
Noname manuscript No.
(will be inserted by the editor)

Unbounded-Time Safety Verification of Guarded LTI Models with Inputs
by Abstract Acceleration

Dario Cattaruzza · Alessandro Abate · Peter Schrammel ·
Daniel Kroening

the date of receipt and acceptance should be inserted later

Abstract Reachability analysis of dynamical models is a relevant problem that has seen much progress in the

last decades, however with clear limitations pertaining the nature of the dynamics and the soundness of the results.

This article focuses on sound safety verification of unbounded-time (infinite-horizon) Linear Time-Invariant

(LTI) models with inputs using reachability analysis. We achieve this using counterexample-guided Abstract

Acceleration: this approach over-approximates the reachability tube of the LTI model over an unbounded time

horizon by using abstraction, possibly finding concrete counterexamples for refinement based on the given safety

specification. The technique is applied to a number of LTI models and the results show robust performance when

compared to state-of-the-art tools.

1 Introduction

Linear loops are an ubiquitous programming pattern [47]. Linear loops iterate over continuous variables (in the

case of physical systems) or discrete variables (in the case of loops in digital programs), which are updated with

a linear transformation. Linear loops may be guarded, i.e., halt if a given linear condition holds: at this point the

system may either elicit a new behaviour, or simply terminate. Inputs from the environment can be modelled

by means of non-deterministic choices within the loop. These features make linear loops expressive enough to

capture the dynamics of many hybrid dynamical models [6, 47]. The usage of such models in safety-critical

embedded systems makes linear loops a fundamental target for formal methods.

Many high-level requirements for embedded control systems can be modelled as safety properties, i.e.

deciding reachability of certain bad states, for which the model exhibits unsafe behaviour. Bad states may, in

linear loops, be encompassed by guard assertions, namely (linear) constraints over their continuous variables.

Reachability in linear programs, however, is a formidable challenge for automatic analysers: despite the restriction

to linear transformations (i.e., linear dynamics) and linear guards, it is in the general case undecidable. The

problem has been related to the Skolem Problem, which includes a subset of proven decidable cases (eg. the orbit

problem [46], and for low order models [52]). The problem is decidable when reduced to finite state spaces, but

even then, algorithms are costly (in particular for the infinite time case).

The goal of this article is to push the frontiers of unbounded-time reachability analysis: we aim at devising a

method that is able to reason soundly about unbounded trajectories by performing abstract acceleration. Abstract

acceleration [36, 37, 44] approximates the effect of an arbitrary number of loop iterations (up to infinity) with

a single, non-iterative transfer function that is applied to the entry state of the loop (i.e., to the set of initial

Address(es) of author(s) should be given

2 Dario Cattaruzza et al.

conditions of the linear dynamics). This article extends the work in [44] to models with non-deterministic inputs

elaborating an early work in [55] and completing [14, 16].

The key original contributions of this article are as follows:

1. We present a new technique to include time-varying non-deterministic inputs in the abstract acceleration of

general linear loops.

2. We extend abstract acceleration to the continuous time case.

3. We introduce a technique to help the analysis of support functions in complex spaces, in order to increase the

precision of previous abstract acceleration methods.

4. We develop a counterexample-guided refinement for Abstract Acceleration for safety verification, maximising

speed when high precision is not necessary, thus allowing for optimal analysis within a safe region.

5. We provide an implementation of the discussed procedures as a tool, called Axelerator, which is available at

http://www.cprover.org/LTI/

We test the novel procedures over a broad set of experiments: these benchmarks (including specifications of

the initial states, input ranges and guard sets), are also available.

Finally, in Section 10 we provide a thorough review of and comparison with related work.

2 Preliminaries

2.1 Linear loops with inputs - syntax

A discrete time LTI model may be described as a simple linear loop. Simple linear loops are functions expressed

in the form:

while(Gx ≤ h) x := Ax + Bu,

where x ∈ Rp is a valuation on the state variables, Gx ≤ h is a linear constraint on the states (with G ∈ Rr×p and

h ∈ Rr), u ∈ Rq is a non-deterministic input, and A ∈ Rp×p and B ∈ Rp×q are linear transformations characterising

the dynamics of the model. This syntax can be interpreted as the dynamics of a discrete-time LTI model with

inputs, under the presence of a guard set which, for ease of notation, we denote as G = {x : Gx ≤ h}. The purpose

of the guard is to restrict the dynamics to a given set, either to ensure safety (think for example of speed limits)

and/or to change the behaviour of the model under certain conditions (e.g. once we have reached a certain state

we begin a new process).

In particular, the special instance where G = > (i.e., “while true”) represents a time-unbounded loop with no

guards, for which the discovery of a suitable invariant (when existing) is paramount.

2.2 Model semantics

The traces of the model starting from an initial set X0 ⊆ Rp, with inputs restricted to the set U ⊆ Rq, are sequences

x0
u0
−−→ x1

u1
−−→ x2

u2
−−→ . . ., where x0 ∈ X0 and ∀k ≥ 0, xk+1 = τ(xk,uk) and uk ∈ U, satisfying

τ(xk,uk) =
{
Axk + Buk given Gxk ≤ h

}
. (1)

We extend the point-wise notation above to convex sets of states and inputs (Xk and U), and denote the set of

states reached from set Xk by τ in one step as

τ(Xk,U) = {τ(xk,uk) : xk ∈ Xk,uk ∈ U} . (2)

Unbounded-Time Safety Verification of Guarded LTI Models with Inputs by Abstract Acceleration 3

We furthermore denote the set of states reached from X0 via τ in n steps (n-reach set, constrained by G), for

n ≥ 0:

τ0(X0,U) = X0, τn(X0,U) = τ(τn−1(X0,U) ∩G,U). (3)

Since the sets X0 and U are convex, the transformations A and B are linear, and vector sums preserve convexity,

the sets Xn = τn(X0,U) are also convex.

We define the n-reach tube

X̂n = τ̂n(X0,U) =
⋃

k∈[0,... ,n]

τk(X0,U) (4)

as the union of k-reach sets over n iterations. Moreover, X̂ =
⋃

n≥0 τ
n(X0,U) extends the previous notion to an

unbounded time horizon (transitive closure).

2.3 Spectral eigendecomposition

Eigendecomposition [57] denotes the factorization of a matrix into a canonical form that is characterized by

having non-zero elements (the eigenvalues) only on the main diagonal (note that not all matrices can be factorized

this way, as discussed later). Let A ∈ Rp be a diagonalizable square matrix. The eigendecomposition yields the

equation A = SΛS−1, where λi = Λii are the eigenvalues of A and S∗i their corresponding eigenvectors, sharing

the known property AS∗i = λiS∗i. When a square matrix is not diagonalizable because of repeated eigenvalues, it

can be factored into what is known as the Jordan Form, which in addition to the eigenvalues of the matrix, may

contain unitary values in the immediate upper diagonal in the case of duplicate eigenvalues: A = SJS−1, where

J =


J1

. . .

Jr

 and J s∈[1,... ,r] =



λs 1 . . . 0

0 λs
. . .

...
...
. . .

. . . 1

0 . . . 0 λs


. (5)

In the case of the Jordan Form, the eigenvectors corresponding to repeated eigenvalues are called generalized

eigenvectors and have the property that (A − λsI) jv j = 0, where v j is the jth generalized eigenvector related to

eigenvalue λs.

Finally, the eigenvalues of a real matrix may be complex numbers. This is inconvenient in the ensuing

analysis, so rather than using complex arithmetic on these numbers, we choose a different representation over the

so-called pseudo-eigenspace. Pseudo-eigendecomposition relies on the observation that complex eigenvalues of

a real matrix always come in conjugate pairs. Relaxing the restriction of non-zero values on the main diagonal to

include the immediate off-diagonal terms, we leverage the following equivalence:

[
vi vi+1

] λi 0

0 λi+1

 [
vi vi+1

]−1
=

[
vi v∗i

]  reθi 0

0 re−θi

 [vi v∗i
]−1

=
[

re(vi) im(vi)
]  r cos(θ) r sin(θ)

−r sin(θ) r cos(θ)

 [re(vi) im(vi)
]−1

, (6)

where re(v) and im(v) are the real and imaginary part of v, respectively. In the case of a non-diagonal Jordan

form, the columns are rearranged first (including the upper diagonal ones), and the conversion above is then

performed. This representation is also called the Real Jordan Form.

4 Dario Cattaruzza et al.

−4 −2 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28

−2

0

2

4

6

8

10

12

14

16

18

20

22

24

d = ρX

(
v
‖v‖

)
v

Fig. 1 Support function for a polyhedral set in R2. The distance between the tangent line and the origin is ρX
(

v
‖v‖

)
.

−3.5 −3 −2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5 3 3.5
−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

3

v1 v2

v3

v4

v5

v6

Fig. 2 Support function for a circular set using six directions (v1 · · · v6). The resulting polyhedron is an over-approximation of the
original set (note that directions need not be symmetrical).

2.4 Support functions

2.4.1 Definition of support functions

A support function is a convex function defined over the vector space Rp, which describes the distance of a

supporting hyperplane to the origin from a given set in Rp, as shown in Figure 1.

Support functions can be used to describe a set by defining the distance of its convex hull with respect to the

origin, given a number of directions. More specifically, a support function characterises the distance from the

origin to the hyperplane that is orthogonal to the given direction and that touches its convex hull at its farthest.

For example, the support function of a sphere centered at the origin given any unit vector v in R3, evaluates as the

radius of the sphere.

The intersection of multiple half spaces, each obtained by sampling a support function in a specific direction,

can generate a polyhedron (see Figure 2), as further discussed in the next section. Finitely sampled support

functions (i.e. using a limited number of directions) are template polyhedra in which the directions are not fixed,

which helps avoiding wrapping effects (wherein sampling in given directions creates an over-approximation of

a set that is not aligned with said directions). The larger the number of distinct directions provided, the more

precisely represented the set is. In more detail, given a direction v ∈ Rp, the support function of a non-empty set

X ⊆ Rp in the direction of v is defined as

ρX : Rp → R, ρX(v) = sup{x · v : x ∈ X},

Unbounded-Time Safety Verification of Guarded LTI Models with Inputs by Abstract Acceleration 5

where x ·v =
∑p

i=0 xivi is the dot product of the two vectors. Support functions apply to any non-empty set X ⊆ Rp,

but they are most useful representing convex sets. We will restrict ourselves to the use of convex polyhedra, in

which case the support function definition translates to solving the linear program

ρX(v) = max{x · v : Cx ≤ d} .

2.4.2 Properties of support functions

Several properties of support functions allow us to reduce the complexity of operations. The most significant

ones are [33]:
ρkX(v) = ρX(kv) = kρX(v) for k ≥ 0,

ρAX(v) = ρX(Aᵀv) where A ∈ Rp×p,

ρX1⊕X2 (v) = ρX1 (v) + ρX2 (v),

ρX(v1 + v2) ≤ ρX(v1) + ρX(v2),

ρconv(X1∪X2)(v) = max{ρX1 (v), ρX2 (v)},

ρX1∩X2 (v) ≤ min{ρX1 (v), ρX2 (v)},

where v, v1, v2 ∈ Rp. As can be seen by their structure, some of these properties reduce complexity to lower-order

polynomial or even to constant time, by turning matrix-matrix multiplications (O(p3)) into matrix-vector (O(p2)),

or into scalar (O(p)) multiplications.

2.4.3 Support functions in complex spaces

The literature does not state, to the best of our knowledge, any use of support functions in complex spaces. Since

we are applying their concept to eigenspaces, which may have complex conjugate eigenvalues, we extend the

definition of support functions to encompass corresponding operation on complex spaces, which are explicitly

shown.

Theorem 1 A support function in a complex vector field is a transformation:

ρX(v) : Cp → R = sup{re(x · v) : x ∈ X ⊆ Cp, v ∈ Cp},

where re(·) defines the real part of a complex number. The dot product used here is commonly defined in a

complex space as:

a · b =

p∑
i=0

aib∗i , a, b ∈ Cp,

where the element b∗i is the complex conjugate of bi.

Proof Let f : Cp → R2p and

x′ = f (x) =

 re(x)

im(x)

 , v′ = f (v∗) =

 re(v)

−im(v)

 .
Using abstract interpretation [22] we define a Galois connection α(x) = f (x) and γ(x′) = f −1(x′), which is

clearly a one-to-one relation. We can therefore establish an equivalence between ρX(v) = ρX′ (v′). ut

As we shall see later, the imaginary part of the result of the dot product is not relevant to the support function,

therefore we ignore it. Using support functions properties, we now have:

ρX(reiθv) = rρX(eiθv),

6 Dario Cattaruzza et al.

which is consistent with the real case when θ = 0. The reason why eiθ cannot be factored out as a constant is

because it executes a rotation on the vector, and therefore it follows the same rules as a matrix multiplication,

namely

ρX(eiθv) , ρX (v2) , where re(v2)

im(v2)

 =

 cos θ − sin θ

sin θ cos θ

  re(v)

im(v)

 .
Notice the resemblance of this matrix to a pseudo-eigenvalue representation (See Equation (6)). Since the

vectors we are interested in are conjugate pairs (because they have been created by a transformation into a matrix

eigenspace), we can transform our problem into a pseudo-eigenvalue representation. Since this removes the

imaginary part from the setup, we can evaluate the support function using the standard methods and properties

by transforming the conjugate pairs into separate vectors representing the real and imaginary parts and rotation

matrices as in the equation above.

Recently, [1] has presented a calculus for complex zonotopes that exploits at its core the same idea, namely

using complex eigenvalues to represent ellipsoidal and linear boundaries for reach sets. Their projections into

real space correspond to our semi-spherical approximations for variable inputs. Apart from the basic difference

in domain (zonotopes vs polyhedra), which in itself changes some aspects of the problem, the main difference is

that the authors perform their analysis over the complex space, whereas we ultimately work the idea in the real

space by using pseudo-eigenspaces.

2.5 Convex polyhedra

A polyhedron is a subset of Rp with planar faces. Each face is supported by a hyperplane that creates a half-space,

and the intersections of these hyperplanes are the edges (and vertices) of the polyhedron. A polyhedron is

said to be convex if a line segment joining any two points of its surface is contained in its interior. Convex

polyhedra are better suited than general polyhedra to define an abstract domain, mainly because they have a

simpler representation and because operations over convex polyhedra are in general easier than over general

polyhedra. There are a number of properties of convex polyhedra that make them ideal for abstract interpretation

over continuous spaces, including their ability to reduce an uncountable set of real points into a countable set

of faces, edges and vertices. Convex polyhedra retain their convexity across linear transformations, and are

functional across a number of operations because they have a dual representation [31], as detailed next. The

algorithm to switch between these two representations is given in Section 2.6.5.

