
Certified Reinforcement Learning with Logic Guidance

Hosein Hasanbeiga,∗, Daniel Kroeningb,∗, Alessandro Abatec,∗∗

aMicrosoft Research
bMagdalen College, University of Oxford, and Amazon, Inc.

cDepartment of Computer Science, University of Oxford, Parks Rd, OX1 3QD, UK

Abstract

Reinforcement Learning (RL) is a widely employed machine learning architecture
that has been applied to a variety of control problems. However, applications in
safety-critical domains require a systematic and formal approach to specifying
requirements as tasks or goals. We propose a model-free RL algorithm that
enables the use of Linear Temporal Logic (LTL) to formulate a goal for unknown
continuous-state/action Markov Decision Processes (MDPs). The given LTL
property is translated into a Limit-Deterministic Generalised Büchi Automaton
(LDGBA), which is then used to shape a synchronous reward function on-the-fly.
Under certain assumptions, the algorithm is guaranteed to synthesise a control
policy whose traces satisfy the LTL specification with maximal probability.

Keywords: Reinforcement Learning, Control Synthesis, Policy Synthesis, Formal
Methods, Temporal Logics, Automata, Markov Decision Processes.

1. Introduction

Reinforcement Learning (RL) is an area of machine learning, where an agent
is trained to maximise a reward that is calculated by a user-provided function.
Key to success in RL is the ability to predict the effect of picking a particular
candidate action on the ultimate reward, and neural networks, owing to their
ability to generalise, have enabled the application of RL in a broad range of
application domains.

A significant barrier to successful application of RL is the setup of the reward
function when requirements (the user’s goals or the task that is to be done)
are complex [46]: reward engineering often requires tedious parameter tuning to
map complex goals to an appropriate reward structure [16]. As a consequence,
the trained agent can be brittle and the policy it implements can be difficult
to interpret. This is particularly problematic in safety-critical applications, say

∗The work reported in this paper was done at Department of Computer Science, University
of Oxford, UK.

∗∗Corresponding author
Email address: alessandro.abate@cs.ox.ac.uk (Alessandro Abate)

Preprint submitted to Journal of Artificial Intelligence May 21, 2023

Figure 1: Learning under LTL with Logically-Constrained RL (LCRL). The reward signal is
produced automatically by synchronising the LTL property and the unknown MDP.

when the agent operates in the proximity of humans. This gives rise to the need
for provably-correct reward shaping.

We suggest the use of Linear Temporal Logic (LTL) [111] as a formal high-
level language to specify complex tasks when applying RL [32] to sequential
decision-making problems. LTL is a formal language that can express engineering
requirements and specifications, and there exists a substantial body of research
on how to derive LTL properties from natural language [104, 152, 52, 151]. LTL
can express time-dependent properties, such as safety and liveness, and further
allows to specify tasks with complex dynamics (e.g., tasks that are repeating,
sequential, or conditional).

We present an algorithm that, given an LTL formula that describes the goal
the user wants to achieve, automatically shapes a reward function for RL in a
provably-correct manner, and synthesises controllers for which satisfaction of
the given property is guaranteed.

The standard means for formalising sequential decision-making problems
are Markov Decision Processes (MDPs), a family of stochastic processes [115].
In an MDP, a decision maker (or an agent) can transition between states by
choosing relevant actions [142] while receiving a scalar reward. The outcomes of
taking actions are, in general, probabilistic and not fully under the control of
the agent [15]. A decision-making problem given as an MDP is said to be solved
when in any given state the agent is able to choose the most favourable action
so that the accrued reward is expected to be maximal in the long run [142].

When both state and action spaces are finite, the stochastic behaviour of an
MDP can be described by a transition probability matrix. In this case, MDPs
can be solved via Dynamic Programming (DP). DP iteratively applies a Bellman
operation on a value function expressing the expected reward of interest for a
state of the MDP [11, 15]. We can understand convergence properties of RL by
relating them to the optimal value function produced by DP [147, 72]. When the
state and action spaces are not finite, approximate DP is often employed. This

2

approximation can be achieved by generating an abstract model of the MDP
itself [13, 113, 38, 130], or by inferring a (non-linear) regression model over the
value function [123, 102, 131].

In practice, however, it is often infeasible to obtain sufficient knowledge of
the stochastic dynamics of the problem, which means that we cannot formulate
the MDP. In contrast to DP, RL solely depends on a set of experience samples
gathered by exploration, which simplifies the Bellman’s backup, and at the same
time avoids exhaustive sweeps over the full state space. In this paper, we focus
on approaches that are model-free, i.e., we do not require that any model (in the
form of an MDP or otherwise) is given. Model-free RL methods are very easy
to apply and resource-efficient, as the agent learns an optimal policy without
an intermediate model. Model-free RL has been shown to converge to the same
action selection policy as DP under mild assumptions [15, 147].

Deep RL is arguably one of the most significant breakthroughs in RL, whereby
human-level play has been achieved on a number of Atari games [101] by incor-
porating deep neural networks into RL. This resulted in successfully tackling
StarCraft [144] and the game of Go [128]. Deep-RL-based algorithms are often
general enough so that the rules of different games do not have to be explic-
itly encoded for the agents to learn successful control policies. The success
of deep RL has resulted in extensive use of RL, beyond small-scale environ-
ments [128, 144, 67, 51]. In particular, employment of RL in safety-critical
problems has recently been investigated [33, 47, 45, 106, 58, 3, 73, 59, 30], includ-
ing autonomous driving [124, 122] and avionics [96, 2]. This however inevitably
entails the need for correct-by-design policy synthesis, in order to guarantee for in-
stance, among other quantitative requirements, the safety of policies synthesised
via RL.

Contributions: We present an algorithm for automatically engineering
a reward function for RL from a given LTL property, and for synthesising a
corresponding optimal policy maximising the probability of satisfying the given
LTL property. Our method is model-free, and allows us to synthesise control
policies under LTL for a continuous-state/action MDP (which subsumes the
simpler, finite state/action special case). We discuss the assumptions under which
our RL setup is guaranteed to synthesise control policies whose traces satisfy
the LTL specification with maximal probability.

