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Distributional Reachability for Markov Decision
Processes: Theory and Applications

Yulong Gao, Alessandro Abate, Lihua Xie, and Karl H. Johansson

Abstract— We study distributional reachability for finite
Markov decision processes (MDPs) from a control theoret-
ical perspective. Unlike standard probabilistic reachability
notions, which are defined over MDP states or trajectories,
in this paper reachability is formulated over the space of
probability distributions. We propose two set-valued maps
for the forward and backward distributional reachability
problems: the forward map collects all state distributions
that can be reached from a set of initial distributions, while
the backward map collects all state distributions that can
reach a set of final distributions. We show that there exists
a maximal invariant set under the forward map and this set
is the region where the state distributions eventually always
belong to, regardless of the initial state distribution and
policy. The backward map provides an alternative way to
solve a class of important problems for MDPs: the study
of controlled invariance, the characterization of the domain
of attraction, and reach-avoid problems. Three case studies
illustrate the effectiveness of our approach.

Index Terms— Markov decision processes, probabilis-
tic reachability, distributional reachability, set invariance,
reach-avoid problems

I. INTRODUCTION

A. Motivation
Reachability is a fundamental problem in systems and

control, as well as in formal verification, capturing spatial
requirements on state trajectories of a given dynamical model:
are solutions of the model remaining in given subsets of the
state space? For stochastic dynamical systems, reachability
analysis is usually studied under probabilistic requirements
over sets of solutions [1, 2]. For decision processes, where
actions (inputs) can be chosen, the problem becomes that of
optimising such reachability probability via policy synthesis.

Much less investigated is a perspective focussed on transient
distributions: a Markov process can be studied under that
lens, and accordingly reachability analysis can be investigated
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over the space of probability distributions of the model. This
less studied perspective enables one to naturally extend the
classical state-based reachability notions to new “distributional
reachability.” In this paper, we thus investigate distributional
reachability problems for Markov decision processes (MDPs).
We consider the following two problems:
(1) forward distributional reachability: which state distribu-

tions can be reached from an initial state distribution;
(2) backward distributional reachability: from which state

distributions a final state distribution can be reached.
The study of distributional reachability encompasses both

theoretical and practical motivations. Distributional reachabil-
ity provides a new look to explore the fundamental prop-
erties of MDP models, e.g., distributional set invariance (as
discussed later). In addition, computing reachable sets in the
distribution space can be useful for many practical systems that
can be specified under richer distribution-based requirements
(rather than state-based specifications): we explore case studies
in mobile robotics [3] and in models for pharmacokinetics
from [4, 5].

Computing exact reachable sets in the probability space
is however challenging and in general intractable. Even for
finite MDP and polytopic reachable sets, the computational
complexity of exact set manipulations in a space is exponential
with respect to the space dimension. To the best of our knowl-
edge, state-of-the-art algorithms and tools in computational
geometry cannot scalably support the computation of distribu-
tional reachability quantities needed in this paper. Hence, we
develop new efficient and scalable computational algorithms
to make the distributional reachability usable in practice: this
is an important practical achievement of this contribution.

B. Related Work
MDP models have been extensively studied across disci-

plines, including control, operational research, formal meth-
ods, AI and reinforcement learning. There are numerous sem-
inal papers and textbooks on MDPs, e.g., [6, 7, 8, 9, 10]. In the
context of control theory, focus of much of the past work has
been on optimal policies, such as feedback laws maximizing
expected accrued rewards. The synthesis of optimal policies in
a computationally efficient manner has been widely explored,
recently thanks to the increasing popularity of reinforcement
learning. The study of MDPs has been further extended to con-
strained or partially observable settings, see [11, 12, 13, 14].
In the following, we restrict our attention to relevant literature
focusing on the important problem of MDP reachability.



Reachability analysis for MDPs or related stochastic models
by and large refers to the computation of the likelihood that
trajectories, initialized at given states, reach a set of states.
Probabilistic reachability is fundamental in control theory [2],
where it is used in probabilistic safety analysis, as well as
in formal verification [15], where it is regarded as a core
specification expressible in a probabilistic temporal logic [1].
Such reachability can be regarded either as a verification
query, namely to check whether a set of states can be reached
from other states with a prescribed probability under a given
policy, or as a synthesis task, namely to design a policy that
maximizes/minimizes the probability to reach a set of states.
Next we overview some cognate work, with focus on discrete-
time models.

Over finite-space models, qualitative probabilistic verifica-
tion problems (i.e., checking whether the probability is zero or
one) have been classically studied using graph-theoretical al-
gorithms [16], whereas quantitative verification problems (i.e.,
the computation of the actual probability of satisfaction) have
been studied via recursive equations and value iteration for
finite-horizon problems, or as the solution to systems of linear
equations for infinite-horizon problems [1]. The literature has
led to a few software tools for probabilistic model checking,
such as MRMC [17], PRISM [15], and Storm [18]. Corre-
spondingly, the extensive synthesis problem has been studied
in the literature [1]. For example, probabilistic reachability
has been explored by using a long-run average approach [19],
which is partly related to the present contribution.

For continuous-space stochastic models, the verification
problems have been studied, from basic notions of probabilis-
tic safety/reachability [2], to reach-avoid (constrained reacha-
bility) [20], as well as more complex probabilistic properties
[21, 22]. Related to our work, the authors of [23] investi-
gate probabilistic invariance by means of approximations of
transient probability distributions. Methods based on dynamic
programming have been developed for solving the synthesis
problem [2, 24, 25]. The relation between absorbing sets and
probabilistic reachability has also been investigated [26, 25].

Unlike standard approaches to probabilistic reachability
based on notions dealing with states and trajectories, this
paper investigates MDP reachability over the space of state
distributions. The core idea is to represent and manipulate
a distribution set, namely the convex hull of vertices in the
distribution simplex, and to recursively perform reachability
computations over this set. We show that a few standard
probabilistic verification problems, such as the reach-avoid
problem [20], can be studied using the proposed distributional
reachability. Dual to reachability, probabilistic set invariance
denotes the likelihood of trajectories to remain within a given
set over a given time horizon [2, 27], and is in particular
useful for probabilistic safety analysis. Instead of defining an
invariant set over the state space, such a set can be defined over
the distribution space and accounts for a region within which
the state distributions should remain. The authors of [4] have
shown that under some conditions MDPs have a unique, non-
empty, compact, invariant set of distributions. Algorithms exist
to compute the maximal invariant set of distributions within a
constraint set for Markov chains [28] and MDPs [29]. Similar

to set invariance, safety constraints for stochastic systems can
also be defined on the space of distributions, whereby a model
is deemed to be safe if the underlying transient distribution
satisfies given constraints. A typical formulation is the MDP
optimal control problem under constraints [30, 31, 32], for
which performance-based control synthesis under safety con-
straints has been studied. In [33], temporal logic synthesis
has been discussed for partially-observable models. Whilst the
setup is quite different from ours, we remark that the temporal
requirements over belief spaces involve conditional probability
distributions, similar to those studied in this paper.

Control of the probability distribution of an MDP is a classi-
cal stochastic control problem. The recent papers [34, 35, 36]
investigate the optimal steering of a linear stochastic system
to a final probability distribution. This problem is connected
to the well-known optimal transport problem [37]. The dis-
tributional reachability analysis in this paper can serve as a
feasibility check for the problem of controlling a probability
distribution of an MDP, or for the corresponding optimal
transport problem.

The close connection between set invariance and back-
ward reachability [38] is leveraged in this work: namely, we
show that backward distributional reachability can solve the
probabilistic set invariance problem for MDPs. It should be
noted that the set invariance discussed here is different from
the probabilistic controlled invariant set developed in [39],
where invariance denotes whether the probability that state
trajectories stay in a set is greater than a prescribed constant,
regardless of the initial states.

C. Contributions

In this paper, we study the distributional reachability prob-
lem for discrete-time, finite-state MDPs. The main contribu-
tions are summarized as follows:
(1) By considering a stochastic policy and the induced dy-

namics of the state distribution, we formulate the forward
and backward distributional reachability problems. We
correspondingly propose two set-valued maps: FR and
BR. Given a set of state distributions Π, the set FR(Π)
collects all state distributions that can be reached from Π
in one step, while BR(Π) is the set of state distributions
that can reach Π in one step. The computation of these
sets is shown to leverage the manipulation of polytopes in
the distributions simplex. If the given set of distributions
is polytopic, both forward and backward reachable sets
are polytopic. In order to mitigate the computational
overhead related to set operations in high-dimensional
spaces, we propose a sample-based method (Algorithm 1)
for under-approximating forward and backward reach-
able sets and prove that the approximations are tight
in probability when the sample number tends to infinity
(Theorem 3.1).

(2) We show that there always exists an FR-invariant set.
The maximal FR-invariant set is the region where the
state distributions eventually always belong to, regardless
of the initial state distribution and the selected policy. We
show that the maximal FR-invariant set is smaller than

2



the whole distribution space for some MDPs. We provide
ways to compute FR-invariant sets and give a condition
on its uniqueness (Theorem 4.1).

