
1

Temporal Logic Trees for Model Checking and Control
Synthesis of Uncertain Discrete-time Systems

Yulong Gao, Alessandro Abate, Frank J. Jiang, Mirco Giacobbe, Lihua Xie, and Karl H. Johansson

Abstract—We propose algorithms for performing model check-
ing and control synthesis for discrete-time uncertain systems
under linear temporal logic (LTL) specifications. We construct
temporal logic trees (TLT) from LTL formulae via reachability
analysis. In contrast to automaton-based methods, the construc-
tion of the TLT is abstraction-free for infinite systems, that is,
we do not construct discrete abstractions of the infinite systems.
Moreover, for a given transition system and an LTL formula, we
prove that there exist both a universal TLT and an existential
TLT via minimal and maximal reachability analysis, respectively.
We show that the universal TLT is an underapproximation for the
LTL formula and the existential TLT is an overapproximation.
We provide sufficient conditions and necessary conditions to
verify whether a transition system satisfies an LTL formula by
using the TLT approximations. As a major contribution of this
work, for a controlled transition system and an LTL formula, we
prove that a controlled TLT can be constructed from the LTL
formula via control-dependent reachability analysis. Based on the
controlled TLT, we design an online control synthesis algorithm,
under which a set of feasible control inputs can be generated at
each time step. We also prove that this algorithm is recursively
feasible. We illustrate the proposed methods for both finite and
infinite systems and highlight the generality and online scalability
with two simulated examples.

I. INTRODUCTION

In the recent past the integration of computer science and
control theory has promoted the development of new areas
such as embedded systems design [1], hybrid systems theory
[2], and, more recently, cyber-physical systems [3]. Given
a model of a dynamical process and a specification (i.e., a
description of desired properties), two fundamental problems
arise:
• model checking: automatically verifying whether the be-

havior of the model satisfies the given specification;
• formal control synthesis: automatically designing con-

trollers (inputs to the system) so that the behavior of the
model provably satisfies the given specification.

Both problems are of great interest in disparate and diverse ap-
plications, such as robotics, transportation systems, and safety-

This work is supported by the Knut and Alice Wallenberg Foundation,
the Swedish Strategic Research Foundation, the Swedish Research Council,
and the Wallenberg AI, Autonomous Systems and Software Program (WASP)
funded by the Knut and Alice Wallenberg Foundation.

Y. Gao, F. J. Jiang, and K. H. Johansson are with the Division of Decision
and Control Systems, Royal Institute of Technology, Stockholm, Sweden
yulongg@kth.se, frankji@kth.se, kallej@kth.se

A. Abate and M. Giacobbe are with the Depart-
ment of Computer Science, University of Oxford, United
Kingdom alessandro.abate@cs.ox.ac.uk,
mirco.giacobbe@cs.ox.ac.uk

Y. Gao and L. Xie are with the School of Electrical and
Electronic Engineering, Nanyang Technological University, Singapore
ygao009@ntu.edu.sg, elhxie@ntu.edu.sg

critical embedded system design. However, they are challeng-
ing problems when considering dynamical systems affected by
uncertainty, and in particular uncertain infinite (uncountable)
systems under complex, temporal logic specifications. In this
paper, we provide solutions to the model checking and formal
control synthesis problems, for discrete-time uncertain systems
under linear temporal logic (LTL) specification.

A. Related Work

In general, LTL formulae are expressive enough to capture
many important properties, e.g., safety (nothing bad will ever
happen), liveness (something good will eventually happen),
and more complex combinations of Boolean and temporal
statements [4].

In the area of formal verification, a dynamical process is
by and large modeled as a finite transition system. A typical
approach to both model checking and control synthesis for a
finite transition system and an LTL formula leverages automata
theory. It is known that each LTL formula can be transformed
to an equivalent automaton [5]. The model checking problem
can be solved by verifying whether the intersection of the trace
set of the transition system and the set of accepted languages
of the automaton expressing the negation of the LTL formula is
empty, or not [4]. The control synthesis problem can be solved
by the following steps: (1) translate the LTL formula into
a deterministic automaton; (2) build a “product automaton”
between the transition system and the obtained automaton; (3)
transform the product automaton into a game [6]; (4) solve
the game [7], [8], [9]; and (5) map the solution into a control
strategy.

In recent years, the study of model checking and control
synthesis for dynamical systems with continuous (uncount-
able) spaces, which extends the standard setup in formal ver-
ification, has attracted significant attention within the control
community. This has enabled the formal control synthesis for
interesting properties, which are more complex than the usual
control objectives such as stability and set invariance. In order
to adapt automaton-based methods to infinite systems, abstrac-
tion plays a central role in both model checking and control
synthesis, which entails: (1) to abstract an infinite system to a
finite transition system; (2) to conduct automaton-based model
checking or control synthesis for the finite transition system;
(3) if a solution is found, to map it back to the infinite system;
otherwise, to refine the finite transition system and repeat the
steps above.

In order to show the correctness of the solution obtained
from the abstracted finite system over the infinite system, an
equivalence or inclusion relation between the abstracted finite
system and the infinite system needs to be established [10].

ar
X

iv
:2

00
7.

02
27

1v
1

 [
ee

ss
.S

Y
]

 5
 J

ul
 2

02
0

2

Relevant notions include (approximate) bisimulations and sim-
ulations. These relations and their variants have been explored
for systems that are incrementally (input-to-state) stable [11],
[12], or systems with similar properties [13]. Recent work [14]
shows that the condition of approximate simulation can be
relaxed to controlled globally asymptotic or practical stability
with respect to a given set for nonlinear systems. We remark
that such condition holds for only a small class of systems in
practice.

Based on abstractions, the problem of model checking for
infinite systems has been studied in [15], [16]. In [15], it
is shown that model checking for discrete-time, controllable,
linear systems from LTL formulae is decidable through an
equivalent finite abstraction. In [16], the authors study the
problem of verifying whether a linear system with additive
uncertainty from some initial states satisfies a fragment of
LTL formulae, which can be transformed to a deterministic
Büchi automaton. The key idea is to use a formula-guided
method to construct and refine a finite system abstracted from
the linear system and guarantee their equivalence. Along the
same line, the problem of control synthesis has also been
widely studied for linear systems [17], nonlinear systems [18],
stochastic systems [19], hybrid systems [20], and stochastic
hybrid systems [21]. The applications of control synthesis un-
der LTL specifications include single-robot control in dynamic
environments [22], multi-robot control [23], and transportation
control [24].

Beyond automata-based methods, alternative attempts have
been made for specific model classes. Receding horizon meth-
ods are used to design controllers under LTL for deterministic
linear systems [25] and uncertain linear systems [26]. The
control of Markov decision processes under LTL is consid-
ered in [25] and further applied to multi-robot coordination
in [27]. Control synthesis for dynamical systems has been
extended also to other specifications like signal temporal
logic (STL) [28], and probabilistic computational tree logic
(PCTL) [29]. Interested readers may refer to the tutorial pa-
per [30] and the book [31] for detailed discussions.

B. Motivations

Although the last two decades have witnessed a great
progress on model checking and control synthesis for infinite
systems from both theoretical and practical perspectives, there
are some inherent restrictions in the dominant automaton-
based methods.

First, abstraction from infinite systems to finite systems suf-
fers from the curse of dimensionality: abstraction techniques
usually partition the state space, and transitions are constructed
via reachability analysis. The computational complexity in-
creases exponentially with the system dimension. Many works
are dedicated to improving the computational efficiency by
using overapproximation for (mixed) monotone systems [24],
or by exploiting the structure of the uncertainty [21]. However,
another issue with abstraction techniques is that only systems
with “good properties” (e.g., incremental stability, or smooth
dynamics) might admit finite abstractions with guarantees,
which limits their generality.

Second, there are few results for handling general LTL
formulae when an infinite system comes with uncertainty (e.g.,
bounded disturbance, or additive noise). In most contributions
on control synthesis of uncertain systems, fragments of LTL
formulae (e.g., bounded LTL or co-safe LTL) are usually
taken into account [32], [33]. As mentioned before, the LTL
formulae are defined over infinite trajectories and it is difficult
to control uncertainties propagating along such trajectories.
This restriction results from conservative over-approximation
in the computation of forward reachable sets, which is widely
used for abstraction, and which leads to information loss when
used with automaton-based methods.

Third, current methods usually lack online scalability. In
many applications, full a priori knowledge of a specification
cannot be obtained. For example, consider an automated ve-
hicle required to move from some initial position to some
destination without colliding into any obstacle (e.g., other
vehicles and pedestrians). Since the trajectories of other ve-
hicles and pedestrians cannot be accurately predicted, we
cannot in advance define a specification that captures all the
possibilities during the navigation process. Thus, offline design
of automaton-based methods is significantly restricted.

Finally, the controller obtained from automaton-based meth-
ods usually only contains a single control policy. In some
applications, e.g., human-in-the-loop control [34], [35], a set
of feasible control inputs are needed to provide more degrees
of freedom in the actual implementation. For example, [34]
studies a control problem where humans are given a higher
priority than the automated system in the decision making
process. A controller is designed to provide a set of admissible
control inputs with enough degrees of freedom to allow the
human operator to easily complete the task.

C. Contributions

Motivated by the above, this paper studies LTL model
checking and reachability-based control synthesis for discrete-
time uncertain systems. There are many results for reachability
analysis on infinite systems [36], [37] and the computation of
both forward and backward reachable sets has been widely
studied [38], [39], [40]. The connection between STL and
reachability analysis is studied in [41], which inspires our
work. The main contributions of this paper are three-fold:

(1) We construct tree structures from LTL formulae via
reachability analysis over dynamical models. We denote the
tree structure as a temporal logic tree (TLT). The connection
between TLT and LTL is shown to hold for both uncertain
finite and infinite models. The construction of the TLT is
abstraction-free for infinite systems and admits online imple-
mentation, as demonstrated in Section VI. More specifically,
given a system and an LTL formula, we prove that both a uni-
versal TLT and an existential TLT can be constructed for the
LTL formula via minimal and maximal reachability analysis,
respectively (Theorems III.1 and III.2). We also show that the
universal TLT is an underapproximation for the LTL formula
and the existential TLT is an overapproximation for the LTL
formula. Our formulation does not restrict the generality of
LTL formulae.

3

1

2

3 4

5{r,y}

{r}

{g} {y}

{b}

(a)

∨

U

�

{3} {5}

{3, 5}

{1, 2, 3, 4, 5}

{1, 2, 3, 4, 5}

(b)

Fig. 1: (a) A transition system illustrating a traffic light example. Labels are
shown aside the states. The initial state is denoted by an incoming edge. (b)
A TLT corresponding to an LTL formula ϕ = �♦(g ∨ b) for this system.
Note that ♦ϕ = true ∪ ϕ.