The LTL property offers means to introduce a-priori knowledge of the struc-
ture of the problem into the learning procedure, while avoiding overfitting
demonstrations done by a human teacher. An LTL property is a formal, un-
grounded, and symbolic representation of the task and of its steps. This enables
the use of complex properties and, as we show later, LTL is suitable for sub-task
decomposition and hierarchical learning.

In existing methods, the temporal dependency of rewards is often tackled
with options [132], or, in general, dependencies are structured hierarchically.
Current approaches to hierarchical RL very much depend on particular state
representations and whether they are structured enough for a suitable reward
signal to be effectively engineered manually. Hierarchical RL therefore often
requires detailed supervision in the form of explicitly specified high-level actions

3

or intermediate supervisory signals [114, 78, 34, 81, 143, 6, 8]. By contrast, when
expressing a complex task using LTL, each component of the LTL property
systematically structures the complex mission task into low-level, achievable task
“modules” without requiring any supervision. The LTL property essentially acts
as a high-level unsupervised guide for the agent, whereas the low-level planning
is handled by a (deep) RL architecture. To demonstrate this benefit, we showcase
our approach on the Atari 2600 game “Montezuma’s Revenge”, which is known
as an exceptionally hard problem for RL.

Full instructions on reproducing all the case studies in this paper and how to
import LCRL into any Python project are provided on the LCRL GitHub page:

www.github.com/grockious/lcrl (@8b4e474)

2. Overview

We give a brief overview of our approach. As is standard in existing methods,
we convert the LTL property into an automaton, namely a finite-state machine [9].
However, LTL-to-automaton translation may result in a non-deterministic model,
over which policy synthesis for MDPs is not semantically meaningful. A standard
solution to this issue is to use Safra’s construction to determinise the automaton.
This is known to increase its size dramatically [120, 108]. An alternative solution is
to convert the given LTL formula directly into a Deterministic Rabin Automaton
(DRA). Such a conversion results, in the worst case, in automata that are doubly
exponential in the size of the original LTL formula [4].

By contrast, we propose to express the given LTL property as a Limit-
Deterministic Generalised Büchi Automaton (LDGBA) [126]. This construction
results in a (singly) exponential-sized automaton for LTL\GU1 and the result is
nearly the same size as a DRA for the rest of LTL. We show that this succinctness
improves the convergence speed and sample efficiency of the learning algorithm
significantly. However, the translation of LTL into LDGBAs introduces non-
trivial problems into the learning algorithm, which we address in this work.
An additional benefit of our approach is that LDGBAs are semantically easier
than DRAs owing to their acceptance conditions, which makes policy synthesis
algorithms much simpler to implement [127, 137]. We emphasise that there
exist a variety of algorithms for constructing limit-deterministic Büchi automata
from LTL, but not all of resulting automata can be employed for quantitative
model checking and probabilistic certification [80]. More importantly, the unique
succinctness of the LDGBA construction [126] used in our work is due to its
“generalised Büchi” accepting condition, and other, non-generalised constructions
inevitably result in larger automata.

Once the LDGBA is generated from the given LTL property, we construct

1LTL\GU is a fragment of linear temporal logic with the restriction that no until operator
occurs in the scope of an always operator.

4

www.github.com/grockious/lcrl

on-the-fly2 a product between the MDP and the resulting LDGBA. The gen-
eralised Büchi accepting condition then gives rise to a reward function that
is synchronous with the state-action pairs of the MDP. Using this algorithmic
reward-shaping procedure, an RL scheme is able to learn an optimal policy that
returns the maximum expected reward, and that equivalently satisfies the given
LTL specification with maximal probability.

Finally, the application of the LDGBA also allows the RL agent to generate
episodes that are informative, particularly for the case of non-Markovian tasks:
we show that this can reduce the sample complexity of RL architectures.

3. Background

We consider a universal RL setup, consisting of an agent interacting with an
unknown environment, modelled as a general MDP.

3.1. Markov Decision Processes
Definition 1 (General MDP [14, 39]). The tuple M = (S,A, s0, P,AP, L)
is a general MDP over a set of continuous states S = Rn, where A = Rn′ is
a set of continuous actions, and S0 ⊂ S is the MDP initial set of states. An
initial state s0 is then randomly chosen from S0. P : B(S) × S × A → [0, 1] is
a Borel-measurable conditional transition kernel which assigns to any pair of
state s ∈ S and action a ∈ A a probability measure P (·|s, a) on the Borel space
(S,B(S)), where B(S) is the set of all Borel sets on S. AP is a finite set of atomic
propositions and a labelling function L : S→ 2AP assigns to each state s ∈ S a
set of atomic propositions L(s) ⊆ 2AP. ⌟

A finite-state/action MDP is a special case of general MDPs in which |S| <∞,
|A| <∞, and P : S×A× S→ [0, 1] is the transition probability function. The
transition function P reduces to a transition probability matrix.

A variable R(s, a) ∼ Υ (·|s, a) ∈ P(R+) can be defined over the MDP M,
representing the immediate reward obtained when action a is taken at a given
state s, where P(R+) is the set of probability distributions on subsets of R+, and
Υ is the reward distribution. A realisation of R at time step n is denoted as rn.
Definition 2 (Stationary Deterministic Policy). A stationary (randomised)
policy π : S×A→ [0, 1] is a mapping from any state s ∈ S to a probability distri-
bution over actions. A policy π assigns to any state s ∈ S a probability measure
π(·|s) on the Borel space (A,B(A)). A deterministic policy is a degenerate case
of a randomised policy which outputs a single action at a given state, that is
∀s ∈ S, ∃a ∈ A, π(s, a) = 1. ⌟

Definition 3 (Expected Infinite-Horizon Discounted Return). For any
policy π on an MDP M, and given a reward function R, the expected discounted

2“On-the-fly” means that the algorithm tracks (or executes) the state of an underlying
structure (or a function) without explicitly building the entire structure.

