, we require only N samples in total.7 We

7. If the noise distribution is time-varying, the transition probabilities are time-dependent. In this case, we
have at most |Act|·|S|·K unique probabilities and must use N noise samples for each step k = 0, . . . ,K−1.
For finite-horizon properties, adapting our abstraction method for this case is straightforward.
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pwk
(xk+1 | xk,uk(xk, a))

xkx̂k+1 = da

Pwk
(xk+1 ∈ Rs′1

) Pwk
(xk+1 ∈ Rs′2

) Pwk
(xk+1 ∈ Rs′3

)

N in
s′ : 34 18 42

Nout
s′ : 66 82 58

[
¯
p, p̄]: [0.174, 0.538] [0.063, 0.363] [0.239, 0.617]

N in
s′ /N : 0.34 0.18 0.42

Figure 7: Bounds [p, p̄] on the probabilities P (s, a)(s′) for 3 regions using N = 100 sam-
ples (black ticks) and β = 0.01. The probability density function over successor states is
pwk

(xk+1 | xk,uk(xk, a)). Point estimate probabilities are computed as N in
s′ /N .

can use the same samples to compute multiple intervals by shifting these samples by the
appropriate target point da of each action a ∈ Act. Recall from Remark 5 that the abstract
MDP has at most |Act| · |S| unique transition probabilities. For every unique probability,
we determine the successor state samples x(1)

k+1, . . . ,x
(N)
k+1 under the N samples of the noise.

For every possible successor state s′ ∈ S, we then determine Nout
s′ and invoke Theorem 1

to compute the PAC bounds on P (s, a)(s′) that hold for every s ∈ S. Fig. 7 shows this
process, where every tick is a successor state xk+1 under a noise sample. This figure also
shows point estimates of the probabilities derived using the frequentist approach. If no
samples are observed in a region, we assume that P (s, a)(s′) = 0.

Theorem 2. Given a dynamical system in Eq. (1), generate an iMDP abstractionMI, and
compute the robust reach-avoid probability Pr¯

π⋆
(φK

sI
) under the optimal policy

¯
π⋆. Under

the controller ϕ that applies control inputs according to Eq. (8) for each k < K, it holds that

Pr¯
π⋆
(φK

sI
) ≥ η =⇒ PN

{
Prϕ(φK

x0
) ≥ η

}
≥ 1− α, (22)

where α = β · |Act| · |S| upper bounds the number of unique probability intervals.

Proof. Denote by P : S × Act × S ⇀ I ∪ {[0, 0]} the uncertain transition function of the
generated iMDP, and denote by P : S × Act ⇀ Dist(S ) the unknown transition function,
defined by Eq. (10), of the underlying MDP. For each a ∈ Act and s′ ∈ S, it holds that

PN
{
P (s, a)(s′) ∈ P(s, a, s′), ∀s ∈ S

}
≥ 1− β. (23)

Recall from Remark 5 that the iMDP has at most |Act| · |S| unique probability intervals.
Using Boole’s inequality,8 we thus obtain the following correctness guarantee for the iMDP:

PN
{
P (s, a)(s′) ∈ P(s, a, s), ∀s, s′ ∈ S, a ∈ Act

}
= PN {P ∈ P} ≥ 1− α, (24)

8. Boole’s inequality (or the union bound) says that the probability that at least one of a finite set of events
happens, is upper bounded by the sum of the probabilities of these events (Casella & Berger, 2021).
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where α = β · |Act| · |S|. Next, observe that for any MDP instantiation P ∈ P , it holds
by construction of Eq. (4) that Pr¯

π⋆
(φK

sI
) ≤ Prπ

⋆
(φK

sI
). Moreover, Corollary 2 asserts

that Prπ
⋆
(φK

sI
) = Prϕ(φK

x0
) (the reach-avoid probability on the abstract MDP equals the

reach-avoid probability on the dynamical system), so we obtain

PN
{
Pr¯

π⋆
(φK

sI
) ≤ Prϕ(φK

x0
)
}
≥ 1− α. (25)

Letting Pr¯π
⋆
(φK

sI
) ≥ η, we arrive at the implication in Eq. (22), so we conclude the proof.

We remark that the tightness of Eq. (22) in Theorem 2 depends on the value of α,
which in turn depends on the size of the generated iMDP (through |S| and |Act|), and the
confidence level β. For large iMDPs, one must choose a stronger confidence level (i.e., β
closer to zero), to obtain an informative bound 1− α, which is close to one. The following
corollary provides a tighter bound if the iMDP is generated in a very specific manner.

Corollary 3. If the iMDP in Theorem 2 is generated under a uniform rectangular partition
R (i.e., a grid) into ri regions in each dimension i = 1, . . . , n of the state space Rn, and
with one action a ∈ Act per region R ∈ R whose target point da is the center of R, then
the confidence parameter becomes α = β

(∏n
i=1(2ri − 1) + |Act|

)
.

The proof of Corollary 3 is provided in Appendix B and is analogous to the proof of The-
orem 2, with the only difference that the number of unique probability intervals is reduced.
The key observation is that transition probabilities P (s, a)(s′) of the abstraction are defined
by the relative position Rs′ −da between region Rs′ and target point da. In particular, the
corollary exploits the symmetry between the partition and the target points, which reduces
the number of unique transition probabilities significantly and leads to stronger confidence
levels compared to Theorem 2.

5. Overall Robust Control Algorithm
In Sects. 3 and 4, we have introduced tools for generating an iMDP abstraction of the
dynamical system in Eq. (1), which is correct with a user-specified confidence probability.
We now discuss in more detail how we use these tools to solve the overall problem statement
posed in Sect. 2.2. Recall that our approach, shown in Fig. 1, consists of an offline and an
online phase. In what follows, we present an algorithm for both phases.

5.1 Offline Planning Phase
The offline planning phase is presented in Algorithm 1. We first generate an MDP abstrac-
tion by defining its states S, actions Act, and initial state sI ∈ S (line 1). For each state
s ∈ S, we compute the set Act(s) of enabled actions (line 2) and define the initial values
for the sample size N and for the reachability probabilities (line 3). Recall that computing
the transition probabilities of this MDP is not possible, so we instead compute intervals of
probabilities and formalize the abstract model as an iMDP instead.

We then enter the iterative part of our approach. We first obtain N samples of the noise
(line 5). Recall from Sect. 4 that we can obtain these samples by inferring the process noise
from previously generated state trajectories of the dynamical system or by sampling the
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Algorithm 1 Offline planning (generate iMDP and compute optimal policy)
Input: Linear dynamical model; property φK

sI
with probability threshold η

Params: Partition R; confidence lvl. β; increment factor γ
Output: Optimal policy

¯
π∗

1: Define states S, actions Act, and initial state sI = T (xk)
2: Define enabled actions Act(s) ⊆ Act for all s ∈ S

3: Set initial values: N = N0, Pr¯π
⋆
(φK

sI
) = 0, Pr π̄

⋆

(φK
sI
) = 1

4: while Pr¯
π⋆
(φK

sI
) < η ≤ Pr

π̄⋆

(φK
sI
) do

5: Obtain N samples w(1)
k ,w

(N)
k ∈ ∆

6: for all actions a in Act do
7: for all successor states s′ in S do
8: Compute [

¯
p, p̄] by applying Theorem 1 for N , Nout

s′ , and β
9: Let P(s, a, s′) = [

¯
p, p̄] ∀s ∈ S such that a ∈ Act(s)

10: end for
11: end for
12: Store iMDPMI = (S,Act, sI ,P)
13: Compute

¯
π∗, Pr¯π

⋆
(φK

sI
), and Pr

π̄⋆

(φK
sI
) onMI using PRISM

14: Let N = γN
15: end while
16: if η > Pr

π̄⋆

(φK
sI
) then

17: return Unsatisfiable
18: else
19: return optimal policy

¯
π∗

20: end if

noise distribution directly using a simulator. For every action a ∈ Act and successor state
s′ ∈ S, we compute a PAC transition probability interval [

¯
p, p̄] using Theorem 1 (line 8).

These intervals are used to define the transition function P of the abstract iMDP (line 9).
Recall from Sect. 2.4 that for the resulting iMDP (stored in line 12), we leverage PRISM

to obtain the optimal policies that maximize lower and upper bounds on the reach-avoid
probability using Eqs. (4) and (5) (line 13). If the maximum lower bound reach-avoid
probability Pr¯

π⋆
(φK

sI
) under this policy is above the required threshold η, then the algorithm

returns the optimal policy
¯
π⋆ and proceeds to the online control phase. Otherwise, if

Pr¯
π⋆
(φK

sI
) < η but the problem is still satisfiable (i.e., Pr π̄

⋆

(φK
sI
) ≥ η) we obtain additional

samples by increasing N by a fixed factor γ > 1 (line 14) and repeat the while loop. If
instead, it holds that Pr π̄

⋆

(φK
sI
) < η, the reach-avoid problem is not satisfiable for any MDP

instantiated by P ∈ P . In this case, the algorithm terminates without returning a policy.
The main computational complexity of Algorithm 1 lies within the double for loop. In

particular, generating one iMDP abstraction9 (lines 5-12 of Algorithm 1) has the following
complexity with respect to the numbers of states |S| and actions |Act| (which are directly
controlled through the partitioning of the state space), and the number of noise samples N .