(3) We revisit a class of important problems for MDPs:
controlled invariance, domain of attraction, and reach-
avoid problems. We show that all these problems can be
reformulated and studied using BR, and discuss computa-
tional ameliorations related to the proposed sample-based
algorithm. We compare our approach with the state of the
art through three case studies.

The remainder of the paper is organized as follows. Sec-
tion II reviews preliminaries on MDPs. Section III investi-
gates distributional reachability. Section IV is devoted to the
characterization of FR-invariant sets. In Section V, we study
controlled invariance, domain of attraction, and reach-avoid
problems using distribution reachability. The two case studies
in Section VI illustrate the effectiveness of our approach. Sec-
tion VIII concludes this paper and sketches future directions
of studies.

II. PRELIMINARIES

A. Notation

Let N denote the set of nonnegative integers and R the set of
real numbers. For some q, s ∈ N and q < s, let N≥q and N[q,s]

denote the sets {r ∈ N | r ≥ q} and {r ∈ N | q ≤ r ≤ s},
respectively. When ≤, ≥, <, and > are applied to vectors, they
are interpreted element-wise. For a set X, P(X) denotes the
space of probability distributions on X. Given a set {xi}Ni=1

with xi ∈ Rn, ∀i ∈ N[1,n], conv({xi}Ni=1) denotes the convex
hull of {xi}Ni=1. For a set X, cl(X) denotes the closure of X
and int(X) denotes the interior of X. Matrices of appropriate
dimension with all elements equal to 1 and 0 are denoted by
1 and 0, respectively.

Definition 2.1: A convex polytope Π ⊂ Rn can be
expressed in a (vertex) V-representation, i.e., Π =
conv({v1, . . . , vN}); or alternatively in a (face, or half-space)
H-representation, i.e., Π = {z ∈ Rn | Az ≤ b}, where
vi ∈ Rn, i = 1, . . . , N , N ∈ N, A ∈ Rl×n, b ∈ Rl, and
l is the number of half-spaces.

B. MDP

A finite MDP is described by a triple M = (X,U, T ), where
• X is a finite state space, denoted {1, 2, . . . , n};
• U is a finite control space, denoted {1, 2, . . . ,m};
• T : X×U → R is a transition probability, i.e., T (y|x, u)

assigns a probability from state x ∈ X and control input
u ∈ U, to state y ∈ X.

For each x ∈ X, Ux ⊆ U is the nonempty set consisting
of the admissible control inputs when the state is x. For any
x ∈ X and u ∈ Ux,

∑
y∈X T (y|x, u) = 1. A state distribution

π ∈ P(X) is a row vector in Rn such that
∑

x∈X π(x) = 1.

C. Policy and Occupation Measure

A map µ : X → P(U) is called a one-step policy if for
each x ∈ X, µ(·|x) assigns a probability distribution over Ux,

i.e.,
∑

u∈Ux
µ(u|x) = 1. Each one-step policy induces a row

stochastic matrix:

Pµ(y|x) =
∑
u∈Ux

T (y|x, u)µ(u|x). (1)

Denote with Ū the set of one-step policies. A policy µ =
{µ0, µ1, . . .} is a sequence of one-step policies, i.e., µk ∈ Ū ,
∀k ∈ N. Denote by U the set of policies. Next, let us define
occupation measures.

Definition 2.2: A matrix Q ∈ Rn×m is said to be an
occupation measure to the MDP M if Q ≥ 0 satisfies (Q1)T ∈
P(X). Denote by O the set of all occupation measures for M.

Given a state distribution π ∈ P(X) and a one-step policy
µ ∈ Ū , there always exists an occupation measure Q ∈ O
such that

Q(x, u) = µ(u|x)π(x). (2)

Dually, given an occupation measure Q ∈ O, one can recover a
state distribution (Q1)T ∈ P(X) and a one-step policy µ ∈ Ū
with

µ(u|x) =


Q(x,u)∑

v∈Ux Q(x,v) if
∑

v∈Ux

Q(x, v) > 0,

1
|Ux| , if

∑
v∈Ux

Q(x, v) = 0 & u ∈ Ux.

Remark 2.1: Occupational measures have been widely
used. Their close connection to policies allows to reformulate
MDP problems, e.g., a constrained MDP problem can be
reformulated as a linear program [11], and its solution can be
used to recover a policy. In our work, occupational measures
will be used to handle the coupling between state distributions
and policies, and to facilitate the formulation of distributional
reachability analysis as a manipulation of polytopes in the
distribution simplex (see Section III).

D. State Distribution Dynamics
Given an initial state distribution π0 ∈ P(X) and a policy

µ ∈ U , the state distribution evolves as

πk+1(y) =
∑
x∈X

πk(x)P
µk(y|x), (3)

where Pµk is defined in (1). We rewrite (3) in vector form as

πk+1 = πkP
µk . (4)

According to (4), the state distribution can be represented as
πk = ψ(k, π0,µ), where ψ : N× P(X)× U → P(X) is

ψ(k, π0,µ) = π0P
µ0Pµ1 . . . Pµk−1 . (5)

III. DISTRIBUTIONAL REACHABILITY

In this section we investigate both forward and backward
distributional reachability and provide a way to recursively
compute forward and backward reachable sets.

Definition 3.1: A state distribution πf is reachable from the
initial state distribution π0 at time step k if there exists a policy
µ ∈ U such that πf = ψ(k, π0,µ).

Problem 3.1: (Forward distributional reachability) Given
Π0 ⊆ P(X), a set of initial state distributions, compute the set
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FReach(Π0) equal to all the state distributions πf reachable
from π0 ∈ Π0 at some time step k ∈ N.

Problem 3.2: (Backward distributional reachability) Given
Πf ⊆ P(X), a set of final state distributions, compute the set
BReach(Πf ) equal to all the state distributions π0 such that
πf ∈ Πf is reachable from π0 at some time step k ∈ N.

A. Forward Reachable Sets
We first consider forward distributional reachability. Denote

by FReach(Π0, k) the k-step forward reachable set from Π0.
This set collects all the state distributions πf reachable from
π0 ∈ Π0 at time step k. Then, the forward reachable set
FReach(Π0) is the union of the sets FReach(Π0, k) over all
k ∈ N, i.e.,

FReach(Π0) =
⋃
k∈N

FReach(Π0, k).

Define the map FR : 2P(X) → 2P(X) as

FR(Π) =

π ∈ P(X)

∣∣∣∣∣∣∣
Q ∈ O, (Q1)T ∈ Π,
∀y ∈ X, π(y) =∑
x∈X

∑
u∈Ux

T (y|x, u)Q(x, u)

 , (6)

where Π ⊆ P(X). Thus, FR(Π) is the set of distributions that
are reachable from Π in one step. The map (6) expresses the
distribution dynamics in a tractable form, using occupational
measures.

The next proposition shows how to recursively compute
FReach(Π0, k).

Proposition 3.1: Given a set of initial state distributions
Π0 ⊆ P(X), the reachable set FReach(Π0, k) evolves as

FReach(Π0, k + 1) = FR
(
FReach(Π0, k)

)
(7)

with initialization FReach(Π0, 0) = Π0.
Proof: First, given a set Π ⊆ P(X), the set of distribu-

tions reachable from Π in one step is{
π ∈ P(X)

∣∣∣∣ ∃π′ ∈ Π, ∃µ ∈ Ū ,
s.t., ∀y ∈ X, π(y) =

∑
x∈X π

′(x)Pµ(y|x)

}
.

(8)
Note that the distribution dynamics (3) can be rewritten in the
following form:

π(y) =
∑
x∈X

π′(x)Pµ(y|x)

=
∑
x∈X

π′(x)
( ∑

u∈Ux

T (y|x, u)µ(u|x)
)

=
∑
x∈X

∑
u∈Ux

T (y|x, u)µ(u|x)π′(x)

for some µ ∈ Ū . It follows from (2) that the product of µ(u|x)
and π′(x) can be replaced by an occupation measure. Then,
the set in (8) be rewritten as FR(Π) in (6). That is, the set
FR(Π) collects all the one-step ahead state distributions given
the set of current state distributions Π. Thus, the iteration (7)
gives the k-step forward reachable set given the initial set Π0.

Example 3.1: Consider the MDP with X = {1, 2, 3},U =
{1, 2, 3}, and the transition probability, shown in Fig. 1(a).
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Fig. 1: Graphical syntax of the four MDPs employed in the examples, where
X = {1, 2, 3},U = {1, 2, 3}.

Given the initial distribution π0 = [0.1 0.2 0.7] (asterisk), the
forward reachable sets FReach(π0, k) computed by the map
FR are shown in red in Fig. 2 for k = 1, 2, 3, 5.