2.5.1 Vertex representation

Since every edge in the polyhedron corresponds to a line between two vertices and every face corresponds to the

area enclosed by a set of co-planar edges, a full description of the polyhedron is obtained by simply listing its

vertices. Since linear operations retain the topological properties of the polyhedron, performing these operations

on the vertices is sufficient to obtain a complete description of the transformed polyhedron (defined by the

transformed vertices). Formally, a polyhedron can be described as a set V ∈ Rp such that v ∈ V is a vertex of the

polyhedron.

2.5.2 Inequality representation (a.k.a. face representation)

The dual of the Vertex representation is the inequality representation, where each inequality represents a face

of the polyhedron. Each face corresponds to a bounding hyperplane of the polyhedron (with the edges being

Unbounded-Time Safety Verification of Guarded LTI Models with Inputs by Abstract Acceleration 7

the intersection of two hyperplanes and the vertices being the intersection of p or more hyperplanes), and is

described mathematically as a function of the vector that is normal to the hyperplane. This representation can be

made minimal by eliminating redundant inequalities that do not correspond to any face of the polyhedron. If we

examine this description closely, we can see that it corresponds to the support function of the vector normal to

the hyperplane. Given this description we formalise the following: A convex polyhedron is a topological region

in Rp described by the set

X = {x ∈ Rp : Cx ≤ d,C ∈ Rm×p, d ∈ Rm}, (7)

where the rows Ci,∗ for i ∈ [1, ... ,m] correspond to the transposed vectors normal to the faces of the polyhedron,

and di for i ∈ [1, ... ,m] to the value of the support function of X in the corresponding direction. For simplicity in

the presentation, we will extend the use of the support function operator as follows:

ρ′X : Rm×p → Rm, ρ′X(M) =


ρX((M1,∗)ᵀ)
ρX((M2,∗)ᵀ)

...

ρX((Mm,∗)ᵀ)


.

2.6 Operations on convex polyhedra

There are a number of operations that we need to be able to perform on convex polyhedra.

2.6.1 Translations

Given a vertex representation V and a translation vector t, the transformed polyhedron is

V ′ = {v + t : v ∈ V}.

Given an inequality representation X and a translation vector t, the transformed polyhedron is

X′ = {x : Cx ≤ d + Ct} .

2.6.2 Linear transformations

Given a vertex representation V and a linear transformation L, the transformed polyhedron is

V ′ = LV.

Given an inequality representation X and a linear transformation L, the transformed polyhedron corresponds to

X′ ⊆
{
x : CL+x ≤ ρ′X((L+)ᵀCᵀ)

}
,

where L+ represents the pseudo-inverse of L [53]. In the case when the inverse L−1 exists, then

X′ =
{
x : CL−1x ≤ d

}
.

From this we can conclude that linear transformations are more efficient when using vertex representation, except

when the inverse of the transformation exists and is know a-priori. This work makes use of this assumption to

avoid alternating between representations.

8 Dario Cattaruzza et al.

2.6.3 Set sums

The addition of two polyhedra is such that the resulting set is that in which for all possible pairs of points inside

the original polyhedra, the sum is contained in the result. This operation is commonly known as the Minkowski

sum, namely

A ⊕ B = {a + b : a ∈ A, b ∈ B}.

Given two vertex representations V1 and V2, the resulting polyhedron is

V = conv(V1 ⊕ V2),

where conv(·) is the convex hull of the set of vertices contained in the Minkowski sum. Let

X1 = {x : C1x ≤ d1}, X2 = {x : C2x ≤ d2},

be two sets, then

X1 ⊕ X2 ⊆ X = {x : Cx ≤ d},

where

C =

C1

C2

 , d =

 d1 + ρ′X2
(Cᵀ1)

d2 + ρ′X1
(Cᵀ2)

 .
Because these sets correspond to systems of inequalities, they may be reduced by removing redundant constraints.

Note that if C1 = C2, then

X = X1 ⊕ X2 = {x : C1x ≤ d1 + d2}.

2.6.4 Set Hadamard products

Definition 1 Given two vertex representations V ′ and V ′′, we define the set Hadamard product operation using

such representations as

V = V ′ ◦ V ′′ = conv({v′ ◦ v′′ : v′ ∈ V ′, v′′ ∈ V ′′}),

where ◦ represents the Hadamard (coefficient-wise) product of the vectors.

Lemma 1 The set V = V ′ ◦ V ′′ introduced in the previous definition is a convex set containing all possible

combinations of products between elements of sets V ′ and V ′′.

Proof Given a convex set X with a vertex representation V , by definition we have

X′ = {tv1 + (1 − t)v2, v1, v2 ∈ V, t ∈ [0, 1]} ⊆ X,

which extends to multiple points [13] as

X′ =

 m∑
i=1

kivi,

m∑
i=1

ki = 1, vi ∈ V, and m = |V |

 ⊆ X.

Applying the Hadamard product, we obtain

X′ = {x1 ◦ x2 : x1 ∈ X1, x2 ∈ X2} ⊆ X = X1 ◦ X2,

where x1 ◦ x2 =
∑|V ′ |

i=1 kiv′i ◦
∑|V ′′ |

j=1 k jv′′j with v′i ∈ V ′, v′′j ∈ V ′′. Simplifying, we obtain

x1 ◦ x2 =

|V ′ |∑
i=1

|V ′′ |∑
j=1

kiv′i ◦ k jv′′j =

|V ′ |∑
i=1

|V ′′ |∑
j=1

kik jv′i ◦ v′′j =

|V ′ ||V ′′ |∑
i j=1

ki jvi j,

where vi j = v′i ◦ v′′j ∈ V and
∑|V ′ ||V ′′ |

i j=1 ki j =
∑|V ′ |

i=1
∑|V ′′ |

j=1 kik j = 1. ut

Unbounded-Time Safety Verification of Guarded LTI Models with Inputs by Abstract Acceleration 9

Note that in the case of the inequality representation, there is no direct result for this product. We must there-

fore enumerate the sets in one of the polyhedra, and use linear solving algorithms to find an over-approximation

as

X ⊆
{
x|x · t < max{ρX2 (t ◦ v′) | v′ ∈ V ′}, t ∈ T

}
, (8)

where t is a template direction for a face in the over-approximation, T is the set of directions selected for the

over-approximation, and V ′ is the set of vertices of X.

2.6.5 Vertex enumeration

The vertex enumeration algorithm obtains a list of all vertices of a polyhedron, given a face representation of its

bounding hyperplanes. Given the duality of the problem, it is also possible to find the bounding hyperplanes given

a vertex description if the chosen algorithm exploits this duality. In this case the description of V is given in the

form of a matrix inequality Vx ≤ [1 1 · · · 1]ᵀ with V = [v1 · · · vm]ᵀ, vi ∈ V . Similarly, C can be described as

a set containing each of its rows. There are two algorithms that efficiently solve the vertex enumeration problem.

lrs [4] is a reverse search algorithm, while cdd [31] follows the double description method. In this work we use

the cdd algorithm for convenience in implementation (the original cdd was developed for floats, whereas lrs uses

rationals). The techniques presented here can be applied to either. Let

C = {x : Cx ≥ 0,C ∈ Rn×p, x ∈ Rp}.

be the polyhedral cone represented by C. The pair (C,V) is said to be a double description pair if

C =
{
λᵀV : V ∈ Rp, λ ∈ R|V |

≥0

}
,

where V is called the generator of X. Each element in V lies in the cone of X, and its minimal form (smallest

m) has a one-to-one correspondence with the extreme rays of X if the cone is pointed (i.e., it has a vertex at the

origin). This last can be ensured by translating a polyhedral description so that it includes the origin, and then

translating the vertices back once they have been discovered (see Section 2.6).

We also point out that

{x : Cx ≤ d} =
{
x′ : [−C d] x′ ≥ 0

}
, where x ∈ Rp and x′ =

 x
1

 ∈ Rp+1.

The vertex enumeration algorithm starts by finding a base CK which contains a number of vertices of the

polyhedron. This can be done by pivoting over a number of different rows in C and selecting the feasible visited

points, which are known to be vertices of the polyhedron (pivoting p times will ensure at least one vertex is

visited if the polyhedron is non-empty). CK is represented by CK which contains the rows used for the pivots.

The base CK is then iteratively expanded to CK+i by exploring the ith row of C until CK = C. The corresponding

pairs (CK+i,VK+i) are constructed using the information from (CK ,VK) as follows.

Let CK ∈ RnK×p, Ci,∗ ∈ R1×p, VK ∈ Rp,

H+
i = {x : Ci,∗x > 0}, H−i = {x : Ci,∗x < 0}, and H0

i = {x : Ci,∗x = 0},

be the spaces outside, inside and on the ith hyperplane and

V+
K = {v j ∈ H+

i }, V−K = {v j ∈ H−i }, and V0
K = {v j ∈ H0

i },

the existing vertices lying on each of these spaces. Then [31],

VK+i = V+
K ∪ V−K ∪ V0

K ∪ V i
K , V i

K =
{
(Ci,∗v+)v− − (Ci,∗v−)v+ | v− ∈ V−, v+ ∈ V+} .

10 Dario Cattaruzza et al.

3 Abstract Acceleration - Overview of the Algorithm

Abstract acceleration is a method that seeks to precisely describe the dynamics of a transition system over a

number of steps using a concise description between the first and final steps. More precisely, it looks for a direct

formula to express the post-image of an unfolded loop from its initial states. Formally, given the dynamics in

equation (1) an acceleration formula aims at computing the reach tube based on (3) using a function f , such that

f (·) = τn(·). In the case of models without inputs, this equation can be derived from the expression xn = Anx0.

3.1 Overview of the algorithm

The basic steps required to compute a reach tube using abstract acceleration are shown in Figure 3.

1. The process starts by performing eigendecomposition of the dynamics (based on matrix A) in order to

transform the problem into a simpler one. Since we use at this stage unsound arithmetics, the results are

quantities identified by a tilde (as in S̃, J̃).

2. The second step involves upper-bounding the rounding errors in order to obtain sound results: bounds on

eigenvalues for example are well known from the literature and can be obtained as |λ− λ̃| < ‖S̃J̃S̃−1
− A‖2. In

general, a variety of off-the-shelf tools may be used, but since larger problems require numerical algorithms

for scalability, all subsequent steps are performed using interval arithmetics in order to maintain soundness:

we identify corresponding interval-based quantities with bold symbols (e,g, S,J), as well as subsequent

matrix operations (e.g., computing the inverse of S). Thus we obtain ‖SJS−1 − A‖2 by extending the original

unsound matrices by one least significant bit element-wise. We also note that this equation is symmetric,

which is why we use the estimated eigenvectors to calculate the error on the original eigenvalues (see [16]

for further details). Whilst bounds on the eigenvectors can be calculated from the eigenvalues, we choose a

more complex yet faster over-approximation, which is described in [16].

3. The inverse of the generalised eigenvectors (S−1) is calculated soundly (using interval arithmetics).

4. The problem is transformed into canonical form by multiplying both sides of the equation by S−1 (we use

blackboard bold symbols to indicate interval vectors and matrices, which are employed to ensure sound

operations), obtaining

X′k = J
(
X′k−1 ∩G′

)
+ U′, where X′k = S−1Xk, U′ = S−1BU, G′ = {x | GSx ≤ h}.

5. We calculate the number of iterations n based on the guard set, as explained in Section 7. If there are no

guards, we set n = ∞. This number need not be exact: if we over-approximate the number of iterations, the

resulting reach tube will further over-approximate the desired one.

6. We over-approximate the dynamics subject to general inputs (for parametric inputs or in the absence of

inputs this step will be ignored), using the techniques described in Section 6.2.

7. We calculate the accelerated dynamics using the techniques described in Section 5.1.

8. We transform the input and initial sets into vertex representation, to be used as source for the reach tube

calculation.

9. We employ a sound simplex algorithm [16] to evaluate the convex-set Hadamard product of the abstract

dynamics and of the initial set. The two most important elements of the sound simplex are that it uses interval

arithmetics to pivot, and that at every stage it verifies the intersection between vertices in order to avoid

pivoting on unsound solutions. The latter step is better explained by considering that the simplex algorithm

operates by visiting adjacent vertices. The interval arithmetics ensure that the solution at the last visited

vertex is sound, but if there is an intersection, the new pivot may choose to start on the intersecting vertex

instead (which is not sound), thus, by checking the intersection and extending the interval to encompass both

vertices, we retain soundness (see [16] for details).

Unbounded-Time Safety Verification of Guarded LTI Models with Inputs by Abstract Acceleration 11

1. Calculate
Eigenspace

2. Restore
Soundness

3. Find
Inverse

5. Find Number
of Iterations

4. Transform
problem into

Eigenspace

7. Get Abstract
Dynamics

6. Semispherical
Approximation

10. Get
Reach Tube

9. Find Eigen
Reach Tube

8. Find
Vertices

A S̃, J̃ S

J S−1

G′

X′0
U′

J, n X′0, U′

X′0, U′b

Jb

J

G
X0

BU

V ′0X′]

S

X]

Fig. 3 Block diagram describing the different steps used to calculate the abstract reach tube of a model via Abstract Acceleration. The
white box is the numerical eigensolver stage. Blue boxes are soundness restoration stages. Red boxes represent linear transformations
of the problem. The orange boxes denote abstractions defined in this paper, and the green boxes the reachability computation in the
abstract domain.

10. Since we have operated so far in the eigenspace, we transform the reach tube back into the state space via

multiplication by S.

4 Abstract Matrices in Abstract Acceleration

We introduce the concept of abstract matrix.

Definition 2 An abstract matrixAn ⊆ Rp×p is an over-approximation of the union of the powers of the matrix

Ak, such thatAn ⊇
{
Ak : k ∈ [0, ... , n]

}
. Its application to the initial set X0 results in

X̂]
n = AnX0, (9)

such that X̂]
n ⊇ X̂n is an over-approximation of the reach tube described in Equation (4).

Next we explain how to compute such abstract matrices. For simplicity, we first describe this computation

for matrices A with real eigenvalues, whereas the extension to the complex case will be addressed in Section 4.1.

Similar to [44], we first have to compute the Jordan normal form of A. Let A = SJS−1 where J is the normal

Jordan form of A, and S is made up by the corresponding generalized eigenvectors. We can then easily compute

An = SJnS−1, where given a set of r eigenvalues λs with geometric multiplicities ps and s ∈ [1, ... , r], we have

Jn =


Jn

1
. . .

Jn
r

 , where Jn
s =



λn
s

(
n
1

)
λn−1

s . . .
(

n
ps−1

)
λ

n−ps+1
s

λn
s

(
n
1

)
λn−1

s

...
...

. . .
...

λn
s


. (10)

The abstract matrixAn is computed as an abstraction over a set of vectors mk ∈ Rp, k ∈ [1, ... , n] of distinct

entries of Jk, as explained below.