9. Verifying iMDPs can be done in polynomial time, and we refer to Puggelli et al. (2013) for details.
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Algorithm 2 Online control (on-the-fly controller synthesis)
Input: Optimal policy

¯
π∗; initial state x0; property φK

x0

Output: SAT (Boolean)
1: Let k = 0
2: while k ≤ K do
3: if xk ∈ XG then
4: return SAT = True
5: else if xk ∈ XC then
6: return SAT = False
7: else
8: Let optimal action a∗ =

¯
π∗(s, k) for state s = T (xk)

9: Compute control input uk(a∗) using Eq. (8)
10: Sample state xk+1 ∼ pwk

(xk+1 | xk,uk(a))
11: end if
12: k = k + 1
13: end while
14: return SAT = False

Theorem 3 (Complexity of generating abstractions). The worst-case complexity of gener-
ating one iMDP abstraction using Algorithm 1 is O

(
N · |Act|+ |S|2 · |Act|

)
.

Proof. For every action a ∈ Act, we must check for each state s ∈ S if a is enabled in s,
leading to O

(
|S| · |Act|

)
operations. Next, for each action a ∈ Act, we must determine for

each of the N samples to which state it belongs, leading to O
(
N · |Act|

)
, and subsequently,

we compute for each action a ∈ Act and successor state s′ ∈ S the probability interval [
¯
p, p̄],

leading to O
(
|Act| · |S|

)
. Finally, we store each transition of the iMDP, which has at most

|S|2 · |Act| transitions. By summing these contributions and only keeping the highest order
terms, we obtain the order of complexity in Theorem 3 and conclude the proof.

We remark that the number of states |S| and |Act| depend on the partition and target
points used to generate the abstraction; see Sect. 3 for details. For example, under the
rectangular partitioning described by Corollary 3, the number of states is |S| =

∏n
i=1+1

and the number of actions is |Act| =
∏n

i=1. This result shows that our abstraction pro-
cedure (like any other discretization-based technique) suffers from the well-known curse of
dimensionality (Lavaei et al., 2022), i.e., the complexity is exponential in the dimension n
of the continuous state space Rn.

5.2 Online Control Phase

In the online control phase, we synthesize a controller for the dynamical system on the fly,
based on the policy

¯
π⋆ returned by Algorithm 1. Recall that this policy is a time-varying

map from iMDP states to actions. Intuitively, we translate the policy to a time-varying
feedback controller that is piece-wise linear (namely, linear in the state xk within each
region of the partition). Concretely, at each time step, we use Def. 4 to determine the
current iMDP state s = T (xk) to which the continuous state xk belongs, and then retrieve
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the optimal action a⋆ =
¯
π⋆(s, k) from the policy (line 8). We compute the associated control

input using Eq. (8), which is valid by construction, followed by sampling the successor state
xk+1 (lines 9-10). The algorithm returns SAT = True if the goal region is reached within K
steps (i.e., the reach-avoid problem is satisfied), while it returns SAT = False if either the
critical region is reached or the system fails to reach the goal region within K steps.

Remark 7 (Backup controller). The controller obtained via Algorithm 1 only yields control
inputs for states in the bounded portion of the state space X = Rn \ R∗, which is covered
by the partition R. To alleviate this conservatism, one may additionally design a backup
controller, which is activated upon leaving X and aims to return the state xk to the bounded
portion X for which the controller generated control inputs. In the abstract iMDP, visiting
the absorbing state s∗ (which corresponds to the absorbing region R∗ = Rn) means that
the reach-avoid property is violated by definition. As such, deploying the backup controller
can only increase the probability Prϕ(φK

x0
) of satisfying the reach-avoid property, and thus,

Theorem 2 still holds regardless of the designed backup controller.

5.3 Reducing the Complexity of the iMDP Policy Synthesis
The iMDP abstractions generated using our approach can potentially have hundreds of
millions of transitions, especially if the state dimension is high (see Tables 1 and 2). The
main bottleneck that leads to such large models, is that the number of transitions in the
iMDP is (worst-case) quadratic in the number of states, and linear in the number of actions.
Indeed, note that Algorithm 1 consists of a double for-loop, enumerating over both the set
of actions and the set of states, which can thus be expensive.

To alleviate this limitation, we develop an improved policy synthesis scheme that reduces
the complexity of the Bellman iterations required to compute the optimal policy over the
iMDP.10 This scheme is sound, in the sense that the maximum lower bound reach-avoid
probability Pr¯

π⋆
(φK

sI
) that we obtain under the proposed scheme can be more conservative,

but the correctness guarantee in Theorem 2 still holds. In practice, instead of working
with one large abstraction across the whole horizon of the reach-avoid property, we work
with a smaller iMDP at each time step, by merging states that are associated to similar
reach-avoid probabilities computed via the Bellman iterations. In what follows, we first
explain how we generate and verify this reduced model for a single time step, by merging
(aggregating) states with similar reach-avoid probabilities. Thereafter, we describe how we
iterate backward over the whole time horizon, as needed to synthesize the policy.

Remark 8 (Restriction to finite horizons). As the improved policy synthesis scheme unfolds
the iMDP over each time step, the scheme is only applicable to finite-horizon properties.

State aggregation for a single time step. As an illustrative example, consider the
iMDP in Fig. 8, which consists of four states: s1 is a goal state, s4 is a critical state, and
s2 and s3 are neither. Recall that K denotes the time horizon of the reach-avoid property.
If we are at time step k = K − 1 (i.e., only one action to go), the only way to satisfy the
reach-avoid problem is to reach state s1. In other words, the reward (being the probability

10. While the proposed scheme reduces the complexity of computing optimal policies on the iMDP, it does
not alleviate the complexity stated in Theorem 3 for generating abstractions.

363



Badings, Romao, Abate, Parker, Poonawala, Stoelinga & Jansen

s1
1.00

s2
0.00

s3
0.00

s4
0.00

s1
1.00

s2
0.92

s3
0.80

s4
0.00

s1
1.00

s2
0.98

s3
0.96

s4
0.00

k = Kk = K − 1k = K − 2

· · ·

· · ·

· · ·

· · ·

1.00

0.00

0.92

0.80

0.00

0.96

0.00

Iteration 1
Iteration 2

Figure 8: The improved policy synthesis scheme (for clarity, we have omitted actions), in
which we merge states based on their lower bound reach-avoid probabilities, computed by
Eq. (4) (shown for ρ = 10 here). These probabilities are shown within the nodes of each
state, while merged states are shown as dotted regions with their lower bound reach-avoid
probability written above. If a state has multiple outgoing transitions to the same merged
state, e.g., s4 at time k = K− 1, we replace these transitions with a single transition whose
probability interval is computed as the sum over the original lower/upper bounds.

of satisfying the reach-avoid property) of reaching state s1 is one, while the reward of the
other states is zero. Based on this intuition, we can merge states {s2, s3, s4} as a single
successor state in the iMDP (at the final time step, it does not matter if we end up in a
critical state or in any other non-goal state: the property is not satisfied in either case).
More generally, we partition the iMDP states into ρ ∈ N discrete bins, based on their lower
bound reach-avoid probability. For example, if we choose ρ = 100 (bins of size 1%), then we
have at most 100 successor states, which is often significantly less than the term |S| in the
original scheme. The reach-avoid probability of a merged state is the minimum of the lower
bound reach-avoid probabilities of the original states it is comprised of. The probability
interval [

¯
p, p̄] of transitioning under state-action pair (s, a) to merged state comprised of a

subset of states M ⊂ S is the union of the intervals over all states in M :

¯
p =

∑
s′∈M

P(s, a, s′)low, p̄ =
∑
s′∈M

P(s, a, s′)up, (26)

where P(s, a, s′)low and P(s, a, s′)up denote the lower and upper bounds of these intervals.

Iterating backward over multiple time steps. Given the state aggregation described
above for a certain time step, e.g., k = K, we can compute the maximum lower bound
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reach-avoid probabilities Pr¯π
⋆
(φK

sI
) and the corresponding optimal policy

¯
π⋆ at time K−1.

For each state s ∈ S, we store the optimal action of the policy as
¯
π⋆(s,K − 1). We then

go one step backward in time (according to Bellman iterations) and create another state
aggregation over the time steps k = K − 2 to K − 1. We again partition the range of
reach-avoid probabilities (this time those at time k = K−1) into ρ discrete bins and merge
the successor states accordingly. As shown in Fig. 8, we thus iterate backward in time
to compute the optimal policy and lower bound reachability probabilities, until we have
reached the initial time step of k = 0, and thus have computed the whole policy

¯
π⋆.

Soundness of the improved scheme. Due to the optimal policy being a Markovian
mapping from the state and time step, we can decompose the policy synthesis into individual
time steps by iterating backward in time. Theorem 2 is preserved under the improved policy
synthesis scheme due to two reasons: 1) the partitioning of states based on their lower
bound reach-avoid probabilities leads to an under-approximation of the actual reach-avoid
probabilities, and 2) summing up the probability intervals over merged states preserves
the original PAC guarantees on the original abstract model. However, under the proposed
scheme, the number of unique intervals increases linearly with the time horizon K. In
particular, the iMDPs for all K steps combined have at most |Act|ρK unique probability
intervals (rather than |Act| · |S|, cf. Remark 5). Hence, under the proposed scheme, we
change the confidence parameter in Theorem 2 to α = βρK · |Act|. Under this modification
of the confidence parameter, the proposed scheme is sound.