B. Backward Reachable Sets
Now let us consider backward distributional reachability.

Denote by BReach(Πf , k) the k-step backward reachable set
from Πf . This set collects all the state distributions π0 such
that some state distribution πf ∈ Πf is reachable from π0 at
time step k. Then, the backward reachable set BReach(Πf )
is the union of the sets BReach(Πf , k) over all k ∈ N, i.e.,

BReach(Πf ) =
⋃
k∈N

BReach(Πf , k).

Define the map BR : 2P(X) → 2P(X)

BR(Π) =

(Q1)T ∈ P(X)

∣∣∣∣∣∣∣
Q ∈ O, π ∈ Π,
∀y ∈ X, π(y) =∑
x∈X

∑
u∈Ux

T (y|x, u)Q(x, u)

 ,

(9)

where Π ⊆ P(X). Dual to the map FR(Π), BR(Π) encom-
passes the set of distributions that can reach Π in one step.

The next proposition shows how to recursively compute the
set BReach(Πf , k).

Proposition 3.2: Given a set of final state distributions
Πf ⊆ P(X), the reachable set BReach(Πf , k) evolves as

BReach(Πf , k + 1) = BR
(
BReach(Πf , k)

)
(10)
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Fig. 2: The forward reachable sets FReach(π0, k) (red) for Example 3.1 and the approximated forward reachable sets
F̂Reach(π0, k) (convex hull of the blue dots) for Example 3.3. The sets are given for (a) k = 1; (b) k = 2; (c) k = 3;
and (d) k = 5. π0 is denoted by the asterisk (single point outside of the hull).

Fig. 3: The backward reachable sets BReach(πf , k) (red) for
Example 3.2 and the approximated backward reachable sets
B̂Reach(πf , k) (convex hull of the blue dots) for Example 3.3.
The sets are given for (a) k = 1; (b) k = 2. πf is denoted by
the asterisk (point outside of the hull in (a)).

with initialization BReach(Πf , 0) = Πf .
Proof: Similar to the proof of Proposition 3.1. The map

BR in (9) collects all the one-step state distributions that can
reach the set of state distributions Π. The iteration (10) gives
the k-step backward reachable set given the target set Πf .

Example 3.2: Consider the MDP in Fig. 1. Given the tar-
get distribution πf = [0 0 1], the backward reachable sets
BReach(πf , k) are empty for all k ≥ 1. Instead, if the target
distribution is πf = [0.5 0.2 0.3] (asterisk), the backward
reachable sets BReach(πf , k) computed by the map BR are
shown in Fig. 3. We see that the set BReach(πf , 2) covers the
whole distribution space P(X).

C. Sample-based Computation

In the following, we provide a sample-based procedure for
approximating the reachable sets FR(Π) and BR(Π) when
Π is a convex polytope. Note that the constraints on the MDP
dynamics in terms of the occupation measures are linear. If the

state distribution set Π is polytopic, it follows from (6) that
the forward reachable set FR(Π) is also polytopic. Dually, if
the set Π is polytopic, it follows from (9) that the backward
reachable set BR(Π) is either empty or polytopic. The sets
FR(Π) in (6) and BR(Π) in (9) are expressed as set projec-
tions from Rnm+n to Rn. When the MDP has a large number
of states, these projections can be computationally heavy. To
tackle this, next we present a sample-based approximation
scheme as Algorithm 1.

Algorithm 1 Sample-based Reach Set Computation
Input: two convex polytopes Π and Γ with Π ⊆ P(X) ⊂

int(Γ), Ns ∈ N≥1

Output: approximated forward and backward reachable
sets, denoted by F̂R(Π) and B̂R(Π)

1: select uniformly at random a group of samples {πs
i }

Ns
i=1

from Γ;
2: for i = 1 : Ns do
3: compute

πfs
i = argmin

π∈FR(Π)

∥π − πs
i ∥2, (11)

πbs
i = argmin

π∈BR(Π)

∥π − πs
i ∥2; (12)

4: end for
5: return

F̂RNs(Π) = conv
(
{πfs

i , i ∈ N[1,Ns]}
)
, (13)

B̂RNs
(Π) = conv

(
{πbs

i , i ∈ N[1,Ns]}
)
. (14)

The input to Algorithm 1 consists of two convex polytopes
Π and Γ with Π ⊆ P(X) ⊂ int(Γ) and the number of samples
Ns ∈ N≥1. In line 1, we select uniformly at random samples
{πs

i }
Ns
i=1 in Rn from Γ. Then, these samples are used to

generate samples in FR(Π) and BR(Π), line 3, by projecting
πs
i onto FR(Π) and BR(Π). The output of Algorithm 1

is the two convex hulls of these projected samples, namely

5



F̂RNs
(Π) and B̂RNs

(Π).
The sets F̂RNs

(Π) and B̂RNs
(Π) are inner approximations

of FR(Π) and BR(Π), respectively, for all Ns ∈ N≥1. The
inclusion F̂RNs

(Π) ⊆ FR(Π) follows from

conv
(
{πfs

i , i ∈ N[1,Ns]}
)

⊆ FR
(
conv

(
{πs

i , i ∈ N[1,Ns]}
))

⊆ FR(Π),

and B̂RNs(Π) ⊆ BR(Π) similarly.
The following theorem states that such inner approximations

become asymptotically tight in probability with respect to the
increase in the number of samples Ns.

Theorem 3.1: Consider two convex polytopes Π and Γ with
Π ⊆ P(X) ⊂ int(Γ) and an integer Ns ∈ N≥1, as the inputs
to Algorithm 1. Let Nf

v and N b
v be the number of the vertices

of FR(Π) and BR(Π), respectively. Then, there exist 0 ≤
αf , αb < 1 such that

Pr
(
F̂RNs

(Π) = FR(Π)
)
≥ 1−Nf

v α
Ns

f , (15)

Pr
(
B̂RNs(Π) = BR(Π)

)
≥ 1−N b

vα
Ns

b . (16)
Proof: See Appendix.

Complexity of Algorithm 1. The computational complexity
of Algorithm 1 is linear in the number of samples Ns, and
polynomial in the number of states n and of control inputs
m. Projecting each sample πs

i onto FR(Π) (or BR(Π)) is a
quadratic program with n+nm decision variables. The interior
point method [40] can solve such quadratic program in O((n+
nm)3).

Remark 3.1: The selection of samples πs
i ∈ Γ is important

for reducing the conservativeness of the inner approximation
of F̂RNs

(Π) for FR(Π) (or B̂RNs
(Π) for BR(Π)). A pos-

sible approach is to choose the set Γ to be a large hyper-
rectangle that contains P(X) and to select the samples πs

i not
in P(X), but with projections onto FR(Π) and BR(Π) on the
boundaries of FR(Π) and BR(Π), respectively. Intuitively,
the convex hulls of these projected samples are more likely to
be close to FR(Π) and BR(Π).

Example 3.3: Let us use Algorithm 1 for iteratively
computing the approximated forward reachable sets
F̂Reach(π0, k) of Example 3.1. The sets F̂Reach(π0, k) are
denoted by the convex hull of the blue dots in Fig. 2. Similarly,
the approximated backward reachable sets B̂Reach(πf , k)
for Example 3.2 are the convex hull of the blue dots, shown
in Fig. 3.We can see that the approximations in two cases
are tight in the sense that F̂Reach(πf , k) = FReach(πf , k)

(k = 1, 2, 3, 5) and B̂Reach(πf , k) = BReach(πf , k)
(k = 1, 2).

D. Comparison with Probabilistic Reachability

This section elaborates the difference between standard
probabilistic reachability [1] and the proposed distributional
reachability.

Probabilistic reachability in linear temporal logic [1] de-
notes the likelihood that state trajectories that reach a target set
(a given set of states). In probabilistic computation tree logic
(PCTL), instead, the emphasis is on the probabilistic measure

associated to trajectories that satisfy given temporal require-
ments. For the latter case, consider an MDP M = (X,U, T )
and a set of S ⊂ X. Then, given an initial state x0 ∈ X0 and
a policy µ, the probability to reach set S is

Prµx0
(x ∈ SPath(x0,µ) | ∃k ≥ 0, s.t., xk ∈ S),

where SPath(x0,µ) is the set of state trajectory x =
x0x1 . . . xkxk+1 . . . starting x0 under the policy µ that satis-
fies Pµk(xk+1|xk) > 0, ∀k ∈ N. And Prµx0

is the probability
measure associated with the probability space over state tra-
jectories, i.e., (SPath(x0,µ), σ(SPath(x0,µ)),Pr

µ
x0
), where

σ(·) denotes the σ-algebra. In [1], it has been shown that
Prµx0

is uniquely determined by the transition matrix T . This
is different from the distributional reachability defined above,
which deals with the evolution of the transient probability dis-
tribution, rather than the behaviour of state trajectories. Despite
this difference, we find that some qualitative PCTL properties
can be verified through distributional reachability. For exam-
ple, consider a PCTL formula Pr>0(♢S), expressing whether
from state x0, under any policy, the probability of trajectories
starting from x0 and eventually reaching S is positive. This can
be alternatively verified if there exists some k ≥ 0 such that the
forward distributional reachable set FReach(ex0

, k) is a subset
of the set ΠS =

{
π ∈ P(X) |

∑
x∈S π(x) > 0

}
. Further

connections between PCTL model checking and distributional
reachability are left for future work, see Section VIII.