Let Is = [1 0 · · · 0] ∈ Rps . The vector mk is obtained by the transformation ϕ−1 (which is always invertible) as

mk = ϕ−1
(
Jk

)
=

[
I1 Jk

1 · · · Ir Jk
r

]ᵀ
∈ Rp, (11)

such that Jk = ϕ(mk).

12 Dario Cattaruzza et al.

If J is diagonal [44], then mk results in the vector made up of powers of the eigenvalues, [λk
1 · · · λ

k
p]. The

diagonal entries in the abstract matrix is thus bound by the intervals
[
min{|λs|

0, |λs|
n},max{|λs|

0, |λs|
n}
]
, λs ∈ R+[

−max{|λs|
0, |λs|

n},max{|λs|
0, |λs|

n}
]
, otherwise

, where s ∈ [1, ... , r], r = p. (12)

We observe that the spectrum of the abstract matrix σ(An), which can be derived from its entries in Equation (12),

over-approximates
⋃

k∈[1,... ,n] σ(Ak).

In the case of the sth Jordan block J s with geometric multiplicity ps > 1, observe that the first row of Jn
s

contains all (possibly) distinct entries of Jn
s . Hence, the vector section ms is the concatenation of the (transposed)

first row vectors
(
λn

s ,
(

n
1

)
λn−1

s , . . . ,
(

n
ps−1

)
λ

n−ps+1
s

)ᵀ
of Jn

s .

Since ϕ transforms the vector m into the shape of (10) of Jn, it is called a matrix shape [44]. We then define

the abstract matrix as

An = {S ϕ(m) S−1 : Φm ≤ f } , (13)

where the constraint Φm ≤ f is synthesised from intervals associated to the individual eigenvalues and to their

combinations. More precisely, we compute polyhedral relations: for any pair of eigenvalues (or distinct entries)

within J, we find an over-approximation of the convex hull containing the points

{
mk : k ∈ [1, ... , n]

}
⊆ {m : Φm≤ f } .

The reason for evaluating the convex hull over pairs of points is twofold. In the first instance, we note that

the set
{
mk | k ∈ [1, ... , n]

}
is in general not convex. This makes it hard to find its support in arbitrary directions.

Ideal directions would be the normals to the gradients of the function, namely ∇mk, which would provide the

tightest over-approximation at iteration k. However, as will be seen below, when combining negative or complex

conjugate eigenvalues, the corresponding hyperplane tangent may intersect the set, and thus it cannot be used

to define its convex hull. The second reason for choosing pairwise directions is practical: we need an even

distribution of the directions in Rp, and it is easier to do this in a pairwise manner. More elaborate search of a

set of directions might leverage convex optimization techniques, which however come with a computational

overhead: as such, they fall outside the scope of this work.

4.1 Abstract matrices in complex spaces

To deal with complex numbers in eigenvalues and eigenvectors, [44] employs the real Jordan form for conjugate

eigenvalues λ = reiθ and λ∗ = re−iθ (θ ∈ [0, π]), so thatλ 0

0 λ∗

 is replaced by r

 cos θ sin θ

− sin θ cos θ

 .
Although this equivalence will be of use once we evaluate the progression of the model, calculating powers under

this notation is often more difficult than handling directly the original matrices with complex values.

In the case of real eigenvalues we have abstracted the entries in the power matrix Jn
s by ranges of eigenvalues

[min{λ0
s · · · λ

n
s},max{λ0

s · · · λ
n
s}] forming a hypercube. In the complex case, where the rotations describe spherical

behaviour, we can do something similar by rewriting eigenvalues into polar form λs = rseiθs and enclosing

the radius in the interval [0, rs], where rs = max{rk
s : k ∈ [0, ..., n]} (in the worst case scenario this is over-

approximated by a hyper-box with λk
s ∈ [−rs, rs] + [−rs, rs]i, but we will introduce tighter bounds in the course

of this work).

Unbounded-Time Safety Verification of Guarded LTI Models with Inputs by Abstract Acceleration 13

0 5 10 15 20 25 30 35

0

50

100

150

200

250

n = 1

n = 2
n = 3

n = 4

n = 5

λn
1

λ
n 2

Fig. 4 Polyhedral faces over R2 for pairs of eigenvalues (λn
1, λ

n
2) where λ1=2, λ2=3, and 1≤n≤5. Bold purple lines represent supports.

The dotted grey and dashed red polytopes show logahedral approximations (box and octagon) used in [44]. Note the scales (the sloped
dashed lines are parallel to the x=y line, and the dashed red polytope hides two small faces yielding an octagon).

5 Abstract Acceleration without Inputs

5.1 Using support functions for abstract acceleration

As an improvement over [44], the rows in Φ and f (see (13)) can be obtained by refined sampling of the support

functions of these sets. The choice of directions for these support functions results in an improvement over the

logahedral abstractions used in previous work [36, 37, 44] (see Figures 4 - 7). This approach works thanks to the

convex properties of the exponential progression. We consider five cases:

1. Positive real eigenvalues

The exponential curve is cut along the diagonal between the eigenvalues with maximum and minimum range

to create a supporting hyperplane. A third point taken from the curve is used to test the direction of the

corresponding template vector. An arbitrary number of additional supporting hyperplanes are created by

selecting pairs of adjacent points in the curve and creating the corresponding support functions, as shown in

Figure 4.

2. Complex conjugate eigenvalue pairs

In the case of complex conjugate pairs, the eigenvalue map corresponds to a logarithmic spiral (See Figure 5).

In this case, we must first extract the number of iterations (denoted by k) required for a full cycle. For

convergent eigenvalues (|λ| < 1), only the first k iterations have an effect on the support functions, while

in the divergent case only the last k iterations are considered (since symmetrically, it corresponds to the

reverse spiral case). Support functions are found for adjacent pairs, checking the location of the first point

for convergent eigenvalues, and that of the last point for divergent eigenvalues. If a point falls outside of

the supporting half-space, we look for an interpolant point that closes the spiral and that is tangent to the

origin. This last check is performed as a binary search over the remaining points in the circle (noting that the

supporting planes would exclude the considered point) to achieve maximum tightness (see Figure 5). Further

consideration is taken to ensure that subsequent iterations fall within the envelope found on the first/last

rotation. This is ensured by extending the support functions outwards by a factor f = max
(
{1, |λ|n̂ cos(θ)−1}

)
,

where θ is the angle of the eigenvalue pair and n̂ = n for the convergent case or n̂ = 1
n for the divergent case.

When this value is too large, we use an interpolation to find better supports. This is achieved by finding a

pair such that the first point is obtained from λk and the second from (λ
1
m)mk+1. The relaxation factor then

becomes cos
(
θ
m

)−1
.

14 Dario Cattaruzza et al.

−0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8
−0.4

−0.2

0

0.2

0.4

0.6

0.8

n = 1

n = 2
n = 3

λn
1

λ
n 2

Fig. 5 Polyhedral faces projected onto R2 for complex conjugate eigenvalues (λn
1, λ

n
2) where λ1=0.8+0.4i, λ2=0.8−0.4i, and 1≤n≤14.

Bold purple lines represent supports. The blue dotted line shows the supporting hyperplane that excludes the point obtained with
n = 1, which is replaced by a supporting hyperplane tangent to the spiral but touching said origin.

0 0.2 0.4 0.6 0.8
0.5

1

1.5

2

n = 1

n = 2

n = 3

apex

λn
1

(n 1) λ
n−

1
1

Fig. 6 Polyhedral faces in R2 related to a Jordan block (λn
1,

(
n
1

)
λn−1

1), where λ1=0.8 and 1≤n≤15. Bold purple lines represent supports
found in this work.

3. Equal eigenvalues

When two eigenvalues are equivalent, the resulting support functions are those orthogonal to the x = y plane,

intersecting the square created by the maximum and minimum values1.

4. Jordan blocks of non-trivial size (> 1)

In the case of eigenvalues with geometric multiplicities, we find three shapes. When both elements in the pair

are convergent, since the convex sets can be “sharp”, it is important to find the apex of the upper diagonals

in order to minimise the over-approximation (see Figure 6). When both elements are divergent, the shape

is similar to a positive valued pair since there is no extremum. Finally, when comparing different Jordan

blocks, one convergent and one divergent, we evaluate the containing hyperbox, thus avoiding the change in

convexity at the apex.

5. Negative eigenvalues and combinations of real eigenvalues with conjugate pairs

When comparing a positive real eigenvalue to a complex conjugate or a negative one, we must account

for the changes of sign in the progression of the latter. We compute envelopes of the progression of the

corresponding dynamics, which are obtained via convex over-approximations (cf. Figure 7). In the case

of complex eigenvalues, we use the absolute value in order to determine the envelope. If both eigenvalues

1 As an alternative, a space reduction method can be applied to remove one of the eigenspaces, and the original space can be
restored after the reduced reach tube has been evaluated.

Unbounded-Time Safety Verification of Guarded LTI Models with Inputs by Abstract Acceleration 15

−10 0 10

0

5

10

15

|λ1 | > λ2 > 1

λ2 > |λ1 | > 1

λ2 = |λ1 |

|λ1 | > 1 > λ2

λn
1

λ
n 2

Fig. 7 Polyhedral faces over R2, of different eigenvalue ratios (note that the curves obtained from the progression of the blue and
orange dots are convex w.r.t. the λn

2-axis, whereas the green and brown are concave). Dotted lines represent convex supports for these
layouts.

have rotating dynamics, we would require full symmetry along the four quadrants, thus we end up with a

hyper-box with vertices at the farthest points from the origin.

An additional drawback of [44] is that calculating the exact Jordan form of any matrix is computationally

expensive for large-dimensional matrices. We will instead leverage numerical algorithms that provide an

approximation of the Jordan normal form and soundly account for the associated numerical errors. We use

properties of eigenvalues to relax f by finding the maximum error in the calculations, which can be determined

by computing the norm δmax = ‖ŜĴŜ−1 − A‖, where Ĵ and Ŝ are the eigenvalues and eigenvectors of A calculated

numerically [16]. Let us recall that the notation above is used to represent interval matrices, and that all operations

are performed using interval arithmetics with outward rounding in order to ensure soundness. The constraints

in Φm ≤ f are then computed by considering the ranges of eigenvalues |λs ± δmax|
k, which are represented in

Figure 4 with blue circles.

The outward relaxation of the support functions (f) follows a principle similar to that in [32], and reduces the

tightness of the over-approximation, while ensuring the soundness of the obtained abstract matrixAn. Graphically,

this is equivalent to moving the faces of a polyhedron outward, which has practically a minimal impact due to

the small magnitude of δmax. It is also worth noting that the transformation matrices into and from the eigenspace

will also introduce over-approximations due to the intervals, and will exacerbate the over-approximations due to

the condition number related to the eigenvalues.

One can still use exact arithmetics with a noticeable improvement over previous work; however, for larger-

dimensional models the option of using floating-point arithmetic, while taking into account errors and metic-

ulously setting rounding modes, provides a 100-fold plus improvement, which can make a difference towards

rendering verification practically feasible. For a full description on the numerical techniques described here

see [16].

5.2 Abstract matrices and support functions

Since we are describing operations using abstract matrices and support functions, we briefly review the nature

of these operations and the properties that support functions retain within this domain. Let X ∈ Rp be a set and

A ∈ Rp×p an abstract matrix for the same space. From Equation (13) we have

A =
⋃

Sϕ(m)S−1, where Φm ≤ f ,

16 Dario Cattaruzza et al.

which leads to

ρAX(v) = ρSϕ(m)S−1X(v) = ρϕ(m)S−1X (Sᵀv) , (14)

where ρϕX(v) = sup
{
ρϕ(x ◦ v) : x ∈ X

}
, and ρϕ(v) = sup{m · ϕ−1(v) : Φm ≤ f }. Here, x ◦ y is the Hadamard

product, where (x ◦ y)i = xiyi, and ϕ−1(·) is the inverse operation of ϕ(·). We also define

ρAX(v) = sup {ρaX(v), a ∈ A}

= sup
{
Sϕ(m)S−1x · v, x ∈ X,Φm ≤ f

}
= sup

{
ϕ(m)S−1x · Sᵀv, x ∈ X,Φm ≤ f

}
= sup

{
ρϕ(S−1x ◦ Sᵀv), x ∈ X

}
,

and, in order to simplify the nomenclature, we write

ρAX(v) = ρX(Aᵀv). (15)

6 General Abstract Acceleration with Inputs

6.1 Acceleration of parametric inputs

Let us now consider the following over-approximation for τ on sets:

τ](X0,U) = AX0 ⊕ BU, (16)

and add a restriction to constant (also called parametric) inputs, namely where uk = u0,∀k > 0 and u0 ∈ U.

Unfolding (3) (ignoring the presence of the guard set G for the time being), we obtain

Xn = AnX0 ⊕

n−1∑
k=0

Ak BU. (17)

We further simplify the sum
∑n−1

k=0 Ak BU, exploiting the following result from linear algebra.

Lemma 2 If I − A is invertible, then

n−1∑
k=0

Ak = (I − An)(I − A)−1.

If furthermore lim
n→∞

An = 0, then lim
n→∞

n∑
k=0

Ak = (I − A)−1.

The inverse (I − A)−1 does not exist for eigenvalues equal to 1, i.e. we need 1 < σ(A), where σ(A) is the

spectrum (the set of all the eigenvalues) of matrix A. In order to overcome this problem, we introduce the

eigendecomposition of A = SJS−1, (and trivially I = SIS−1), and by the distributive and transitive properties we

obtain

(I − An)(I − A)−1 = S(I − Jn)(I − J)−1S−1 .

Although (I − J) is stil not invertible, this representation allows us to accelerate the eigenvalues individually,

trivially noticing that
∑n−1

k=0 1k = n for unitary eigenvalues (thus eliminating the need to calculate said inverse for

these eigenvalues). Using the properties above, and translating the problem into the generalised eigenspace to

account for unit eigenvalues, we obtain the following representation:

(I − An)(I − A)−1 = SDnS−1, (18)

Unbounded-Time Safety Verification of Guarded LTI Models with Inputs by Abstract Acceleration 17

given

Dn
i, j =


0 gm(λi) ≤ k ∨ n < k

d(λi, n, 0) i = j(
n+1
k+1

)
λi = 1

d(λi, n, j − i) λi , 1,

where

d(λi, n, 0) =

n−1∑
k=0

λk
i =

 n λi = 1
1−λn

i
1−λi

λi , 1,

d(λi, n, k) =
−1k

k + 1
1 − λn

i

(1 − λi)k+1 +

k∑
j=1

−1k− j

k − j

(
n

j − 1

)
λ

n− j−1
i

(1 − λi)k− j ,

and where gm(·) denotes the geometric multiplicity of the given eigenvalue, and k = j − i. With these notions in

hand, we next define the abstract acceleration of parametric inputs.