Using ρ as a tuning parameter. Under the proposed scheme, ρ is a tuning parameter
that provides a trade-off between the size of the state space obtained from the iMDPs, versus
the level of conservatism in the obtained reach-avoid guarantees introduced by aggregating
states. A typical choice for the tuning parameter ρ is ρ = 100 (i.e., partitioning states
based on their lower bound reach-avoid probabilities with a precision of 1% in reach-avoid
probability). If |S| > ρK, then the worst-case number of transitions under the proposed
improved policy synthesis scheme is lower than the worst-case number of transitions under
the original scheme. However, even if this condition is not satisfied, the improved scheme
may be beneficial, because the memory requirements for solving the original iMDP can be
excessively large, as demonstrated in the satellite rendezvous benchmark in Sect. 6.1.

6. Numerical Examples

We implement our iterative abstraction method in Python, and tailor the model checker
PRISM (Kwiatkowska et al., 2011) for iMDPs to compute robust optimal policies. At
every iteration, the obtained iMDP is fed to PRISM, which computes the optimal policy
associated with the maximum reach-avoid probability, as per Eq. (4). Our code is available
via https://github.com/LAVA-LAB/DynAbs, and all experiments are run on a computer
with 32 3.7GHz cores and 64 GB of RAM. We report the performance of our method on:
(1) a UAV motion control, (2) a building temperature regulation, and (3) a new satellite
rendezvous benchmark, which was not in the earlier paper by Badings et al. (2022a). In
addition, we benchmark our method against SReachTools and StocHy, which are two other
tools for controller synthesis based on formal abstractions. Finally, we demonstrate the
applicability of our techniques to infinite-horizon properties.
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Figure 9: State trajectory for the satellite
benchmark (N = 3200 with improved pol-
icy synthesis scheme). The chaser satellite
(white) must navigate to the target (green)
while not colliding with the one in red.

Figure 10: UAV reach-avoid problem (goal
in green; obstacles in red), plus trajectories
under the optimal iMDP-based controller
from initial state x0 = [−14, 0, 6, 0,−6, 0]⊤,
under high and low turbulence.

6.1 Satellite Rendezvous Problem

We consider the satellite benchmark problem from Jewison and Erwin (2016). More specif-
ically, we consider phase 1 of their satellite rendezvous problem, in which a chaser satel-
lite needs to dock with a target satellite while being in orbit. The relative motion of the
chaser satellite with respect to the target is modeled by the so-called Clohessy-Wiltshire-Hill
(CWH) equations (Clohessy & Wiltshire, 1960). We present the full 6-dimensional linear
dynamical system in Appendix C.1. Notably, we partition the 6-dimensional state space
into 11×23×5×5×5×5 = 158 125 discrete regions and define the same number of actions.
We define a time horizon of K = 16 steps, which becomes 8 steps after grouping every
two discrete time steps as described in Sect. 3; see Appendix C.1 for details. The original
problem from Jewison and Erwin (2016) is a reachability problem, which we extend to a
reach-avoid problem by adding a third satellite that must be avoided (as shown in Fig. 9).
We assume that this third satellite is located between the chaser and target satellite and
has a fixed position in the CWH frame, yielding a stationary critical region.11

Correct-by-construction control with PAC guarantees. First, let us show how to
use Theorem 2 in practice to determine the confidence parameter β needed on individual
transition probabilities to solve the overall problem statement with a desired confidence
probability. We choose an overall confidence probability of 1 − α = 0.95. Since we use
a uniform rectangular partition of the state space, we can use Corollary 3 to compute
the corresponding confidence parameter β on individual transitions. For this particular
experiment, we find that a confidence parameter of β = α

(22−1)(46−1)(10−1)4+158,125
= 7.86×

10−9 is sufficient to obtain an overall confidence of 1− α = 0.95.

11. Note that, in principle, we can also model moving obstacles (or goal regions) by modeling time explicitly
in the iMDP abstraction and changing the set of critical (goal) regions at each time step.
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Table 1: Model sizes and run times for the spacecraft benchmark, with N = 3200 and
20 000 noise samples, and either the default abstraction scheme (which generates a single
iMDP) or the improved policy synthesis scheme proposed in Sect. 5.3 (which generates an
iMDP for every time step k = 0, . . . ,K of the property horizon, of which we show every
second step in the table). The default scheme with N = 20 000 leads to a memory overflow.

iMDP size Run times [s]
N Policy synthesis scheme Transitions Comp. intervals Write iMDP Compute

¯
π∗

3.2k Default (Single iMDP) 338 847 144 301.23 1103.87 1040.42
3.2k Improved synthesis k = 8 813 724 249.46 82.79 136.41

scheme k = 6 26 892 509 29.39 160.64 163.73
k = 4 43 868 194 31.80 212.21 180.77
k = 2 51 816 689 34.85 251.02 195.52

20k Default (Single iMDP) 560 426 004 – – –
20k Improved synthesis k = 8 1 156 654 1654.64 86.61 142.70

scheme k = 6 31 914 917 142.52 188.10 177.27
k = 4 52 517 316 144.88 253.31 193.56
k = 2 62 934 064 148.10 286.33 203.09

Improved policy synthesis scheme solves larger problems. We apply our method
with N = 3200 and 20 000 samples, either with or without the improved policy synthesis
scheme proposed in Sect. 5.3. One simulated state trajectory of the dynamical system
(N = 3200 and with the improved synthesis scheme enabled) is shown in Fig. 9. The
figure shows that the chaser satellite (in white) is indeed able to navigate to the target (in
green) without colliding with the third satellite shown in red. For this particular case, the
reach-avoid guarantee on the iMDP is Pr¯π

⋆
(φK

sI
) = 0.56, while the empirical satisfaction of

the reach-avoid property (obtained via Monte Carlo simulations) is 0.74.12

The number of transitions (s, a, s′) of the iMDPs and the run times for all cases are
presented in Table 1. The time to compute the states and (enabled) actions is around
30min and is equal for all cases. Under the default synthesis scheme, we generate a single
iMDP over the whole horizon of the reach-avoid property, resulting in very large iMDPs
of about 338 and 560 million transitions for N = 3200 and 20 000, respectively. In the
latter instance, the default policy synthesis scheme failed due to a memory overflow (note
that we used 64 GB of RAM). By contrast, the improved policy synthesis scheme, which
generates a significantly smaller iMDP for each time step k = 0, . . . ,K of the horizon, is
able to solve both cases, even though the total run time (over all iterations k = 0, . . . ,K)
for N = 3200 is around 20% higher than with the default scheme. As shown in Table 1,
the size of the iMDPs under the improved synthesis scheme increase per iteration, since
there is more variety among the reach-avoid probabilities, and thus we can aggregate fewer
states. Nevertheless, the results show that with the improved policy synthesis scheme, we
can solve reach-avoid problems leading to iMDPs that would otherwise be infeasibly large.

12. Note that we have deliberately chosen a high process noise strength in this benchmark, leading to
relatively lower reach-avoid probabilities.
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Figure 11: Reach-avoid guarantees on the iMDPs (blue) and MDPs (orange) for their
respective policies, versus the resulting empirical (simulated) performance (dashed lines) on
the dynamical system. Shaded areas show the standard deviation across 10 iterations. The
empirical performance obtained from the MDPs violates the guarantees, whereas that from
the iMDPs does not.

6.2 UAV Motion Planning

We consider the reach-avoid problem for a UAV operating under turbulence, which was
introduced in Sect. 1. The goal is to compute a controller that guarantees (with high
confidence) that the probability to reach a goal area while also avoiding unsafe regions,
is above a performance threshold of η = 0.75. We consider a horizon of 64 time steps,
and the problem layout is displayed in Fig. 10, with the goal and unsafe regions shown in
green and red, respectively. We model the UAV as a system of 3 double integrators (see
Appendix D for details). The state xk ∈ R6 encodes the position and velocity components,
and control inputs uk ∈ R3 model actuators that change the velocity. The effect of tur-
bulence on the state causes (non-Gaussian) process noise, which we model using a Dryden
gust model (Bøhn, Coates, Moe, & Johansen, 2019; Dryden, 1943). We compare two cases:
1) a low turbulence case, and 2) a high turbulence case. We partition the state space into
25 515 regions, using Theorem 1 with β = 0.01, and apply the iterative scheme with γ = 2,
starting at N = 25, with an upper bound of 12 800 samples.

Scalability. We report the model sizes and run times in Appendix D.2. The number
of iMDP states equals the size of the partition. Depending on the number of samples N ,
the iMDP has 9 − 24 million transitions. The mean time to compute the set of iMDP
actions (which is only done in the first iteration) is around one minute.13 Computing the
probabilities plus the verification in PRISM takes 1 − 8min, depending on the number of
samples N .

13. We exploit the block-diagonal structure of matrices A and B of the dynamical system to speed up
the computation of the enabled state-action pairs. In particular, we can do all necessary reachability
computations separately in the spatial (x, y, z) dimensions and compose the full iMDP afterward.

368



Robust Control for Dynamical Systems with Non-Gaussian Noise

18 19 20 21 22

18

19

20

21

22

18 19 20 21 22 18 19 20 21 22

Temp. zone 1 (°C) Temp. zone 1 (°C) Temp. zone 1 (°C)

1.0

0.8
0.6

0.4

0.2

0.0

N = 50 N = 200 N = 800
Te

m
p.

 z
on

e 
2 

(°
C

)

Figure 12: Cross section (for radiator temp. of 38 °C) of the maximum lower bound proba-
bilities to reach the goal of 20 °C from any initial state, for either 50, 200 or 800 samples.