The application of probabilistic reachability and distribu-
tional reachability are quite different. Whilst both of them
can be used to ensure safety in general, safety constraints are
defined in different ways: probabilistic reachability has been
classically applied to the reach-avoid problem [20], which
adds to a reachability goal a safety requirement to avoid a
set of states deemed to be unsafe; distinctively, distributional
reachability is useful to handle the safety constraints defined
on state distributions [30, 31, 32]. We revisit variants of this
problem in Section V-C.

IV. FR-INVARIANT SETS

In this section, we characterize the sets invariant under the
map FR. Note that the maximal FR-invariant set plays an
important role for exploring the controllable distribution space
for the MDP, i.e., the region within which all the distributions
are reachable. We define the FR-invariant set as follows.

Definition 4.1: For the MDP M, a set ΠFRinv ⊆ P(X) is
said to be FR-invariant if ΠFRinv is the solution to the fixed-
point equation:

FR(ΠFRinv) = ΠFRinv.
Definition 4.1 implies that for any π ∈ ΠFRinv and µ ∈ Ū ,
πPµ ∈ ΠFRinv.

Problem 4.1: Given an MDP M, characterize the FR-
invariant set ΠFRinv.
Next, we describe how to solve Problem 4.1 through set
expansions and set contractions.

A. An Approach Based on Set Expansions
To characterize FR-invariant sets through set expansions,

let us first define the notion of equilibrium of an MDP.
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Definition 4.2: A state distribution π̄ is an equilibrium of
the MDP M if there exists a one-step policy µ̄ ∈ Ū such that

π̄ = π̄P µ̄. (17)

An equilibrium is also known as a stationary distribution in
the literature [11].

Definition 4.3: The equilibrium set E of the MDP M is the
set of all equilibria of M.

A straightforward characterization of the equilibrium set E
is

E =

(Q1)T ∈ P(X)

∣∣∣∣∣∣∣∣
Q ∈ O,∀y ∈ X,∑
u∈Uy

Q(y, u) =∑
x∈X

∑
u∈Ux

T (y|x, u)Q(x, u)

 . (18)

Note that E collects all the stationary distributions that can be
attained by the MDP. It follows from (18) that E necessarily
is a polytope.

Proposition 4.1: The forward reachable sets from the equi-
librium set E have the following properties:
(a) FReach(E, k) ⊆ FReach(E, k + 1), ∀k ∈ N;
(b) FReach(E, k) is a compact polytope, ∀k ∈ N;
(c) limk→∞ FReach(E, k) exists and

lim
k→∞

FReach(E, k) = cl
( ⋃

k∈N
FReach(E, k)

)
.

Proof: (a). According to the definition of equilibrium,
it follows that π̄ ∈ FR(π̄), ∀π̄ ∈ E, which implies that E ⊆
FR(E). Note that FR is monotone: for any Π ⊆ Π′ ⊆ P(X),
FR(Π) ⊂ FR(Π′). Thus, the iteration by FR starting from
E ensures that FReach(E, k) ⊆ FReach(E, k + 1), ∀k ∈ N.

(b). Since the initial set E is a polytope, the iteration
by the forward reachability map FR ensures that the set
FReach(E, k) is a polytope, ∀k ∈ N. The boundedness of
FReach(E, k) follows from that of P(X), since P(X) is a
simplex in Rn. To prove the closure of FReach(E, k), we
observe that the initial set E is closed and that the map FR
preserves the closure. Thus, the set FReach(E, k) is compact,
∀k ∈ N.

(c). Follows from that the sequence
{
FReach(E, k)

}
k∈N

is non-decreasing and the convergence of monotone set se-
quences [41].

Denote FReach(E,∞) = limk→∞ FReach(E, k).
Proposition 4.2: For any MDP M, the infinite-time forward

reachable set FReach(E,∞) is FR-invariant.
Proof: The iteration and the convergence of the sequence{

FReach(E, k)
}
k∈N ensure that the set FReach(E,∞) is a

solution to the fixed-point equation Π = FR(Π). Thus, it is
FR-invariant.

B. An Approach Based on Set Contractions

It is also possible to characterize the FR-invariant set
through set contractions.

Definition 4.4: For the MDP M, a set Πmax
FRinv ⊆ P(X) is

said to be the maximal FR-invariant set if it is FR-invariant
and all other FR-invariant sets are its subsets.

We perform the forward distributional reachability analysis
initialized from the whole distribution space P(X). Then, we
have the following claims.

Proposition 4.3: The forward reachable sets from P(X)
have the following properties:
(a) FReach(P(X), k + 1) ⊆ FReach(P(X), k) and

FReach(P(X), k) is nonempty, ∀k ∈ N;
(b) FReach(P(X), k) is a compact polytope, ∀k ∈ N;
(c) limk→∞ FReach(P(X), k) exists and

lim
k→∞

FReach(P(X), k) =
⋂
k∈N

FReach
(
P(X), k

)
.

Proof: (a). It is easy to show that FR(P(X)) ⊆
P(X) and FR(Π) ⊂ FR(Π′), for any Π ⊆ Π′ ⊆ P(X).
Thus, the iteration by FR starting from P(X) ensures that
FReach(P(X), k + 1) ⊆ FReach

(
P(X), k

)
, ∀k ∈ N. Since

each state has at least one admissible action, FR(π) is
nonempty for any π ∈ P(X). The iteration by FR starting
from P(X) further implies that the set FReach

(
P(X), k

)
is

nonempty, ∀k ∈ N.
(b). Since the sequence

{
FReach

(
P(X), k

)}
k∈N

is mono-
tone non-increasing, FReach(P(X), k) is nonempty, and
P(X) is a simplex, we have that FReach(P(X), k) must be
a compact polytope. This can be proven similarly to Proposi-
tion 4.1.

(c). Follows from that the set sequence{
FReach(P(X), k)

}
k∈N is non-increasing, the convergence

of monotone set sequences [41], and the compactness of
FReach(P(X), k) (if it is not empty).

Let FReach
(
P(X),∞

)
= limk→∞ FReach

(
P(X), k

)
.

Proposition 4.4: For any MDP M, the infinite-time forward
reachable set FReach

(
P(X),∞

)
is the maximal FR-invariant

set. Furthermore, it is compact.
Proof: The iteration and convergence of the sequence{

FReach(P(X), k)
}
k∈N ensures that FReach

(
P(X),∞

)
is

a solution to the fixed-point equation Π = FR(Π). Thus,
FReach

(
P(X),∞

)
is an FR-invariant set. It is also the max-

imal FR-invariant set due to the non-increasing feature of the
sequence

{
FReach(P(X), k)

}
k∈N. Its compactness follows

from the compactness of FReach
(
P(X), k

)
and the fact that

the countable intersection of compact sets is also compact.

C. Discussion on the Maximal FR-Invariant Set
Now we have that the set FReach

(
P(X),∞

)
is the maximal

FR-invariant set, denoted by Πmax
FRinv. This set is of great

interest, in view of the following:
• Controllability: Any state distribution in the maximal

FR-invariant set Πmax
FRinv is reachable from some distri-

bution under an admissible policy.
• End Component: Any distribution outside of Πmax

FRinv is
not reachable from the inside of Πmax

FRinv.
• Absorbance: For any initial distribution π0 and the im-

plemented policy µ, the state distribution will eventually
enter Πmax

FRinv and then stay there forever, thus it is im-
portant for the analysis of infinite-horizon problems.

In conclusion, the maximal FR-invariant set can be thought
of as a Max End Component [1] for the space of distributions
of the MDP.
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The following theorem provides criteria for evaluating the
size of Πmax

FRinv with respect to the whole state distribution
space P(X) and the equilibrium set E.

Theorem 4.1: The following statements hold:
(a) E ⊂ Πmax

FRinv = P(X) if and only if E ⊂ FR
(
P(X)

)
=

P(X);
(b) E = Πmax

FRinv = P(X) if and only if E = P(X) =
FR

(
P(X)

)
.

If the fixed-point equation Π = FR(Π) has a unique solution,
then we have
(c) E ⊂ Πmax

FRinv ⊂ P(X) if and only if E ⊂ FR(E) ⊆
FR

(
P(X)

)
⊂ P(X);

(d) E = Πmax
FRinv ⊂ P(X) if and only if E = FR(E) and

FR
(
P(X)

)
⊂ P(X).

Proof: The assertions (a)–(b) directly follow from the
definition of FReach(P

(
X),∞

)
and FReach(E,∞). Recall

that both FReach
(
P(X),∞

)
and FReach(E,∞) are solutions

to the fixed-point equation Π = FR(Π). If Π = FR(Π)
has a unique solution, then Πmax

FRinv = FReach
(
P(X),∞

)
=

FReach(E,∞), from which the assertions (c)–(d) follow.
To ensure that the solution to the fixed-point equation

Π = FR(Π) is unique, a sufficient condition is that FR is a
contraction map. That is, there exists λ ∈ [0, 1) such that for
any π, π′ ∈ P(X),

H
(
FR(π),FR(π′)

)
≤ λ∥π − π′∥.