Theorem 2 The abstract acceleration is defined as

τ̂]n(X0,U) =def A
nX0 ⊕ B

nU, (19)

where Bn ⊇
⋃

k∈[1,... ,n] S(Dk)S−1B, is an over-approximation of the n-reach tube, namely X̂n ⊆ τ̂
]n(X0,U).

Proof From Equation (4) we have

X̂n = τ̂n(X0,U) =
⋃

k∈[0,... ,n]

τk(X0,U).

Using Equation (17), we expand this into

X̂n =
⋃

k∈[0,... ,n]

AkX0 ⊕

k−1∑
j=0

A jBU ⊆
⋃

k∈[0,... ,n]

AkX0 ⊕
⋃

k∈[0,... ,n]

k−1∑
j=0

A jBU,

then replace

X̂n ⊆ A
nX0 ⊕

⋃
k∈[1,... ,n]

S(Dk)S−1BU

and finally obtain

X̂n ⊆ τ̂
]n(X0,U).

The quantitiesAn andBn are calculated using the techniques described in Section 5.1, where special consideration

is taken to evaluate pairs comprising equal eigenvalues. Figure 8 shows an example of such a pair. Since both

functions are monotonic, the set is convex. The techniques applied to positive real eigenvalues (see Section 5.1)

therefore stands. ut

6.2 Acceleration of time-varying inputs

In order to generalise the previous results to time-varying inputs, we will over-approximate the term BU over the

eigenspace by a semi-spherical enclosure, namely a set where complex conjugate eigenvalues are enclosed by a

spherical support with centre u′c and the radius of U′b, whereas real eigenvalues are enclosed by hyper-rectangles

(dashed symbols represent elements in the eigenspace). To this end, we first rewrite

U′J = S−1BU = {u′c} ⊕ U′d,

18 Dario Cattaruzza et al.

0 5 10 15 20 25 30 35

1

2

3

4

5

n = 1

n = 2

n = 3

n = 4

n = 5

λn
1

λ
n 2

Fig. 8 Polyhedral faces (λn
1, n) over R2, where λ1=2, λ2=3, and 1≤n≤5. Bold purple lines represent supports found in this work.

where u′c is the centre of the smallest hyperbox (interval hull) containing U′J , and U′d = {u : u + u′c ∈ U′J}:

u′ci =
1
2

(ρU′J (vi) + ρU′J (−vi)), where vi j =

 1 j = i

0 j , i
. (20)

We then over-approximate U′d via U′b, by the maximum radius in the directions of the complex eigenvalues (cf.

illustration in Figure 9). Let

Λ = {λi : im(λi) ≥ 0}

be the set of eigenvalues of A, where im(·) is the imaginary value of a complex number, and conjugate pairs are

represented only by one member of the pair. Let us define the function fb : Rp → Rpb , where pb is the cardinality

of Λ, such that

fb(v) = red(vb), where (vb)i =


0 λi < Λ

|vi| λi , λ
∗
i+1√

v2
i + v2

i+1 λi = λ∗i+1

,

i ∈ [1, ..., p] and red(·) is a function that reduces the dimension of a vector by removing the elements where λi < Λ

(i.e. the null elements in vb, such that if for instance vb = [v1 0 v3 . . . vp]ᵀ, then red(vb) = [v1 v3 . . . vp]ᵀ).

Extending this to matrices we have

Fb : Rr×p → Rr×pb , Fb(C) = Cb where (Cb)i,∗ = fb(Ci,∗),

where r denotes the number of inequalities describing a set in Rp. Finally

U′d = {u | C′uu ≤ d′u},U
′
d ⊆ U′b, with

U′b = {u | Fb(C′u) fb(u) ≤ fb(d′u)}, and

BU ⊆ Ub ⊕ Uc, where Ub = SU′b and Uc = {Su′c}. (21)

Since the description of U′b is no longer polyhedral in Rp, we will also create an over-approximation Jb of J
in the directions of the complex eigenvectors, in a similar way as we generated U′b for U′d . More precisely,

Jb =


Jb1

. . .

Jn
br

 , where ∀s ∈ [1, ... , r]

λ j ∈ Jb s = |λi| ∈ J s ∩ Λ

gm(Jb s) = gm(J s),
(22)

and gm(·) is the geometric multiplicity of the specific Jordan block.

Unbounded-Time Safety Verification of Guarded LTI Models with Inputs by Abstract Acceleration 19

−40 −20 0 20 40
−40

−20

0

20

40

u′c

0, 0

U′b

U′d

U′

λ1

λ
2

Fig. 9 Relaxation of an input set within a complex subspace, in order to make it invariant to matrix rotations. Dashed lines and curves
denote translated quantities onto the origin.

Definition 3 Given a matrix A = SJS−1 and a vector x, we define the following operations:

F∗b(A, x) = S f −1
b

(
Fb(J) fb(S−1x)

)
. (23)

Finally, we refer to the accelerated sets

Un
b =

{
F∗b((I − An), F∗b((I − A)−1,u)) | u ∈ Ub

}
, Un

c = (I − An)(I − A)−1Uc, Un
cb = Un

c ⊕ Un
b .

Returning to our original equation for the n-reach set, we obtain2

Xn ⊆ AnX0 ⊕ Un
cb. (24)

Shifting our attention from reach sets to reach tubes, we can now over-approximate the reach tube by abstract

acceleration of the summands in (24), as follows.

Theorem 3 The abstract acceleration

τ̂]n(X0,U) = AnX0 ⊕ B
nUc ⊕ B

n
bUb, (25)

where An ⊇
⋃

k∈[1,... ,n] Ak, Bn ⊇
⋃

k∈[1,... ,n]
∑k−1

i=0 AiB, and Bn
b ⊇

⋃
k∈[1,... ,n] F∗b

(∑k−1
i=0 AiB, x

)
, denotes an over-

approximation of the n-reach tube, namely X̂n ⊆ τ̂
]n(X0,U).

Proof From Equation (24) we have that Xn ⊆ AnX0 ⊕ Un
cb = AnX0 ⊕ Un

c ⊕ Un
b . Furthermore, from Equation (24)

we also have τ̂]n(X0,Uc) ⊇
⋃

k∈[1,... ,n] AkX0⊕Uk
c . Finally, from the definition ofBn

b we haveBn
bUb ⊇

⋃
k∈[1,... ,n] Uk

b,

hence τ̂]n(X0,U) ⊇ X̂n. ut

6.3 Combining abstract matrices

Calculating the reach set from the set of initial states and that originating from the input set separately, and then

adding them together, can result in coarse over-approximations. To reduce this, we explain next how to apply

abstract acceleration to the combined input-and-state spaces.

One important property of the abstract matrices An, Bn and Bn
b is that they are related. In the case of

parametric inputs, this correlation is linear and described by the acceleration defined in Lemma (2). In the case

2 Note that although we are working in the eigenspace, these sets can be traced back to corresponding sets in the original state
space such that U′b = S−1BUb, U′c = S−1BUc, and U′d = S−1BUd . Hence, this inclusion is also valid in the original state space.

20 Dario Cattaruzza et al.

of Bn
b this relationship is not linear (see Eq. 21). However, we can still find a linear over-approximation of the

relation between Bn
b andAn based on the time steps k.

Given two sets X ∈ Rp and U ∈ Rq and a transition equation Xk+1 = AXk + BU, which is related to

ρXk+1 (v) = ρAXk (v) + ρBU (v), we define a set

X′ =


 x
Bu

 : x ∈ X,u ∈ U


so that

ρXk+1 (v) = ρX′k

Aᵀv
v

 = ρX′k

(
Dᵀv′

)
, with D =

A 0

0 I

 , v′ =

vv
 .

Accelerating Xk+1, we obtain

ρXn (v) = ρAnX0 (v) + ρ(I−An)(I−A)−1 BU (v) = ρX′0

(
(Dn)T v′

)
, with Dn =

An 0

0 (I − An)(I − A)−1

 ,
in the case of parametric inputs. More generally, the diagonal elements of Dn correspond to the diagonal elements

of An and
∑n−1

k=0 Ak B, which means we can construct

Dn =

An 0

0 Bn

 , so that ρXn (v) = ρX′0

(
(Dn)ᵀv′

)
, (26)

whereAn and Bn are the abstract matrices in Equations (13) and (19). We can then apply this abstraction to (21)

and obtain:

ρXn (v) = ρX′0 (DnT
b v′), where (27)

Dn
b =

An 0

0 Bn
b

 , v′ =

 v
fb(v)

 ,
Bn

b = SF−1
b

(
(I − Jn

b)(I − Jb)−1Fb(S−1)
)
,

with Jb defined in (22). This model provides a tighter over-approximation than (25), since the accelerated

dynamics of the inputs are now coupled to the acceleration of the dynamical part of the model.

Example 1 In order to illustrate this, let us consider the one-dimensional model xk+1 = 0.5x + 1, x0 = 1. If we

calculate A and B separately we get x̂ =
⋃∞

k=0 Ak x0 +
⋃∞

k=0(1 − Ak) u
1−A = [1, 3], however, using D we have

x̂ =
⋃∞

k=0 Ak
(
x0 −

u
1−A

)
+ u

1−A = [1, 2]. ut

7 Abstract Acceleration with Guards: Estimation of the Number of Iterations

In the presence of spatial guards G, we are interested in estimating the number of iterations used to calculate

the abstract matrices. Since we are dealing with reach sets, we differentiate between sets that are entirely inside

the guard, sets that are crossing it, and sets that are entirely outside of it. The latter reach sets should never be

propagated, whereas reach sets crossing guards should be made as tight as possible.

Given a convex polyhedral guard expressed as the assertion G = {x : Gx ≤ h}, we define Gi,∗ as the ith row of

G and hi as the corresponding element of h. We denote the normal vector to the ith face of the guard as gi = Gᵀi .

The distance of the hyperplane defined by the i-th guard to the origin is thus γi = hi
|gi |

.

Given a convex set X, we may now describe its position with respect to each face of the guard through the

use of its support function alongside the normal vector to the hyperplane (for clarity, we assume the origin to be

inside set X):
ρX(gi) ≤ γi, inside the hyperplane,

−ρX(−gi) ≥ γi, outside the hyperplane.

Unbounded-Time Safety Verification of Guarded LTI Models with Inputs by Abstract Acceleration 21

Applying this to Equation (24) we obtain:

ρXn (gi) = ρX0 (Aniᵀ gi) + ρUn
cb

(gi) ≤ γi, (28)

ρXn (−gi) = ρX0 (−Ani
ᵀ

gi) + ρUn
cb

(−gi) ≤ −γi. (29)

From the inequalities above we can determine up to which number of iterations ni the reach tube remains inside

the corresponding hyperplane, and starting from which iteration ni the corresponding reach set goes beyond the

guard.

In order for a reach set to be inside the guard it must therefore be inside all of its faces, and we can ensure it is

fully outside of the guard set when it is fully beyond any of them. Thus, we have n = min{ ni }, and n = min{ ni }.

We now discuss why these two cases are important. Looking at the transition in Equation (1), we can easily

derive that if Gxk � h (i.e. the point lies outside at least one of the faces of the guard set), the post-image of all

subsequent iterations of that point must not be included. As such, any over-approximation of the reach set will

only add imprecision. Therefore, we will use the bounds n and n to create a tighter over-approximation. Let

X̂]
n = AnX0 ⊕ BnU (n-reach tube)

X]
n = AnX0 ⊕ BnU (n-reach set)

X̂]

n | n = τ
(
An−n−1X]

n ⊕ BnU ∩G,U
)

X̂]

n = X̂]

n | n ∪ X̂]
n.

This double step prevents the set
{
x : x ∈ X̂]

n, x < X]
n

}
to be included in further computations, thus reducing the

size of the over-approximation.

Computing the maximum ni such that Equation (28) is satisfied is not trivial, because the unknown ni occurs

in the exponent of the equation. However, since an intersection with the guard set will always return a sound

over-approximation, we do not need a precise value: we can over-approximate it by decomposing gi into the

generalised eigenspace of A. More precisely, let

gi =

p∑
j=1

ki jv j + res(gi), (30)

where v j are row vectors of S−1 or −S−1 such that ki j ≥ 0, and res(gi) is the component of the vector gi that lies

outside the range of S, namely the subspace spanned by its columns. Notice that since by definition S always has

an inverse, it is full rank and therefore res(gi) = 0 and subsequently not relevant. It is also important to note that

S is the matrix of generalised eigenvectors of A and therefore we are expressing the guard in the generalised

eigenspace of A. Thus we obtain:

ρX0 (Anᵀ gi) = ρX0

 p∑
j=1

ki j Anᵀv j

 ≤ p∑
j=1

ki jρX0

(
Anᵀv j

)
.

7.1 Overestimating the number of iterations of a model without inputs

Since rotating dynamics and Jordan shapes will have a complex effect on the behaviour of the model, we seek to

transform the Jordan form into a real positive matrix by using the absolute value of the eigenvalues. In such a

case, the support function in each direction is monotonically increasing (or decreasing), and it is therefore very

easy to find a bound for its progression. We note that the envelope (described by the absolute value) of rotating

dynamics will always contain the true dynamics and is therefore a sound over-approximation. We will initially

assume that γi is positive and then extend to the general case.

22 Dario Cattaruzza et al.

Let ρX0 (Anᵀ gi) = ρX′0 (Jnᵀ g′i), so that g′i = S−1 gi and

X0 = {x | CX0 x ≤ dX0 }, X′0 = S−1X0 = {x | CX0 Sx ≤ dX0 }.

Further, let Λσ = {λi : i ∈ [1, ... , p],
∧i−1

j=1(λ∗i , λ j ∧ λi , λ j)}, be the set of eigenvalues with distinct values

(excluding conjugate pairs and geometric multiplicities). Introduce fσ(v) : Rp → Rpb , where pb is the cardinality

of Λσ, such that fσ(v) = red(vσ), and

(vσ)i =


0 λi < Λσ√ ∑

j∈[1,... ,p]∧(λ j=λi∨λ j=λ
∗
i)

v2
j λi ∈ Λσ

,

and furthermore let Fσ : Rr×p → Rr×pb be

Fσ(C) = Cσ, where (Cσ)i,∗ = fσ(Ci,∗).

Above, red(·) is a function that reduces the dimension p of a vector to pb by removing the elements λi < Λσ.