(2) We provide a method for model checking of discrete-
time dynamical systems using TLTs. We provide sufficient
conditions to verify whether a transition system satisfies an
LTL formula by using universal TLTs for under-approximating
the satisfaction set, or alternatively using existential TLTs for
over-approximating the violation set (Theorem IV.1). Dually,
we provide necessary conditions by using existential TLTs
for over-approximating the satisfaction set, or alternatively
using universal TLTs for under-approximating the violation
set (Theorem IV.2).

(3) As a core and novel contribution of this work, we
detail an approach for online control synthesis for a controlled
transition system to guarantee that the controlled system will
satisfy the specified LTL formula. Given a control system and
an LTL formula, we construct a controlled TLT (Theorem V.1).
Based on the obtained TLT, we design an online control
synthesis algorithm, under which a set of feasible control
inputs is generated at each time step (Algorithm 3). We prove
that this algorithm is recursively feasible (Theorem V.2). We
provide applications to show the scalability of our methods.

D. Organization

The remainder of the paper is organized as follows. In
Section II, we define the notion of transition system, recall the
problem of reachability analysis, and provide preliminaries on
LTL specifications. In Section III, we introduce TLT structures
and show how to construct a TLT from a given LTL formula. In
Section IV, we solve the LTL model checking problem through
the constructed TLT. Section V solves the LTL control synthe-
sis problem. In Section VI, we illustrate the effectiveness of
our approaches with two numerical examples. In Section VII,
we conclude the paper with a discussion about our work and
future directions.

II. PRELIMINARIES

This section will first introduce transition systems and then
recall reachability analysis and LTL.

A. Transition System

Definition II.1. A transition system TS is a tuple TS = (S,→
,S0,AP, L) consisting of

• a set S of states;
• a transition relation →∈ S× S 1;
• a set S0 ⊆ S of initial states;
• a set AP of atomic propositions;
• a labelling function L : S→ 2AP .

Definition II.2. A transition system TS is said to be finite if
|S| <∞ and |AP| <∞.

Definition II.3. For x ∈ S, the set Post(x) of direct successors
of x is defined by Post(x) = {x′ ∈ S | x→ x′}.
Definition II.4. A transition system TS is said to be deter-
ministic if |S0| = 1 and |Post(x)| = 1, ∀x ∈ S.

Definition II.5. (Trajectory 2) For a transition system TS, an
infinite trajectory p starting from x0 is a sequence of states
p = x0x1 . . . xkxk+1 . . . such that ∀k ∈ N, xk+1 ∈ Post(xk).

Denote by Trajs(x0) the set of infinite trajectories starting
from x0. Let Trajs(TS) = ∪x∈S0Trajs(x). For a trajectory p,
the k-th state is denoted by p[k], i.e., p[k] = xk and the k-th
prefix is denoted by p[..k], i.e., p[..k] = x0 . . . xk.

Example II.1. A traffic light can be red, green, yellow or
black (not working). The traffic light might stop working at
any time. After it has been repaired, it turns red. Initially, the
light is red. An illustration of such a traffic light is shown in
Fig. 1(a). We can model the traffic light as a transition system
TS = (S,→,S0,AP, L):
• S = {1, 2, 3, 4, 5};
• →= {(1, 2), (2, 3), (3, 4), (4, 1), (1, 5), (2, 5), (3, 5),

(4, 5), (5, 1)};
• S0 = {1};
• AP = {r, y, g, b};
• L = {1→ {r}, 2→ {r, y}, 3→ {g}, 4→ {y},

5→ {b}}.
Remark II.1. We can rewrite the following discrete-time
autonomous system as an infinite transition system:

S :

{
xk+1 = f(xk, wk),

yk = g(xk),

where xk ∈ Rnx , wk ∈ Rnw , yk ∈ 2O, f : Rnx×Rnw → Rnx ,
and g : Rnx → 2O. Here, O denotes the set of observations. At
each time instant k, the disturbance wk belongs to a compact
set W ⊂ Rnw . Denote by Ini ⊆ Rnx the set of initial states.
If O is finite, the system S can be rewritten as an infinite
transition system TSS = (S,→,S0,AP, L) with
• S = Rnx ;
• ∀x, x′ ∈ S, x → x′ if and only if there exists w ∈ W

such that x′ = f(x,w);
• S0 = Ini;
• AP = O;
• L = g.

1Here, the transition relation is not a functional relation, but instead for
some state x, there may exist two different states x′ and x′′ such that x→ x′

and x → x′′ hold. For notational simplicity, we use →∈ S× S, rather than
→∈ S × 2S. The same claim holds for the controlled transition systems in
Section V.

2Notice that a trajectory p = x0x1 . . . xkxk+1 . . . is different from a
trace, which is the sequence of corresponding sets of atomic propositions,
and is denoted by L(x0)L(x1) . . . L(xk)L(xk+1)

4

B. Reachability Analysis

This subsection specifies the reachability analysis for a
transition system TS. We first define the minimal reachable
set and the maximal reachable set.

Definition II.6. Consider a transition system TS and two sets
Ω1,Ω2 ⊆ S. The k-step minimal reachable set from Ω1 to Ω2

is defined as

Rm(Ω1,Ω2, k) =
{
x0 ∈ S | ∀p ∈ Trajs(x0), s.t.,

p[..k] = x0 . . . xk,∀i ∈ N[0,k−1], xi ∈ Ω1, xk ∈ Ω2

}
.

The minimal reachable set from Ω1 to Ω2 is defined as

Rm(Ω1,Ω2) =
⋃
k∈N
Rm(Ω1,Ω2, k).

Lemma II.1. For two sets Ω1,Ω2 ⊆ S, define

Qk+1 = {x ∈ Ω1 | Post(x) ⊆ Qk} ∪Qk,

Q0 = Ω2.

Then, Rm(Ω1,Ω2) = limk→∞Qk.

Proof: From Definition II.6, it is easy to see that

Qk =
⋃

i∈N[0,k]

Rm(Ω1,Ω2, i).

It follows from the Knaster-Tarski Theorem [42] that
limk→∞Qk exists and is a fixed point to the monotone
function F (P) = {x ∈ Ω1 | Post(x) ⊆ P} ∪ P. Thus, we
have that Rm(Ω1,Ω2) = limk→∞Qk.

Definition II.7. Consider a transition system TS and two sets
Ω1,Ω2 ⊆ S. The k-step maximal reachable set from Ω1 to Ω2

is defined as

RM(Ω1,Ω2, k) =
{
x0 ∈ S | ∃p ∈ Trajs(x0), s.t.,

p[..k] = x0 . . . xN ,∀i ∈ N[0,k−1], xi ∈ Ω1, xk ∈ Ω2

}
.

The maximal reachable set from Ω1 to Ω2 is defined as

RM(Ω1,Ω2) =
⋃
k∈N
RM(Ω1,Ω2, k).

Lemma II.2. For two sets Ω1,Ω2 ⊆ S, define

Qk+1 = {x ∈ Ω1 | Post(x) ∩Qk 6= ∅} ∪Qk,

Q0 = Ω2.

Then, RM(Ω1,Ω2) = limk→∞Qk.

Proof: Similar to the proof of Lemma II.1.
We define the robust invariant set and the invariant set in

the following.

Definition II.8. A set Ωf ⊆ S is said to be a robust invariant
set of a transition system TS if for any x ∈ Ωf , Post(x) ⊆ Ωf .

Definition II.9. For a set Ω ⊆ S, a set RI(Ω) ⊆ S is said to
be the largest robust invariant set in S if each robust invariant
set Ωf ⊆ Ω satisfies Ωf ⊆ RI(Ω).

Lemma II.3. For a set Ω ⊆ S, define

Qk+1 = {x ∈ Qk | Post(x) ⊆ Qk},
Q0 = Ω.

Then, RI(Ω) = limk→∞Qk.

Proof: It follows again from the Knaster-Tarski Theo-
rem [42] that limk→∞Qk exists and it is a fixed point to the
monotone function F (P) = {x ∈ P | Post(x) ⊆ P}∩P. Thus,
we have that RI(Ω) = limk→∞Qk.

Definition II.10. A set Ωf ⊆ S is said to be an invariant set
of a transition system TS if for any x ∈ Ωf , Post(x)∩Ωf 6= ∅.
Definition II.11. For a set Ω ⊆ S, a set I(Ω) ⊆ S is said to
be the largest invariant set in S if each invariant set Ωf ⊆ Ω
satisfies Ωf ⊆ I(Ω).

Lemma II.4. For a set Ω ⊆ S, define

Qk+1 = {x ∈ Qk | Post(x) ∩Qk 6= ∅},
Q0 = Ω.

Then, I(Ω) = limk→∞Qk.

Proof: Similar to the proof of Lemma II.3.
We can understand the reachable sets and invariant sets

defined above as mapsRm : 2S×2S → 2S,RM : 2S×2S → 2S,
RI : 2S → 2S, and I : 2S → 2S, respectively. In the following,
we will refer to them as “reachability operators”.

C. LTL

An LTL formula is defined over a finite set of atomic
propositions AP and both logic and temporal operators. The
syntax of LTL can be described as:

ϕ ::= true | a ∈ AP | ¬ϕ | ϕ1 ∧ ϕ2 | ©ϕ | ϕ1Uϕ2,

where © and U denote the “next” and “until” operators,
respectively. By using the negation and conjunction operators,
we can define disjunction: ϕ1 ∨ ϕ2 = ¬(¬ϕ1 ∧ ¬ϕ2). By
employing the until operator, we can define: (1) eventually,
♦ϕ = true∪ϕ; (2) always, �ϕ = ¬♦¬ϕ; and (3) weak-until,
ϕ1Wϕ2 = ϕ1Uϕ2 ∨�ϕ1.

Definition II.12. (LTL semantics) For an LTL formula ϕ and
a trajectory p, the satisfaction relation p � ϕ is defined as

p � p⇔ p ∈ L(x0),

p � ¬p⇔ p /∈ L(x0),

p � ϕ1 ∧ ϕ2 ⇔ p � ϕ1 ∧ p � ϕ2,

p � ϕ1 ∨ ϕ2 ⇔ p � ϕ1 ∨ p � ϕ2,

p �©ϕ⇔ p[1..] � ϕ,

p � ϕ1Uϕ2 ⇔ ∃j ∈ N s.t.

{
p[j..] � ϕ2,

∀i ∈ N[0,j−1],p[i..] � ϕ1,

p � ♦ϕ⇔ ∃j ∈ N, s.t. p[j..] � ϕ,
p � �ϕ⇔ ∀j ∈ N, s.t. p[j..] � ϕ,

p � ϕ1Wϕ2 ⇔


∀j ∈ N,p[j..] � ϕ1, or

∃j ∈ N s.t.