Here ∥·∥ denotes the vector norm and H(·, ·) is the Hausdorff
distance, defined as

H(Π,Π′) = max
{
max
π∈Π

min
π′∈Π′

∥π − π′∥, max
π′∈Π′

min
π∈Π

∥π − π′∥
}
.

Note that the use of this contraction map is different from the
study of contraction over sets in Section IV-B. Thanks to the
completeness property of the Hausdorff distance in the space
of compact sets, it then follows from the Banach Fixed Point
Theorem that FR admits a unique fixed-point in the space of
compact subsets of P(X).

Remark 4.1: Notice that first, the contraction condition is
not necessary for many MDPs whose maximal FR-invariant
set is however unique (e.g., the same as P(X)). Second,
verifying if FR is a contraction map is hard in practice, due
to the difficulty related to calculating the Hausdorff distance.
However, the contraction condition can be relaxed for Markov
chains. It has been shown that if the stochastic transition matrix
is regular, the limit distribution (the solution to Π = FR(Π)
) is unique [42].

Example 4.1: Consider the four MDPs in Figure 1,
respectively. For these MDPs, FReach(P

(
X),∞

)
=

FReach(E,∞) = Πmax
FRinv. The maximal FR-invariant set

Πmax
FRinv and the equilibrium set E for each MDP are shown in

Fig. 4(a)–(d), where the sets with black edges and white faces
are Πmax

FRinv and the red sets are E. Notice that these MDPs
correspond to the four possible inclusion relations among E,
Πmax

FRinv, and P(X).

V. APPLICATIONS OF BACKWARD DISTRIBUTIONAL
REACHABILITY

In this section, we use backward distributional reachabil-
ity to provide new solutions of three important problems:

controlled invariance (Section V-A), the characterization of
domains of attraction and of escape sets (Section V-B), and
reach-avoid problems (Section V-C). Although these three
problems are different, they can be reformulated by using
backward distributional reachability, which comes with com-
putational convenience related to the proposed algorithm in
Section III.

A. Controlled Invariant Sets

We first introduce controlled invariant sets.
Definition 5.1: For the MDP M, a set Πinv ⊆ P(X) is said

to be controlled invariant if for any π ∈ Πinv, there exists a
one-step policy µ ∈ Ū such that πPµ ∈ Πinv.

Remark 5.1: The controlled invariant set in Definition 5.1
is different from the FR-invariant set in Definition 4.1: the
invariance property of controlled invariant sets is built on the
existence of a policy, while the invariance property of FR-
invariant set holds under all policies. This difference suggests
that computing a controlled invariant set requires backward
distributional reachability, rather than forward distributional
reachability. This is consistent with the methods for computing
invariant sets in the control literature [38].

Problem 5.1: Given a compact set Π ⊂ P(X), find the
maximal controlled invariant set Πmax

inv within Π.
The following proposition shows that Problem 5.1 can be

solved using backward distributional reachability.
Proposition 5.1: Given a compact set Π ⊂ P(X),

Πmax
inv =

⋂
k∈N

IV(Π, k),

where IV(Π, k) is recursively defined as

IV(Π, k + 1) = BR
(
IV(Π, k)

)
∩Π, (19)

with IV(Π, 0) = Π.
Proof: First we have that

BR(Π) ∩Π ⊆ Π ⇒ IV(Π, k + 1) ⊆ IV(Π, k), ∀k ∈ N.

Since Π is compact, from the property of map BR
the set IV(Π, k) is compact. Thus, limk→∞ IV(Π, k) =⋂

k∈N IV(Π, k) and it is the solution to fixed-point equation
Πinv = BR(Πinv) ∩Π.

Example 5.1: Consider the MDP in Fig. 1(a). Let Π =
{π ∈ P(X) | π(3) ≥ 0.3, 2π(2) + π(3) ≤ 1}. The maximal
controlled invariant set Πmax

inv within Π is shown in Fig. 5.
Starting from the initial distribution π0 = [0 0 1] (asterisk),
the trajectory of the transient distribution can be kept within
Πmax

inv under some policy, as shown by the dotted line.

B. Domains of Attraction and Escape Sets

In this section, we show how to use backward distributional
reachability to characterize the domain of attraction, as well
as the escape set. Given an initial state x0 ∈ X and a policy
µ ∈ U , the probability of reaching a set S ⊆ X at time step k
is

Prµx0
(S, k) =

∑
x∈S

πk(x),

8



(a) (b) (c) (d)

Fig. 4: The maximal FR-invariant set Πmax
FRinv and the equilibrium set E for the four MDPs in Example 4.1. The sets with black

edges and white faces are Πmax
FRinv and the sets in red are E. Note that for (a) E ⊂ Πmax

FRinv ⊂ P(X); (b) E ⊂ Πmax
FRinv = P(X);

(c) E = Πmax
FRinv = P(X); (d) E = Πmax

FRinv ⊂ P(X).

Fig. 5: Example 5.1: the maximal controlled invariant set
Πmax

inv (red) within Π (black edge and white face) and a
distribution trajectory (circle line) starting from π0 = [0 0 1]
(asterisk).

where πk = ψ(k, ex0 ,µ) and ex0 is a unit vector with the
x0-th element being 1, and all the other elements being 0.

Definition 5.2: The domain of attraction of a set S ⊂ X,
denoted by ΛS, is the set of initial states from which the
probability of reaching S is positive under some policy, i.e.,

ΛS =
{
x0 ∈ X | ∃µ ∈ U ,∃k ≥ 0, s.t. Prµx0

(S, k) > 0
}
.

The α-domain of attraction of a set S ⊂ X, denoted by Λα
S , is

the set of initial states from which the probability of reaching
S is no less than α > 0 under some policy, i.e.,

Λα
S =

{
x0 ∈ X | ∃µ ∈ U ,∃k ≥ 0, s.t. Prµx0

(S, k) ≥ α
}
.

Definition 5.3: The escape set of a set S ⊂ X, denoted by
ΓS, is the set of initial states from which the probability of
reaching S is zero under all possible policies, i.e.,

ΓS =
{
x0 ∈ X | Prµx0

(S, k) = 0, ∀µ ∈ U and ∀k ∈ N
}
.

Let us define the following set of state distributions associ-
ated with S:

ΠS =
{
π ∈ P(X) |

∑
x∈S

π(x) > 0
}
, (20)

Πα
S =

{
π ∈ P(X) |

∑
x∈S

π(x) ≥ α
}
.

The following proposition provides a characterization of the
domain of attraction and of the escape set, using backward
distributional reachability.

Proposition 5.2: Given a set S ⊂ X, the domain of attrac-
tion of S can be characterized by

ΛS =
{
x0 ∈ X | ex0

∈ BReach(ΠS)
}

and the α-domain of attraction of S is

Λα
S =

{
x0 ∈ X | ex0

∈ BReach(Πα
S )
}
.

The escape set of S is

ΓS =
{
x0 ∈ X | ex0

/∈ BReach(ΠS)
}
.

Proof: Follows from the definition of BReach.

C. Reach-Avoid

In this section, we show how to use distributional reacha-
bility analysis to solve reach-avoid problems over MDPs.

Given an initial distribution π0 and a policy µ ∈ U , the state
trajectory of the MDP M is a stochastic process defined over
the probability space (Ω,F ,Prµπ0

), where Ω = X∞ =: X×X×
. . ., F = σ(Ω) (the σ -algebra of Ω), and Prµπ0

is defined by
the distribution dynamics (5). Consider two disjoint sets S,P ⊂
X. Define the hitting times of S and P as τS = inf{k | xk ∈ S}
and τP = inf{k | xk ∈ P}, respectively. The probability of
reaching S while avoiding P is Prµπ0

(τS < τP, τS < ∞). We
will solve two variants of the reach-avoid problem, introduced
as the next two Problems. The first is one infinite-horizon
problem and defined via first hitting times [19, 20].

Problem 5.2: Find the set of initial states from which the
probability of reaching S while avoiding P is positive under
some policy or no less than α:

ΥS,P =
{
x0 ∈ X | ∃µ ∈ U ,Prµex0

(τS < τP, τS <∞) > 0
}
, (21)

Υα
S,P =

{
x0 ∈ X | ∃µ ∈ U ,Prµex0

(τS < τP, τS <∞) ≥ α
}
. (22)

The second variant is a finite-horizon problem in the termi-
nal hitting time [20].