Accounting for noise matters for probabilistic safety. In Fig. 10, we show state
trajectories under the optimal controller derived from the optimal iMDP policy, under high
and low turbulence (noise). Under low noise, the controller prefers the short but narrow
path; however, with the high noise level, the longer but safer path is preferred since the risk
of colliding with an obstacle is too high. Thus, accounting for process noise is important to
obtain controllers that are safe.

iMDPs yield safer guarantees than MDPs. To show the importance of using robust
abstractions, we compare, under high turbulence, our robust iMDP approach against a naïve
MDP abstraction. This MDP has the same states and actions as the iMDP, but uses precise
probabilities, which are computed using the frequentist approach introduced in Sect. 4. The
maximum reach-avoid probabilities (guarantees) for both methods are shown in Fig. 11.
For every value of N , we apply the resulting controllers to the dynamical system in Monte
Carlo simulations with 10 000 iterations, to determine the empirical reach-avoid probability
as the fraction of trajectories that satisfies the reach-avoid property. Fig. 11 shows that
the non-robust MDPs yield poor and unsafe performance guarantees: the actual reach-
avoid probability of the controller on the dynamical system is much lower than the reach-
avoid guarantees obtained from PRISM. By contrast, our robust iMDP-based approach
consistently yields safe lower bound guarantees on the actual performance of controllers.
The performance threshold of Pr¯π

⋆
(φK

sI
) ≥ 0.75 is guaranteed for N = 3200 and higher.

6.3 Building Temperature Regulation

Inspired by Cauchi and Abate (2018), we consider a temperature control problem for a
building with two rooms, both having their own radiator and air supply. The reach-avoid
goal is to maximize the probability to reach a temperature within 19.8−20.2°C in both zones
within 32 steps of 15 minutes each, while avoiding temperatures below 17.8 or above 22.2 °C.
The state xk ∈ R4 of the system (see Appendix E for details) reflects the temperatures of
both zones and radiators, and control inputs uk ∈ R4 change the air supply and boiler
temperatures in both zones. The deterministic heat gain through zone walls is modeled
by the disturbance qk ∈ R4. The noise wk ∈ R4 has a Gaussian distribution (but this
assumption is not required for our approach). We partition the state space into 35 721
regions (21 values for zone temperatures and 9 for radiator temperatures), and we use the
same values for β and N as in the UAV benchmark in Sect. 6.2.
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Figure 13: Maximum lower bound probabilities to reach the goal zone temperature of 21 °C
from any initial state within 64 steps, for our approach (N = 12 800) and StocHy.

More samples means less uncertainty. In Fig. 12, we show (for fixed radiator tem-
peratures) the maximum lower bound probabilities obtained from PRISM, to reach the goal
from any initial state within the safe set. The results clearly show that better reach-avoid
guarantees are obtained when more samples are used to compute the iMDP probability
intervals. The higher the value of N , the lower the uncertainty in the intervals, leading
to better reach-avoid guarantees. Notably, as reported in Appendix E.2, the largest iMDP
has around 200 million transitions, showing that our approach can effectively generate and
verify large abstract models.

6.4 Benchmarks Against Other Control Synthesis Tools

StocHy. We benchmark our method on a building temperature regulation problem against
StocHy (Cauchi & Abate, 2019), a verification and synthesis tool based on formal abstrac-
tions (see Appendix F.1 for details on the setup and results). Similar to our approach,
StocHy also derives robust iMDP abstractions. However, StocHy requires precise knowl-
edge of the noise distribution, and it discretizes the control input space of the dynamical
system, to obtain a finite action space. The maximum probabilities to reach the goal zone
temperature from any initial state obtained for both methods are presented in Fig. 13.
The obtained results are qualitatively similar and, close to the goal zone temperature, our
lower bound reach-avoid guarantees are slightly higher than those obtained from StocHy.
However, when starting at temperatures close to the boundary (e.g., at both low radia-
tor and zone temperature), the guarantees obtained from our approach are slightly more
conservative. This is due to the fact that our approach relies on PAC guarantees on the
transition probabilities, while StocHy gives straight probabilistic outcomes, thanks to the
assumed precise knowledge of the noise distribution. While both methods yield results that
are qualitatively similar, our approach is an order of magnitude faster (45min for StocHy,
vs. 3− 9 s for our approach; see Appendix F.1 and Table 2 for details).
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Figure 14: Simulated state trajectories for the spacecraft docking problem, under low and
high noise covariance. Our feedback controllers are more robust, as shown by the smaller
error in the state trajectories over time (the Voronoi method under high covariance failed
to generate a solution).
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Figure 15: Obtained lower bound reach-avoid guarantees for the 1-room temperature control
problem with time horizons between K = 4 steps (left) and infinity (right).

.

SReachTools. We apply our method to the spacecraft docking benchmark14 (see Fig. 14)
of SReachTools (Vinod, Gleason, & Oishi, 2019), an optimization-based toolbox for prob-
abilistic reach-avoid problems (see Appendix F.2 for details). While we use samples to
generate a model abstraction, SReachTools employs sample-based methods over the prop-
erties directly. Distinctively, SReachTools does not create abstractions (as in our case) and
is thus generally faster than our method. However, its complexity is exponential in the
number of samples (versus the linear complexity for our method). Importantly, we derive
feedback controllers, while the sampling-based methods of SReachTools compute open-loop
controllers. Feedback controllers respond to state observations over time and are, therefore,
more robust against strong disturbances from noise, as also shown in Fig. 14.

14. Note that the dynamical system used in this spacecraft docking benchmark differs significantly from the
system used in the satellite rendezvous problem in Sect. 6.1; see Appendices C and F.2 for details.
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6.5 Infinite-Horizon Properties
To demonstrate that our techniques are also applicable to infinite-horizon properties, we
consider again the 1-room version of the temperature control problem (on which we bench-
marked against StocHy). We consider reach-avoid properties with increasing time bounds of
K ∈ {4, 8, 16,∞} and show the corresponding maximum lower bounds on the reach-avoid
probability in Fig. 15. As expected, these figures show that the reach-avoid probability
increases with the time horizon (even though the difference between K = 16 and K = ∞
is marginal). The time to verify the iMDP (which has 383 states and 64 029 transitions) in
PRISM is about 1.7 s for the property with a horizon of K = 4 steps, versus 3.4 s for the
infinite-horizon property.

7. Related Work
We summarize the literature most related to this paper. We start with a discussion of ro-
bust MDPs, (probabilistic) bisimulation, and controller synthesis with formal guarantees.
Then, we introduce the scenario approach, as well as other sampling techniques and distri-
butionally robust optimization. Finally, we discuss the concept of PAC and briefly touch
upon safe and robust learning methods.

Robust MDPs. In robust (also called uncertain) MDPs, the transition function (in par-
ticular, each distribution P (s, a) over successor states, cf. Def. 2) is only known to be an
element of an uncertainty set (Wiesemann et al., 2014; Xu & Mannor, 2010). This set
is often assumed to be convex for computational reasons, but generalizations to noncon-
vex sets exist as well (Nilim & Ghaoui, 2005). An iMDP is a special case of robust MDP,
where the uncertainty set is described by interval constraints on each transition probability.
Specifically, iMDPs have uncertainty sets as probability simplexes with interval constraints,
which are convex polytopes by construction (Ben-Tal, Ghaoui, & Nemirovski, 2009).

Probabilistic bisimulation. Bisimulation is a key concept used to establish equivalence
in the behavior between different systems with respect to a particular logic property (Baier
& Katoen, 2008). Probabilistic (or stochastic) notions of bisimulation have been stud-
ied for MDPs (Ferns, Precup, & Knight, 2014; Givan, Dean, & Greig, 2003) and other
Markov models (Larsen & Skou, 1991; Desharnais et al., 2002). Since exact probabilistic
bisimulation requires transition probabilities to agree exactly, various metrics and notions
of approximate bisimulation have been developed as well (Ferns, Panangaden, & Precup,
2004; Abate, 2011). More recently, probabilistic bisimulation has been studied for inter-
val MDPs (Hashemi, Hermanns, Song, Subramani, Turrini, & Wojciechowski, 2016; Hahn,
Hashemi, Hermanns, & Turrini, 2016), and notions of approximate probabilistic bisimula-
tion have been leveraged for robust model checking of probabilistic computation tree logic
(PCTL) for interval Markov models (D’Innocenzo, Abate, & Katoen, 2012; Hashemi, Hatefi,
& Krcál, 2014; Lun, Wheatley, D’Innocenzo, & Abate, 2018).

In Corollary 2, we establish a probabilistic feedback refinement relation from the abstract
MDP to the dynamical system. This relation is exact and yields a simulation rather than a
bisimulation relation: due to the abstraction, not every move by the dynamical system can
be matched by the abstract MDP. Estimating the abstract MDP by an iMDP is, on the
other hand, approximate since (as we have shown in Theorem 2) there is a probability of at

372



Robust Control for Dynamical Systems with Non-Gaussian Noise

most β that any of the probability intervals is incorrect. As such, our approach creates a
probabilistic closeness guarantee on the satisfaction of a reach-avoid property between the
dynamical system and the iMDP, similar to the relations presented in (Lavaei et al., 2022)

Formal controller synthesis. Formal verification and controller synthesis for reacha-
bility and reach-avoid problems in stochastic continuous-state systems is an active field
of research in safety-critical engineering (Abate et al., 2008; Lavaei et al., 2022). Most
approaches are either based on formal abstractions of these continuous systems (Alur, Hen-
zinger, Lafferriere, & Pappas, 2000; Lahijanian, Andersson, & Belta, 2015; Soudjani &
Abate, 2013) or work in the continuous domain directly, e.g., using Hamilton-Jacobi reach-
ability analysis (Bansal, Chen, Herbert, & Tomlin, 2017; Herbert, Chen, Han, Bansal, Fisac,
& Tomlin, 2017) or optimization (Rosolia, Singletary, & Ames, 2022). Several controller
synthesis tools have been developed in this research area, such as StocHy (Cauchi & Abate,
2019), ProbReach (Shmarov & Zuliani, 2015) and SReachTools (Vinod et al., 2019). De-
spite intense activity, however, the majority of these papers and tools rely on full knowledge
of the probabilistic models.