{
p[j..] � ϕ2,

∀i ∈ N[0,j−1],p[i..] � ϕ1.

5

Definition II.13. Consider a transition system TS and an LTL
formula ϕ. The semantics of the universal form of ϕ, denoted
by ∀ϕ, is

x0 � ∀ϕ⇔ ∀p ∈ Trajs(x0),p � ϕ.

The semantics of the existential form of ϕ, denoted by ∃ϕ, is

x0 � ∃ϕ⇔ ∃p ∈ Trajs(x0),p � ϕ.

III. TEMPORAL LOGIC TREES

This section will introduce the notion of TLT and estab-
lish a satisfaction relation between a trajectory and a TLT.
Then, we construct TLTs from LTL formulae and discuss the
approximation relation between them.

A. Definitions

Definition III.1. A TLT is a tree for which the next holds:
• each node is either a set node, a subset of S, or an

operator node, from {∧,∨,©,U,�};
• the root node and the leaf nodes are set nodes;
• if a set node is not a leaf node, its unique child is an

operator node;
• the children of any operator node are set nodes.

Next we define the complete path and the minimal Boolean
fragment for a TLT. Minimal Boolean fragments play an
important role when simplifying the TLT for model checking
and control synthesis in the following.

Definition III.2. A complete path of a TLT is a sequence
of nodes and edges from the root node to a leaf node. Any
subsequence of a complete path is called a fragment of the
complete path.

Definition III.3. A minimal Boolean fragment of a complete
path is one of the following fragments:
(i) a fragment from the root node to the first Boolean oper-

ator node (∧ or ∨) in the complete path;
(ii) a segment from one Boolean operator node to the next

Boolean operator node in the complete path;
(iii) a fragment from the last Boolean operator node of the

complete path to the leaf node;

Example III.1. Consider the traffic light in Example II.1 and
the TLT in Fig. 1(b), which corresponds to the LTL formula
ϕ = �♦(g∨b) (the formal construction of a TLT from an LTL
formula will be detailed in next subsection). We encode one of
the complete paths of this TLT in the form of X0�X1UX2∨X3,
where X0 = X1 = {1, 2, 3, 4, 5}, X2 = {3, 5}, and X3 = {3}.
For this complete path, the minimal Boolean fragments consist
of X0�X1♦X2∨ and ∨X3, which correspond to cases (i) and
(iii) in Definition III.3, respectively.

We now define the satisfaction relation between a given
trajectory and a complete path of a TLT.

Definition III.4. Consider a trajectory p = x0x1 . . . xk . . .
and encode a complete path of a TLT in the form of X0 �1

X1 �2 . . . �Nf
XNf

where Nf is the number of operators
in the complete path, Xi ⊆ S for all i ∈ N[0,Nf]and �i ∈

{∧,∨,©,U,�} for all i ∈ N[1,Nf]. The trajectory p is said
to satisfy this complete path if x0 ∈ X0 and there exists a
sequence of time steps k0k1, . . . , kNf

with ki ∈ N for all
i ∈ N[0,Nf] and 0 , k0 ≤ k1 ≤ k2 ≤ . . . ≤ kNf

such that for
all i ∈ N[0,Nf],

(i) if �i = ∧ or �i = ∨, xki
∈ Xi−1 and xki

∈ Xi;
(ii) if �i =©, xki−1 ∈ Xi−1 and xki ∈ Xi;

(iii) if �i = U, xj ∈ Xi−1, ∀j ≥ N[ki−1,ki−1], and xki ∈ Xi;
(iv) if �i = �, xj ∈ Xi, ∀j ≥ ki.
Consider a k-th prefix p[..k] = x0x1 . . . xk from p and a
fragment from the complete path in the form of X0 �1 X1 �2

. . . �N ′f
XN ′f

where N ′f ≤ Nf . The prefix p[..k] is said to
satisfy this fragment if x0 ∈ X0, xk ∈ XN ′f

, and there exists
a sequence of time steps k0k1, . . . , kN ′f with ki ∈ N for all
i ∈ N[0,N ′f]

and 0 , k0 ≤ k1 ≤ k2 ≤ . . . ≤ kN ′f ≤ k, such
that for all i ∈ N[0,N ′f]

, (i)–(iii) holds and furthermore

(iv’) if �i = �, xj ∈ Xi, ∀j ∈ N[ki,k].

Definition III.5. A time coding of a TLT is an assignment of
each operator node in the tree to a nonnegative integer.

Definition III.6. Consider a trajectory p = x0x1 . . . xk . . .
and a TLT. The trajectory p is said to satisfy the TLT if there
exists a time coding such that the output of Algorithm 1 is
true.

The time coding indicates when the operators in the TLT
are activated along a given trajectory. Algorithm 1 provides a
procedure to test if a trajectory satisfies a TLT under a given
time coding. The TLT is first transformed into a compressed
tree, which is analogous to a binary decision diagram (lines
1–2), through Algorithm 2. Then, we check if the trajectory
satisfies each complete path of the TLT under the time coding
(lines 3–9). Finally, we backtrack the tree with output true
or false. If the output is true, the trajectory satisfies the TLT;
otherwise, the trajectory does not satisfy the TLT under the
given time coding.

Algorithm 2 aims to obtain a tree in a compact form. Each
minimal Boolean fragment is encoded according to Defini-
tion III.3. The notation �i denotes the operator node and
Nf denotes the number of set nodes in the corresponding
minimal Boolean fragment. We compress the sets in the min-
imal Boolean fragment to be a single set. The simplified tree
consists of set nodes and Boolean operator nodes.

Example III.2. From Definition III.4, we can verify that the
trajectory p = (1234)ω satisfies the complete path given in
Example III.1 by choosing k0 = k1 = 0 and k2 = k3 = 2.
It follows from Definition III.6 that this trajectory satisfies the
corresponding TLT.

B. Construction and Approximation of TLT

We define the approximation relations between TLTs and
LTL formulae as follows.

Definition III.7. A TLT is said to be an under-approximation
of an LTL formula ϕ if all the trajectories that satisfy the TLT
also satisfy ϕ.

6

Algorithm 1 TLT Satisfaction
Input: a trajectory p = x0x1 . . . xk . . ., a TLT and a time

coding
Output: true or false;

1: construct a compressed tree via Algorithm 2 with input of
the TLT;

2: replace all set nodes of the compressed tree with false;
3: for each complete path of the TLT do
4: if p satisfies the complete path under the time coding

then
5: set the corresponding leaf node in the compressed

tree with true;
6: else
7: set the corresponding leaf node in the compressed

tree with false;
8: end if
9: end for

10: backtrack the tree;
11: return the root node of the tree.

Algorithm 2 Tree Compression
Input: a tree
Output: a compressed tree

1: for each complete path of the tree do
2: for each minimal Boolean fragment do
3: switch minimal Boolean fragment do
4: case (i) in Definition III.3
5: encode the fragment in the form of Y1 �1

. . .�i . . .YNf
�Nf

with �Nf
∈ {∧,∨};

6: replace the fragment with ∪Nf

i=1Yi�Nf
;

7: case (ii) in Definition III.3
8: encode the fragment in the form of
�1Y1�2 . . .�Nf

YNf
�Nf+1 with �1,�Nf+1 ∈ {∧,∨};

9: replace the fragment with
�1 ∪Nf

i=1 Yi�Nf+1;

10: case (iii) in Definition III.3
11: encode the fragment in the form of
�1Y1 �2 . . .�Nf

YNf
with �1 ∈ {∧,∨};

12: replace the fragment with �1 ∪Nf

i=1 Yi;
13: B �i denotes the operator node and Nf denotes

the number of set nodes in the minimal Boolean fragment;
14: end for
15: end for
16: return the updated tree.

Definition III.8. A TLT is said to be an over-approximation
of an LTL formula ϕ, if all the trajectories that satisfy ϕ also
satisfy the TLT.

The following two theorems show how to construct TLTs
via reachability analysis for the LTL formulae, and discuss
their approximation relations.

Theorem III.1. For any transition system TS and any LTL
formula ϕ,
(i) a TLT can be constructed from the formula ∀ϕ through

the reachability operators Rm and RI;
(ii) this TLT is an under-approximation of ϕ.

Proof: Here we provide a proof sketch. See Appendix A
for a detailed proof.

We prove the constructability by the following three steps:
(1) we transform the given LTL formula ϕ into an equivalent
LTL formula in the weak-until positive normal form; (2) for
each atomic proposition a ∈ AP , we show that a TLT can
be constructed from ∀a (or ∀¬a); (3) we leverage induction
to show the following: given LTL formulae ϕ, ϕ1, and ϕ2 in
weak-until positive normal form, if TLTs can be constructed
from ∀ϕ, ∀ϕ1, and ∀ϕ2, respectively, then TLTs can also be
constructed through reachability operators Rm and RI from
the formulae ∀(ϕ1 ∧ϕ2), ∀(ϕ1 ∨ϕ2), ∀©ϕ, ∀(ϕ1Uϕ2), and
∀(ϕ1Wϕ2), respectively.

We follow a similar approach to prove an under-
approximation relation between the constructed TLT and the
LTL formula. The under-approximation occurs due to the
conjunction operator and the presence of branching in the
transition system.

Similarly, the following results hold.

Theorem III.2. For any transition system TS and any LTL
formula ϕ,
(i) a TLT can be constructed from the formula ∃ϕ through

the reachability operators RM and I;
(ii) this TLT is an over-approximation of ϕ.

Proof: The proof of the first part is similar to that of
Theorem III.1 by replacing the universal quantifier ∀ and the
reachability operators Rm and RI with the existential quan-
tifier ∃ and the operators RM and I, respectively. Also, the
proof of the second part is similar to that of Theorem III.1 by
following the definition of the maximal reachability analysis.

We call the constructed TLT of ∀ϕ the universal TLT of
ϕ and the TLT of ∃ϕ the existential TLT of ϕ. We remark
that the constructed TLT is not unique: this is because an LTL
formula can have different equivalent expressions (e.g, normal
forms). Despite this, the approximation relations between an
LTL formula and the corresponding TLT still hold.

The following corollary shows that the approximation rela-
tion between TLTs and LTL formulae are tight for determin-
istic transition systems.

Corollary III.1. For any deterministic transition system TS
and any LTL formula ϕ, the universal TLT and the existential
TLT of ϕ are identical.

Proof: If the system is deterministic, it follows from Lem-
mas II.1–II.2 and Lemmas II.3–II.4 that for any Ω1,Ω2 ⊆ S
and Ω ⊆ S, Rm(Ω1,Ω2) = RM(Ω1,Ω2) and RI(Ω) = I(Ω).
Then, by the same construction procedure, we have that the
constructed universal TLT is the same as the constructed
existential TLT.