5

reward return at state s is defined as [132]:

Uπ
M(s) = Eπ[

∞∑
n=0

γn rn|s0 = s], sn ∼ P (·|sn−1, an−1), an ∼ π(·|sn), (1)

where Eπ[·] denotes the expected value given that the agent follows policy π
from state s, γ ∈ [0, 1) (γ ∈ [0, 1] when episodic3) is a discount factor, and
s0, a0, s1, a1... is the sequence of states generated by policy π, initialised at
s0 = s. We will drop the subscript M when it is clear from the context. ⌟

Note that the discount factor γ is a hyper-parameter that has to be tuned. In
particular, there is standard work in RL with state-dependent discount factors
that are shown to preserve convergence and optimality guarantees, by means of
ensuring the contractivity of corresponding operators required to update value
functions or policies [109, 153, 148, 103]. A possible tuning strategy for our setup
would allow the discount factor be a function of the state:

γ(s) =
{

η if R(s, a) > 0,
1 otherwise, (2)

where 0 < η < 1 is a constant. Hence, (1) would reduce to

Uπ(s) = Eπ[
∞∑

n=0
γ(sn)N(sn) rn)|s0 = s], (3)

where N(sn) is the number of times a positive reward has been observed at state
sn and 0 < γ(s) ≤ 1 [103].4

Definition 4 (Optimal Policy). An optimal policy π∗ is defined as follows:

π∗(s) = arg sup
π∈D

Uπ(s),

where D is the set of stationary deterministic policies over the state space S

defined below. ⌟

Definition 5 (Semi-Deterministic Policy). We call a policy π : S×A→ [0, 1]
semi-deterministic if for some states, say s ∈ S̄ ⊂ S, the policy π is a uniform
distribution over a set of actions Λ(s) ⊆ A, i.e., π(s) = unif (Λ(s)). In this work,
whenever we talk about semi-deterministic policies, we assume that at any state
s ∈ S the set Λ(s) is the set of actions whose expected return is Uπ∗(s). In many
works this specific interpretation of semi-determinism is simply referred to as
policy determinism. However, a fully-deterministic policy is a special case of
semi-deterministic policies where Λ(s) is a singleton for all states s ∈ S. ⌟

3An episodic RL algorithm consists of several reset trajectories, at each of which the agent
re-starts from the initial state of the MDP.

4There are alternatives to this tuning strategy. For instance, [19] proposes state-dependent
tuning where the reward function also depends on the discount factor, while in this work the
reward function is independent of the discounting scheme.

6

An MDP M is said to be solved if the agent discovers an optimal policy
π∗ : S × A → [0, 1] that maximises the expected return. We show later in
the paper that synthesising a policy whose traces satisfy an LTL specification
with maximum probability on MDP M can be reduced to finding an optimal
semi-deterministic policy that maximises an expected return on an extended
MDP M′. In the following we review the syntax and semantics of LTL.

3.2. Linear Temporal Logic Properties
LTL is a rich task specification language that allows to express a wide range

of properties (e.g., temporal, sequential, conditional). In this work, we use LTL
specifications to formally and automatically shape a reward function which,
as we discuss later, would otherwise be tedious to express and to achieve by
conventional reward shaping methods.
Definition 6 (Path). In an MDP M, an infinite path ρ starting at s0 is a
sequence of states ρ = s0

a0−→ s1
a1−→ ... such that every transition si

ai−→
si+1 is possible in M, i.e., si+1 belongs to the smallest Borel set B such that
P (B|si, ai) = 1 (or in a finite-state MDP, si+1 is such that P (si+1|si, ai) > 0).
We might also denote ρ as s0.. to emphasise that ρ starts from s0. ⌟

Given a path ρ, the i-th state of ρ is denoted by ρ[i], where ρ[i] = si. Fur-
thermore, the i-th suffix of ρ is ρ[i..] where ρ[i..] = si

ai−→ si+1
ai+1−−−→ si+2

ai+2−−−→
si+3

ai+3−−−→ The language of LTL formulae over a given set of atomic proposi-
tions AP is syntactically defined as [111]

φ := true | α ∈ AP | φ ∧ φ | ¬φ | ⃝ φ | φ U φ,

where the operators ⃝ and U are called “next” and “until”, respectively. The
semantics of LTL formulae, as interpreted over MDPs, is discussed in the follow-
ing.
Definition 7 (LTL Semantics). For an LTL formula φ and for a path ρ in an
MDP M, the satisfaction relation ρ |= φ is defined as [111, 9]

ρ |= α ∈ AP⇔ α ∈ L(ρ[0]),
ρ |= φ1 ∧ φ2 ⇔ ρ |= φ1 ∧ ρ |= φ2,

ρ |= ¬φ⇔ ρ ̸|= φ,

ρ |=⃝φ⇔ ρ[1..] |= φ,

ρ |= φ1Uφ2 ⇔ ∃j ∈ N0 s.t. ρ[j..] |= φ2 ∧ ∀i, 0 ≤ i < j, ρ[i..] |= φ1.

⌟

The operator ⃝ (again, read as “next”) requires φ to be satisfied starting
from the next-state suffix of the path ρ. The operator U (“until”) is satisfied
over ρ if φ1 continuously holds until φ2 becomes true. By means of the until
operator we are furthermore able to define two temporal modalities: (1) eventually,
♢φ = true U φ; and (2) always, □φ = ¬♢¬φ. The intuition for ♢φ is that φ has
to become true at some finite point in the future, whereas □φ means that φ has

7

to remain true forever. An LTL formula φ over AP specifies the following set of
words:

Words(φ) = {σ ∈ (2AP)ω s.t. σ |= φ}. (4)

Definition 8 (Safety Fragment of LTL). Let us define an unsafe prefix of a
set of words, e.g., Words(·), as a finite word σfinite ∈ (2AP)∗ such that all infinite
extensions, i.e., σfinite(2AP)ω, are not in Words(·). The safety fragment of LTL
includes those formulae whose violating words has an unsafe prefix. ⌟

Definition 9 (Probability of Satisfying an LTL Formula). Starting from
any state s and following a stationary semi-deterministic policy π, we denote
the probability of satisfying formula φ as

Pr(s..π |= φ),

where s..π denotes the collection of all paths starting from state s, generated
under policy π. The maximum probability of satisfaction is also defined as:

Prmax(s0 |= φ) = sup
π∈D

Pr(s0..π |= φ).