The scenario approach. Building upon this motivation, we break away from this lit-
erature by developing a method that can be used to generate formal abstractions without
requiring any knowledge of the noise distribution. The main theoretical tool that we leverage
in this paper is the scenario approach (Calafiore & Campi, 2005; Campi & Garatti, 2018).
The scenario approach has been used for the verification of MDPs (Badings, Cubuktepe,
Jansen, Junges, Katoen, & Topcu, 2022b) and continuous-time Markov chains (Badings,
Jansen, Junges, Stoelinga, & Volk, 2022c) with uncertain parameters, albeit only for finite-
state systems. However, the non-trivial connection that we make in this paper between the
scenario approach theory and techniques for formal abstractions had not been established.

Other sampling techniques. The aforementioned tool SReachTools also exhibits a
sampling-based method but relies on Hoeffding’s inequality to obtain confidence guar-
antees (Sartipizadeh, Vinod, Açikmese, & Oishi, 2019), so the noise is assumed to be
sub-Gaussian (Boucheron et al., 2013). By contrast, the scenario approach is completely
distribution-free (Campi & Garatti, 2018). Moreover, as we have shown in Figs. 5 and 6,
the scenario approach may lead to abstract models with significantly better probability in-
tervals compared to Hoeffding’s inequality. In addition, SReachTools is limited to problems
with convex safe sets (a restrictive assumption in many problems) and its sampling-based
methods can only synthesize open-loop controllers, which may undermine the robustness of
the overall approach.

Another body of relevant literature entails sampling-based feedback motion planning
algorithms, e.g., LQR-Trees (Tedrake, Manchester, Tobenkin, & Roberts, 2010). However,
sampling in LQR-Trees relates to random exploration of the state space and not to stochastic
noise affecting the dynamics as in our setting (Reist, Preiswerk, & Tedrake, 2016).

Monte Carlo methods (e.g., particle methods) have also been used to solve stochastic
reach-avoid problems (Blackmore et al., 2010; Lesser, Oishi, & Erwin, 2013). These methods
simulate the system via many samples of the uncertain variable (Smith, 2013). Monte Carlo
methods approximate stochastic problems but do not provide rigorous bounds with a desired
confidence level on the obtained results as our approach does.
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Distributionally robust optimization. In distributionally robust optimization (DRO),
decisions are robust with respect to ambiguity sets of distributions (Esfahani & Kuhn, 2018;
Goh & Sim, 2010; Wiesemann et al., 2014). While the scenario approach uses samples of
the uncertain variable, DRO works on the domain of uncertainty directly, thus involving
potentially complex ambiguity sets (Garatti & Campi, 2022). Designing robust policies for
iMDPs with known uncertainty sets was studied by Puggelli et al. (2013), and Wolff et al.
(2012). Finally, hybrid methods between the scenario approach and robust optimization
also exist (Margellos, Goulart, & Lygeros, 2014).

PAC literature. The term PAC refers to obtaining, with high probability, a hypothesis
that is a good approximation of some unknown phenomenon (Haussler, 1990). PAC learning
methods for discrete-state MDPs are developed in Brafman and Tennenholtz (2002), Fu and
Topcu (2014), and Kearns and Singh (2002), and PAC statistical model checking for MDPs
in Ashok, Kretínský, and Weininger (2019).

Safe and robust learning methods. We briefly discuss the emerging field of safe
learning (Brunke, Greeff, Hall, Yuan, Zhou, Panerati, & Schoellig, 2022; García & Fer-
nández, 2015). Recent works use Gaussian processes for learning-based model predictive
control (Hewing, Kabzan, & Zeilinger, 2020; Koller, Berkenkamp, Turchetta, & Krause,
2018) or reinforcement learning with safe exploration (Berkenkamp, Turchetta, Schoellig,
& Krause, 2017), and control barrier functions to reduce model uncertainty (Taylor, Single-
tary, Yue, & Ames, 2020). Safe learning control concerns learning unknown, deterministic
system dynamics, while imposing strong assumptions on stochasticity (Fisac, Akametalu,
Zeilinger, Kaynama, Gillula, & Tomlin, 2019). By contrast, our problem setting is funda-
mentally different: we reason about stochastic noise of a completely unknown distribution.

Finally, various methods have been proposed to render reinforcement learning more ro-
bust against differences in the dynamics between the training and testing environments (Mo-
rimoto & Doya, 2005; Moos, Hansel, Abdulsamad, Stark, Clever, & Peters, 2022). For ex-
ample, Peng, Andrychowicz, Zaremba, and Abbeel (2018) train neural network controllers
for robotic control tasks on simulation models with randomized dynamics. The authors
show empirically that this randomization leads to controllers that are significantly more
robust against discrepancies in the dynamics of the real robot on which they are deployed.
Similarly, Pinto, Davidson, Sukthankar, and Gupta (2017) and Vinitsky, Du, Parvate,
Jang, Abbeel, and Bayen (2020) propose adversarial methods to improve the robustness of
reinforcement learning by introducing an adversary which applies maximally destabilizing
disturbances to the system. While these methods have been shown empirically to improve
the robustness of reinforcement learning, we remark that providing formal guarantees about
safety or robustness (as we do in this paper) is rarely possible.

8. Concluding Remarks and Future Work

We have presented a novel approach for robust control of continuous-state dynamical sys-
tems with (stochastic) process noise of unknown distribution. Our approach is based on
a finite abstraction of the continuous-state system in the form of an iMDP. As a key con-
tribution, we have developed a rigorous method to use the scenario approach theory for
computing PAC probability intervals for such an abstract iMDP. The PAC-correctness of
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these intervals, and thus of the whole abstract iMDP, is valid irrespective of the noise dis-
tribution. We have shown how to use the iMDP to compute feedback controllers with PAC
guarantees on the performance on the continuous system. Our experiments have confirmed
this claim, showing that our method effectively solves realistic problems and provides safe
lower-bound guarantees on the performance of controllers.

State space discretization. The discretization of the state space influences the quality
of the reach-avoid guarantees. Partitions into regions that are smaller are more easily
contained in the backward reachable sets of actions, thus enabling more actions in the
abstraction. Moreover, defining more target points leads to an abstract model that captures
more actions in general. Hence, a more fine-grained partition with more target points
yields an abstraction that is a more accurate representation of the dynamical system but
also increases the computational complexity. Whilst the time-dependent improved policy
synthesis scheme based on state aggregation, as discussed in Sect. 5.3, balances this trade-off
to some extent, we plan to employ more general and sophisticated adaptive discretization
schemes in the future, such as those proposed in Soudjani and Abate (2013).

Extensions to general PCTL properties. As described in Sect. 2.2, we have consid-
ered control objectives in the form of (in)finite-horizon reach-avoid properties. Formally,
these reach-avoid properties contain formulae expressed in probabilistic computation tree
logic, or PCTL (Ciesinski & Größer, 2004; Hansson & Jonsson, 1994). Our abstraction ap-
proach is valid for properties over both finite and infinite horizons, except for the improved
policy synthesis scheme proposed in Sect. 5.3, which only applies to finite horizons (as this
scheme relies on modeling each time step separately). By contrast, techniques that result
in abstraction errors accumulating with time are generally not applicable to infinite-horizon
properties (Lavaei et al., 2022).

Moreover, while we have left out rewards for brevity, our approach is also amenable
to expected reward properties (Baier & Katoen, 2008) with state-based15 reward functions
(mapping states to rewards) as long as the reward function is aligned with the partition,
similar to Assumption 1. More precisely, all states xk ∈ Rs belonging to the region of
abstract state s ∈ S must be assigned the same reward. Under this assumption, our
approaches are equally applicable to general PCTL properties, although we leave a formal
derivation of these results as an avenue for future work.

Non-stationary noise distributions. For our controller synthesis approach to be cor-
rect, the samples used for computing the probability intervals of the iMDP must be i.i.d.
and drawn from the same distribution as the noise wk affecting the linear dynamical sys-
tem in Eq. (1). Thus, our approach requires that the probability distribution of the noise is
fixed, which may be a questionable assumption in practice (Brunke et al., 2022). As such,
one open research question is to what extent the correctness of our approach can be guar-
anteed if the noise distribution is not stationary but instead perturbed by some (bounded)
distance.

Extensions to systems with uncertain dynamics. In this paper, we have considered
linear dynamical systems whose dynamics (apart from the distribution of the noise) are

15. We cannot consider action-based reward functions because there is no direct correspondence between
control inputs uk ∈ U for the dynamical system and actions a ∈ Act of the abstract iMDP.
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precisely known. Therefore, for physics-based systems, such as a UAV, system parameters,
including its mass or friction coefficient, must be known exactly. Our ongoing research,
recently presented in Badings, Romao, Abate, and Jansen (2022), lifts this restrictive as-
sumption by considering systems with both stochastic noise and uncertain dynamics, e.g.,
due to imprecisely known parameters. In particular, such uncertainty in the dynamics causes
epistemic uncertainty, which is fundamentally different from the probability distributions
over outcomes due to process noise, leading to aleatoric uncertainty (Sullivan, 2015).