Remark III.1. Computation of reachable sets plays a central
role in the construction of the TLT. The computation of reach-
able sets is not the focus of this paper. Interested readers are
referred to relevant results [38], [39], [40] and associated

7

computational tools, e.g., the multi-parametric toolbox [43]
and the Hamilton-Jacobi toolbox [44].

Example III.3. Consider the traffic light in Example II.1 and
the LTL formula ϕ = �♦(g ∨ b) in Example III.2 again. We
follow the proof of Theorem III.1 to show the correspondence
between ∀ϕ and the TLT in Fig. 1(b):
(1) the universal TLT of g is a single set node, i.e., {3} and

the universal TLT of b is also a single set node, i.e,, {5};
(2) the root node of the universal TLT of g ∨ b is the union

of {3} and {5}, i.e., {3, 5};
(3) the root node of the universal TLT of ♦(g ∨ b) is
Rm(S, {3, 5}) = {1, 2, 3, 4, 5};

(4) the root node of the universal TLT of �♦(g ∨ b) is
RI({1, 2, 3, 4, 5}) = {1, 2, 3, 4, 5}.

We can follow the same steps in the proof of Theorem III.2
to construct the existential TLT of ϕ, which is the same as the
universal TLT of ϕ for the system in Example II.1.

IV. MODEL CHECKING VIA TLT

This section focuses on the model checking problem.

Problem IV.1. Consider a transition system TS and an LTL
formula ϕ. Verify whether TS � ϕ, i.e., ∀x0 ∈ S0, x0 � ∀ϕ.

Thanks to the approximation relations between the TLTs
and the LTL formulae, we obtain the following lemma.

Lemma IV.1. For any transition system TS and any LTL
formula ϕ,
(i) x0 � ∀ϕ if x0 belongs to the root node of the universal

TLT of ϕ;
(ii) x0 � ∃ϕ only if x0 belongs to the root node of the

existential TLT of ϕ.

Proof: The first result follows from that the root node of
the universal TLT is an under-approximation of the satisfaction
set of ϕ, as shown in Theorem III.1. Dually, the second result
follows from that the root node of the universal TLT is an
over-approximation of the satisfaction set of ϕ, shown in
Theorem III.2.

The next theorem provides two sufficient conditions for
solving Problem IV.1.

Theorem IV.1. For a transition system TS and an LTL
formula ϕ, TS � ϕ if one of the following conditions holds:
(i) the initial state set S0 is a subset of the root node of the

universal TLT for ϕ;
(ii) no initial state from S0 belongs to the root node of the

existential TLT for ¬ϕ.

Proof: Condition (i) directly follows from the first result
of Lemma IV.1. Let us next prove condition (ii). It follows
that

TS � ϕ⇔ ∀p ∈ Trajs(TS),p � ϕ⇔ ∀p ∈ Trajs(TS),p 2 ¬ϕ.
From the second result of Lemma IV.1, if x0 does not belong
to the root node of the existential TLT of ¬ϕ, we have p 2
¬ϕ, ∀p ∈ Trajs(x0). Thus, the condition (ii) is sufficient for
verifying TS � ϕ.

Similarly, we derive two necessary conditions for solving
the model checking problem.

Theorem IV.2. For a transition system TS and an LTL
formula ϕ, TS � ϕ only if one of the following conditions
holds:
(i) the initial state set S0 is a subset of the root node of the

existential TLT for ϕ;
(ii) no initial state from S0 belongs to the root node of the

universal TLT for ¬ϕ.

Proof: Similar to Theorem IV.1.
Notice that the approximation relations between the TLT

and the LTL formula are tight for deterministic transition
systems, as shown in Corollary III.1. In this case, the model
checking problem can be tackled as follows.

Corollary IV.1. For a deterministic transition system TS and
an LTL formula ϕ, TS � ϕ if and only if the initial state set
S0 is a subset of the root node of the universal (or existential)
TLT for ϕ.

Proof: Follows from Corollary III.1.
The conditions in Theorems IV.1–IV.2 imply that one can

directly do model checking by using TLTs, as shown in the
following example.

Example IV.1. Let us continue to consider the traffic light and
the LTL formula ϕ = �♦(g∨b). Let us verify whether TS � ϕ
by using the above method. Since the unique initial state x0
belongs to the root node of the universal TLT of ϕ shown in
Fig. 1(b), it follows from condition (i) in Theorem IV.1 that
TS � ϕ. Next, we show how to use condition (ii) to verify that
TS � ϕ.
First of all, we have ¬ϕ = ♦�(¬g∧¬b). Following the proof
of Theorem III.2, we construct the existential TLT of ¬ϕ:
(1) the existential TLT of ¬g is a single set node, i.e.,
{1, 2, 4, 5} and the existential TLT of ¬b is also a single
set node, i.e,, {1, 2, 3, 4};

(2) the root node of the existential TLT of ¬g ∧ ¬b is the
intersection of {1, 2, 4, 5} and {1, 2, 3, 4}, i.e., {1, 2, 4};

(3) the root node of the existential TLT of �(¬g ∧ ¬b) is
I({2, 3, 4, 5}) = ∅.

As the existential TLT of ¬ϕ is the empty set ∅, this implies
that condition (ii) in Theorem IV.1 holds and thus TS � ϕ.

V. CONTROL SYNTHESIS VIA TLT

This section will show how to use the TLT to do control
synthesis. Before that, we will introduce the notion of con-
trolled transition system and recall the controlled reachability
analysis.

A. Controlled Transition System

Definition V.1. A controlled transition system CTS is a tuple
CTS = (S,U,→,S0,AP, L) consisting of
• a set S of states;
• a set U of control inputs;
• a transition relation →∈ S× U× S;
• a set S0 of initial states;

8

• a set AP of atomic propositions;
• a labelling function L : S→ 2AP .

Definition V.2. A controlled transition system CTS is said to
be finite if |S| <∞, |U| <∞, and |AP| <∞.

Definition V.3. For x ∈ S and u ∈ U, the set Post(x, u)
of direct successors of x under u is defined by Post(x, u) =
{x′ ∈ S | x u−→ x′}.
Definition V.4. For x ∈ S, the set U(x) of admissible control
inputs at state x is defined by U(x) = {u ∈ U | Post(x, u) 6=
∅}.
Definition V.5. (Policy) For a controlled transition system
CTS, a policy µ = u0u1 . . . uk . . . is a sequence of maps
uk : S→ U. Denote by M the set of all policies.

Definition V.6. (Trajectory) For a controlled transition system
CTS, an infinite trajectory p starting from x0 under a policy
µ = u0u1 . . . uk . . . is a sequence of states p = x0x1 . . . xk . . .
such that ∀k ∈ N, xk+1 ∈ Post(xk, uk(xk)). Denote by
Trajs(x0,µ) the set of infinite trajectories starting from x0
under µ.

Example V.1. A controlled transition system CTS = (S,U,→
,S0,AP, L) is shown in Fig. 2(a), where
• S = {s1, s2, s3, s4};
• U = {a1, a2};
• →= {(s1, a1, s2), (s1, a1, s3), (s2, a1, s2), (s2, a1, s3),

(s2, a1, s3), (s2, a2, s4), (s3, a1, s2), (s3, a2, s3),
(s4, a1, s2), (s4, a1, s4)};

• S0 = {s1};
• AP = {o1, o2, o3};
• L = {s1 → {o1}, s2 → {o2}, s3 → {o3}, s4 → {o2}}.

Remark V.1. We express the following discrete-time uncertain
control system as an infinite controlled transition system:

CS :

{
xk+1 = f(xk, uk, wk),

yk = g(xk),
(1)

where xk ∈ Rnx and uk ∈ Rnu , wk ∈ Rnw , yk ∈ 2O, f :
Rnx×Rnu×Rnw → Rnx , and g : Rnx → 2O. Here,O denotes
the set of observations. At each time instant k, the control
input uk is constrained by a compact set UCS ⊂ Rnu and the
disturbance wk belongs to a compact set W ⊂ Rnw . Denote
by Ini ⊆ Rnx the set of the initial states. If the observation
set O is finite, CS can be rewritten as an infinite controlled
transition system, CTSCS = (S,U,→,S0,AP, L) where
• S = Rnx ;
• U = UCS;
• ∀x, x′ ∈ S and ∀u ∈ U, x u−→ x′ if and only if there exists
w ∈W such that x′ = f(x, u, w);

• S0 = Ini;
• AP = O;
• L = g.

B. Controlled Reachability Analysis
This subsection will develop reachability analysis of a con-

trolled transition system CTS.

s1 s3

s2 s4

a1

a1
a1

a2

a1

a1
a2

a1

a1

o1

o3

o2o2

(a)

�

U

{s2, s4}

{s2, s4}

{s1, s2, s3, s4}

(b)

Fig. 2: (a) Graph description of a controlled transition system; (b) The
controlled TLT of ϕ = ♦�o2 for the system.

Definition V.7. Consider a controlled transition system CTS
and two sets Ω1,Ω2 ⊆ S. The k-step controlled reachable set
from Ω1 to Ω2 is defined as

Rc(Ω1,Ω2, k) =
{
x0 ∈ S | ∃µ ∈M s.t., ∀p ∈ Trajs(x0,µ),

p[..k] = x0 . . . xk,∀i ∈ N[0,k−1], xi ∈ Ω1, xk ∈ Ω2

}
.

The controlled reachable set from Ω1 to Ω2 is defined as

Rc(Ω1,Ω2) =
⋃
k∈N
Rc(Ω1,Ω2, k).

Lemma V.1. For two sets Ω1,Ω2 ⊆ S, define

Qk+1 = {x ∈ Ω1 | ∃u ∈ U(x),Post(x, u) ⊆ Qk} ∪Qk,

Q0 = Ω2.

Then, Rc(Ω1,Ω2) = limk→∞Qk.

Proof: Similar to the proof of Lemma II.1.

Definition V.8. A set Ωf ⊆ S is said to be a robust controlled
invariant set (RCIS) of a transition system TS if for any x ∈
Ωf , there exists u ∈ U(x) such that Post(x, u) ⊆ Ωf .

Definition V.9. For a set Ω ⊆ S, a set RCI(Ω) ⊆ S is said
to be the largest RCIS in S if each RCIS Ωf ⊆ Ω satisfies
Ωf ⊆ RCI(Ω).

Lemma V.2. For a set Ω ⊆ S, define

Qk+1 = {x ∈ Qk | ∃u ∈ U(x),Post(x, u) ⊆ Qk},
Q0 = Ω.