This reduction is not strictly necessary, but it enables a faster implementation. Correspondingly, given J =

diag (J s, s ∈ [1, ... , pb]), we have

Jσ =


σ1 0 · · · 0

0 σ2 · · · 0

0 0
. . . 0

0 0 · · · σr


, (31)

where σs = sup
x,0

‖J s x‖2
‖x‖2

is the maximum singular value [48] of the Jordan block J s. Finally, let

x′c =
1
2

(ρX′0 (vi) + ρX′0 (−vi)), vi j =

 1 j = i

0 j , i
,

X′σ = {x | Fσ(CX0 S) fσ(x) ≤ fσ(dX0 − SCX0 x′c)},

X′0 ⊆ f −1
σ (X′cσ), where X′cσ = { fσ(x′c)} ⊕ X′σ (32)

and vσ = fσ(v), where x′c is the Cartesian centre of X′0 and X′cσ an over-approximation of X′0 centered at x′c.

Using properties of eigenvalues and of singular values, we obtain ρX0 ((An)ᵀv j) ≤ σ n
j ρXcσ ((vσ) j), where

j ∈ [1, ... , pb], and therefore

ρX0 ((An)ᵀ gi) ≤
pb∑
j=1

ki jσ
n
j ρXcσ ((vσ) j), (33)

where ki j are the coefficients in Equation (30).

Since we have assumed to have no inputs, ρUn
c (gi) + ρUn

b
(gi) = 0, hence we may solve for ni as:

ρX0 ((Ani)ᵀ gi) ≤
pb∑
j=1

ki jσ
ni
j ρXcσ ((vσ) j) ≤ γi. (34)

In order to separate the divergent parts of the dynamics from the convergent one, let us define

ki j = max{ki j ρXcσ ((vσ) j), 0}, σ = max{σs : s ∈ [1, ... , pb]}.

This step will allow us to track effectively which trajectories are likely to hit the guard and when, since it is

only the divergent element of the dynamics that can increase the size of the reach tube in a given direction. This

condition requires that the set of initial conditions is also inside the guard, which is a reasonable assumption.

Replacing in Equation (34), we obtain

σ n
p∑

j=1

ki j

(
σ j

σ

)n

≤ γi , (35)

which allows to finally formulate the following iteration scheme for under-approximating n.

Unbounded-Time Safety Verification of Guarded LTI Models with Inputs by Abstract Acceleration 23

Proposition 1 An iterative under-approximation of the number of iterations n can be computed by starting with

ni = 1, and iterating over

ni ≥ n = logσ (γi) − logσ

 pb∑
j=1

ki j

(
σ j

σ

)ni
 , (36)

substituting ni = n on the right-hand side until we meet the inequality. (If n < 0 is obtained at the first iteration,

then ni = 0 is the obtained solution.)

Proof Notice that the sequence ni is monotonically increasing, before it breaks the inequality. As such any local

minimum represents a sound under-approximation of the number of loop iterations. Note that in the case where

γi ≤ 0 we must first translate the system coordinates such that γi > 0. This is simply done by replacing x′ = x + c
and operating over the resulting system where γ′i = ρc(gi) + γi.

Mathematically this is achieved as follows: first we get c by finding the centre of the interval hull (see

Equation (20)) of G (if G is open in a given direction we may pick any number in that direction for the

corresponding row of c). Next we transform the dynamics into xk

1

 =

 A Ac
0 1

  xk−1

1

 +

 B
0

 uk, where

 xk−1

1

 ∈

 x

1

 :

G Gc
0 1

  xk−1

1

 ≤  h
1


 . ut

7.2 Underestimating the number of iterations of a model without inputs

In order to apply a similar technique to (29), we must find an equivalent under-approximation. In the case

of Equation (34), the quantities σ j ensure that the equation diverges faster than the real dynamics, hence the

estimation found is an upper bound to the desired iteration. In this case we want the opposite, hence we look for

a model where the dynamics diverge slower. It is easy to show that λb j = |λ j| represents these slower dynamics,

ρX0 (−Ani
ᵀ

gi) ≤
p∑

j=1

ki jλb
ni
j ρXcσ (−(vσ) j) ≤ −γi,

which reduces to

σ n
p∑

j=1

k−i j

(
λb j

σ

)n

+ σ n
p∑

j=1

k+
i j ≤ −γi , (37)

where k−i j = min
{
ki j ρXcσ (−(vσ) j) , 0

}
and k+

i j = max
{
ki j ρXcσ (−(vσ) j) , 0

}
.

An additional consideration must be made regarding rotational dynamics. In the previous case we did not

care about the rotational alignment of the set Xn with respect to the vector gi, because any rotation would remain

inside the envelope corresponding to the absolute value (rkcos(kθ) ≤ rk). In the case of an under-approximation,

although the magnitude of a complex eigenvalue at a given iteration may be greater than the support of the guard

under verification, its angle with respect to the normal to the support vector may cause the corresponding point to

remain inside the guard. We must therefore find iterations that are aligned with the normal to the guard, thus

ensuring that the chosen point is outside it. In order to do this, let us first fix the magnitudes of the powered

eigenvalues, in the case of convergent dynamics we will assume they have converged a full rotation to make

our equation strictly divergent. Let θ = min{θ j, j ∈ [1, ... , p]}, where θ j are the angles of the complex conjugate

eigenvalues. Let nθ = 2π
θ

be the maximum number of iterations needed for any of the dynamics to complete a full

turn. Then at any given turn |λ j|
ni+nθ ≤ |λ j|

ni+n, where |λi| ≤ 1 and n ∈ [0, nθ]. This means that any bound we find

on the iterations will be necessarily smaller than the true value. Our problem becomes the solution to:

max
n

σ ni

p∑
j=1

ci j cos((n − ni)θ j − αi j)

 , αi j = cos−1(gi · v j), ci j =

 k−i j

(
λb j

σ

)ni
|λ j| ≥ 1

k−i j

(
λb j

σ

)ni+nθ
|λ j| < 1

.

24 Dario Cattaruzza et al.

The problem is simplified by soundly under-approximating the cosines and removing the constants, namely

deriving successively the expressions

max
n

σ ni

p∑
j=1

ci j

(
1 −

((n − ni)θ j − αi j)2

2

) ,
min

n

 p∑
j=1

ci j((n − ni)θ j − αi j)2

 , and

min
n

 p∑
j=1

ci jθ
2
j (n − ni)2 + ci jαi jθ j(n − ni)

 .
The solution to the last equation is

n = ni −

∑p
j=1 ci jαi jθ j

2
∑p

j=1 ci jθ
2
j

, with n ∈ [ni, ni + nθ]. (38)

The second part of the equation is expected to be a positive value. When this is not the case, the dominating

dynamics will have a rotation θ j ≥
π
2 . In such cases, we must explicitly evaluate the set up to

(
2π
θ j

+ 1
)

iterations

after ni, in order to ensure that we have covered a full rotation. If the resulting bound does not satisfy the original

inequality: ρX0

(
(Ani)ᵀ gi

)
≥ γi, we replace ni = n until it does 3.

Proposition 2 An iterative under-approximation of the number of iterations n can be computed by starting with

ni
′

= 0 and iterating over

ni
′
≤ n = logσ (γi) − logσ

 p∑
j=1

k−i j

(
λb j

σ

)ni
′

+

p∑
j=1

k+
i j

 ,
ni = ni

′
+ k, given ρX0

(
(A(ni

′+k))ᵀ gi

)
≥ γi, (39)

where k is the result of Equation (38). We substitute for ni = n on the right-hand side as long as the first inequality

holds, and then find k such that the second inequality holds.

Since we are explicitly verifying the inequality, there is no further proof required.

7.3 Estimating the number of iterations of a model with inputs

For an LTI model with inputs, we will use the same paradigm explained in the previous section after transforming

the system with inputs into an over-approximating system without inputs.

Let X′cσ,U
′
cσ be the corresponding sets of initial states and inputs obtained by applying Equation (32) to X′0

and U′J , and let U′Jσ = (I − Jσ)−1U′cσ. The accelerated resulting system may be represented by the equations

(X′cσ)n = Jn
σX′cσ ⊕ (I − Jn

σ)UJσ′ ,

ρ(X′cσ)n (v) = ρX′cσ

(
JnT
σ v

)
+ ρU′Jσ (v) − ρU′Jσ

(
JnT
σ v

)
. (40)

Let us now define (XU)σ = {x − u | x ∈ X′cσ,u ∈ U′Jσ}, which allows us to translate the system into

ρ((XU)′σ)n (v) = ρ(XU)′σ

(
JnT
σ v

)
, (41)

which has the same shape as the equations in the previous section. We may now apply the techniques described

above to find the bounds on the iterations.

3 This is a tighter value than that in [14], where we over-approximated using nθ =
(2π)m∏

j θ j
, where m is the number of conjugate pairs.

Unbounded-Time Safety Verification of Guarded LTI Models with Inputs by Abstract Acceleration 25

7.4 Narrowing the estimation of the number of iterations

The estimations above can be conservative, but we may obtain tighter bounds on the number of iterations. In the

first instance, note that we have eliminated all negative terms in the sums in Equation (36). Reinstating these

terms can result in loss of monotonicity, but we may still create an iterative approach by fixing the negative

value at intermediate stages. Let ni be our existing bound for the time horizon before reaching a guard, and

kni
=

∑p
j=1 ki j

(
σ j

σ

)ni , kni
=

∑p
j=1 ki j

(
σ j

σ

)ni the corresponding negative and positive terms of the equation. We may

now find upper and lower bounds for ni by replacing them in Equation (39) as:

ni ≥ nk = logσ (γi) − logσ
(
kni

+ knk

)
, (42)

where nk is the bound found in the previous stage. Some steps of this process will provide an unsound result,

however, every second step will provide a monotonically increasing sound bound which will be tighter than

the one in Equation (36). Since the elements of the sums are convergent, we have that ni ≥ nk implies kni
≥

knk

(
i.e. |kni

| ≤ |knk
|
)

thus

logσ
(
kni

+ knk

)
≥ logσ

(
kni

+ kni

)
,

which means that nk in Equation (42) is smaller than our n in Equation (36) (nk ≤ n ≤ ni and ni ≥ nk).

In the case of Equation (39), the explicit evaluation of the guard at each cycle executes the behaviour

described here.

7.4.1 Maintaining geometric multiplicity

A second step in optimising the number of iterations comes from adding granularity to the bounding abstraction

by retaining the geometric multiplicity using the matrix Jb (see Equation (22)).

Lemma 3 Given a matrix A with eigenvalues {λs, s ∈ [1, ... , r]}, where each eigenvalue λs has a geometric

multiplicity ps and corresponding generalised eigenvectors {vs,i, i ∈ [1, ... , ps]},

∀n ≥ 0, Anvi
s = λn

svs,i +

i−1∑
j=1

(
n
j

)
λ

n− j
s vs,i− j = λn

s

vs,i +

i−1∑
j=1

(
n
j

)
λ
− j
s vs,i− j

 . (43)

Proof By definition, given an eigenvector vs of A, then Avs = λsvs [42]. Similarly, a generalised eigenvector vs,i

of A satisfies the equation (A − λsI) vs,i = vs,i−1
4. and vs,1 = vs hence

Avs,i = λsvs,i + vs,i−1

Anvs,1 = λn
svs,1

Anvs,i = An−1(λsvs,i + vs,i−1) = λs An−1vs,i + An−1vs,i−1

= λ2
s An−2vs,i + λs An−2vs,i−1 + An−1vs,i−1 = · · · = λn

svs,i +

n−1∑
j=0

λ
j
s An− j−1vs,i−1.

From here we recursively expand the formula for An− j−1vs,i−1 and obtain:

Anvs,i = λn
svs,i +

n−1∑
j=0

λ
j
sλ

n− j−1
s vs,i−1 +

n−1∑
j=0

n−2∑
k=0

λk
s An−k−2vs,i−2

= λn
svs,i + nλn−1

s vs,i−1 + n
n−2∑
j=0

λ
j
s An− j−2vs,i−2 = · · · = λn

svs,i +

i−1∑
j=1

(
n
j

)
λ

n− j
s vs,i− j. ut

4 More generally (A − λs I) vs,i = ks,ivs,i−1, since any vector kvs,i−1 is also a generlized eigenvector of A, but we select generalized
eigenvectors such that k = 1.

26 Dario Cattaruzza et al.

0 2 4 6 8 10
1

10

100

1,000

10,000

n(fσ, fσ)

n(fσ, fb)
n(fb, fb)

n(fb, fb)

iteration

ρ
(g

)

Fig. 10 Progression of the support function of a system for a given guard. The thick blue dots are real values. The dashed green line
over-approximates the progression using singular values (sec 7.1), the dashed yellow line under-approximates them using eigenvalue
norms (sec 7.2), whereas the continuous purple lines represent the tighter over-approximation maintaining the geometric multiplicity
(sec 7.4.1). We can see how the purple line finds a better bound for ni, while the ni bound is conservative for both approaches.

Let i′ denote the position of fb(λ j) within the block Jbs it belongs to, such that its corresponding generalised

eigenvector is identified as vbs,i′ = fb(v j). Then

ρX′0 (Jnᵀ g′i) ≤
pb∑
j=1

ki jρX0

(
Jn

b
ᵀ fb(v j)

)
≤

pb∑
j=1

ki jλb
n
jρX0

vbs,i′ +

i′−1∑
k=1

(
n
k

)
λb
−k
j vbs,i′−k


≤

pb∑
j=1

ki jλb
n
j

ρX0

(
vbs,i′

)
+

i′−1∑
k=1

(
n
k

)
λb
−k
j ρX0

(
vbs,i′−k

) ≤ pb∑
j=1

k′i j0λb
n
j +

i′∑
m=1

k′i jmλb
n
j

ps−i′−1∏
m=0

(n − m). (44)

In order to manage the product on the right hand side we use slightly different techniques for over- and

under-approximations. For ni we first find an upper bound n′i using equation (36) and ki j = k′i j0
+ k′i jm

, and then do

a second iteration using ki j = k′i j0
+ k′i jm

ps−i′−1∏
m=0

(n′i − m), which ensures the true value is under the approximation.

In the case of ni, we also start with ki j = k′i j0
+ k′i jm

and update it during the iterative process.

Example 2 Let us look at the following example, comprising matrices:

J =


3 0 0 0 0 0
0 2 1 0 0 0
0 0 2 0 0 0
0 0 0 −2 0 0
0 0 0 0 −1 1
0 0 0 0 −1 −1


, S =


1 0 0 0 0 0
0 3 0 0 0 0
0 −4 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 1 1


, Jσ =


3 0 0 0
0 3 0 0
0 0 2 0
0 0 0

√
2

,
with Jσ calculated as in Equation (31), initial condition x′0 =

[
1 1 1 1 1 1

]
and guard set Gx ≤ 300 where

G=
[

1 3 −3 2 4 1
]

=
[

1 1 1 2 4 −3
]
Sᵀ.

The progression of the support function of the reach sets along this vector and the corresponding bounds, as

described in the previous section, are shown in Figure 10.