In a setting with both epistemic and aleatoric uncertainty, we must simultaneously learn
about the unknown deterministic dynamics and the stochastic noise. Learning determin-
istic dynamics is common in safe learning control (Brunke et al., 2022), but enabling safe
exploration requires strong assumptions on stochastic uncertainty. As such, we see this
direction as a challenging avenue for future work.

Extensions to dynamical systems with both aleatoric and epistemic uncertainty also open
the door to capturing other types of uncertainty beyond process noise. Besides the uncer-
tainty in system parameters described above, we may, for example, deal with state/control-
dependent process noise or systems with nonlinear dynamics (see below). Moreover, such
an extension may also enable us to lift Assumption 2, which is needed because our current
method requires the system to be fully actuated.

Nonlinear systems. While we have focused on linear systems, we wish to develop exten-
sions to nonlinear systems, as discussed in Remark 1. Such extensions are non-trivial and
may require more involved reachability computations (Bansal et al., 2017; Chen, Ábrahám,
& Sankaranarayanan, 2013). Specifically, the challenge is to compute the enabled iMDP
actions via the backward reachable set defined in Eq. (6), which may become non-convex
under nonlinear dynamics. Note that computing the PAC probability intervals remains un-
changed, as the scenario approach relies on the convexity of the target set only, and not on
that of the backward reachable set. Alternatively, we may apply our method on a linearized
version of the nonlinear system, in which case we must account for any linearization error to
preserve guarantees. Similar to the extension with uncertain parameters, this linearization
error may potentially be captured by epistemic uncertainty in the system dynamics.
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Appendix A. Proof of Theorem 1
The proof of Theorem 1 is adapted from Romao et al. (2022, Theorem 5), which is based on
three key assumptions: (1) the considered scenario problem belongs to the class of so-called
fully-supported problems (see Campi and Garatti (2008) for a definition), (2) its solution is
unique, and (3) discarded samples violate all interim optimal solutions with probability one.
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In our case, requirement (2) is implied by Assumption 4, (3) is satisfied by proposition 1,
and the problem is fully-supported because the number of decision variables is one. Under
these requirements, Romao et al. (2022, Theorem 5) states that the risk associated with an
optimal solution λ⋆

|Q| to Eq. (16) for |Q| discarded samples satisfies the following expression:

PN
{
P
(
x /∈ Rj(λ

⋆
|Q|)

)
≤ ϵ

}
= 1−

|Q|∑
i=0

(
N

i

)
ϵi(1− ϵ)N−i, (27)

where we omit the subscripts in Pwk
(·) and xk+1 for brevity. Eq. (27) is the cumulative

distribution function (CDF) of a beta distribution with parameters |Q| + 1 and N − |Q|.
We denote this CDF by F|Q|(ϵ), where we explicitly write the dependency on |Q|. Hence,
we obtain

F|Q|(ϵ) = PN
{
P
(
x /∈ Rj(λ

⋆
|Q|)

)
≤ ϵ

}
= β̃. (28)

Thus, if we discard |Q| samples, Eq. (28) returns the confidence probability β̃ ∈ (0, 1)
by which the probability of xk+1 /∈ Rj(λ

⋆
|Q|) is upper bounded by ϵ. Conversely, we can

compute the value of ϵ needed to obtain a confidence probability of β̃, using the percent
point function (PPF) G|Q|(β̃):

PN
{
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(
x /∈ Rj(λ

⋆
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)
≤ G|Q|(β̃)

}
= β̃. (29)

The PPF is the inverse of the CDF, so by definition, we have

ϵ = G|Q|(β̃) = G|Q|
(
F|Q|(ϵ)

)
. (30)

Note that P (x ∈ R) + P (x /∈ R) = 1, so Eq. (28) equals

F|Q|(ϵ) = PN
{
P
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x ∈ Rj(λ

⋆
|Q|)

)
≥ 1− ϵ

}
= β̃. (31)

By defining p = 1− ϵ, Eqs. (30) and (31) are combined as
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In what follows, we separately use Eq. (31) to prove the lower and upper bound of the
probability interval in Theorem 1.

Lower bound. There are N possible values for |Q|, ranging from 0 to N − 1. The case
|Q| = N (i.e. all samples are discarded) is treated as a special case in Theorem 1. We fix
β̃ = 1− β

2N in Eq. (32), yielding the series of equations
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Denote the event that 1 − Gn

(
1 − β

2N

)
≤ P

(
x ∈ Rj(λ

⋆
n)
)
for n = 0, . . . , N − 1 by An.

Regardless of n, this event has a probability of PN{An} = 1− β
2N , and its complement A′

n

of PN{A′
n} =

β
2N . Via Boole’s inequality, we know that

PN
{N−1⋃

i=0

A′
n

}
≤

N−1∑
i=0

PN
{
A′

n

}
=

β

2N
N =

β

2
. (34)

Thus, for the intersection of all events in Eq. (33) we have

PN
{N−1⋂

i=0

An

}
= 1− PN

{N−1⋃
i=0

A′
n

}
≥ 1− β

2
. (35)

After observing the samples at hand, we replace |Q| by the actual value of Nout
j (as per

Def. 6), giving one of the expressions in Eq. (33). The probability that this expression holds
cannot be smaller than that of the intersection of all events in Eq. (35). Thus, we obtain

PN
{
¯
p ≤ P

(
x ∈ Rj(λ

⋆
Nout

j
)
)}
≥ 1− β

2
, (36)

where
¯
p = 0 if Nout

j = N (which trivially holds with probability one), and otherwise

¯
p = 1−GNout

j
(1− β

2N ) is the solution for p to Eq. (32), with |Q| = Nout
j and β̃ = 1− β

2N :

1− β

2N
= 1−

Nout
j∑

i=0

(
N

i

)
(1− p)ipN−i, (37)

which is equivalent to Eq. (19).

Upper bound. Eq. (32) is rewritten as an upper bound as

PN
{
P
(
x ∈ Rj(λ

⋆
|Q|)

)
< 1−G|Q|(β̃)

}
= 1− β̃, (38)

where again, |Q| can range from 0 to N −1. However, to obtain high-confidence guarantees
on the upper bound, we now fix β̃ = β

2N , which yields the series of equations

PN
{
P
(
x ∈ Rj(λ

⋆
0)
)
< 1−G0

( β

2N

)}
=1− β

2N
...

... (39)

PN
{
P
(
x ∈ Rj(λ

⋆
N−1)

)
< 1−GN−1

( β

2N

)}
=1− β

2N
.

Analogous to the lower bound case, Boole’s inequality implies that the intersection of all
expressions in Eq. (39) has a probability of at least 1 − β

2 . After observing the samples
at hand, we replace |Q| by Nout

j − 1, yielding one of the expressions in Eq. (39). For this
expression, it holds that

PN
{
P
(
x ∈ Rj(λ

⋆
Nout

j −1)
)
≤ p̄

}
≥ 1− β

2
, (40)
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where p̄ = 1 if Nout
j = 0 (which trivially holds with probability one), and otherwise p̄ =

1−GNout
j −1(

β
2N ) is the solution for p to Eq. (32), with |Q| = Nout

j − 1 and β̃ = β
2N :

β

2N
= 1−

Nout
j −1∑
i=0

(
N

i

)
(1− p)ipN−i, (41)

which is equivalent to Eq. (20).

Probability interval. We invoke Lemma 1, which states thatRj(λ
⋆
Nout

j
) ⊆ Rj ⊂ Rj(λ

⋆
Nout

j −1
),

so we have

P
(
x ∈ Rj(λ

⋆
Nout

j
)
)
≤ P (x ∈ Rj) = P (si, al)(sj)

< P
(
x ∈ Rj(λ

⋆
Nout

j −1)
)
.

(42)

We use Eq. (42) to write Eqs. (36) and (40) in terms of the transition probability P (si, al)(sj).
Finally, by applying Boole’s inequality, we combine Eqs. (36) and (40) as follows:

PN
{
¯
p ≤ P (si, al)(sj)

⋂
P (si, al)(sj) ≤ p̄

}
= PN

{
¯
p ≤ P (si, al)(sj) ≤ p̄

}
≥ 1− β,

(43)

which is equal to Eq. (18), so we conclude the proof.

Appendix B. Proof of Corollary 3
Proof. The derivation of Corollary 3 is analogous to the proof of Theorem 2, with the only
difference that the number of unique probability intervals is reduced. The key observation
is that the successor state xk+1 in Eq. (9) is linear in the target point da and the noise
wk. Thus, by denoting p(wk) as the (unknown) probability density function of the noise,
we rewrite Eq. (10) as

P (s, a)(s′) =

∫
Rs′

pwk
(xk+1 | xk,uk(xk, a)) dxk+1

=

∫
Rs′−da

p (wk) dwk,

(44)

that is, for a fixed density function of wk the transition probability P (s, a)(s′) is defined by
the relative position Rs′ − da between the region and the target point. Thus, for any two
regions Rs′ , Rs′′ and two target points da, da′ whose relative positions are the same, i.e.
Rs′ − da = Rs′′ − da′ , it holds that

P (s, a)(s′) =

∫
Rs′−da

p (wk) dwk =

∫
Rs′′−da′

p (wk) dwk = P (s, a′)(s′′). (45)

Now, observe that under the proposed partitioning and target points, the number of pairs
(Rs′ ,da) with equal relative position is maximized. Formally, let µs′ be the center of Rs′ for
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each s′ ∈ S \{s⋆}, and let wi be the width of the rectangular partitioning in each dimension
i = 1, . . . , n. Then, the difference µs′ − da for any s′ ∈ S, a ∈ Act can be written as

µs′ − da =

ξ1w1
...