⌟

Using an LTL formula we can now specify a set of constraints (i.e., re-
quirements, or specifications) over the traces of the MDP. Once a policy π is
selected, it dictates which action has to be taken at each state of the MDP M,
hence reducing the MDP to a Markov chain denoted by Mπ. For an LTL for-
mula φ, an alternative method to express the set Words(φ) in (4) is to employ
a Limit-Deterministic Generalised Büchi automaton (LDGBA) [126]. We first
define a Generalised Büchi Automaton (GBA), then we formally introduce the
LDGBA [126].
Definition 10 (Generalised Büchi Automaton). A GBA A = (Q, q0, Σ,F,
∆) is a structure where Q is a finite set of states, q0 ∈ Q is the initial state,
Σ = 2AP is a finite alphabet, F = {F1, ..., Ff} is the set of accepting conditions,
where Fj ⊂ Q, 1 ≤ j ≤ f , and ∆ : Q× Σ→ 2Q is a transition relation. ⌟

Let Σω be the set of all infinite words over Σ. An infinite word σ ∈ Σω is
accepted by a GBA A if there exists an infinite run θ ∈ Qω starting from q0
where θ[i + 1] ∈ ∆(θ[i], σ[i]), i ≥ 0 and for each Fj ∈ F

inf (θ) ∩ Fj ̸= ∅, (5)

where inf (θ) is the set of states that are visited infinitely often by the run θ.
Definition 11 (LDGBA). A GBA A = (Q, q0, Σ,F, ∆) is limit-deterministic if
Q can be partitioned into two disjoint sets Q = QN ∪ QD, such that [126]:

• QD is an invariant set: ∆(q, α) ⊂ QD and |∆(q, α)| = 1 for every state
q ∈ QD and for every α ∈ Σ,

8

q0start q1

q2

q3

QN

QD

a

εtrue

ε

a

b

Figure 2: LDGBA for the formula a ∧ ⃝(♢□a ∨ ♢□b).

• for every Fj ∈ F, Fj ⊂ QD,

• q0 ∈ QN , and all the transitions from QN to QD are non-deterministic
ε-transitions.

Unlike a standard transition in a GBA, which requires a non-empty set of
labels (see function ∆ in Definition 10), in an ε-transition this set can be empty,
which allows the automaton to change its state without reading any atomic
proposition. ⌟

Intuitively, an LDGBA is a GBA that has two partitions: initial (QN) and
accepting (QD). The accepting part includes all the accepting states and has
deterministic transitions. As an example, Fig. 2 shows the LDGBA constructed
for the formula φ = a ∧⃝(♢□a ∨ ♢□b).
Remark 1. The LTL-to-LDGBA algorithm used in this paper was proposed
in [126]. It results in an automaton with two parts (initial QN and accepting
QD), both of which use deterministic transitions. Additionally, there are non-
deterministic ε-transitions between them. According to Definition 11, the discussed
structure is still an LDGBA (the determinism in the initial part is stronger than
that required in the LDGBA definition). An ε-transition allows an automaton to
change its state without reading an input symbol. In practice, during an episode
of LCRL algorithm, whenever the agent reaches the boundary of QN , e.g., state
q1 in Fig. 2, the ε-transitions between QN and QD reflect the agent’s choices to
move to QD. The agent is free to choose any of these transitions as they do not
require the agent to read any atomic proposition. This is later clarified further in
Definition 13. ⌟

Definition 12 (Non-accepting Sink Component). A non-accepting sink
component of the LDGBA A = (Q, q0, Σ,F, ∆) is a directed graph induced by a
set of states Q ⊂ Q such that (1) the graph is strongly connected; (2) it does not

9

include all accepting sets Fk, k = 1, ..., f ; and (3) there exist no other strongly
connected set Q′ ⊂ Q, Q′ ≠ Q, such that Q ⊂ Q′. We denote the union of all
non-accepting sink components of A as N. ⌟

In the following we formally define the problem and discuss our proposed
architecture Logically-Constrained Reinforcement Learning (LCRL).

4. Logically-Constrained Reinforcement Learning

We are interested in synthesising a policy (or policies) for an unknown (black-
box) MDP via RL, such that the induced Markov chain satisfies a given LTL
property with maximum probability.

Assumption 1. In this paper, we assume that the MDP M is fully unknown,
and the learning agent has no prior knowledge about the transition kernel P . ⌟

In the following, in order to explain the core concepts of the algorithm and
for ease of exposition, let us abstractly assume for now that the MDP graph and
the associated transition probabilities are known. Later these assumptions are
entirely removed, and we stress that the algorithm can be run model-free. LCRL
thus targets the issue of “verified learning” at its core, namely the model-free
learning-based synthesis of policies that abide by a given LTL requirement.
Furthermore, in order to handle the general case of non-ergodic MDPs, LCRL
consists of several resets, at each of which the agent is forced to re-start from
the initial state of the MDP: each reset defines an episode, as such the algorithm
is known as “episodic RL”.