Problem 5.3: Given an horizon N and an initial state dis-
tribution π0, find the maximal probability of reaching S at the
terminal time step N while avoiding P, i.e.,

r∗π0,N (S,P) = max
µ∈U

Prµπ0
(τP > N, xN ∈ S).
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1) Characterization of ΥS,P and of Υα
S,P: This subsection will

provide a solution to Problem 5.2. Recall the set ΠS in (20)
and define the set of state distributions associated with P:

ΠP =
{
π ∈ P(X) |

∑
x∈P

π(x) = 0
}
. (23)

Proposition 5.3: Consider the sets S and P as above. Then
the following statements hold:
(a) x0 ∈ ΥS,P if ex0 ∈ RA(S,P),
(b) x0 ∈ Υα

S,P if ex0 ∈ RAα(S,P),
where RA(S,P) =

⋃
k∈N RA(S,P, k) and RAα(S,P) =⋃

k∈N RAα(S,P, k) with

RA(S,P, k + 1) = BR
(
RA(S,P, k)

)
∩ΠP,

RAα(S,P, k + 1) = BR
(
RAα(S,P, k)

)
∩ΠP,

initialized as RA(S,P, 0) = ΠS and RAα(S,P, 0) = Πα
S .

Proof: Follows from the definition of BReach.
2) Maximal Reach-Avoid Probability r∗π0,N

(S,P): Next let us
solve Problem 5.3. According to the definition of RA(S,P, N),
we have that r∗π0,N

(S,P) > 0 if and only if π0 ∈ RA(S,P, N).
This provides a way of finding the minimum horizon N∗ such
that r∗π0,N∗(S,P) > 0, i.e.,

N∗ = min
{
N ∈ N | π0 ∈ RA(S,P, N)

}
.

If π0 ∈ RA(S,P, N), then the maximal probability of reach-
ing S at the terminal time step N while avoiding P, i.e.,
r∗π0,N

(S,P), is the optimum of the following LP:

max
Qk,k∈N0,N ,

∑
x∈S

∑
u∈Ux

QN (x, u)

s.t.
∑
u∈Uy

Q0(y, u) = π0(y), ∀y ∈ X, (24a)

∀k ∈ N[0,N−1] :∑
u∈Uy

Qk+1(y, u) =
∑
x∈X

∑
u∈Ux

T (y|x, u)Qk(x, u), ∀y ∈ X,

(24b)
∀k ∈ N[0,N ] :

Qk ∈ O, (24c)∑
x∈P

∑
u∈Ux

Qk(x, u) = 0. (24d)

Let {Q∗
k}Nk=0 be the optimal solution to (24). Using the prop-

erty of occupation measures given in Section II, the optimal
policy for Problem 5.3 is thus given by

µk(u|x) =


Q∗

k(x,u)∑
v∈Ux Q∗

k(x,v)
if

∑
v∈Ux

Q∗
k(x, v) > 0,

1
|Ux| if

∑
v∈Ux

Q∗
k(x, v) = 0 & u ∈ Ux.

VI. CASE STUDIES

In this section, we will demonstrate how to use the pro-
posed methods to solve a drug injection verification problem,
a stochastic navigation problem, and a swarm deployment
problem. The numerical experiments are run in Matlab R2021b
with YALMIP toolbox [43] and MOSEK toolbox [44] on a
MacBook Pro laptop with Apple M1 chip and 8.0 GB Memory.

Fig. 6: A mobile robot in a grid world. Red coloured blocks
are target states and shadowed blocks are obstacles. In blue a
feasible trajectory is shown.

A. Drug Injection Verification in Pharmacokinetics

We consider an MDP model for a pharmacokinetics system,
as adapted from [4, 45], which consists of five states: plasma
(Pl), interstitial fluid (IF), utilisation and degradation (Ut), drug
being injected (Dr), the drug being cleared (Cl), and ”dummy”
state (Re) (which allows to adjust the amount of drug being
initially injected). As a slight deviation from the MDP model
in Section II, the MDP model of the pharmacokinetics system
is governed by two stochastic matrices Pnormal and Psaturated:

Pnormal =

 0.94000 0.02634 0.02564 0.00780 0.00024 0
0 0.20724 0.48298 0.29624 0.01354 0
0 0.15531 0.42539 0.39530 0.02400 0
0 0.02598 0.10778 0.77854 0.0877 0
0 0 0 0 1 0
0 0 0 0 1 0

 ,
Psaturated =

 0.9400 0.02425 0.02558 0.00809 0.00012 0
0 0.20728 0.48329 0.30257 0.00686 0
0 0.15540 0.42612 0.40627 0.01221 0
0 0.02653 0.11080 0.81776 0.04491 0
0 0 0 0 1 0
0 0 0 0 1 0

 .
Further introduce the set of all possible matrices in the
convex combination of Pnormal and Psaturated, denoted by
S = {P | P = λPnormal + (1− λ)Psaturated, λ ∈ [0, 1]}. The
MDP selects non-deterministically any matrix within set S:
in other words, given an initial distribution π0, the dynamics
are πk+1 = πkPk for k > 0, where matrices can be selected
as Pk ∈ S at any time index k. The initial distribution is
defined by π0(Dr) = α, π0(Re) = 1 − α, and π0(x) = 0
for x ∈ {Pl, IF,CI,Ut}, where α is the amount of drug
being initially injected. Following [4, 45], we set thresholds
MEC = 0.13 and MTC = 0.20, and consider the set of atomic
propositions APd = {effective,nontoxic,cleared}.
Considering πk(Ut), namely the probability of the drug be-
ing in state Ut at time k, we define label effective
as πk(Ut) ≥ MEC; nontoxic as πk(Ut) ≥ MTC; and
cleared as πk(Cl) ≤ ϵ for some given (small) value ϵ > 0.
The distribution-specified linear temporal logic formula of
interest is ϕ = ϕ1 ∧ ϕ2 ∧ ϕ3, with ϕ1 = □nontoxic,
ϕ2 = ♢(effective ∧⃝effective), ϕ3 = ♢cleared.
Here, ϕ1 encodes the requirement that the drug level always
stays in in the safe zone; ϕ2 stipulates the drug is eventually
effective for at least two consecutive steps; and ϕ3 specifies
that the drug ought to be eventually cleared. More details on
temporal logics refer to [1]. The problem of interest is that
given the initial distribution π0 depending on α, verify if the
formula ϕ is true for all the possible executions under the
MDP model.
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In [4, 45], similar specifications were expressed as ω-
regular expressions and shown to be decidable over the MDP.
However, these two works did not provide any model checking
algorithm. The forward reachability in our work provides a
way to solve the model checking problem. Let define the
distribution sets Πnontoxic = {π ∈ P(X) | π(Ut) ≥ MTC},
Πeffective = {π ∈ P(X) | π(Ut) ≥ MEC}, and Πcleared =
{π ∈ P(X) | π(Ut) ≤ ϵ}. Then, we have
(1) ϕ1 is true if FR(π0, k) ⊆ Πnontoxic for all k ∈ N;
(2) ϕ2 is true if FR(π0, k) ⊆ Πeffective and FR(π0, k +

1) ⊆ Πeffective for some k ∈ N;
(3) ϕ3 is true if FR(π0, k) ⊆ Πcleared for some k ∈ N.
Based on these, we find that if α ∈ [0.0540, 0.0590], the
formula ϕ is true.

B. Stochastic Navigation
We consider the stochastic navigation problem shown in

Fig. 6, where a mobile robot moves in a 4 × 4 grid world
and has four possible actions: left, right, up and down. Under
each action, a transition to the chosen direction occurs with
probability 0.80, whereas a transitions to each adjacent state
in the chosen direction occurs with probability 0.10 (this is
also known as “slippery” grid world). If a transition to wall is
elicited, then the robot remains in the present state. The states
(3, 3) and (4, 3) are target states (the red grids in Fig. 6) and
the states (2, 2) and (3, 2) are obstacles (the shadowed blocks
in Fig. 6). The state (3, 3) has only action ‘right’, which may
induce a transition to (4, 3) with probability 0.95 and another
transition to itself with probability 0.05. The states (2, 2)
and (3, 2) are absorbing states, i.e., these states are invariant
under all the actions. The stochastic navigation problem can
be studied over an MDP model, where the state space X
is the set of the blocks in the grid world, the action space
U = {left, right, up and down}, and the transition probability
is defined based on the above semantics. In the following, let
S = {(3, 3), (4, 3)} and P = {(2, 2), (3, 2)}.