Then, RCI(Ω) = limk→∞Qk.

Proof: Similar to the proof of Lemma II.3.
The definitions of controlled reachable sets and RCISs

provide us a way to synthesize the feasible control set, which
is detailed in Algorithm 4. In the following, we treat the maps
Rc : 2S × 2S → 2S and RCI : 2S → 2S as the reachability
operators.

9

C. Construction and Approximation of TLT

The next theorem shows how to construct a TLT from an
LTL formula for a controlled transition system and discusses
its approximation relation.

Theorem V.1. For a controlled transition system CTS and
any LTL formula ϕ, the following holds:
(i) a TLT can be constructed from the formula ϕ through the

reachability operators Rc and RCI;
(ii) given an initial state x0, if there exists a policy µ such

that p satisfies the constructed TLT, ∀p ∈ Trajs(x0,µ),
then p � ϕ, ∀p ∈ Trajs(x0,µ).

Proof: The proof of the first part is similar to that of
Theorem III.1 by replacing the reachability operators Rm(·)
and RI(·) with Rc(·) and RCI(·), respectively.

Similar to the under-approximation of the universal TLT
in Theorem III.1, we can show that the path satisfying the
constructed TLT in the first part also satisfies the LTL formula.
Then, we can directly prove the second result.

Let us call the constructed TLT of ϕ in Theorem V.1 the
controlled TLT of ϕ.

Remark V.2. Checking whether there exists a policy, such that
all the resulting trajectories satisfy the obtained controlled
TLT, is in general a hard problem. A straightforward nec-
essary condition is that x0 belongs to the root node of the
controlled TLT: however, this is neither a necessary nor a
sufficient condition on the existence of a policy such that all the
resulting trajectories satisfy the given LTL formula. A (rather
conservative) necessary condition for the latter case can be
obtained by regarding the controlled TS as a non-deterministic
transition system, and then applying Thereom IV.2.

Next we will show how to construct the controlled TLT
through an example.

Example V.2. Consider the controlled transition system in
Example V.1. For an LTL formula ϕ = ♦�o2, we can follow
the steps in the proof of Theorem V.1 to construct the controlled
TLT of ϕ, as shown in Fig. 2(b).

D. Control Synthesis Algorithm

In this subsection, we solve the following control synthesis
problem.

Problem V.1. Consider a controlled transition system CTS
and an LTL formula ϕ. For an initial state x0 ∈ S0, find,
whenever existing, a sequence of feedback control inputs u =
u0(x0)u1(x1) . . . uk(xk) . . . such that the resulting trajectory
p = x0x1 . . . xk . . . satisfies ϕ.

Remark V.3. Note that the objective of the above problem
is not to find a policy µ, but a sequence of control inputs
that depend on the measured state. In general, synthesizing a
policy µ such that each trajectory p ∈ Trajs(x0,µ) satisfies
ϕ is computationally intractable for infinite systems. Instead,
here we seek to find online a feasible control input at each
time step, in a similar spirit to constrained control or receding
horizon control.

Instead of directly solving Problem V.1, we consider the
following related task, whose solution is also a solution to
Problem V.1, thanks to Theorem V.1.

Problem V.2. Consider a controlled transition system CTS
and an LTL formula ϕ. For an initial state x0 ∈ S0,
find, whenever existing, a sequence of control inputs u =
u0(x0)u1(x1) . . . uk(xk) . . . such that the resulting trajectory
p = x0x1 . . . xk . . . satisfies the controlled TLT constructed
from ϕ.

Algorithm 3 provides a solution to Problem V.2. In par-
ticular, Algorithm 3 presents an online feedback control syn-
thesis procedure, which consists of three steps: (1) control
tree: replace each set node of the TLT with a corresponding
control set candidate (Algorithm 4); (2) compressed control
tree: compress the control tree as a new tree whose set nodes
are control sets and whose operator nodes are conjunctions and
disjunctions (Algorithm 2); (3) backtrack on the control sets
through a bottom-up traversal over the compressed control tree
(Algorithm 5). If the output of Algorithm 5 is NExis, there
does not exist a feasible solution to Problem V.2. We remark
that Algorithm 3 is implemented in a similar way to receding
horizon control with the prediction horizon being one.

Algorithm 3 Online Feedback Control Synthesis via TLT
Input: an initial state x0 ∈ S0 and the controlled TLT of

an LTL formula ϕ
Output: NExis or (u,p) with u = u0u1 . . . uk . . . and

p = x0x1 . . . xk . . .

1: initialize k = 0;
2: construct a control tree via Algorithm 4, with inputs
p[..k] = x0 . . . xk and the TLT;

3: construct a compressed tree via Algorithm 2, with input
the control tree;

4: synthesize a control set Uϕ
k (xk) via Algorithm 5, with

input the compressed tree;
5: if Uϕ

k (xk) = ∅ then
6: stop and return NExis;
7: else
8: choose uk ∈ Uϕ

k (xk);
9: implement uk and measure xk+1 ∈ Post(xk, uk);

10: update k = k + 1 and go to Step 2;
11: end if

Algorithm 4 aims to construct a control tree that enjoys the
same tree structure as the input TLT. The difference is that
all the set nodes are replaced with the corresponding control
set nodes. The correspondence is established as follows: (1)
whether the initial state x0 belongs to the root node or not
(lines 1–3); (2) whether the prefix p[..k] satisfy the fragment
from the root node to the set node (lines 5–7); (4) whether or
not the set node is a leaf node (lines 9–14); (5) which operator
the child of the set node is (lines 16–24).

Algorithm 5 aims to backtrack a set by using the compressed
tree. We update the parent of each Boolean operator node
through a bottom-up traversal.

Note that the construction of a control tree in Algorithm 4
is closely related to the controlled reachability analysis in Sec-

10

Algorithm 4 Control Tree
Input: p[..k] = x0 . . . xk and a TLT
Output: a control tree

1: if k = 0 and x0 /∈ the root node of TLT then
2: return ∅
3: else
4: for each set node X of TLT through a bottom-up

traversal do
5: if p[..k] does not satisfy the fragment from the root

node to X then
6: B see Definition III.4;
7: replace X with ∅;
8: else
9: if X is leaf node then

10: if the parent of X is � then
11: replace X with UX = {u ∈ U |

Post(xk, u) ⊆ RCI(X)};
12: else
13: replace X with U;
14: end if
15: else
16: switch the child of X do
17: case ∧ (or ∨)
18: replace X with UX = ∩i∈CHUCH,i

(or UX = ∪i∈CHUCH,i)
19: B for each Boolean operator node,

CH collects its children and UCH,i is the corresponding
control set for each child;

20: case ©
21: replace X with UX = {u ∈ U |

Post(xk, u) ⊆ Y}
22: B Y is the child of ©;
23: case U or �
24: replace X with UX = {u ∈ U |

Post(xk, u) ⊆ X};
25: end if
26: end if
27: end for
28: return the updated tree as the control tree.
29: end if

Algorithm 5 Set Backtracking
Input: a compressed tree
Output: a set Uϕ

k

1: for each Boolean operator node of the compressed tree
through a bottom-up traversal do

2: switch Boolean operator do
3: case ∧
4: replace its parent with YP ∪ (∩i∈CHYCH,i);
5: case ∨
6: replace its parent with YP ∪ (∪i∈CHYCH,i);
7: end for
8: B for each Boolean operator node, YP denotes its parent,

CH collects its children, and YCH,i is the corresponding
control set for each child;

9: return the root node.

tion V-B. In lines 12–13, the computation of control set follows
from the definition of RCIS. In lines 22–23, the definition
of one-step controlled reachable set is used to compute the
control set. In lines 24–26, the control set is synthesized from
the definition of a controlled reachable set.

The following theorem shows that Algorithm 3 is recur-
sively feasible. This means that initial feasibility implies future
feasibility. This is an important property, particularly used in
receding horizon control.

Theorem V.2. Consider a controlled transition system CTS,
an LTL formula ϕ, and an initial state x0 ∈ S0. Let x0 and
the controlled TLT of ϕ be the inputs of Algorithm 3. If there
exists a policy µ such that p satisfies the controlled TLT of
ϕ, ∀p ∈ Trajs(x0,µ), then

(i) the control set Uϕ
k (xk) (line 8 of Algorithm 3) is nonempty

for all k ∈ N;
(ii) at each time step k, there exists at least one trajectory

p with prefix p[..k + 1] = x0 . . . xkxk+1 under some
policy such that p satisfies the controlled TLT of ϕ, ∀uk ∈
Uϕ

k (xk) and ∀xk+1 ∈ Post(xk, uk).

Proof: The proof follows from the construction of the set
Uϕ

k (xk) in Algorithm 4 and the operations in Algorithms 2
and 5, and the definitions of controlled reachable sets and
RCIS. If there exists a policy µ such that p satisfies the con-
trolled TLT of ϕ, ∀p ∈ Trajs(x0,µ), we have that Algorithm 3
is feasible at each time step k, which implies that Uϕ

k (xk) 6= ∅.
Furthermore, from Algorithm 4, each element in Uϕ

k (xk)
guarantees the one-step ahead feasibility for all realizations
of xk+1 ∈ Post(xk, uk), which implies the result (ii).

Theorem V.2 implies that if there exists a policy such that
all the resulting trajectories satisfy the controlled TLT built
from ϕ, then Algorithm 3 is always feasible at each time step
in two senses: (1) the control set Uϕ

k (xk) is nonempty; and (2)
there always exists a feasible policy such that the trajectories
with the realized prefix satisfy the controlled TLT.

Remark V.4. In Algorithm 3, the integration of Algorithms 2,
4, and 5 can be interpreted as a feedback control law. This
control law is a set-valued map Sk+1 → 2U at time step k.
Given the prefix p[..k] = x0 . . . xk, this map collects all the
feasible control inputs such that the state can move along the
TLT from p[..k].

Remark V.5. Note that to implement Algorithm 3, we do
not need to first check for the existence of a policy for
the controlled TLT. The fact that a non-empty control set is
synthesized by Algorithm 3 at each time step is necessary for
the existence of the policy for the controlled TLT. We use the
existence of the policy as a-priori condition for proving the
recursive feasibility of Algorithm 3 in Theorem V.1.

Example V.3. Let us continue to consider the controlled tran-
sition system in Example V.1 and the LTL formula ϕ = ♦�o2
in Example V.2. Implementing Algorithm 3, we obtain Table I.
We can see that at each time step, we can synthesize a
nonempty feedback control set. One realization is s1

a1−→
s3

a2−→ s3
a1−→ s2

a1−→ s3
a1−→ s2

a2−→ s4
a1−→ s2

a2−→ s4 · · · , of
which the trajectory p = s1s3s3s2s3s2(s4s2)ω satisfies both

11

TABLE I: Online implementation under Algorithm 3

Time k State xk Control set Uϕ
k (xk) Control input uk

0 s1 {a1} a1
1 s3 {a1, a2} a2
2 s3 {a1, a2} a1
3 s2 {a1, a2} a1
4 s3 {a1, a2} a1
5 s2 {a1, a2} a2
6 s4 {a1} a1
7 s2 {a1, a2} a2
...