Problem 1. Given an MDP M and an LTL specification φ, we wish to find
an optimal policy π∗ ∈ D such that the probability of satisfying the specification
from any state is maximised, i.e., π∗ = arg supπ∈D Pr(sπ |= φ), ∀s ∈ S.
Furthermore, we would like to find the maximum probability of satisfaction
Prmax(s |= φ). ⌟

In order to tackle Problem 1, we first relate the MDP model and the LDGBA
constructed from the given LTL formula, by “synchronising” the two. This new
structure is, firstly, a good fit for RL and, secondly, it generates a model that
satisfies the given LTL property.
Definition 13 (Product MDP). Given an MDP M = (S,A, s0, P,AP, L) and
an LDGBA A = (Q, q0, Σ,F, ∆) with Σ = 2AP, the product MDP is defined as
(M⊗ A) = MA = (S⊗,A⊗, s⊗

0 , P ⊗,AP⊗, L⊗,F⊗), where S⊗ = S× Q, A⊗ = A,
s⊗

0 = (s0, q0), AP⊗ = Q, L⊗ : S⊗ → 2Q such that L⊗(s, q) = q and F⊗ ⊆ S⊗ is
the set of accepting states F⊗ = {F ⊗

1 , ..., F ⊗
f }, where F ⊗

j = S×Fj . The transition
kernel P ⊗ is such that given the current state (si, qi) and action a, the new state
is (sj , qj), where sj ∼ P (·|si, a) and qj ∈ ∆(qi, L(sj)). When the MDP M has a
finite state space, then P ⊗ : S⊗×A×S⊗ → [0, 1] is the transition probability func-
tion, such that (si

a−→ sj) ∧ (qi
L(sj)−−−→ qj)⇒ P ⊗((si, qi), a, (sj , qj)) = P (si, a, sj).

Furthermore, in order to handle ε-transitions we make the following modifications
to the above definition of product MDP:

10

• for every potential ε-transition to some state q ∈ Q we add a corresponding
action εq in the product:

A⊗ = A ∪ {εq, q ∈ Q}.

• the transition probabilities corresponding to ε-transitions are given by

P ⊗((si, qi), εq, (sj , qj)) =
{

1 if si = sj , qi
εq−→ qj = q,

0 otherwise.

⌟

Recall that an ε-transition between QN and QD corresponds in practical
terms to a “guess” on reaching QD. The intuition behind the above modification
is that, during an exploration episode, once the automaton state reaches the
edge of QN and an ε-transition is necessary, the product automaton treats this
ε-transition as an extra action that can be taken in the MDP. Accordingly, during
the RL exploration, if after an ε-transition the associated labels in the accepting
set of the automaton cannot be read or the accepting states cannot be visited,
then the guess is deemed wrong, and the exploration in RL is stopped.
Remark 2. In order to clearly explain the role of different components in
the proposed approach, we have employed model-dependent notions, such as
transition probabilities and the product MDP. However, we emphasise again
that the proposed approach can run “model-free”, and as such that it does not
depend on these components. In particular, as per Definition 11, the LDGBA is
composed of two disjoint sets of states QD (which is invariant) and QN , where
the accepting states belong to the set QD. Since all transitions are deterministic
within QN and QD, the automaton transitions can be executed simply by reading
the labels, which makes the agent aware of the automaton state without explicitly
constructing the product MDP. We will later define a reward function “on-the-
fly”, emphasising that the agent does not need to know the model structure or
transition probabilities. ⌟

Note that LTL is a temporal language and satisfying an LTL property requires
a policy that is possibly non-Markovian and has an embedded memory [28, 29].
By constructing the product MDP we add an extra dimension to the state space
of the original MDP, namely the states of the automaton representing the LTL
formula. The role of the added dimension is to track LTL satisfaction and, hence,
to synchronise the current state of the MDP with the state of the automaton:
this essentially converts the non-Markovian LTL policy synthesis problem over
the original MDP to a Markovian one over the product MDP.

In the following we briefly explain how a non-Markovian task can be broken
down into simple composable Markovian sub-tasks (or modules). Each state of
the automaton in the product MDP (Definition 13) is a “task divider” and each
transition between these states is a “sub-task”. For example consider a sequential
task of visit a and then b and finally c, i.e.,

♢(a ∧ ♢(b ∧ ♢c)).

11

q1start q2 q3 q4

¬a

a

¬b

b

¬c

c

c

Figure 3: LDGBA for a sequential mission task.

q0start q1

q2

q3

a

ε
true

ε

a

b

(a)

s0start

{a}

s1

{b}
0.9

0.1 a2 : 1

a1

(b)

(s0, q0)start (s1, q1) (s1, q2)

(s1, q3)

0.9

0.1 a2 : 1

εq2

εq3

a1

a2 : 1

(c)

Figure 4: Example of product MDP: (a) the LDGBA from Fig. 2 and (b) an MDP; (c) the
product of the MDP and the LDGBA, as per Definition 13. We rely on the observation [127]
that it is sufficient to take ε-transitions only from states in the max-end components of the
product of M and the initial partition of the LDGBA QN . Hence no ε-transitions have to be
produced in the initial state of MA.

The corresponding automaton for this LTL task is given in Fig. 3. The entire
task is modularised into three sub-tasks, i.e., reaching a, b, and then c, and each
automaton state acts as a divider. For each automaton state qi, RL needs to
focus only on the outgoing edges of qi. For instance, at q2 in Fig. 3, RL only
needs to find a policy whose traces satisfy the sub-formula ♢b. Fig. 4 illustrates
the construction of a product MDP with the generated LDGBA in Fig. 2.

The product MDP (e.g., Fig. 4) provides a structure that allows us to shape
a reward function for an RL algorithm, by leveraging the accepting condition of
the LDGBA. Such a reward function thus clearly relates to the satisfaction of
the given LTL formula. Before introducing such a reward assignment, we need to

12

define the ensuing function. Recall that a generalised Büchi automaton accepts
words that visit its accepting sets infinitely often. The role of the following
function is to track and output the subset of accepting sets that need to be
visited at any given time. Namely, during the learning process, we would like to
know precisely the set of labels that ought to be read (possibly once more), so
that by such repeated visitations the specified LTL task is eventually satisfied.
Definition 14 (Accepting Frontier Function). Let A = (Q, q0, Σ,F, ∆),
be an LDGBA where F = {F1, ..., Ff} is the set of accepting conditions, and
Fj ⊂ Q, 1 ≤ j ≤ f . Define the function Acc : Q × F → 2Q as the accepting
frontier function, which executes the following operation over a given set F ⊂ F

for every Fj ∈ F:

Acc(q,F) =

F\Fj (q ∈ Fj) ∧ (F ̸= {Fj}),

F\Fj (q ∈ Fj) ∧ (F = {Fj}) ∧ (F\Fj ̸= ∅),
F otherwise.