Changing the eigenvalues to:

J =


2e−0.2i 0 0 0 0 0

0 2e0.2i 0 0 0 0
0 0

√
2e−0.3i 0 0 0

0 0 0
√

2e0.3i 0 0
0 0 0 0 1.1e0.5i 0
0 0 0 0 0 1.1e−0.5i


,

we obtain the results in Figure 11. In this second case we can see that the rotational dynamics force an increase

of the initially calculated iteration to account for the effects of the rotation. ut

Unbounded-Time Safety Verification of Guarded LTI Models with Inputs by Abstract Acceleration 27

0 5 10 15 20

1

10

100

1,000

10,000

100,000

1,000,000

n(fb, fb) n(fb, fb)

iteration

ρ
(g

)

Fig. 11 Progression of the support function of a rotational system for a given guard. The thick blue dots are real values (negative
values are missing due to the log scale). Continuous purple lines represent the over-approximation. The steep vertical line at iteration
19 is due to the alignment of the rotations with the guard at this point. The point at iteration 14 appears below the line because of the
higher point at iteration 9. The procedure will either find that this boundary was met at iteration 9 or push it forward to iteration 19.

7.5 Case study

We have selected a known benchmark from the literature to illustrate the discussed procedure: the room

temperature control problem [27]. The temperature (variable temp) of a room is controlled via a user-defined

input (set), which can be changed at any discrete time step through a heating (heat) element, and is affected by

ambient temperature (amb) that is out of the control of the model.

We formalise the description of such a system both via a linear loop and with a dynamical model. Observe that

since such a system may be software controlled, Algorithm 1 shows a pseudo-code fragment for the temperature

control problem. We use the read function to represent non-deterministic values between 0 and the maximum

Algorithm 1 Temperature Control Loop
States: temp=temperature, heat=heat output.
Inputs: set=set-point, amb=ambient temperature.

1: temp=5+read(35);
2: heat=read(1);
3: while(temp< 400 && heat< 300)
4: {
5: amb=5+read(35);
6: set=read(300);
7: temp=.97 temp + .02 amb + .1 heat;
8: heat=heat + .05 set;
9: }

given as its argument. Alternatively, this loop corresponds to the following hybrid dynamical model:

 temp

heat


k+1

=

 0.97 0.1

−0.05 1

  temp

heat


k

+

 0.02 0

0 0.05

  amb

set


k

,

with initial condition

 temp

heat


0

∈

 [5, 40]

[0, 1]

, non-deterministic inputs

 amb

set


k

∈

 [5, 40]

[0, 300]

 , and guard set

G =


 temp

heat

 :

 1 0

0 1

  temp

heat

 <  400

300


.

28 Dario Cattaruzza et al.

In this model the variables are continuous and take values over the real line, whereas within the code they are

represented as long double precision floating-point values, with precision of ±10−19, moreover the error of the

approximate Jordan form computation results in δmax < 10−17. The eigendecomposition of the dynamics is (the

values are rounded to three decimal places):

A = SJS−1
⊆ SJS−1, where

S =

 0.798 ± 10−14 0.173 ± 10−15

0 ± 10−19 0.577 ± 10−14

 ,
J =

 0.985 ± 10−16 0.069 ± 10−17

−0.069 ± 10−17 0.985 ± 10−16

 ,
S−1 =

 1.253 ± 10−12 −0.376 ± 10−13

0 ± 10−18 1.732 ± 10−12

 .
The discussed over-approximations of the reach-sets indicate that the temperature variable intersects the guard

set G at iteration n = 32. Considering the pseudo-eigenvalue matrix along these iterations, we use Equation (13)

to find that the corresponding complex pair remains within the following boundaries:

A32 =

 r i

−i r




0.4144 < r < 0.985

0.0691 < i < 0.7651

0.1082 < r + i < 1.247

0.9159 < i − r < 0.9389

, B32 =

 r i

−i r




1 < r < 13.41

0 < i < 17.98

1 < r + i < 29.44

6.145 < i − r < 6.514

.

The reach tube is calculated by multiplying these abstract matrices with the initial sets of states and inputs,

as described in Equation (25), by the following inequalities:

X̂#
32 =A32

 [5, 40]

[0, 1]

 + B32

 [5, 40]

[0, 300]

 =

 temp

heat



−24.76 < temp < 394.5

−30.21 < heat < 253

−40.85 < temp + heat < 616.6

−86.31 < temp − heat < 843.8

.

The negative values represent the lack of restriction in the code on the lower side and correspond to a cooling

system (negative heating). The set is displayed in Figure 12, where for the sake of clarity only 8 directions of

the 16 constraints are shown. This results in a rather tight over-approximation which, for comparison’s sake, is

not looser than the convex hull of all reach sets obtained by [30] using the given directions. Figure 12 further

displays the initial set in black colour, the collection of reach sets in white colour, the convex hull of all reach

sets in dark blue (as computed by [30]), and finally the abstractly accelerated set in light yellow (dashed lines).

The outer lines represent the guards for G.

8 Application of Abstraction-Refinement to Abstract Acceleration

One of the main limitations of abstract acceleration is that, despite being very fast, it leverages an over-

approximation of the actual reach tube for verification. In many cases this over-approximation can be too coarse

(i.e. imprecise) for the proof of the safety property of interest. This section deals with methods for refining this

over-approximation. Refinements are based on counterexamples, namely vertices of the abstract matrix that

lay outside the projection of the safety specification onto the abstract space (calculated using the inverse of the

reachability transformations). Our approach can be seen as an instance of the known CounterExample Guided

Abstraction Refinement (CEGAR) paradigm [20].

Unbounded-Time Safety Verification of Guarded LTI Models with Inputs by Abstract Acceleration 29

0 100 200 300 400

0

100

200

300
heat = 300

temp

he
at

Fig. 12 The abstractly accelerated tube (yellow, dashed boundary), representing an over-approximation of the thermostat reach tube
(dark blue). The set of initial conditions is shown in black, whereas successive reach sets are shown in white. The guards and the reach
set that crosses them are close to the boundary in red.

8.1 Finding counterexample iterations

Because the objective is to refine the abstract dynamics, we need to find the iterations corresponding to the

counterexample (i.e., the ones used to calculate the hyperplanes forming the unsafe vertex). This will allow us to

find an interpolant iteration that will reduce the polyhedron in the right direction. Since the abstract dynamics

are built over pairs of eigenvalues, it is possible that different eigenvalue pairs provide different results for the

counterexample iteration, in which case all of them are used. Let a verification clause explore the solution

ρA(v) = s ≤ s, where v is the direction we are examining, s its corresponding support function, and ρA(v) ≤ s

the safety specification. If s > s the specification will not be met and we need a refinement. Let av ∈ A be the

vertex at which the maximum is found, i.e., av · v = s. The iterations corresponding to this counterexample may

be found by analysing the dynamics of each pair of eigenvalues independently, and finding the point closest to

the hyperplane whose inequality has been violated. This is done as follows:

1. Conjugate eigenvalues

Since the trajectories along these are circular and centred at the origin, we can find the angle that av forms

with the axes of the eigenvalues and use it to calculate the right iteration. Let θi be the angle of the conjugate

eigenvalue pair and θav (i) the angle formed by av in the ith plane (this is equivalent to tan−1
(

(av)i
(av)i+1

)
). The

corresponding iteration will depend on whether the eigenvalue is convergent or divergent. In the former case,

it will be θav (i)
θi

, and in the latter it will be (n − (n mod 1
θi

)) +
θav (i)
θi

, where mod is the modulus operation

over the reals.

2. Real eigenvalues

In the case of reals, finding the iteration relies on the direct relation between the given eigenvalue and the

target counterexample. Since (av)i ≈ λ
k
i ⇒ k ≈ logλi

((av)i). If the logarithm does not exist, then we presume

we cannot further refine using this method.

3. Jordan blocks with non-unitary geometric multiplicity

In the case of larger Jordan blocks we need to examine the nature of the dynamics. Let us look at the equation

representing the contribution of a Jordan block to the support:

ρλs (v) =

ps∑
j=0

(
n
j

)
λn− jvs j. (45)

In this case we must use an iterative approximation, as described in Section 7.4.1, to find the closest iteration

to the unsafe guard. Although this process is more costly than the ones described above, it is also more

30 Dario Cattaruzza et al.

0 0.2 0.4 0.6 0.8
0.5

1

1.5

2

n = 1

n = 2

n = 3n = 3

apex

violation

guard

λn
1

(n 1) λ
n−

1
2

Fig. 13 Polyhedral faces from an R2 Jordan block subspace (λn
1,

(
n
1

)
λn−1

2) where λ1 = 0.8, λ2 = 0.8, and 1 ≤ n ≤ 15. The red
dot specifies an abstract vertex violating the safety specification (dashed blue line). The closest iteration to the violating vertex is
n = 3. A new support function (green) based on n = 3 eliminates the violating vertex. The new abstract polyhedron meets the safety
specification (yellow).

precise, thus providing a much better refinement. Note that the technique can be applied to the full set of

eigenvalues or to any subset of Jordan blocks. This choice is a compromise between precision and speed.

We also note that when the refinement process is done in the eigenspace, the new eigenvectors are now the

identity set, which makes the problem more tractable.

Since the exclusion of an unsafe vertex from the abstract dynamics does not ensure a sufficiently tight over-

approximation, we must perform this step iteratively until either we run out of new refinements or have a

user-defined timeout. Once the candidate iterations are found, it suffices to add further constraints to the abstract

matrix for these iterations as described in Figure 13. Notice that given the above procedure, it is often faster and

more beneficial to begin by performing the refinement over the complex eigenvalues by directly examining the

vector of directions v in the corresponding sub-spaces.

8.2 Using bounded concrete runs

Due to the complex interactions in the dynamics, the above procedure may not always find the correct iterations

for refinement, or at least not optimal ones. For this reason, a second method is proposed, which in most cases

will be more efficient and precise when the dynamics are strictly convergent. This second approach relies on the

direct calculation of the initial k iterations. Since we operate over the eigenvalues and we limit k to a conservative

bound, this is a relatively inexpensive calculation. The approach leverages the idea that for convergent dynamics,

counterexamples are often found in the initial runs. The first step is to directly calculate the trajectory of the

counterexample for the first k iterations, and its corresponding support function in the direction of v. Once again,

because this is a single point and a bounded time, this operation is comparatively inexpensive. The second step

consists of finding an upper bound for all subsequent iterations, which we can do by using the norms of the

eigenvalues and the peaks of each geometrical multiple of a Jordan Block (which relate to these norms). By

selecting the larger between these two supports, we ensure soundness over the infinite time horizon. This is

equivalent to evaluating the reach tube as X]
n =

k⋃
k=0

AkX0 ∪An−k AkX0.

Since the above result is know to be an upper bound for the support in the direction of v we can directly add

it to the inequalities ofA.

Unbounded-Time Safety Verification of Guarded LTI Models with Inputs by Abstract Acceleration 31

Refinement Guard Sound Inputs Bits Time Bound

No refinement .015 No V 80 9s 0.013693
Refinement .005 No V 80 18s 0.004996

No refinement .015 No P 128 13s 0.013633
No refinement .015 No V 128 24s 0.013716

Refinement .005 No P 128 29s 0.004996
Refinement .005 No V 128 48s 0.004976
Refinement .005 No P 1024 66s 0.004996
Refinement .005 No V 1024 90s 0.004999

Refinement .005 Yes P 1024 190s 0.004996
Refinement .005 Yes V 1024 563s 0.004998

Table 1 Axelerator performance on 48 dimensional Building Benchmark using various settings. P=Parametric, V=Time-varying. We
see that in this case, the refinement phase doubles the analysis time. We also show the results of Counterexample Refined Abstract
Acceleration for different types of inputs, bit lengths and soundness.

8.3 Case study

We have taken an industrial benchmark ‘CAFF problem Instance: Building’5. The benchmark consists of a

continuous model with 48 state variables and 1 input. Furthermore, there is an initial state corresponding to a

10-dimensional hyper-rectangle. Time is discretised using a 5 ms sample interval to give us a discrete time model

for verification. Notice that the choice of sample time has very little effect on abstract acceleration. It mainly

affects the requirement for floating point precision (as very small angles may require higher precision), and may

have an effect on counterexample generation which can either decrease precision or increase time (i.e. we may

relax the precision of the algorithm to gain speed or tightening at the cost of higher computation times). The

provided model requires an analysis on the 25th variable, with a safety specification requiring it to remain below

.005. The problem has been verified using SpaceEx6 for bounded time (20s) in under 3 seconds. Axelerator was

run on this benchmark using different parameters. We used an Intel 2.6 GHz I7 processor with 8 GB of RAM

running on Linux. Although the algorithm lends itself to concurrency, the tool currently supports only single

threading. The process itself uses 82 MB on this particular benchmark. The results are summarised in Table 1.

Since many tools in this area use unsound arithmetics, we present results for both sound and unsound arithmetics

using abstract acceleration to show the cost of soundness. It is worth noting that for precisions under 1024 bits

the tool returns soundness violation errors when using sound arithmetics.

We note in these results that the performance of Axelerator depends largely on the required level of refinement.

State of the art tools can do bounded model checking faster than Axelerator, largely due to implementation

optimizations (we expect a better simplex engine would allow us to be more competitive in this regard). This

advantage disappears as soon as we require a larger time horizon for verification.

9 Experimental results

The overall Abstract Acceleration procedure has been implemented in C++ using the eigen-algebra package

(v3.2), with multiple precision floating-point arithmetic, and has been tested on a 1.6 GHz core 2 duo computer.