...
...

...

the controlled TLT and the formula ϕ.
In this example, Algorithm 3 is recursively feasible since

we can verify that the condition in Theorem V.2 holds. That
is, there exists a policy such that all the resulting trajec-
tories satisfy the controlled TLT: a feasible stationary pol-
icy is µ = uu · · · , where u : S → U with u(s1) =
a1, u(s2) = a2, u(s3) = a1, and u(s4) = a1. Under this
policy, there are two possible trajectories, p = s1s3(s2s4)ω

and p = s1(s2s4)ω , both of which satisfy the controlled TLT
and the LTL formula ϕ.

VI. EXAMPLES

A. Obstacle Avoidance

Following the example of obstacle avoidance for double
integrator in [45], we consider the following dynamical system

xk+1 =

[
1 0.2
0 1

]
xk +

[
0.1
0.2

]
uk + wk. (2)

Different from [45], we choose the smaller sampling time of
0.2 second and take into account the disturbance wk. We con-
sider the same scenario as in [45], as shown in Fig. 3(a). The
working space is X = {z ∈ R2 | [−10,−10]T ≤ z ≤ [2, 2]T },
the control constraint set is U = {z ∈ R | −2 ≤ z ≤ 2}, and
the disturbance set is W = {z ∈ R2 | [−0.05,−0.05]T ≤
z ≤ [0.05, 0.05]T }. In Fig. 3(a), the obstacle regions are
O1 = {z ∈ R2 | [−10,−10]T ≤ z ≤ [−5,−5]T } and O2 =
{z ∈ R2 | [−5,−4]T ≤ z ≤ [2,−3]T }, the target region is
T = {z ∈ R2 | [−0.5,−0.5]T ≤ z ≤ [−0.5,−0.5]T }, and two
visiting regions are A = {z ∈ R2 | [−6, 1]T ≤ z ≤ [−5, 2]T }
and B = {z ∈ R2 | [−5,−3]T ≤ z ≤ [−4,−2]T }.

Recall the system CS (1). Let the set of the observations
be O = {a1, a2, a3, a4, a5, a6} and, if x ∈ X, we define the
observation function as

g(x) =



{a1, a2}, if x ∈ X ∩O1,

{a1, a3}, if x ∈ X ∩O2,

{a1, a4}, if x ∈ X ∩ A,
{a1, a5}, if x ∈ X ∩ B,
{a1, a6}, if x ∈ X ∩ T
{a1}, otherwise.

(3)

As shown in Remark V.1, we can rewrite the system (2) with
the observation function (3) as a controlled transition system
with the set of atomic propositions AP = O and the labelling
function L = g.

A

B

T

O1

O2

−10 −5 2

−5

−10

2

X

(a)

∧

U

�

T

RCI(T)

∨

A ∪ B

A B

U

Y1

Y0

Y2

(b)

Fig. 3: (a) Scenario of Example 1; (b) The controlled TLT for the LTL
formula ϕ = ((a1 ∧ ¬a2 ∧ ¬a3)U�a6) ∧ (¬a6U(a4 ∨ a5)) in Example
1, where Y0 = Y1 ∩ Y2, Y1 = Rc(X \ (O1 ∪ O2),RCI(T)), and Y2 =
Rc(X \ T,A ∪ B).

Fig. 4: Trajectories starting from the initial states [1,−5]T : (a) state
trajectory; (b) control trajectory together with control sets.

Fig. 5: Trajectories starting from the initial states [−4.5,−2.5]T : (a) state
trajectory; (b) control trajectory.

Fig. 6: Trajectories starting from the initial states [0,−2]T : (a) state
trajectory; (b) control trajectory.

12

O1 O2 T

0 150

0

−5

15

X
5

Fig. 7: Scenario illustration of Example 2: an automated vehicle plans to reach a target set T but with some unknown broken vehicles on the road.

In [45], the specification is to visit the region A or region B,
and then the target region T, while always avoiding obstacles
O1 and O2, and staying inside the working space X. This
specification can be expressed as a co-safe LTL formula ϕ′ =
((a1 ∧ ¬a2 ∧ ¬a3)Ua6) ∧ (¬a6U(a4 ∨ a5)). Here, we extend
the specification to be to visit region A or region B, and then
visit and always stay inside the target region T, while always
avoiding obstacles O1 and O2, and staying inside working
space X. Obviously, this specification cannot be expressed as
a co-safe LTL formula, and thus cannot be handled by the
approach in [45]. We instead express this specification as the
LTL formula ϕ = ((a1 ∧ ¬a2 ∧ ¬a3)U�a6) ∧ (¬a6U(a4 ∨
a5)). We will show that our approach can handle such non-co-
safe LTL formula. By computing inner approximations of the
controlled reachable sets, we can construct the controlled TLT
of ϕ and then use Algorithm 3 to synthesize controllers online.
The constructed controlled TLT for ϕ is shown in Fig. 3(b).
Similar to [45], we choose three different initial states, for
each of which the state trajectories and the control trajectories
are shown in Figs. 4–6. We can see that in Figs. 4–6 (a), all
state trajectories satisfy the required specification ϕ. The black
dots are the initial state. In this example, the target region T
is a RCIS. After entering T, the states stay there by using
the controllers that ensure robust invariance. In Figs. 4–6 (b),
the dashed lines denote the control bounds, the cyan regions
represent the synthesized control sets in Algorithm 3, and the
blue lines are the implemented control inputs.

B. Online Specification Update

This example will show how the specification can be up-
dated online when using our approach. As shown in Fig. 7,
we consider a scenario where an automated vehicle plans to
move to a target set T but with some unknown obstacles on
the road. The sensing region of the vehicle is limited. We use
a single integrator model with a sample period of 1 second to
model the dynamics of the vehicle:

xk+1 =

[
1 0
0 1

]
xk +

[
1 0
0 1

]
uk + wk. (4)

The working space is X = {z ∈ R2 | [0,−5]T ≤ z ≤
[150, 5]T }, the control constraint set is U = {z ∈ R2 |
[−2,−0.5]T ≤ z ≤ [2, 0.5]T }, the disturbance set is W =
{z ∈ R2 | [−0.1,−0.1]T ≤ z ≤ [0.1, 0.1]T }, and the target
region is T = {z ∈ R2 | [145,−5]T ≤ z ≤ [150, 0]T }. We
assume that X, U, and W are known a priori to the vehicle and
the vehicle should move along the lane with the right direction
unless lane change is necessary. In Fig. 7, there are two broken
vehicles in the sets O1 = {z ∈ R2 | [40,−5]T ≤ z ≤ [45, 0]T }
and O2 = {z ∈ R2 | [100,−5]T ≤ z ≤ [105, 0]T }. We assume

∧

�

X \O1

RCI(X \O1)

T

U

Rc(X,T)

�

RCI(X \O2)

∧

Y1

Y0

X \O2

TLT for ϕ

TLT for ϕ′

TLT for ϕ′′

Fig. 8: The controlled TLT for the LTL formulae in Example 2, where
ϕ = a1Ua2, ϕ′ = ϕ ∧ (�¬a3), ϕ′′ = ϕ′ ∧ (�¬a4), Y0 = Rc(X,T) ∩
RCI(X \ O1), and Y1 = Rc(X,T) ∩RCI(X \ O1) ∩RCI(X \ O2).

that O1 and O2 are unknown to the vehicle at the beginning.
As long as the vehicle can sense them, they are known to the
vehicle.

Let the initial state be x0 = [0.5,−2.5]T and the sensing
limitation is 15. At time step k = 0, the set of observations
is O = {a1, a2} and if x ∈ X, we define the observation
function as

g(x) =

{
{a1, a2}, if x ∈ X ∩ T,
{a1}, otherwise.

The initial specification can be expressed as an LTL ϕ =
a1Ua2. By constructing the controlled TLT of ϕ shown in
Fig. 8 and implementing Algorithm 3, we obtain one re-
alization as shown in Fig. 9. We can see that the vehicle
keeps moving straightforward until it senses the obstacle O1

at [25.5,−2.4]T .
When the vehicle can sense O1, a new observation a3 with

a3 6= a1 and a3 6= a2 is added to the set O, which becomes
O = {a1, a2, a3}. If x ∈ X, we update the observation
function as

g(x) =


{a1, a2}, if x ∈ X ∩ T,
{a1, a3}, if x ∈ X ∩O1,

{a1}, otherwise.

To avoid O1, the new specification is changed to be ϕ′ =
ϕ ∧ (�¬a3). We can construct the TLT of ϕ′ based on that
of ϕ, which is shown in Fig. 8, and then continue to imple-
ment Algorithm 3. We can see that the vehicle changes lane
from [25.5,−2.4]T and quickly merges back after overtaking

13

Fig. 9: Trajectories for 1 realization of disturbance trajectories: (a) state trajectories; (b) control trajectories of x-axis; (c) control trajectories of y-axis.

Fig. 10: State trajectories for 100 realizations of disturbance trajectories.

O1. The trajectories are shown in Fig. 9. The vehicle is
under the control with respect to ϕ′ until it can sense O2

at [86.3,−2.5]T .
Similarly, when the vehicle can sense O2, we update O =

{a1, a2, a3, a4} and the observation function as if x ∈ X,

g(x) =


{a1, a2}, if x ∈ X ∩ T,
{a1, a3}, if x ∈ X ∩O1,

{a1, a4}, if x ∈ X ∩O2,

{a1}, otherwise.

To avoid O2, the new specification is changed to be ϕ′′ =
ϕ′∧(�¬a4). We can construct the TLT of ϕ′′ based on that of
ϕ′, which is shown in Fig. 8, and then continue to implement
Algorithm 3. We can see that the vehicle changes lane from
[86.3,−2.5]T and quickly merges back after overtaking O2.
Under the control with respect to ϕ′′, the vehicle finally
reaches the target set T.

Fig. 9 (a) shows the state trajectories, from which we can
see that the whole specification is completed. Fig. 9 (b)–(c)
show the corresponding control inputs, where the dashed lines
denote the control bounds. The cyan regions represent the
synthesized control sets and the blue lines are the control
trajectories. Furthermore, we repeat the above process for 100
realizations of the disturbance trajectories. The state trajecto-
ries for such 100 realizations are shown in Fig. 10.