Once state q ∈ Fj and set F are fed to function Acc, it outputs a set containing
the elements of F minus Fj . However, if F = Fj , then the output is the family of
all accepting sets of the LDGBA minus the set Fj . Finally, if the state q is not
an accepting state, then the output of Acc is F. In short, the accepting frontier
function excludes from F the accepting set that is currently visited, unless it is
the only remaining accepting set. Otherwise, the output of Acc(q,F) is F itself.
What remains in F are those accepting sets that still need to be visited in order
to attain the generalised Büchi accepting condition, as per Definition 10. ⌟

As discussed before, the product MDP encompasses the transition relations
of the original MDP and the structure of the Büchi automaton, and it inherits
characteristics of both. Thus, a proper reward function leads the RL agent to
find a policy that is optimal, in the sense that it satisfies the LTL property φ
with maximal probability. We introduce an on-the-fly reward function that fits
the model-free RL architecture: when an agent observes the current state s⊗,
implements action a and observes the subsequent state s⊗′, the agent is given a
scalar reward, as follows:

R(s⊗, a) =
{

rp if q′ ∈ A, s⊗′ = (s′, q′),
rn otherwise. (6)

Here, rp > 0 is a positive reward and rn = 0 is a neutral reward. A positive
reward is assigned to the agent when it takes an action that leads to a state
with a label in A. The set A is called the accepting frontier set, is initialised as
the family of sets A = {Fk}f

k=1 = F, and is updated by the following rule every
time after the reward function is evaluated:

A← Acc(q′,A).

The set A always contains the set of accepting states that ought to be visited
at any given time: in this sense the reward function is “synchronous” with the

13

accepting condition set by the LDGBA. Thus, the agent is guided by the above
reward assignment to visit those states and once all the sets Fk, k = 1, ..., f,
are visited, the accepting frontier A is reset. As a consequence, as the agent
continuously explores, it is guided to visit all the accepting sets infinitely often
and is rewarded towards the satisfaction of the corresponding LTL property.
Considering the syntactic tree of the LTL property, by visiting each accepting set
Fk infinitely often, the agent satisfies the corresponding sub-formula of the LTL
formula. This means that, by guiding the agent to visit all the accepting sets, we
are essentially guiding the agent to move upwards in the syntactic tree towards
the satisfaction of the entire LTL property. We elaborate on the issue of partial
satisfaction of the LTL property in the supplementary material (Appendix B).

The reward structure depends on parameters rp = M + y ×m × rand(s⊗)
and rn = y×m× rand(s⊗). The parameter y ∈ {0, 1} is a constant, 0 < m≪M
are arbitrary positive values, and rand : S⊗ → (0, 1) is a function that generates
a random number in (0, 1) for each state s⊗ each time R is being evaluated. The
role of the function rand is to resolve possible symmetry issues5 when neural
nets are used for approximating the Q-function (namely, when the MDP state
space is continuous). Also, note that parameter y acts as a switch to bypass the
effect of the rand function on R when no neural net is used. Thus, this switch
is active y = 1 when the MDP state space is continuous, and disabled in other
cases y = 0.
Remark 3. As our implementation is model-free, note that when running the
proposed algorithm there is no need to “explicitly build” the product MDP and to
store all its states and transitions in memory. The automaton transitions can be
executed on-the-fly as the agent reads the labels of the MDP states. Namely, the
agent can track the automaton state by just looking at the trace that has been
read so far. The agent only needs to store the current state of the automaton and
observe the label at each step to check whether the automaton state has changed
or not. ⌟

In the following, we further elaborate on how the automaton state tracks the
evolution of the accepting frontier set A.

Proposition 1. Given an LTL formula φ and its associated LDGBA A =
(Q, q0, Σ,F, ∆), the set members of A only depend on the current state of the
automaton and not on the sequence of automaton states that have been already
visited. (proof in the supplementary materials)

Proposition 1 allows us to reason about the evolution of the accepting frontier
setA throughout the learning process. Specifically, the accepting sets are removed
from A upon visiting accepting sets in QD until all accepting sets are visited
at least once. This resets the accepting frontier set A (Definition 14), and thus

5If all weights in a feedforward net start with equal values and if the solution requires
unequal weights be learnt, the neural network might not proceed to learn. Identical weights
within the same hidden layer induce symmetries, which the neural net must break in order to
generalise, reduce redundancies on the weights, and optimise the loss function [70].

14

the agent receives a positive reward infinitely often for visiting accepting sets
as specified in (6). Given this reward structure, we show in the following that
the optimal policy generated by an RL scheme maximises, in the limit, the
probability of satisfying the LTL property.

Theorem 1. Let φ be the given LTL property and MA be the product MDP
constructed by synchronising the MDP M and the LDGBA A expressing φ. There
exists a discount factor that is close enough to 1 under which an optimal Markov
policy on MA that maximises the expected return over the reward in (6) also
maximises the probability of satisfying φ. This optimal Markov policy induces a
finite-memory policy on the MDP M. (proof in the supplementary materials)

Remark 4. Note that the projection of policy π∗ onto the state space of the
original MDP M yields a finite memory policy π∗

M. Thus, if the generated traces
under π∗ maximise the LTL satisfaction probability, so do the traces under
π∗
M. ⌟

Remark 5. The optimality of the policies generated using (deep) neural-network-
based approaches depends on a number of factors, such as the network structure,
number of hidden layers, and activation functions. Specifically, convergence
guarantees for such methods to a true optimal policy are not well developed and
quantification of the sub-optimality of the policy generated by these methods is
out of the scope of this work. ⌟

An interesting extension of Theorem 1 is the following corollary.