ξnwn

 , ξi ∈ {−ri + 1, . . . , ri − 1} ∀i = 1, . . . , n, (46)

except when s′ is the absorbing state. Since each integer variable ξi can take one of 2ri − 1
different values, we observe that µs′ − da can take one of

∏n
i=1(2ri − 1) different values.

Thus, the iMDP has exactly
∏n

i=1(2ri − 1) unique transition probabilities (and hence the
same number of unique probability intervals), plus one unique probability P (s, a)(s⋆) of
transitioning to the absorbing state s⋆ for each a ∈ Act. Plugging in this total number
of

∏n
i=1(2ri − 1) + |Act| unique probability intervals, we obtain the desired expression in

Eq. (44) and thus conclude the proof.

Appendix C. Details on Satellite Rendezvous Benchmark
C.1 Explicit Model Formulation
The dynamical system of this benchmark problem is defined on the so-called Hill’s frame,
which represents the relative coordinate frame describing the difference in position and
velocity between a chaser and target satellite (Jewison & Erwin, 2016). The dynamics of
this 6-dimensional system are defined as follows:

xk+1 =



4− 3 cos(nτ) 0 0 1
n sin(nτ) 2

n(1− cos(nτ)) 0
6(sin(nτ)− nτ) 1 0 −2

n (1− cos(nτ)) 4
n sin(nτ)− 3nτ 0

0 0 cos(nτ) 0 0 1
n sin(nτ)

3n sin(nτ) 0 0 cos(nτ) 2 sin(nτ) 0
−6n(1− cos(nτ)) 0 0 −2 sin(nτ) 4 cos(nτ)− 3 0

0 0 −n sin(nτ) 0 0 cos(nτ)

xk

+



1
n sin(nτ) 2

n(1− cos(nτ)) 0
−2
n (1− cos(nτ)) 1

n(4 sin(nτ)− 3nτ) 0
0 0 1

n sin(nτ)
cos(nτ) 2 sin(nτ) 0
−2 sin(nτ) 4 cos(nτ)− 3 0

0 0 cos(nτ)

uk +N
(


0
0
0
0
0
0

, diag
(


0.1
0.1
0.01
0.01
0.01
0.01


))

,

where τ is the discretization time, and n is a constant; see Jewison and Erwin (2016)
for details. Every element of the 3-dimensional control input vector uk is constrained to
the interval [−2, 2]. Since the model in Appendix C.1 is not fully actuated (it has only 3
controls, versus a state of dimension 6), we group every two discrete time steps together (as
described in Sect. 3) and rewrite the model as follows:

xk+2 = Āxk + B̄uk,k+1 +wk,k+1, (47)

where Ā ∈ R6×6 and B̄ ∈ R6×6 are properly redefined matrices, and uk,k+1 ∈ R6 and
wk,k+1 ∈ R6 reflect the control inputs and process noise at both time steps k and k + 1,
combined in one vector.
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Appendix D. Details on UAV Benchmark
D.1 Explicit Model Formulation

The 6-dimensional state vector of the UAV model is x = [px, vx, py, vy, pz, vz]
⊤ ∈ R6, where

pi and vi are the position and velocity in the direction i. Every element of the vector of
control inputs u = [fx, fy, fz]

⊤ ∈ R3 is constrained to the interval [−4, 4]. The discrete-time
dynamics are an extension of the lower-dimensional case in Badings, Jansen, Poonawala,
and Stoelinga (2021), and are written in the form of Eq. (1) as follows:

xk+1 =



1 1 0 0 0 0
0 1 0 0 0 0
0 0 1 1 0 0
0 0 0 1 0 0
0 0 0 0 1 1
0 0 0 0 0 1

xk +



0.5 0 0
1 0 0
0 0.5 0
0 1 0
0 0 0.5
0 0 1

uk +wk, (48)

where wk is the effect of turbulence on the continuous state, which we model using a Dryden
gust model; we use a Python implementation by Bøhn et al. (2019). Note that the drift
term qk = 0, and is thus omitted from Eq. (48). Similar to the dynamical system of the
satellite benchmark in Appendix C.1, we group every two discrete time steps together to
render the system in Eq. (48) fully actuated.

The objective is to reach the goal region, which is also depicted in Fig. 10, within 64
steps (i.e. 32 steps with the model in Eq. (47)). This goal region is written as the following
set of continuous states (for brevity, we omit an explicit definition of the critical regions):

XG = {x ∈ R6 | 11 ≤ px ≤ 15, 1 ≤ py ≤ 5, −7 ≤ pz ≤ −3}. (49)

D.2 Run Times and Size of Model Abstraction

The average run times and iMDP model sizes (over 10 runs) for all iterations of the UAV
benchmark are presented in Table 2. Computing the states and actions of the underlying
MDP took one minute but since this step is only performed in the first iteration, we omit
the value from the table. The run times per iteration are the times for those steps within the
while-loop in Algorithm 1. The number of states (which equals the number of regions in the
partition) and choices (the total number of state-action pairs) of the iMDP are independent
of the value of N . By contrast, the number of transitions increases with N , because the
additional noise samples may reveal more possible outcomes of a state-action pair.

Appendix E. Details on Building Temperature Regulation Benchmark
E.1 Explicit Model Formulation

This model is a variant of the two-zone building automation system benchmark with
stochastic dynamics in Cauchi and Abate (2018). The state vector of the model is x =
[T z

1 , T
z
2 , T

r
1 , T

r
2 ]

⊤ ∈ R4, reflecting both room (zone) temperatures (T z) and both radi-
ator temperatures (T r). The control inputs u = [T ac

1 , T ac
2 , T boil

1 , T boil
2 ]⊤ ∈ R4 are the

air conditioning (ac) and boiler temperatures, respectively, which are constrained within
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Table 2: Run times per iteration (which excludes the computation of states and actions)
and model sizes for the UAV (under high turbulence), and 2-zone and 1-zone building
temperature regulation (BAS) benchmarks.

Instance Run times (per iteration, in seconds) iMDP model size
Benchmark Samples N Update intervals Write iMDP Compute

¯
π∗ States Choices Transitions

UAV 25 11.4 29.0 39.2 25 516 1 228 749 9 477 795
UAV 50 15.4 34.4 46.0 25 516 1 228 749 11 350 692
UAV 100 18.6 39.3 51.8 25 516 1 228 749 13 108 282
UAV 200 24.3 44.4 59.1 25 516 1 228 749 14 921 925
UAV 400 35.4 50.6 68.5 25 516 1 228 749 17 203 829
UAV 800 55.4 58.3 80.2 25 516 1 228 749 19 968 663
UAV 1600 92.2 64.9 90.6 25 516 1 228 749 22 419 161
UAV 3200 164.1 68.6 94.4 25 516 1 228 749 23 691 107
UAV 6400 312.1 69.8 95.5 25 516 1 228 749 23 958 183
UAV 12800 611.2 69.8 95.1 25 516 1 228 749 23 969 028

BAS (2-zone) 25 13.9 73.6 105.9 35 722 1 611 162 24 929 617
BAS (2-zone) 50 43.2 107.7 160.5 35 722 1 611 162 37 692 421
BAS (2-zone) 100 50.8 153.2 230.2 35 722 1 611 162 53 815 543
BAS (2-zone) 200 59.1 205.8 315.2 35 722 1 611 162 72 588 298
BAS (2-zone) 400 72.3 260.6 423.2 35 722 1 611 162 91 960 970
BAS (2-zone) 800 96.2 316.8 504.3 35 722 1 611 162 112 028 449
BAS (2-zone) 1600 132.6 370.0 614.8 35 722 1 611 162 131 844 146
BAS (2-zone) 3200 200.1 432.9 789.4 35 722 1 611 162 154 155 445
BAS (2-zone) 6400 331.8 513.2 982.2 35 722 1 611 162 182 175 229
BAS (2-zone) 12800 545.5 601.8 1177.8 35 722 1 611 162 218 031 384

BAS (1-zone) 25 1.62 0.06 1.39 381 1 511 20 494
BAS (1-zone) 50 1.81 0.08 1.39 381 1 511 27 327
BAS (1-zone) 100 1.87 0.09 1.40 381 1 511 33 871
BAS (1-zone) 200 1.96 0.11 1.40 381 1 511 40 368
BAS (1-zone) 400 2.06 0.13 1.42 381 1 511 47 333
BAS (1-zone) 800 2.26 0.14 1.40 381 1 511 54 155
BAS (1-zone) 1600 2.59 0.16 1.39 381 1 511 59 686
BAS (1-zone) 3200 3.24 0.17 1.40 381 1 511 65 122
BAS (1-zone) 6400 4.50 0.18 1.40 381 1 511 70 245
BAS (1-zone) 12800 7.01 0.20 1.38 381 1 511 76,076

14 ≤ T ac ≤ 26 and 65 ≤ T boil ≤ 85. The changes in the temperature of both zones are
governed by the following thermodynamics:

Ṫ z
1 =

1

C1

[T z
2 − T z

1

R1,2
+

Twall − T z
1

R1,wall
+mCpa(T

ac
1 − T z

1 ) + Pout(T
r
1 − T z

1 )
]

Ṫ z
2 =

1

C2

[T z
1 − T z

2

R1,2
+

Twall − T z
2

R2,wall
+mCpa(T

ac
2 − T z

2 ) + Pout(T
r
2 − T z

2 )
]
,

where Ci is the thermal capacitance of zone i, and Ri,j is the resistance between zones i
and j, m is the air mass flow, Cpa is the specific heat capacity of air, and Pout is the rated
output of the radiator. Similarly, the dynamics of the radiator in room i are governed by
the following equation:

Ṫ r
i = k1(T

z
i − T r

i ) + k0w(T
boil
i − T r

i ), (51)

where k0 and k1 are constant parameters, and w is the water mass flow from the boiler.
For the precise parameter values used, we refer to our codes, which are provided in the
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supplementary material. By discretizing Eqs. (50) and (51) by a forward Euler method at
a time resolution of 15min, we obtain the following model in explicit form:

xk+1 =


0.8425 0.0537 −0.0084 0.0000
0.0515 0.8435 0.0000 −0.0064
0.0668 0.0000 0.8971 0.0000
0.0000 0.0668 0.0000 0.8971

xk +


0.0584 0.0000 0.0000 0.0000
0.0000 0.0599 0.0000 0.0000
0.0000 0.0000 0.0362 0.0000
0.0000 0.0000 0.0000 0.0362

uk

+


1.2291
1.0749
0.0000
0.0000

+N (


0
0
0
0

 ,


0.01 0 0 0
0 0.01 0 0
0 0 0.01 0
0 0 0 0.01

),
where N (µ,Σ) ∈ Rn is a multivariate Gaussian random variable with mean µ ∈ Rn and
covariance matrix Σ.

The goal in this problem is to reach a temperature of 19.9−20.1 °C in both zones within
32 discrete time steps of 15min. As such, the goal region XG and critical region XC are:

XG = {x ∈ R2 | 19.9 ≤ T z
1 ≤ 20.1, 19.9 ≤ T z

2 ≤ 20.1}, XC = ∅.

E.2 Run Times and Size of Model Abstraction
The run times and iMDP model sizes for all iterations of the 2-zone building tempera-
ture regulation benchmark are presented in Table 2. Computing the states and actions
took 5.5min, but we omit this value from the table as this step is only performed in the
first iteration. The discussion of model sizes is analogous to Appendix D.2 on the UAV
benchmark.

Appendix F. Benchmarks Against Other Tools
F.1 Benchmark Against StocHy
We provide a comparison between our approach and StocHy (Cauchi & Abate, 2019) on a
reduced version of the temperature regulation problem in Appendix E.1 with only one zone.
Thus, the state vector becomes x = [T z, T r]⊤, and the control inputs are u = [T ac, T boil]⊤,
which are constrained to 14 ≤ T ac ≤ 28 and−10 ≤ T boil ≤ 10 (note that T boil is now relative
to the nominal boiler temperature of 75 °C). Using the same dynamics as in Eqs. (50)
and (51), we obtain the following model in explicit form:

xk+1 =

[
0.8820 0.0058
0.0134 0.9625

]
xk +

[
0.0584 0.0000
0.0000 0.0241

]
uk +

[
0.9604
1.3269

]
+N (

[
0
0

]
,

[
0.02 0
0 0.1

]
).

The objective in this problem is to reach a zone temperature of 20.9 − 21.1 °C within 64
discrete time steps of 15min. As such, the goal region XG and critical region XC are:

XG = {x ∈ R2 | 20.9 ≤ T z ≤ 21.1}, XC = ∅. (52)

We partition the continuous state space in a rectangular grid of 19 × 20 regions of width
0.2 °C, which is centered at T z = 21 °C and T r = 38 °C. As such, the partition covers zone
temperatures between 19.1− 22.9 °C, and radiator temperatures between 36− 40 °C.
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Table 3: Maximum lower bound reach-avoid probability obtained using our method, the
average simulated reach-avoid probability, and run times for our method and SReachTools,
under the default (x1) and increased (x10) noise covariance.

Our method SReachTools
Init. abstr. N = 25 N = 100 N = 400 N = 1600 Particle Voronoi

Noise covariance x1
Reach-avoid probability — 0.44 0.81 0.95 0.98 0.88 0.85
Simulated probability — 1.00 1.00 1.00 1.00 0.83 0.86
Run time (s) 3.420 6.966 9.214 11.016 17.294 0.703 3.462

Noise covariance x10
Reach-avoid probability — 0.19 0.36 0.52 0.62 0.40 NaN
Simulated probability — 0.59 0.63 0.59 0.65 0.19 NaN
Run time (s) 3.372 11.433 15.909 18.671 25.452 2.495 NaN

Abstraction method. Similar to our approach, StocHy generates robust iMDP abstrac-
tions of the model above. However, while our approach also works when the distribution of
the noise is unknown, StocHy requires precise knowledge of the noise distribution. Another
difference is that StocHy discretizes the control inputs of the dynamical system, to obtain a
finite action space. An iMDP action is then associated with the execution of a specific value
of the control input uk. In our approach, an iMDP action instead reflects an attempted
transition to a given target point, and the actual control input uk (calculated using the
control law Eq. (8)) depends on the precise continuous state xk.

Our approach is faster. The run times and model sizes of our approach are reported
in Table 2 under BAS (1-zone). For our approach, the time to compute the states and
actions (needed only in the first iteration) is 0.1 s, and run times per iteration (excluding
verification times) vary from 1.7− 7.2 s, depending on the value of N . Notably, the StocHy
run times are orders of magnitude higher: the abstraction procedure of StocHy (excluding
verification time) took 45min, compared to 7.2 s for our approach with the maximum of
N = 12 800 samples (as reported in Table 2). We omit a comparison of the verification
times, since StocHy does not leverage PRISM like our method does.

These results provide a clear message: our approach is more general and significantly
faster, and (as shown earlier in Fig. 13) generates results that are qualitatively similar to
those obtained from StocHy.

F.2 Benchmark Against SReachTools

We benchmark our approach against the spacecraft docking problem supplied with the
MATLAB toolbox SReachTools (Vinod et al., 2019). In this problem, one spacecraft must
dock with another within 8 time steps, while remaining in a target tube. The goal is to
compute a controller that maximizes the probability of achieving this objective. The 4-
dimensional state x = [px, px, vx, vy]

⊤ ∈ R4 describes the position and velocity in both
directions. We adopt the same discrete-time dynamics as used in Vinod et al. (2019) and
assume the same Gaussian noise (see the reference for details).

384



Robust Control for Dynamical Systems with Non-Gaussian Noise

This problem is a finite-horizon reach-avoid problem with a rectangular goal region
(target set), while the safe set is a convex tube, as also shown in Fig. 14. For our approach,
we partition the state space into 3 200 rectangular regions. It is fair to note that the safe set
in SReachTools is smooth, while ours is not (due to our partition-based approach). While
our current implementation is limited to regions as hyper-rectangles and parallelepipeds,
our method can in theory be used with all convex polytopic regions.

Reach-avoid guarantees. We compare our method (with N = 25, . . . , 1 600 samples
of the noise) to the results obtained via the different methods in SReachTools. We only
consider the particle and Voronoi methods of SReachTools, because only these methods are
sampling-based like our approach (although only the Voronoi method can give confidence
guarantees on the results). The reach-avoid guarantees and run times are presented in
Table 3, and simulated trajectories in Fig. 14. As expected, our reach-avoid guarantees, as
well as for the Voronoi method, are a lower bound on the average simulated performance
(and are thus safe), while this is not the case for the particle method of SReachTools.

Complexity and run time. As shown in Table 3, the grid-free methods of SReach-
Tools are generally faster than our abstraction-based approach. However, we note that our
method was designed for non-convex problems, which cannot be solved by SReachTools.
Interestingly, the complexity of the particle (Lesser et al., 2013) and Voronoi partition
method (Sartipizadeh et al., 2019) increases exponentially with the number of samples, be-
cause their optimization problems have a binary variable for every particle. By contrast,
the complexity of our method increases only linearly with the number of samples, because
it suffices to count the number of samples in every region, as discussed in Sect. 4.2.

Controller type. The particle and Voronoi methods of SReachTools synthesize open-loop
controllers, which means that they cannot act in response to observed disturbances of the
state. Open-loop controllers do not consider any feedback, making such controllers unsafe
in settings with significant noise levels (Åström & Murray, 2010). By contrast, we derive
piecewise linear feedback controllers. This structure is obtained because our controllers are
based on a state-based control policy that maps every continuous state within the same
region to the same abstract action.

Robustness against disturbances. To demonstrate the importance of feedback control,
we test both methods under stronger disturbances, by increasing the covariance of the noise
by a factor of 10. As shown in Table 3, the particle method yields a low reach-avoid
probability (with the simulated performance being even lower), and the Voronoi method
was not able to generate a solution at all. By contrast, our method still provides safe
lower bound guarantees, which become tighter for increasing sample sizes. Our state-based
controller is robust against the stronger noise, because it is able to act in response to
observed disturbances, unlike the open-loop methods of SReachTools that results in a larger
error in the simulated state trajectories, as also shown in Fig. 14.
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