Unless otherwise specified, we use the sound version of Abstract Acceleration without abstraction-refinement (as

per Sec. 8). The tool, called Axelerator, and the corresponding benchmarks used to test it (including specifications

of the initial states, input ranges and guard sets), are available at

http://www.cprover.org/LTI/

5 http://cps-vo.org/node/30277
6 http://spaceex.imag.fr

http://cps-vo.org/node/30277
http://spaceex.imag.fr

32 Dario Cattaruzza et al.

characteristics new bounds analysis time [sec]
name type dim inputs bounds IProc Sting IProc Sting mpfr
parabola i1 ¬s,¬c,g 2 1 80 +25(31%) +28(35%) 0.007 237 0.049
parabola i2 ¬s,¬c,g 2 1 80 +24(30%) +35(44%) 0.008 289 0.072
cubic i1 ¬s,¬c,g 3 1 120 +44(37%) +50(42%) 0.015 704 0.097
cubic i2 ¬s,¬c,g 3 1 120 +35(30% +55(45%) 0.018 699 0.124
oscillator i0 s,c,¬g 2 0 56 +24(43%) +24(43%) 0.004 0.990 0.021
oscillator i1 s,c,¬g 2 0 56 +24(43%) +24(43%) 0.004 1.060 0.024
inv pendulum s,c,¬g 4 0 16 +8(50%) +8(50%) 0.009 0.920 0.012
convoyCar2 i0 s,c,¬g 3 2 12 +9(75%) +9(75%) 0.007 0.160 0.043
convoyCar3 i0 s,c,¬g 6 2 24 +15(62%) +15(62%) 0.010 0.235 0.513
convoyCar3 i1 s,c,¬g 6 2 24 +15(62%) +15(62%) 0.024 0.237 0.901
convoyCar3 i2 s,c,¬g 6 2 24 +15(62%) +15(62%) 0.663 0.271 1.416
convoyCar3 i3 s,c,¬g 6 2 24 +15(62%) +15(62%) 0.122 0.283 2.103

type: s – stable loops, c – complex eigenvalues, g – loops with guard; dim: model dimension (variables); bounds: number of
half-planes defining the reach tube; new bounds: number of bounds newly detected by Axelerator (mpfr) over the existing

tools (IProc, Sting); Axelerator detects all bounds, therefore there are no lost bounds vs existing tools. IProc is [43]; Sting is [21];
mpfr is Axelerator (this work) using 256 bit mantissa;

Table 2 Experimental comparison of unbounded-time analysis tools with inputs

characteristics improved analysis time (sec)
name type dim bounds tighter looser J (jcf) mpfr+(jcf) mpfr ld
parabola i1 ¬s,¬c,g 3 80 +4(5%) 0(0%) 2.51 (2.49) 0.16 (0.06) 0.097 0.007
parabola i2 ¬s,¬c,g 3 80 +4(5%) 0(0%) 2.51 (2.49) 0.26 (0.06) 0.101 0.008
cubic i1 ¬s,¬c,g 4 120 0(0%) 0(0%) 2.47 (2.39) 0.27 (0.20) 0.110 0.013
cubic i2 ¬s,¬c,g 4 120 0(0%) 0(0%) 2.49 (2.39) 0.32 (0.20) 0.124 0.014
oscillator i0 s,c,¬g 2 56 0(0%) -1(2%) 2.53 (2.52) 0.12 (0.06) 0.063 0.007
oscillator i1 s,c,¬g 2 56 0(0%) -1(2%) 2.53 (2.52) 0.12 (0.06) 0.078 0.008
inv pendulum s,c,¬g 4 12 +8(50%) 0(0%) 65.78 (65.24) 0.24 (0.13) 0.103 0.012
convoyCar2 i0 s,c,¬g 5 12 +9(45%) 0(0%) 5.46 (4.69) 3.58 (0.22) 0.258 0.005
convoyCar3 i0 s,c,¬g 8 24 +10(31%) -2(6%) 24.62 (11.98) 3.11 (1.01) 0.552 0.051
convoyCar3 i1 s,c,¬g 8 24 +10(31%) -2(6%) 23.92 (11.98) 4.94 (1.01) 0.890 0.121
convoyCar3 i2 s,c,¬g 8 24 +10(31%) -2(6%) 1717.00 (11.98) 6.81 (1.01) 1.190 0.234
convoyCar3 i3 s,c,¬g 8 24 +10(31%) -2(6%) 1569.00 (11.98) 8.67 (1.01) 1.520 0.377

type: s – stable loops, c – complex eigenvalues, g – loops with guard; dim: model dimension; bounds: no. of half planes defining the
reach tube; improved: number of bounds (and percentage) that were tighter (better) or looser (worse) than J;

J is Schrammel et al. [44]; mpfr+ is this work using 1024bit mantissa (e < 10−152); mpfr uses a 256bit mantissa (e < 10−44); ld uses
a 64bit mantissa (e < 10−11); here e is the accumulated error of the dynamical system; jcf: time taken to compute the Jordan form

Table 3 Experimental comparison with previous work

Since many tools require the specification of a set of directions in which to perform verification, we have

chosen to use an octahedral template set. That is the set of vectors that run either along an axis or at a 45 degree

angle between two axes (equivalent to a set of inequalities ±xi ≤ boundk or ±xi ± x j < boundk). We also make

use of interval hulls, which are defined as the smallest hyper-boxes containing a set (equivalent to ±xi ≤ boundk).

9.1 Comparison with other unbounded-time approaches

In a first experiment we have benchmarked our implementation against the tools InterProc [43] and Sting [21].

We have tested these tools on different discrete time models, including guarded/unguarded ones, stable/unstable

ones, and models with complex/real loops with inputs (details in Table 2). In the first instance, we can see that

Axelerator is more successful in finding tight over-approximations that remain very close to the actual reach set.

InterProc and Sting are each unable to find nearly 40% of the bounds (i.e. supports), meaning they report an

infinite reach-space in the corresponding directions. In these instances, InterProc (due to the limitations related

Unbounded-Time Safety Verification of Guarded LTI Models with Inputs by Abstract Acceleration 33

to widening) and Sting (due to the absence of tight polyhedral, inductive invariants) are unable to infer finite

bounds at all. This comes at a reasonable trade-off in speed performance. Axelerator is approximately 10 times

slower than InterProc, and in most cases faster than Sting.

Table 3 sets up a comparison of our implementation using different levels of precision (long double, 256 bit,

and 1024 bit floating-point precision) with the core procedure for abstract acceleration of linear loops without

inputs (J) [44] (we use a version without inputs of the parabola, cubic and convoy models). This shows that our

implementation gives tighter over-approximations on most benchmarks (column ‘improved’). While on a limited

number of instances the current implementation is less precise (the lower right portion of Figure 4 where the

dotted red line crosses to the inside of our support gives a hint why this is happening), the overall increased

precision results from mitigating the limitation on chosen directions caused by the use of logahedral abstractions

(as done in previous work [44]).

At the same time, our implementation is faster than [44], partly due to the use of numeric eigendecomposition

(as opposed to symbolic), but mostly in view of the cost of increasingly large rational representations in [44]

needed to maintain precision when evaluating higher order systems. The fact that many bounds have improved

with the new approach, while speed has increased by several orders of magnitude, provides evidence of the

advantages of the new approach.

The speed-up is due to the faster Jordan form computation, which takes between 2 and 65 seconds for [44] (us-

ing the ATLAS package), whereas our implementation requires at most one second. For the last two benchmarks,

the polyhedral computations blow up in [44], whereas our support function approach shows only moderately

increasing runtimes. The increase of speed is owed to multiple factors, as detailed in Table 4. The difference in

precision of using long double vs. multiple precision floating-point arithmetic is negligible, as all results in the

given examples match exactly to 9 decimal places.

9.2 Comparison with bounded-time approaches

In a third experiment, we compare our method with the LGG algorithm [38] used by SpaceEx [30]. Since

LGG provides the tightest supports for a given set of directions, this study indicates the quality of our over-

approximation. In order to set up a fair comparison, we have provided the implementation of the native algorithm

in [38] within our software. We have run both methods on the convoyCar example [44] with inputs, which presents

an unguarded, scalable (the dimension can be increased by adding more cars), stable loop with complex dynamics,

and we have focussed focused on octahedral templates. For convex reach tubes, the approximations computed by

Abstract Acceleration are reasonably tight in comparison to those computed by the LGG algorithm (See Table 5).

However, by storing finite disjunctions of convex polyhedra, the LGG algorithm is able to generate non-convex

reach tubes, which are arguably tighter in case of oscillating or spiralling dynamics. Still, in many applications

abstract acceleration can provide a tight over-approximation for the convex hull of (possibly non-convex) reach

tubes.

Table 5 provides the quantitative outcomes of this comparison. For simplicity, we present only the projection

of the bounds along the variables of interest on a lower dimensional model. As expected, the LGG algorithm

Optimisation Speed-up

Eigen vs. ATLAS 7 2–10
Support functions vs. octahedral templates 2–40
long double vs. multiple precision arithmetic 5–200
interval vs. regular arithmetic .2–.5

Total 4–80000

Table 4 Performance improvements over [44].

34 Dario Cattaruzza et al.

Axelerator Axelerator using LGG
name 100 iterations unbounded 100 iterations 200 iterations 300 iterations
run time 166 ms 166 ms 50 ms 140 ms 195 ms
car acceleration [-0.820, 1.31] [-1.262, 1.31] [-0.815, 1.31] [-0.968, 1.31] [-0.968, 1.31]
car speed [-1.013, 5.11] [-4.515, 6.15] [-1.013, 4.97] [-3.651, 4.97] [-3.677, 4.97]
car position [43.7, 83.4] [40.86, 91.9] [44.5, 83.4] [44.5, 88.87] [44.5, 88.87]

Table 5 Comparison on convoyCar2 benchmark [44], between this work and the LGG algorithm from [38]. The intervals show the
minimum and maximum values obtained for each variable.

Axelerator Axelerator using [49]
name 100 iterations unbounded 100 iterations unbounded
run time 166 ms 166 ms 155085 ms 155085 ms
car acceleration [-0.820, 1.31] [-1.262, 1.31] [-24.24, 23.9] [-∞∞]
car speed [-1.013, 5.11] [-4.515, 6.15] [-97.2, 86.7] [-∞∞]
car position [43.7, 83.4] [40.86, 91.9] [-319, 343.4] [-∞∞]

Table 6 Comparison on convoyCar2 benchmark [44], between this work and the work in [49]. The intervals show the minimum and
maximum values obtained for each variable.

performs better in terms of tightness, however unlike our approach, its runtime distinctly increases with the

number of iterations. Our implementation of LGG [38] using Convex Polyhedra with octahedral templates

becomes slower than the abstractly accelerated version even for small time horizons (our implementation of LGG

requires ∼4 ms for each iteration on a 6-dimensional problem with octahedral templates). Faster implementations

of LGG will change the point at which the speed trade-off happens, but abstract acceleration will always be faster

for long enough time horizons.

The evident advantage of abstract acceleration is its speed over finite horizons without much loss in precision,

and of course the ability to prove properties for unbounded-time horizons.

9.3 Comparison with alternative abstract acceleration techniques

Table 6 shows a comparison between our approach and [49]. As can be seen, our approach is not only faster but

much more precise. The reasons for this are many-fold. In terms of speed, the fact that [49] uses a dynamical

model that is double the dimension of the one presented here and that the algorithmic complexity to manipulate

it is O(n3) (n being the model dimension) will result in slower computations, even when using sparse matrices. In

terms of precision, creating an over-approximation around the centre of the input set, as opposed to the origin,

makes a considerable difference, which is increased by the fact that circular over-approximations are contained

within the interval hulls used in [49], and are therefore up to 4
3

n times smaller in volume. This last consideration

is only relevant for rotating dynamics, whereas positive real eigenvalues exhibit the same precision in both

approaches. Finally, notice that in the ConvoyCar2 example, where all original eigenvalues are convergent, the

interval hull approach [49] creates one divergent eigenvalue, which causes a critical change in the behaviour of

the dynamics that leads to unbounded results.

9.4 Scalability

Finally, in terms of scalability, we have an expected O(p3) complexity w.r.t. the number of variables p, which

derives from the simplex algorithm and the matrix multiplications in Equation (25). We have parametrised the

number of cars in the convoyCar example [44] (also seen in Table 3), and experimented with up to 33 cars (each

car after the first requires 3 state variables, so that for example we obtain (33−1)×3 = 96 variables for the 33-car

Unbounded-Time Safety Verification of Guarded LTI Models with Inputs by Abstract Acceleration 35

of variables 3 6 12 24 48 96
runtime (sec) 0.004 0.031 0.062 0.477 5.4 56

Table 7 Scalability features of reachability computations via Abstract Acceleration.

case), using the same initial states for all cars. We report an average obtained from 10 runs for each configuration.

These results demonstrate that our method can scale to industrial-size problems.

10 Related Work

There are several approaches that tackle the safety verification problem for dynamical models. The time-bounded

analysis is in most cases unsound, since it cannot reason about unbounded-time cases (we note that a proof of

the existence of a fix-point for the given horizon would restore such soundness by many tools do not attempt to

find such proof which is left to the user). Unbounded-time solutions are therefore preferred when soundness is

required, although they are often either less precise or slower than bounded counterparts.

10.1 Time-bounded reachability analysis

The first approach surrenders exhaustive analysis over the infinite time horizon, and restricts the exploration

of model dynamics up to some given finite time bound. Decision procedures for bounded-time reachability

problems have made much progress in the past decade, and computational algorithms with related software

tools developed. Representatives are STRONG [24], HySon [12], CORA [2], HYLAA [5], Ariadne [7], and

SpaceEx [30].

Set-based simulation methods generalise guaranteed integration of ODEs [11, 51], from enclosing intervals

to relational domains. They use precise abstractions with low computational cost to over-approximate sets of

reachable states up to a given time horizon. Early tools employed polyhedral sets (HyTech [41] and PHAVer [29]),

polyhedral flow-pipes [18], ellipsoids [10], and zonotopes [34]. A breakthrough has been achieved by [35,38], with

the representation of convex sets using template polyhedra and support functions. This method is implemented in

the tool SpaceEx [30], which can handle dynamical systems with hundreds of variables. It performs computations

using floating-point numbers, which is a deliberate choice to boost performance. On the other hand, although

quite reasonable, its implementation is numerically unsound and therefore does not provide genuine formal

guarantees, which is at the core of this work. More generally, most tools using eigendecomposition over a large

number of variables (more than 10) happen to be numerically unsound due to the use of unchecked floating-point

arithmetics. Some tools (e.g. C2E2 [25]) add a robustness check to the reachability computations in order

to restore soundness by over-approximating simulation-based reachability analysis. Another breakthrough in

performance has been achieved by HYLAA [5], which is the first tool to solve high-order problems, including

several with hundreds of state variables. [7, 17] deal with non-linear dynamics (which are beyond the scope

of this work), and the latter does so soundly. Other approaches focus on bounded model checking of hybrid

automata, and use specialised constraint solvers (HySAT [28], iSAT [26]), or SMT encodings [19, 39].

10.2 Unbounded reachability analysis

The second approach, epitomised by static analysis methods [40], explores unbounded-time horizons. It employs

conservative over-approximations to achieve relative completeness (this ensures that we always find a fixpoint)

and decidability over infinite time horizons.

36 Dario Cattaruzza et al.

Unbounded techniques attempt to infer or compute a loop invariant, i.e., an inductive set that includes all

reachable states. If the computed invariant is disjoint from the set of bad states, this proves that the latter are

unreachable and hence that the loop is safe. However, analysers frequently struggle to obtain an invariant that is

precise enough, with acceptable computational costs. The problem is evidently exacerbated by non-determinism

in the loop, which corresponds to the case of open systems (i.e. with inputs). Prominent representatives of this

analysis approach include Passel [45], Sting [21], and abstract interpreters such as Astrée [8] and InterProc [43].