We remark that in this example, the control inputs are
chosen to push the state to move down along the TLT as fast
as possible. In detail, if the state xk is the i-step reachable set

in the set nodeRc(X,T), we can generate a smaller control set
from which the control input can push the state to the (i−1)-
step reachable set. That is what we can see from Fig. 9, where
almost all control inputs in the synthesized control sets along
x-axis are positive.

VII. CONCLUSIONS AND FUTURE WORK

We have studied LTL model checking and control synthesis
for discrete-time uncertain systems. Quite unlike automaton-
based methods, our solutions build on the connection between
LTL formulae and TLT structures via reachability analysis.
For a transition system and an LTL formula, we have proved
that the TLTs provide an underapproximation or overapprox-
imation for the LTL via minimal and maximal reachability
analysis, respectively. We have provided sufficient conditions
and necessary conditions to the model checking problem. For
a controlled transition system and an LTL formula, we have
shown that the TLT is an underapproximation for the LTL
formula and thereby proposed an online control synthesis
algorithm, under which a set of feasible control inputs is gen-
erated at each time step. We have proved that this algorithm is
recursively feasible. We have also illustrated the effectiveness
of the proposed methods through several examples.

Future work includes the extension of TLTs to handle other
general specifications (e.g., CTL∗) and a broad experimental
evaluation of our approach.

14

ACKNOWLEDGEMENTS

The authors are grateful to Dr. Xiaoqiang Ren (Shanghai
University) and Mr. Hosein Hasanbeig (University of Oxford)
for helpful discussions and feedback.

APPENDIX A. PROOF OF THEOREM III.1

The whole proof is divided into two parts: the first part
shows how to construct a TLT from the formula ∀ϕ by means
of the reachability operators Rm and RI, while the second
part shows that such TLT is an underapproximation for ϕ.

Construction: We follow three steps to construct a TLT.
Step 1: rewrite the given LTL in the weak-until positive

normal form. From [4], each LTL formula has an equivalent
LTL formula in the weak-until positive normal form, which
can be inductively defined as

ϕ ::= true | false | a | ¬a | ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2 | ©ϕ
| ϕ1Uϕ2 | ϕ1Wϕ2. (5)

Step 2: for each atomic proposition a ∈ AP , construct the
TLT with only a single set node from ∀a or ∀¬a. In detail,
the set node for ∀a is L−1(a) = {x ∈ S | a ∈ L(x)} while
the set node for ∀¬a is S \ L−1(a). In addition, the TLT for
∀true (or ∀false) also has a single set node, which is S (or ∅).

Step 3: based on Step 2, follow the induction rule to con-
struct the TLT for any LTL formula in the weak-until positive
normal form. More specifically, we will show that given the
LTL formulae ϕ, ϕ1, and ϕ2 in the weak-until positive normal
form, if the TLTs can be constructed from ∀ϕ, ∀ϕ1, and ∀ϕ2,
respectively, then the TLTs can be thereby constructed from
the formulae ∀(ϕ1 ∧ϕ2), ∀(ϕ1 ∨ϕ2), ∀©ϕ, ∀(ϕ1Uϕ2), and
∀(ϕ1Wϕ2), respectively.

For ∀(ϕ1 ∧ ϕ2) (or ∀(ϕ1 ∨ ϕ2)), we construct the TLT
by connecting the root nodes of the TLTs for ∀ϕ1 and ∀ϕ2

through the operator ∧ (or ∨) and taking the intersection (or
union) of two root nodes, as shown in Fig. 11(a)–(b). For
∀©ϕ, we denote by Xϕ the root node of the TLT for ∀ϕ and
then construct the TLT by adding a new set nodeRm(S,Xϕ, 1)
to be the parent of Xϕ and connecting them through the
operator ©, as shown in Fig. 11(c).

For ∀(ϕ1Uϕ2), the TLT construction is as follows. Denote
by {(Yϕ1

i ,Oϕ1

i)}Nϕ1

i=1 all the pairs comprising a leaf node and
its corresponding parent in the TLT of ∀ϕ1, where Nϕ1 is the
number of the leaf nodes. Here, Yϕ1

i is the ith leaf node and
Oϕ1

i is its parent. Denote by Xϕ2 the root node of TLT for
∀ϕ2. We first change each leaf node Yϕ1

i to Rm(Yϕ1

i ,Xϕ2) \
Xϕ2 . We then update the new tree for ∀ϕ1 from the leaf node
to the root node according to the definition of the operators.
After that, we take Nϕ1 copies of the TLT of ϕ2. We set the
root node of each copy as the child of each new leaf node,
respectively, and connect them trough the operator U. Finally,
we have one more copy of the TLT of ∀ϕ2 and connect this
copy and the new tree trough the disjunction ∨. An illustrative
diagram is given in Fig. 11(d).

For the fragment ∀(ϕ1Wϕ2), we first recall that ϕ1Wϕ2 =
ϕ1Uϕ2 ∨ �ϕ1. Let ϕ′ = ϕ1Uϕ2 and ϕ′′ = �ϕ1. Denote by
Xϕ1 the root node of the TLT for ∀ϕ1. We first construct the
TLT of ∀ϕ′ as described above. Second, we further construct

the TLT of ∀ϕ′′ with by adding a new node RI(Xϕ1) as
the parent of Xϕ1 and connecting them through �. Then, we
construct the TLT of ∀(ϕ′ ∨ ϕ′′). An illustrative diagram is
given in Fig. 11(e).

Underapproximation: First, it is very easy to verify that
the constructed TLT above with a single set node L−1(a) (or
S \ L−1(a) or) for ∀a (or ∀¬a or S or ∅) is an underap-
proximation for a ∈ AP (or ¬a or ∀true or ∀false) and the
underapproximation relation in these cases is also tight.

Next we also follow the induction rule to show that the
constructed TLT from ∀ϕ is an underapproximation for ϕ.
Consider LTL formulae ϕ, ϕ1, and ϕ2. We will show that if
the constructed TLTs of ∀ϕ, ∀ϕ1, and ∀ϕ2 are the underap-
proximations of ϕ, ϕ1, and ϕ2, respectively, then the TLTs
constructed above for the formulae ∀(ϕ1 ∧ ϕ2), ∀(ϕ1 ∨ ϕ2),
∀©ϕ, ∀(ϕ1Uϕ2), and ∀(ϕ1Wϕ2) are the underapproximations
of ϕ1 ∧ ϕ2, ϕ1 ∨ ϕ2, ©ϕ, ϕ1Uϕ2, and ϕ1Wϕ2, respectively.

According to the set operation (intersection or union) or the
definition of one-step minimal reachable set, it is easy to verify
that the constructed TLT for ∀(ϕ1 ∧ ϕ2) (or ∀(ϕ1 ∨ ϕ2)) or
∀©ϕ is an underapproximation for ϕ1∧ϕ2 (or ϕ1∨ϕ2) or©ϕ
if the TLTs of ∀ϕ1 and ∀ϕ2, and ∀ϕ are underapproximations
ϕ, ϕ1, and ϕ2, respectively.

Let us consider ϕ1Uϕ2. Assume that a trajectory p satisfies
the TLT of ∀(ϕ1Uϕ2). Recall the construction of the TLT
of ∀(ϕ1Uϕ2) from ∀ϕ1 and ∀ϕ2. According to the definition
of minimal reachable set, we have (1) p satisfies the TLT of
∀ϕ2; or (2) there exists that j ∈ N such that p[j..] satisfies
the TLT of ∀ϕ2 and for all i ∈ N[0,j−1], the trajectory p[i..]
satisfies the the TLT of ∀ϕ1. Under the assumption that the
TLTs of ∀ϕ1 and ∀ϕ2 are the underapproximations of ϕ1

and ϕ2, respectively, we have that there exists j ∈ N such
that p[j..] � ϕ2 and for all i ∈ N[0,j−1], p[i..] � ϕ1, which
implies that p � ϕ1Uϕ2. Thus, the TLT of ∀(ϕ1Uϕ2) is an
approximation of ϕ1Uϕ2.

Recall that ϕ1Wϕ2 = ϕ1Uϕ2 ∨�ϕ1. Following the proofs
for until operator U and the disjunction ∨ and the definition
of the robust invariant set, it yields that the constructed TLT
of ∀(ϕ1Wϕ2) is an underapproximation of ϕ1Wϕ2.

The proof is complete.

REFERENCES

[1] K. J. Åström and B. Wittenmark, Computer-controlled Systems: Theory
and Design. Courier Corporation, 2013.

[2] P. Tabuada, Verification and Control of Hybrid Systems: A Symbolic
Approach. Springer, 2009.

[3] R. Alur, Principles of Cyber-Physical Systems. MIT Press, 2015.
[4] C. Baier and J.-P. Katoen, Principles of Model Checking. MIT press,

2008.
[5] M. Y. Vardi, “An automata-theoretic approach to linear temporal logic,”

in Logics for Concurrency, F. Moller and G. Birtwistle, Eds. Springer,
1996, pp. 238–266.

[6] M. O. Rabin, “Decidability of second-order theories and automata on
infinite trees,” Transactions of the American Mathematical Society, no.
141, pp. 1–35, 1969.

[7] E. A. Emerson, “Automata, tableaux, and temporal logics,” in Proceed-
ings of Workshop on Logic of Programs, 1985, pp. 79–88.

[8] N. Piterman and A. Pnueli, “Faster solutions of rabin and streett games,”
in Proceedings of 21st Annual IEEE Symposium on Logic in Computer
Science, 2006, pp. 275–284.

[9] F. Horn, “Streett games on finite graphs,” in Proceedings of 2nd Work-
shop on Games in Design and Verification, 2005.

15

.

...
...

∧

Xϕ1 Xϕ2

=⇒

.

∧

Xϕ1 Xϕ2

Xϕ1 ∩ Xϕ2

...

TLT for ∀ϕ1 TLT for ∀ϕ2

TLT for ∀(ϕ1 ∧ ϕ2)

(a)

.

...
...

∨

Xϕ1 Xϕ2

=⇒

.

∨

Xϕ1 Xϕ2

Xϕ1 ∪ Xϕ2

...

TLT for ∀ϕ1 TLT for ∀ϕ2

TLT for ∀(ϕ1 ∨ ϕ2)

(b)

. . .

...

©

Xϕ

=⇒

. . .

©

Xϕ

Rm(Rnx ,Xϕ, 1)

...

TLT for ∀ϕ

TLT for ∀© ϕ

(c)

. . .

. . .

...

...

U

Xϕ1

Xϕ2

=⇒

Yϕ1

j

Oϕ1

j

Yϕ1

i

Oϕ1

i

.

. . .

...

X̂ϕ1

Oϕ1

i

. . .