Corollary 1 (Maximum Probability of Satisfaction). From Definition 9, for a
discounting factor close enough to 1 the maximum probability of satisfaction at
any state s⊗ can be determined from the LCRL value function as

Prmax(s⊗ |= φ) = 1− η

rp
Uπ∗

(s⊗).

(proof in the supplementary materials)

Remark 6. As mentioned in Definition 5, semi-deterministic and deterministic
policies are used interchangeably in a number of works. However, in general,
at any state s⊗, there might be multiple actions Λ(s⊗) whose expected return
is Uπ∗(s⊗). An optimal action is then uniformly selected from Λ(s⊗) as per
Definition 5. Let us assume for the sake of simplicity that the action space is
finite and we expand the definition of the expected utility from Definition 3:

Prmax(s⊗ |= φ) = 1− η

rp
×

∑
a′∈Λ(s⊗)

1
|Λ(s⊗)|E

π∗
[∞∑

n=0
γ(s⊗

n)N(s⊗
n) rn

∣∣∣s⊗
0 = s⊗, a0 = a′

]
,

(7)

where 1/|Λ(s⊗)| is the probability of either of actions in Λ(s⊗) to be selected.
Since all the actions in Λ(s⊗) have the same expected return Uπ∗(s⊗), the

15

conditional expectation on the RHS of (7) is independent of a′. Thus, it can be
factored out from the summation:

Prmax(s⊗ |= φ) = 1− η

rp
Uπ∗

(s⊗)
∑

a′∈Λ(s⊗)

1
|Λ(s⊗)| .

Note that
∑

a′∈Λ(s⊗) 1/|Λ(s⊗)| = 1, which means that π∗ maximises the satisfac-
tion probability even when the optimal policy is semi-deterministic. In case when
the action space is not finite, the summation in (7) is an integral. ⌟

Theorem 2. Let n be the length of the formula φ, i.e., the size of its syntactic
tree or the number of ⃝ and U operators used in φ as per Definition 7. Then
for any LTL formula in the LTL\GU fragment, there exist an LDGBA with size
of only 2O(n) while an equivalent DRA has a size of 22O(n) [127, 79].

It is easy to find examples similar to the LTL\GU fragment [126] in addition
to efficient procedures for LDGBA complementation [17]. As per Theorem 2,
LDGBAs are much more succinct than DRAs, and hence in LCRL, the space
over which the learning is performed (i.e., MA) is O(|S||A|)2O(n). Given that
in principle an RL agent has to visit all the state-action pairs of the learning
space to converge [132], this exponential reduction in the size of MA significantly
improves convergence speed and sample efficiency. Note that, in the worst case,
LTL to LDGBA translation is doubly-exponential, which is just as expensive as
LTL to DRA, and therefore, LDBGAs are in practice smaller than DRAs.

As a concluding remark, notice that LCRL is a general policy synthesis
architecture that is adaptable to many off-the-shelf model-free RL algorithms.
The LCRL RL Engine in Fig. 1 is a good fit for a broad variety of RL schemes
that conform with the required state and action space cardinality and dimension.
Within the LCRL architecture, the MDP and LDGBA states are synchronised,
resulting in an on-the-fly product MDP. In the following sections we then discuss
the applicability of LCRL, and we present case studies to demonstrate the ease
of use, and scalability of the scheme.

5. Logically-Constrained Tabular RL

Recall that the simplest case in Definition 1 is when the MDP state space
and action space are both finite. This case, however, covers a significant number
of control applications. In this section we discuss and show LCRL, a model-free
RL architecture with discounted reward, can be efficiently employed for LTL
policy synthesis and quantitative model checking in finite MDPs.

Q-learning (QL) is the most extensively used RL algorithm for synthesising
optimal policies in finite-state MDPs [132]. In this section, the LCRL RL Engine
in Fig. 1 is QL: we run QL over the product MDP MA with the reward shaping
proposed in (6), where we have set y = 0. In order to also handle non-ergodic
MDPs, we propose to employ a variant of standard QL that consists of several
resets, at each of which the agent is forced to re-start from its initial state s0.

16

Each reset defines an episode, and hence the algorithm is called “episodic QL”.
However, for the sake of brevity, we omit the term “episodic” in the rest of the
paper and we use the term Logically-Constrained QL (LCQL).

For each state s⊗ ∈ S⊗ and for any available action a ∈ A⊗, QL assigns a
quantitative value Q : S⊗ ×A⊗ → R, which is initialised with an arbitrary and
finite value over all state-action pairs. As the agent starts receiving rewards and
learning, the Q-function is updated by the following rule for taking action a at
state s⊗:

Q(s⊗, a)←(1− µ)Q(s⊗, a) + µ
[
R(s⊗, a) + γ(s⊗) max

a′∈A⊗
(Q(s′⊗, a′))], (8)

where Q(s⊗, a) is the Q-value corresponding to state-action (s⊗, a), 0 < µ ≤ 1 is
called learning rate or step size, R(s⊗, a) is the reward obtained for performing
action a in state s, γ is the discount factor, and s′⊗ is the state obtained after
performing action a. The Q-function for the rest of the state-action pairs remains
unchanged.

Under mild assumptions over the learning rate [15, 147], for finite-state and
-action spaces QL converges to a unique limit. This unique limit is the expected
discounted reward by taking action a at state s, and following the optimal policy
afterwards. Let us call this limit Q∗. Once QL converges, an optimal policy
π∗ : S⊗ → A⊗ can be generated by selecting the action that yields the highest
Q∗, i.e.,

π∗(s⊗) ∈ arg max
a∈A

Q∗(s⊗, a).