We first explore the domain of attraction for the target region
by recursively implementing Algorithm 1 with 300 sample
points. Using the characterization method in Section V-B, the
set Λα

S , i.e., the α-domain of attraction with α = 0.80, is Λα
S =

{(1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (3, 1), (3, 3), (3, 4), (4, 1),
(4, 2), (4, 3), (4, 4)}. The average time taken to compute
Λα
S , averaged over 100 runs, is 65.82 seconds. Next, us-

ing the method in Section V-C, we implement Algo-
rithm 1 (this time with only 30 samples) to characterize
the set Υα

S,P with α = 0.80. We find that the states
(1, 4), (2, 3), (2, 4), (3, 3), (3, 4), (4, 2), (4, 3) and (4, 4) are
initial states from which the probability that the robot will
eventually reach the target region S while avoiding the obstacle
region P is no less than 0.80. That is, these states belong to
Υα

S,P. Since the number of samples used is much smaller than
that employed earlier to compute the domain of attraction Λα

S ,
we obtain that the average time (over 100 runs) for computing
Υα

S is reduced to 4.10 seconds.
In addition to the computation of Λα

S and Υα
S,P, our methods

based on backward distributional reachability are able to also
provide other initial distributions from which there exists a
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Fig. 7: The evolution of state distributions from an initial
distribution such that, under a feasible policy, the probability
of reaching S = {(3, 3), (4, 3)} within 5 steps is greater than
0.80.
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Fig. 8: The evolution of state distributions from an initial
distribution such that, under a feasible policy, the probability
of reaching S = {(3, 3), (4, 3)} within 5 steps, while avoiding
P = {(2, 2), (3, 2)}, is greater than 0.80.

policy such that the specifications hold. An initial distribution
that satisfies the problem of the domain of attraction (from
above), under a feasible policy, is exemplified in Fig.7(a).
Notice that, while the states (1, 1) and (2, 1) are not in the set
Λα
S with α = 0.80, the selected initial distribution in Fig.7(a)

assigns a positive probability to these two states. A feasible
policy is obtained by solving the LP in (24) (without the
constraints (24d) that are needed for the “avoid” requirement).
The computation time taken to synthesize the feasible policy
amounts to 1.70 seconds. Figures 7(b)–(f) show the evolution
of the corresponding state distributions across the 5-step time
horizon. We additionally report that the probability of reaching
S assigned by the distribution π5 is 0.81, which is greater than
the required α = 0.80.

Similarly, an initial satisfying distribution for the reach-
avoid problem is exemplified in Fig.8(a). While the states
(1, 2) and (3, 1) are not in the set Υα

S,P with α = 0.80, the
initial distribution in Fig.8(a) assigns a positive probability to
these two states. Figs.8(b)–(f) show the evolution of the state
distributions under the policy obtained by solving the LP in
(24). The computation time to synthesize a feasible policy
amounts to 1.60 seconds. We report that the probability of
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Fig. 9: Swarm deployment environment and target KTH.

reaching S assigned by the distribution π5 is 0.8390, which is
greater than α = 0.80; moreover, as clear from the figures, we
obtain that at each time step, the probability of colliding with
the obstacles (i.e., the probability assigned by πk, k ∈ N[0,5],
to the set P) is actually equal to 0.

C. Swarm Deployment Problem
Let us consider M agents evenly spaced over a 17 × 16

grid world, as in Fig. 9. Initially, each square in the grid has
one agent and thus the total number of agents is M = 17 ×
16 = 272. Each agent has five possible actions: left, right,
up, down, and stay. We assume that all the agents sharing a
given square will select the same action. Under each action in
{left, right, up, down}, the agent moves to the adjacent square
in the chosen direction with a probability 0.70, or stay in the
same square with a probability 0.30. Under the action ‘stay’,
the agent remains in the square with a probability equal to 1.
To prevent excessive clustering of agents, we require that the
expected number of agents in each square is at most 6, at any
time step. The target of the problem is to provide a swarm
deployment that takes the shape of KTH, as shown in Fig. 9.
More specifically, KTH is deemed to be formed if more than
90% agents are eventually deployed over the squares of the
acronym, and if the expected number of agents in each square
is no less than 2 (this enforces agents to “spread” over the
desired region).

This swarm deployment problem can be studied over an
MDP model. The state space X of the MDP corresponds
to the set of the squares in the grid world (with dimension
272), the control space is U = {left, right, up, down, stay},
and the transition probability T is defined according to the
above semantics. The initial distribution is uniform, i.e., π0 =
1/M × 1, where 1 is a vector of 1’s in RM . The space
limitation associated to each square can be encoded as a
constraint on the state distributions πk, namely πk ∈ Πs where
Πs = {π ∈ P(X) | π(x) ≤ 6/M,∀x ∈ X}. Denote by Xf the
set of squares corresponding to KTH of Fig. 9. The swarm
deployment objective can then be expressed as the goal of
steering the state distribution to the set Πf = {π ∈ P(X) |∑

x∈Xf
π(x) ≥ 0.90, π(x) ≥ 2/M,∀x ∈ Xf}. Notice that this

objective is qualitatively quite different than that considered
in the stochastic navigation problem.

In order to solve the swarm deployment problem using
the MDP formulation, let us perform backward distributional
reachability, namely compute SD(k+1) = BR

(
SD(k)

)
∩Πs,

initialized as SD(0) = Πf . We recursively run Algorithm 1 to

Fig. 10: Evolution of state distributions from an initial one
such that, under a feasible policy, the formation of KTH is
attained.

Fig. 11: Evolution of the average number of the agents per
cell across time, obtained over 1000 realizations.

compute the backward reachable sets over the 272-dimensional
state space, until the considered initial uniform distribution
π0 belongs to SD(k). We use 500 samples in Algorithm 1.
Letting N = min

{
k ∈ N | π0 ∈ SD(k)

}
, in this example we

find that N = 5, which implies that the swarm objective can
be achieved from π0 within 5 time steps. The average reach
set computation time is 154.03 seconds. Given the horizon
N = 5, we can thus formulate an optimization problem similar
to (24) and compute a satisfying policy and corresponding
state distributions. The computation time taken to synthesize
a feasible policy is 4.70 seconds. Fig. 10 shows the evolution
of the state distribution in time, from which we can see that
the distribution constraints Πs are satisfied, and that the KTH
is formed over the distribution space.

We now empirically implement the obtained policy by
sampling 1000 realizations of the model under the feasible
policy. Each realization records the number of agents in each
square over the horizon N = 5, which is an integer taking
values from 0 to M = 272. We then take the average over
1000 realizations and obtain an empirical mean of the number
of agents in each square at each time step, which is displayed
in Fig. 11 across the five time steps. We can see that each
square is occupied at most by 4 agents at each time step,
which is less than the required max of 6 agents, and that the
agents swarm to form the KTH, as required.
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(c) n = 400
n+ nm = 2400
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(d) n = 1225
n+ nm = 7350

Fig. 12: Computation time and approximation quality ρ1 for forward reachable sets of different MDPs with increasing number
of samples Ns. Here, n=# states, n+ nm=space dimension.
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Fig. 13: Computation time and approximation quality ρ2 for backward reachable sets of different MDPs with increasing number
of samples Ns. Here, n=# states, n+ nm=space dimension.

VII. SCALABILITY AND APPROXIMATION QUALITY OF
ALGORITHM 1

We test the scalability and approximation quality of Al-
gorithm 1 under different MDPs, with increasing number of
states n = 25, 100, 400, 1225 and a fixed number of actions
m = 5. We run Algorithm 1 in Matlab R2021b with YALMIP
toolbox [43] and MOSEK toolbox [44] on a MacBook Pro
laptop with Apple M1 chip and 8.0 GB Memory. We com-
pute forward and backward reachable sets over multiple runs.
Recall that the computation of reachable set is based on the
polytope projection from Rnm+n to Rn (see Eqs. (6) and (9)).
To the best of our knowledge, known tools in computational
geometry, e.g., MPT3 [46], Qhull [47], and bensolve [48], are
not usable to handle the cases in our experiments with spatial
dimensions n+ nm ≥ 150.

Denote by FR and BR the exact forward and backward
sets, respectively, and by F̂RNs and B̂RNs the corresponding
approximate sets, respectively, from Algorithm 1 using Ns

samples. Since computing the volume of the convex polytopes
efficiently in high-dimensional spaces is hard, we define the
following quantity to measure the approximation quality:

ρ1 =
1

|I1|
∑
i∈I1

dmax
1,i − dmin

1,i

Dmax
1,i −Dmin

1,i

,

ρ2 =
1

|I2|
∑
i∈I2

dmax
2,i − dmin

2,i

Dmax
2,i −Dmin

2,i

,

where
dmax
1,i = max

π∈F̂RNs
eTi π, d

max
2,i = max

π∈B̂RNs
eTi π

dmin
1,i = min

π∈F̂RNs
eTi π, d

min
2,i = min

π∈B̂RNs
eTi π,

Dmax
1,i = maxπ∈FR eTi π, D

max
2,i = maxπ∈BR eTi π,

Dmin
1,i = minπ∈FR eTi π, D

min
2,i = minπ∈BR eTi π,

and where ei is a vector with the i-th element equal to 1 and
all the others set to 0. The index sets I1 and I2 are

I1 = {i ∈ N[1,n] | Dmin
1,i ̸= Dmax

1,i },
I2 = {i ∈ N[1,n] | Dmin

2,i ̸= Dmax
2,i }.