Early work in this area has used implementations of abstract interpretation and widening [22], which represent

still the underpinnings of many modern tools. The work in [40] uses abstract interpretation with convex

polyhedra over piecewise differential inclusions. A more recent approach uses a CEGAR loop to improve

the precision of polyhedral abstractions [9] following an inductive sequence of half-space interpolants. [23]

employ optimisation-based (max-strategy iteration) with linear templates for hybrid systems with linear dynamics.

Relational abstractions [54] use ad-hoc “loop summarisation” of flow relations, while abstract acceleration focuses

on linear relations analysis [36, 37], which is common in program analysis.

10.3 Abstract acceleration

Abstract acceleration [36, 37, 44] captures the effect of an arbitrary number of loop iterations with a single,

non-iterative transfer function that is applied to the entry state of the loop (i.e., to the set of initial conditions of

the linear dynamics). Abstract acceleration has been extended from its original version to encompass inputs over

reactive systems [56] but restricted to subclasses of linear loops, and later to general linear loops but without

inputs [44].

The work presented in this article mitigates these limitations by presenting abstract acceleration for general

linear loops with inputs [14, 15], developing numeric techniques for scalability and extending the domain to

continuous time models.

The work in [50] puts forward improvements on [14], and its outcomes can be compared with the results

in [15, 16]. Indeed, [50] proposes an alternative approach to Abstract Acceleration with inputs, which relies on

the expansion of the dynamical equations to a model that is four times the original size (dimension). Although

this model is mathematically more tractable, it is slower and more imprecise than the one presented in [15].

The reason for this is that while the latter uses a semi-circular over-approximation of the variable inputs, the

former uses a rectangular over-approximation of the dynamics, which is in turn expanded by the acceleration.

In particular, this rectangular over-approximation of the dynamics may cause a convergent model to become

divergent, which leads to unbounded supports. There are cases in which this rectangular over-approximation

can give a tighter result, especially if it is implemented using the symmetry properties described in [15], thus

a combined approach may be more efficient. Despite the computational overhead, the handling of the guards

presented in [50] has potential advantages over our approach: its description is formal, and indeed our procedure

is in general not complete, resulting on occasion in an inability to find reasonably precise bounds. However, in a

typical case our procedure works well and indeed in the experiments we have run, it has always been able to find

the optimal solution.

11 Conclusions and Future Work

We have presented a thorough development of the Abstract Acceleration paradigm to guarded LTI models (namely,

conditional linear loops) with inputs. We have extended existing work, which dealt only with autonomous models

(i.e., models without inputs). We have decisively shown that the new approach over-competes state-of-the-art

tools for unbounded-time reachability analysis in both precision and scalability. In particular, on the one hand we

Unbounded-Time Safety Verification of Guarded LTI Models with Inputs by Abstract Acceleration 37

claim full soundness (both algorithmic and numerical) of the proposed procedure and of its implementation. On

the other, the new approach is capable of handling general unbounded-time safety analysis for large-scale open

models.

Nested loops are out of the scope of this contribution, but represent relevant models that ought to be

considered. Further work is also needed to extend the approach to non-linear dynamics, which we believe can be

explored via hybridisation techniques [3]. We also plan to formalise the framework for general hybrid models,

namely dynamical models with multiple discrete locations and location-dependent dynamics under multiple

guards.

Acknowledgments

We would like to thank Colas Le Guernic for his constructive suggestions and comments on the paper. This work

is supported by the Alan Turing Institute, London, UK, by EPSRC grant EP/J012564/1, ERC project 280053

(CPROVER), by the H2020 FET OPEN 712689 SC2, and by Oxford Instruments PLC.

References

1. A. Adimoolam and T. Dang. Template complex zonotope based stability verification. In Control Subject to Computational and
Communication Constraints: Current Challenges, pages 83–96. Springer, 2018.

2. M. Althoff. An introduction to cora 2015. In ARCH@ CPSWeek, pages 120–151, 2015.
3. E. Asarin, T. Dang, and A. Girard. Hybridization methods for the analysis of nonlinear systems. Acta Informatica, 43(7):451–476,

2007.
4. D. Avis and K. Fukuda. A pivoting algorithm for convex hulls and vertex enumeration of arrangements and polyhedra. Discrete
& Computational Geometry, 8(1):295–313, 1992.

5. S. Bak and P. S. Duggirala. Hylaa: A tool for computing simulation-equivalent reachability for linear systems. In Proceedings of
the 20th International Conference on Hybrid Systems: Computation and Control, HSCC 2017, Pittsburgh, PA, USA, April 18-20,
2017, pages 173–178, 2017.

6. S. Bennett. A brief history of automatic control. IEEE Control Systems, 16(3):17–25, 1996.
7. L. Benvenuti, D. Bresolin, P. Collins, A. Ferrari, L. Geretti, and T. Villa. Assume-guarantee verification of nonlinear hybrid

systems with Ariadne. Int. J. Robust. Nonlinear Control, 24(4):699–724, 2014.
8. B. Blanchet, P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, D. Monniaux, and X. Rival. A static analyzer for large

safety-critical software. In PLDI, pages 196–207. ACM, 2003.
9. S. Bogomolov, G. Frehse, M. Giacobbe, and T. A. Henzinger. Counterexample-guided refinement of template polyhedra. In

International Conference on Tools and Algorithms for the Construction and Analysis of Systems, pages 589–606. Springer, 2017.
10. O. Botchkarev and S. Tripakis. Verification of hybrid systems with linear differential inclusions using ellipsoidal approximations.

In HSCC, LNCS, pages 73–88. Springer, 2000.
11. O. Bouissou. Analyse statique par interprétation abstraite de systèmes hybrides. PhD thesis, École Polytechnique, 2008.
12. O. Bouissou, S. Mimram, and A. Chapoutot. Hyson: Set-based simulation of hybrid systems. In Rapid System Prototyping (RSP),

2012 23rd IEEE International Symposium on, pages 79–85. IEEE, 2012.
13. C. Carathéodory. Über den variabilitätsbereich der koeffizienten von potenzreihen, die gegebene werte nicht annehmen.

Mathematische Annalen, 64(1):95–115, 1907.
14. D. Cattaruzza, A. Abate, P. Schrammel, and D. Kroening. Unbounded-time analysis of guarded LTI systems with inputs by

abstract acceleration. In SAS, volume 9291 of LNCS, pages 312–331. Springer, 2015.
15. D. Cattaruzza, A. Abate, P. Schrammel, and D. Kroening. Unbounded-time analysis of guarded LTI systems with inputs by

abstract acceleration (extended version). Technical report, University of Oxford, 2015. http://arxiv.org/abs/1506.05607.
16. D. Cattaruzza, A. Abate, P. Schrammel, and D. Kroening. Sound numerical computations in abstract acceleration. In International

Workshop on Numerical Software Verification, pages 38–60. Springer, 2017.
17. X. Chen, E. Ábrahám, and S. Sankaranarayanan. Flow*: An analyzer for non-linear hybrid systems. In International Conference

on Computer Aided Verification, pages 258–263. Springer, 2013.
18. A. Chutinan and B. H. Krogh. Computing polyhedral approximations to flow pipes for dynamic systems. In CDC, pages

2089–2094. IEEE Computer Society, 1998.
19. A. Cimatti, S. Mover, and S. Tonetta. SMT-based verification of hybrid systems. In AAAI Conference on Artificial Intelligence.

AAAI Press, 2012.

http://arxiv.org/abs/1506.05607

38 Dario Cattaruzza et al.

20. E. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith. Counterexample-guided abstraction refinement. In Computer aided
verification, pages 154–169. Springer, 2000.

21. M. A. Colón, S. Sankaranarayanan, and H. B. Sipma. Linear invariant generation using non-linear constraint solving. In CAV,
pages 420–432. Springer, 2003.

22. P. Cousot and R. Cousot. Abstract interpretation: A unified lattice model for static analysis of programs by construction or
approximation of fixpoints. In POPL, pages 238–252, 1977.

23. T. Dang and T. M. Gawlitza. Template-based unbounded time verification of affine hybrid automata. In APLAS, LNCS, pages
34–49. Springer, 2011.

24. Y. Deng, A. Rajhans, and A. A. Julius. STRONG: A trajectory-based verification toolbox for hybrid systems. In Quantitative
Evaluation of Systems, volume 8054 of LNCS, pages 165–168. Springer, 2013.

25. P. S. Duggirala, S. Mitra, M. Viswanathan, and M. Potok. C2e2: a verification tool for stateflow models. In International
Conference on Tools and Algorithms for the Construction and Analysis of Systems, pages 68–82. Springer, 2015.

26. A. Eggers, M. Fränzle, and C. Herde. SAT Modulo ODE: A direct SAT approach to hybrid systems. In ATVA, volume 5311 of
LNCS, pages 171–185. Springer, 2008.

27. A. Fehnker and F. Ivancic. Benchmarks for hybrid systems verification. In HSCC, pages 326–341. Springer, 2004.
28. M. Fränzle and C. Herde. HySAT: An efficient proof engine for bounded model checking of hybrid systems. Formal Methods in

System Design, 30(3):179–198, 2007.
29. G. Frehse. PHAVer: Algorithmic verification of hybrid systems past HyTech. In HSCC, volume 3414 of LNCS, pages 258–273.

Springer, 2005.
30. G. Frehse, C. L. Guernic, A. Donzé, R. Ray, O. Lebeltel, R. Ripado, A. Girard, T. Dang, and O. Maler. SpaceEx: Scalable

verification of hybrid systems. In CAV, volume 6806 of LNCS, pages 379–395. Springer, 2011.
31. K. Fukuda and A. Prodon. Double description method revisited. In Combinatorics and computer science, pages 91–111. Springer,

1996.
32. S. Gao, J. Avigad, and E. M. Clarke. δ-complete decision procedures for satisfiability over the reals. In Automated Reasoning,

pages 286–300. Springer, 2012.
33. P. K. Ghosh and K. V. Kumar. Support function representation of convex bodies, its application in geometric computing, and

some related representations. Computer Vision and Image Understanding, 72:379–403, 1998.
34. A. Girard. Reachability of uncertain linear systems using zonotopes. In HSCC, volume 3414 of LNCS, pages 291–305. Springer,

2005.
35. A. Girard, C. L. Guernic, and O. Maler. Efficient computation of reachable sets of linear time-invariant systems with inputs. In

HSCC, volume 3927 of LNCS, pages 257–271. Springer, 2006.
36. L. Gonnord and N. Halbwachs. Combining widening and acceleration in linear relation analysis. In SAS, LNCS, pages 144–160.

Springer, 2006.
37. L. Gonnord and P. Schrammel. Abstract acceleration in linear relation analysis. Science of Computer Programming, 93(Part

B):125–153, 2014.
38. C. L. Guernic and A. Girard. Reachability analysis of hybrid systems using support functions. In CAV, volume 5643 of LNCS,

pages 540–554. Springer, 2009.
39. S. Gulwani and A. Tiwari. Constraint-based approach for analysis of hybrid systems. In CAV, volume 5123 of LNCS, pages

190–203. Springer, 2008.
40. N. Halbwachs, P. Raymond, and Y.-E. Proy. Verification of linear hybrid systems by means of convex approximations. In SAS,

volume 864 of LNCS, pages 223–237. Springer, 1994.
41. T. A. Henzinger, P.-H. Ho, and H. Wong-Toi. HyTech: A model checker for hybrid systems. Journal on Software Tools for

Technology Transfer, 1(1-2):110–122, 1997.
42. R. A. Horn and C. R. Johnson. Matrix analysis. Cambridge university press, 2012.
43. B. Jeannet. Interproc analyzer for recursive programs with numerical variables, 2010. http://pop-art.inrialpes.fr/
interproc/interprocweb.cgi.

44. B. Jeannet, P. Schrammel, and S. Sankaranarayanan. Abstract acceleration of general linear loops. In POPL, pages 529–540.
ACM, 2014.

45. T. T. Johnson and S. Mitra. Passel: A verification tool for parameterized networks of hybrid automata, 2012. https://publish.
illinois.edu/passel-tool/.

46. R. Kannan and R. J. Lipton. Polynomial-time algorithm for the orbit problem. Journal of the ACM (JACM), 33(4):808–821, 1986.
47. C. Knospe. Pid control. IEEE Control Systems, 26(1):30–31, 2006.
48. P. Lancaster and M. Tismenetsky. The Theory of Matrices. Academic Press, 2nd edition, 1984.
49. C. Le Guernic. Toward a sound analysis of guarded LTI loops with inputs by abstract acceleration. In International Static

Analysis Symposium, pages 192–211. Springer, 2017.
50. C. Le Guernic. Toward a Sound Analysis of Guarded LTI Loops with Inputs by Abstract Acceleration (extended version).

working paper or preprint, June 2017.

http://pop-art.inrialpes.fr/interproc/interprocweb.cgi
http://pop-art.inrialpes.fr/interproc/interprocweb.cgi
https://publish.illinois.edu/passel-tool/
https://publish.illinois.edu/passel-tool/

Unbounded-Time Safety Verification of Guarded LTI Models with Inputs by Abstract Acceleration 39

51. R. Löhner. Einschließung der Lösung gewöhnlicher Anfangs- und Randwertaufgaben und Anwendungen. PhD thesis, Universität
Karlsruhe, 1988.

52. J. Ouaknine and J. Worrell. Positivity problems for low-order linear recurrence sequences. In Proceedings of the twenty-fifth
annual ACM-SIAM symposium on Discrete algorithms, pages 366–379. Society for Industrial and Applied Mathematics, 2014.

53. R. Penrose. A generalized inverse for matrices. In Mathematical proceedings of the Cambridge philosophical society, volume
51–3, pages 406–413. Cambridge University Press, 1955.

54. S. Sankaranarayanan and A. Tiwari. Relational abstractions for continuous and hybrid systems. In CAV, volume 6806 of LNCS,
pages 686–702. Springer, 2011.

55. P. Schrammel. Unbounded-time reachability analysis of hybrid systems by abstract acceleration. In Embedded Software, pages
51–54. IEEE, 2015.

56. P. Schrammel and B. Jeannet. Applying abstract acceleration to (co-)Reachability analysis of reactive programs. Journal of
Symbolic Computation, 47(12):1512–1532, 2012.

57. C. F. Van Loan. Matrix computations (johns hopkins studies in mathematical sciences), 1996.

	Introduction
	Preliminaries
	Abstract Acceleration - Overview of the Algorithm
	Abstract Matrices in Abstract Acceleration
	Abstract Acceleration without Inputs
	General Abstract Acceleration with Inputs
	Abstract Acceleration with Guards: Estimation of the Number of Iterations
	Application of Abstraction-Refinement to Abstract Acceleration
	Experimental results
	Related Work
	Conclusions and Future Work