. . .Rm(Yϕ1

i ,Xϕ2)

U U

. . .

...

Xϕ2

. . .

...

Xϕ2

. . .
Oϕ1

j

Rm(Yϕ1

i ,Xϕ2)

∨

. . .

...

Xϕ2

X̂ϕ1 ∪ Xϕ2

TLT for ∀ϕ1

TLT for ∀ϕ2

TLT for ∀(ϕ1Uϕ2)

(d)

. . .

. . .

...

...

W

Xϕ1

Xϕ2

=⇒

Yϕ1

j

Oϕ1

j

Yϕ1

i

Oϕ1

i

.

∨

. . .

...

Yϕ1

jYϕ1

i

Oϕ1

i

.

Xϕ1

Oϕ1

j

�

RI(Xϕ1)

.... . .

...

X̂ϕ1

Oϕ1

i

. . .

. . .Rm(Yϕ1

i ,Xϕ2)

U U

. . .

...

Xϕ2

. . .

...

Xϕ2

. . .

Oϕ1

j

Rm(Yϕ1

j ,Xϕ2)

. . .

Xϕ2

∨

X̂ϕ1 ∪ Xϕ2

RI(Xϕ1) ∪ X̂ϕ1

TLT for ∀ϕ1

TLT for ∀ϕ2

TLT for ∀(ϕ1Wϕ2)

(e)

Fig. 11: The TLT construction: (a) ∀(ϕ1 ∧ ϕ2); (b) ∀(ϕ1 ∨ ϕ2); (c) ∀© ϕ; (d) ∀(ϕ1Uϕ2); (e) ∀(ϕ1Wϕ2). Here, the circles denote the operator nodes
and the rectangles denote the set nodes.

[10] A. Girard and G. J. Pappas, “Approximation metrics for discrete and
continuous systems,” IEEE Transactions on Automatic Control, vol. 5,
no. 52, pp. 782–798, 2007.

[11] A. Girard, G. Pola, and G. J. Pappas, “Approximately bisimilar symbolic
models for incrementally stable switched systems,” IEEE Transactions
on Automatic Control, vol. 1, no. 55, pp. 116–126, 2010.

[12] M. Zamani, P. M. Esfahani, R. Majumdar, A. Abate, and J. Lygeros,
“Symbolic control of stochastic systems via approximately bisimilar
finite abstractions,” IEEE Transactions on Automatic Control, vol. 12,
no. 59, pp. 3135–3150, 2014.

[13] M. Zamani, G. Pola, M. Mazo, and P. Tabuada, “Symbolic models for
nonlinear control systems without stability assumptions,” IEEE Trans-
actions on Automatic Control, vol. 7, no. 57, pp. 1804–1809, 2012.

[14] P. Yu and D. V. Dimarogonas, “Approximately symbolic models for
a class of continuous-time nonlinear systems,” in Proceedings of 58th
IEEE Conference on Decision and Control, 2019, pp. 4349–4354.

[15] P. Tabuada and G. J. Pappas, “Model checking LTL over controllable
linear systems is decidable,” in Proceedings of ACM International
Conference on Hybrid Systems: Computation and Control, 2003, pp.
498–513.

[16] B. Yordanov, J. Tumová, I. Černá, J. Barnat, and C. Belta, “Formal
analysis of piecewise affine systems through formula guided refinement,”
Automatica, vol. 1, no. 49, pp. 261–266, 2013.

[17] ——, “Temporal logic control of discrete-time piecewise affine systems,”
IEEE Transactions on Automatic Control, vol. 6, no. 57, pp. 1491–1504,
2012.

[18] P.-J. Meyer and D. V. Dimarogonas, “Hierarchical decomposition of LTL
synthesis problem for nonlinear control systems,” IEEE Transactions on
Automatic Control, vol. 11, no. 64, pp. 4676–4683, 2019.

[19] S. Haesaert and S. Soudjani, “Robust dynamic programming for
temporal logic control of stochastic systems,” 2018. [Online].
Available: arXiv:1811.11445

[20] S. Karaman, R. G. Sanfelice, and E. Frazzoli, “Optimal control of mixed
logical dynamical systems with linear temporal logic specifications,” in

Proceedings of 47th IEEE Conference on Decision and Control, 2008,
pp. 2117–2122.

[21] N. Cauchi and A. Abate, “StocHy-automated verification and synthesis
of stochastic processes,” in Proceedings of ACM International Confer-
ence on Hybrid Systems: Computation and Control, 2019, pp. 258–259.

[22] A. Ulusoy and C. Belta, “Receding horizon temporal logic control in
dynamic environments,” The International Journal of Robotics Research,
vol. 12, no. 33, pp. 1593–1607, 2014.

[23] M. Guo, J. Tumová, and D. V. Dimarogonas, “Communication-free
multi-agent control under local temporal tasks and relative-distance
constraints,” IEEE Transactions on Automatic Control, vol. 12, no. 61,
pp. 3948–3962, 2016.

[24] S. Coogan, E. A. Gol, M. Arcak, and C. Belta, “Traffic network control
from temporal logic specifications,” IEEE Transactions on Control of
Network Systems, vol. 2, no. 3, pp. 162–171, 2016.

[25] X. Ding, M. Lazar, and C. Belta, “LTL receding horizon control for
finite deterministic systems,” Automatica, vol. 2, no. 50, pp. 399–408,
2014.

[26] T. Wongpiromsarn, U. Topcu, and R. M. Murray, “Receding horizon
temporal logic planning,” IEEE Transactions on Automatic Control,
vol. 11, no. 57, pp. 2817–2830, 2012.

[27] P. Schillinger, M. Bürger, and D. V. Dimarogonas, “Hierarchical
LTL-task MDPs for multi-agent coordination through auctioning and
learning,” 2019. [Online]. Available: http://kth.diva-portal.org

[28] L. Lindemann and D. V. Dimarogonas, “Feedback control strategies for
multi-agent systems under a fragment of signal temporal logic tasks,”
Automatica, vol. 106, pp. 284–293, 2019.

[29] M. Kwiatkowska, G. Norman, and D. Parker, “PRISM 4.0: verification
of probabilistic real-time systems,” in Proceedings of 23rd International
Conference on Computer Aided Verification, 2011, pp. 585–591.

[30] C. Belta, “Formal synthesis of control strategies for dynamical systems,”
in Proceedings of 55th IEEE Conference on Decision and Control, 2016,
pp. 3407–3431.

arXiv:1811.11445
http://kth.diva-portal.org

16

[31] C. Belta, B. Yordanov, and E. A. Gol, Formal Methods for Discrete-time
Dynamical Systems. Springer, 2017.

[32] P. G. Sessa, D. Frick, T. A. Wood, and M. Kamgarpour, “From uncer-
tainty data to robust policies for temporal logic planning,” in Proceedings
of ACM International Conference on Hybrid Systems: Computation and
Control, 2018, pp. 157–166.

[33] K. Hashimoto and D. V. Dimarogonas, “Resource-aware networked
control systems under temporal logic specifications,” Discrete Event
Dynamic Systems, 2019.

[34] M. Inoue and V. Gupta, “‘Weak’ control for human-in-the-loop systems,”
IEEE Control Systems Letters, vol. 3, no. 2, pp. 440–445, 2018.

[35] Y. Gao, F. J. Jiang, X. Ren, L. Xie, and K. H. Johansson, “Reachability-
based human-in-the-loop control with uncertain specifications,” in Pro-
ceedings of 21st IFAC World Congress, 2020, to appear.

[36] F. Blanchini and S. Miani, Set-theoretic Methods in Control. Springer,
2007.

[37] J. Lygeros, C. Tomlin, and S. Sastry, “Controllers for reachability
specifications for hybrid systems,” Automatica, vol. 3, no. 35, pp. 349–
370, 1999.

[38] M. Chen, S. L. Herbert, M. S. Vashishtha, S. Bansal, and C. J. Tomlin,
“Decomposition of reachable sets and tubes for a class of nonlinear
systems,” IEEE Transactions on Automatic Control, vol. 11, no. 63, pp.
3675–3688, 2018.

[39] M. Althoff and B. H. Krogh, “Reachability analysis of nonlinear
differential-algebraic systems,” IEEE Transactions on Automatic Con-
trol, vol. 2, no. 59, pp. 371–383, 2014.

[40] I. M. Mitchell, “Scalable calculation of reach sets and tubes for nonlinear
systems with terminal integrators: a mixed implicit explicit formulation,”
in Proceedings of ACM International Conference on Hybrid Systems:
Computation and Control, 2011, pp. 103–112.

[41] M. Chen, Q. Tam, S. C. Livingston, and M. Pavone, “Signal
temporal logic meets Hamilton-Jacobi reachability: connections
and applications,” in Proceedings of International Workshop
on the Algorithmic Foundations of Robotics, 2018. [Online].
Available: http://asl.stanford.edu/wp-content/papercite-data/pdf/Chen.
Tam.Livingston.Pavone.WAFR18.pdf

[42] A. Tarski, “A lattice-theoretical fixpoint theorem and its application,”
Pacific Journal of Mathematics, no. 5, pp. 285–309, 1955.

[43] M. Herceg, M. Kvasnica, C. N. Jones, and M. Morari, “Multi-parametric
toolbox 3.0,” in Proceedings of European Control Conference, 2013, pp.
502–510.

[44] I. M. Mitchell and J. A. Templeton, “A toolbox of Hamilton-Jacobi
solvers for analysis of nondeterministic continuous and hybrid systems,”
in Proceedings of ACM International Conference on Hybrid Systems:
Computation and Control, 2005, pp. 480–494.

[45] E. A. Gol, M. Lazar, and C. Belta, “Language-guided controller synthe-
sis for linear systems,” IEEE Transactions on Automatic Control, vol. 5,
no. 59, pp. 1163 – 1176, 2014.

http://asl.stanford.edu/wp-content/papercite-data/pdf/Chen.Tam.Livingston.Pavone.WAFR18.pdf
http://asl.stanford.edu/wp-content/papercite-data/pdf/Chen.Tam.Livingston.Pavone.WAFR18.pdf

	I Introduction
	I-A Related Work
	I-B Motivations
	I-C Contributions
	I-D Organization

	II Preliminaries
	II-A Transition System
	II-B Reachability Analysis
	II-C LTL

	III Temporal Logic Trees
	III-A Definitions
	III-B Construction and Approximation of TLT

	IV Model Checking via TLT
	V Control Synthesis via TLT
	V-A Controlled Transition System
	V-B Controlled Reachability Analysis
	V-C Construction and Approximation of TLT
	V-D Control Synthesis Algorithm

	VI Examples
	VI-A Obstacle Avoidance
	VI-B Online Specification Update

	VII Conclusions and Future Work
	References