The set
∏n

i=1[D
min
1,i , D

max
1,i ] is the smallest hyper-rectangle

that contains FR, while
∏n

i=1[d
min
1,i , d

max
1,i ] is the small-

est hyper-rectangle that contains F̂RNs
. Similarly, the set∏n

i=1[D
min
2,i , D

max
2,i ] is the smallest hyper-rectangle that con-

tains BR, while
∏n

i=1[d
min
2,i , d

max
2,i ] is the smallest hyper-

rectangle that contains B̂RNs
.

The value of ρ1 and ρ2 quantify the average ratios of each
edge of the corresponding two hyper-rectangles, respectively,
and is thus a good measure for the approximation quality for
the forward and backward reachable sets from Algorithm 1.
In particular, ρ1 and ρ1 can be efficiently computed, unlike
the computation of volumes in high-dimensional spaces. Note
that, if the sets FR and BR are not hyper-rectangles, ρ1 = 1
and ρ1 = 2 is a necessary condition on tight approximation,
that is, F̂RNs

= FR and B̂RNs
= BR.

Figs. 12 and 13 report the computation time and correspond-
ing value of ρ for different MDPs, under different Ns. The
quadratic programs in Algorithm 1 were solved by Yalmip [43]
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and Mosek [44]. Note that Algorithm 1 is able to perform set
projections on spaces with a dimension up to nm+n = 2400
very efficiently, and for 7350-dimensional spaces in a manage-
able time. We observe that the computation time is linear with
respect to Ns. The approximation quality ρ1 and ρ2 increases
with respect to Ns. In particular, ρ1 (or ρ2) can reach (almost)
1 for the MDPs with n = 25, 100, and 400, that is, we obtain a
tight approximation between FR and F̂RNs (or between BR
and B̂RNs ). For the MDP with n = 1225, ρ can reach 90%,
which implies a good approximation in a high-dimensional
space. Thus, Algorithm 1 significantly expands the frontiers
of the state of the art in reachability analysis: namely, it scales
much better, and provides remarkably high-quality approxima-
tions in high-dimensional spaces, which validates its usability
for large-scale MDPs.

VIII. CONCLUSIONS

We have investigated the forward and backward distribu-
tional reachability problems of finite MDPs. In order to solve
the problems, we introduced the forward set-valued map FR
able to collect all the state distributions that can be reached
from a set of initial distributions and BR able to collect all
the state distributions that can reach a set of final distributions.
We have proved that there exists a maximal FR-invariant set,
which is the region where the state distributions eventually
always belong to for any initial state distribution and any
policy. We have revisited a number of important problems
using BR: controlled invariance, domain of attraction, and
reach-avoid problems. Several examples have illustrated the
effectiveness of our approach and its computational advantage.

There are quite a few directions that can be targeted as
future work. A major extension is to tailor the forward distri-
butional reachability approach to general PCTL specifications.
We aim to reformulate trajectory-based probabilistic reachabil-
ity as distributional reachability. Another interesting direction
is the computation of quantities related to distributional reach-
ability analysis with sample-based algorithms, with the goal
of improved efficiency.

APPENDIX: PROOF OF THEOREM 3.1

To prove the approximation is asymptotically tight in prob-
ability, i.e., (15) and (16), we need to characterising the
probability of samples in the set Γ whose projections onto
the set FR(Π) ( or BR(Π)) are their vertices. Due to the
uniform sampling in Γ, this is equivalent to characterise the
subset of Γ whose projections onto FR(Π) (or BR(Π)) are
their vertices, which is addressed using the multi-parametric
quadratic program (mp-QP) in the following.

Consider FR(Π) ⊂ P(X) ⊂ int(Γ) as shown in Fig. 14(a).
Since the set Π is a convex polytope in the row vector space,
it follows from (6) that FR(Π) is also a convex polytope
in the row vector space. Let Γ⊥ = {y | yT ∈ Γ} and
FR⊥(Π) = {z | zT ∈ FR(Π)}. The set Γ⊥ and FR⊥(Π)
are convex polytopes in the column vector space, as shown in
Fig. 14(b). Thus, we can denote Γ⊥ = {y ∈ Rn | Py ≤ p}
and FR⊥(Π) = {z ∈ Rn | Qz ≤ q}, where P ∈ Rlp×n,

p ∈ Rlp , Q ∈ Rlq×n, and q ∈ Rlq . Here lp and lq are the
number of half-spaces to define the sets Γ⊥ and FR⊥(Π).

Consider an mp-QP{
min
z

∥y − z∥2

s.t. Qz ≤ q,
(25)

where z ∈ FR⊥(Π) is the decision variable and y ∈ Γ⊥ is
the parameter. Given a z ∈ FR⊥(Π), let Y(z) be the subset
of Γ such that the optimal solution of mp-QP (25) is z for all
y ∈ Y(z).

Consider a z on the boundary of FR⊥(Π). Let Az = {i ∈
N[1,lq ] | Q(i)z = q(i)}, where Q(i) is the i-th row of Q and
q(i) is the i-th element of q. Let QAz and qAz be the matrix
and vector formed from Q and q, respectively, according to
Az . The following lemma shows how to characterize Y(z).

Lemma 8.1: For any z on the boundary of FR⊥(Π), as-
sume that the matrix QAz has full row rank. Then,

Y(z) =

y ∈ Rn

∣∣∣∣∣∣∣∣
Q
(
QAz

)T
Λ
(
qAz −QAzy

)
+

Qy ≤ q,
Λ−1

(
qAz −QAzy

)
≤ 0,

Py ≤ p

 , (26)

where Λ =
[
QAz (QAz )T

]−1
.

Proof: The mp-QP (25) can be solved by applying the
Karush–Kuhn–Tucker (KKT) conditions:

z − y +QTλ = 0, λ ∈ Rlq (27)
λ(i)(Q(i)x− q(i)) = 0, i = 1, · · · , lq, (28)
λ ≥ 0, (29)
Qz − q ≤ 0, (30)

where λ is the non-negative Lagrange multiplier. Since
QAzz = qAz and QAz has full row rank, it follows from
(27)–(28) that

λAz = Λ(QAzy − qAz ), (31)

which implies that

z(y) = −(QAz )TλAz + y. (32)

Then the set Y(z) is characterized by substituting (31)–(32)
into (29)–(30), which yields (26).

If z is a vertex of FR⊥(Π), a graphical illustration of Y(z)
is shown in Fig. 14(b).

Proof of Theorem 3.1. Let Vf be the set of vertices and
Nf

v be the number of its vertices for the set FR(Π). First of
all, we have that

F̂RNs(Π) = FR(Π) if and only if Vf ⊆ {πfs
i , i ∈ N[1,Ns]}

(33)
where πfs

i are the corresponding projection of the sample πs
i .

In order to evaluate the probability of F̂RNs
(Π) = FR(Π),

we need to quantify the probability of πfs
i ∈ Vf . Equivalently,

we need to find the subset of Γ⊥ from which the projection
onto FR⊥(Π) is a vertex of FR⊥(Π), whose transpose is a
vertex of FR(Π).

14



(a) (b)

Fig. 14: (a) The sets FR(Π) ⊂ P(X) ⊂ int(Γ) in row vector space. (b)
The sets FR⊥(Π), Γ⊥, and Y(z) (defined in (26)) where z is a vertex of
FR⊥(Π).

For any vertex z of FR⊥(Π), we have QAzz = qAz and
QAz ∈ Rn×n has full rank. Then, the set Y(z) becomes

Y(z) =

{
y ∈ Rn

∣∣∣∣∣
[(
QAz

)T ]−1

(y − z) ≤ 0,

Py ≤ p

}
. (34)

Since FR(Π) ⊂ P(X) ⊂ int(Γ), z lies in the interior of Γ⊥.
Thus, we have that Y(z) has the following properties:
(1) Y(z) is nonempty and in particular z is its vertex;
(2) Y(z) has the same dimension with Γ⊥ and has nonempty

interior.
According to Algorithm 1, let us assign µ to be a uniform
probability measure over Γ⊥, i.e.,

∫
Γ⊥ µ(t)dt = 1. Thanks to

the properties of Y(z), we have

0 < α(z) =

∫
Y(z)

µ(t)dt ≤ 1.

For a vertex π of FR(Π), α(πT ) is the probability that the
projection of samples from Γ onto FR(Π) is π.

Note that for two different vertices π1 and π2 of FR(Π),
the interiors of Y(πT

1 ) and Y(πT
2 ) are disjoint. Then, under

Algorithm 1, we have that

Pr(F̂RNs(Π) = FR(Π))

= Pr
(
Vf ⊆ {πfs

i , i ∈ N[1,Ns]}
)

≥ 1−
∑
π∈Vf

Pr
(
π /∈ {πfs

i , i ∈ N[1,Ns]}
)

= 1−
∑
π∈Vf

(
1− α(πT )

)Ns (35)

≥ 1−Nf
v α

Ns

f (36)

where αf = maxπ∈Vf
{1−α(πT )}. Since 0 < α(πT ) ≤ 1 for

all π ∈ Vf , we have that 0 ≤ αf < 1. Now we complete the
proof of (15).

Following the similar steps, we can also prove (16).
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