Here π∗ corresponds to the optimal policy that can be generated via DP. This
means that when QL converges, we have

Q∗(s⊗, a) = R(s⊗, a) + γ(s⊗)
∑

s′⊗∈S⊗

P (s⊗, a, s′⊗)Uπ∗
(s′⊗),

where s′⊗ is the agent new state after choosing action a at state s⊗ such that
P (s′⊗|s⊗, a) > 0.

6. Logically-Constrained Neural Fitted Q-iteration

LCQL is focused on problems in which the set of states of the MDP and
the set of possible actions are both finite. Nonetheless, many interesting real-
world problems require actions to be taken in response to high-dimensional or
real-valued states [37]. We can collect a number of samples and only then apply
an approximation function that is constructed via regression over the set of
samples. The approximation function essentially replaces the conventional LCQL
state-action-reward look-up table by generalising over the state space of the MDP.
In this section, we extend the LCRL architecture to a model-free RL algorithm
based on Neural Fitted Q-iteration (NFQ), which can synthesise an optimal
policy for an LTL property when the given MDP has a continuous state space. We
replace the QL algorithm in LCRL RL Engine in Fig. 1 by NFQ to showcase the

17

Algorithm 1: Logically-Constrained QL
input : LTL specification, it threshold, γ, µ
output : π∗

1 initialize Q : S⊗ ×A⊗ → R+
0

2 convert the desired LTL property to LDGBA A
3 initialize A
4 initialize episode-number := 0
5 initialize iteration-number := 0
6 while Q is not converged do
7 episode-number + +
8 s⊗ = (s0, q0)
9 while (q /∈ N : s⊗ = (s, q)) & (iteration-number < it threshold) do

10 iteration-number + +
11 choose a∗ = π(s⊗) ∈ arg maxa∈A Q(s⊗, a) # ϵ−greedy or

softmax are applicable
12 move to s⊗

∗ = (s∗, q∗) by a∗
13 receive the reward R(s⊗, a∗)
14 A← Acc(q∗,A)
15 Q(s⊗, a∗)←

Q(s⊗, a∗) + µ[R(s⊗, a∗)−Q(s⊗, a∗) + γ(s⊗) maxa′(Q(s⊗
∗ , a′))]

16 s⊗ = s⊗
∗

17 end
18 end

flexibility of the LCRL architecture. We call this algorithm Logically-Constrained
NFQ (LCNFQ) and we show that the proposed architecture is efficient and is
compatible with RL algorithms that are core of recent developments in the
community. We have studied a number of alternative RL-based approaches to
LCNFQ in [60], and LCNFQ easily outperformed the competitors.

NFQ is an algorithm that employs feedforward neural networks [71] to
approximate the Q-function, namely to efficiently generalise or interpolate it
over the entire state space, exploiting a finite set of experience samples. This set
is called experience replay. Instead of the conventional QL update rule in (8),
NFQ introduces a loss function that measures the error between the current
Q-values Q(s, a) and their target value R(s, a) + γ max

a′
Q(s′, a′), namely

L = [Q(s, a)−R(s, a) + γ max
a′

Q(s′, a′)]2. (9)

In LCNFQ, the experience replay method is adapted to the product MDP
structure, over which we let the agent explore the MDP and reinitialise it when
a positive reward is received or when no positive reward is received after a given
number th of iterations. The parameter th is set manually according to the state
space of the MDP, allowing the agent to explore the MDP while keeping the size
of the sample set limited. All the traces that are gathered within episodes, i.e.,

18

Algorithm 2: Logically-Constrained NFQ
input : the set of experience samples E

output : approximated Q-function
1 initialise all neural nets Bqi with (s0, qi, a) as the input and rn as the

output where a ∈ A is a random action
2 repeat
3 for qi = |Q| to 1 do
4 Pqi

= {(inputl, targetl), l = 1, ..., |Eqi
|)}

5 inputl = (sl
⊗, al)

6 targetl = R(sl
⊗, al) + γ max

a′
Q(sl

⊗′
, a′)

7 where (sl
⊗, al, sl

⊗′
, R(sl

⊗, al), qi) ∈ Eqi

8 Bqi
← Rprop(Pqi

)
9 end

10 until end of trial

experiences, are stored in the form of (s⊗, a, s⊗′
, R(s⊗, a), q), where s⊗ = (s, q)

is the current state in the product MDP, a is the selected action, s⊗′ = (s′, q′)
is the subsequent state, and R(s⊗, a) is the reward gained as in (6) with y = 1
in rp. The set of past experiences is called the sample set E.

Once the exploration phase is completed and the sample set is created,
learning is performed over the sample set. In the learning phase, we propose a
hybrid architecture of n separate feedforward neural nets, each with one hidden
layer, where n = |Q| and Q is the finite cardinality of the automaton A6. Each
neural net is associated with a state in the LDGBA and for each automaton
state qi ∈ Q the associated neural net is called Bqi : S⊗ × A → R. Once
the agent is at state s⊗ = (s, qi), the neural net Bqi is used for the local
Q-function approximation. The set of neural nets acts as a global hybrid Q-
function approximator Q : S⊗ ×A→ R. Note that the neural nets are not fully
decoupled. For example, assume that by taking action a in state s⊗ = (s, qi)
the agent is moved to state s⊗′ = (s′, qj) where qi ̸= qj . According to (9) the
weights of Bqi are updated such that Bqi(s⊗, a) has minimum possible error
to R(s⊗, a) + γ maxa′ Bqj

(s⊗′
, a′). Therefore, the value of Bqj

(s⊗′
, a′) affects

Bqi
(s⊗, a).
Let qi ∈ Q be a state in the LDGBA. Then define Eqi := {(·, ·, ·, ·, x) ∈ E|x =

qi} as the set of experiences within E that are associated to state qi, i.e., Eqi is

6Different embeddings, such as the one-hot encoding [56] and the integer encoding, have
been applied in order to approximate the global Q-function with a single feedforward net.
However, we have observed poor performance since these encodings allow the network to
assume relationships between automaton states that might not agree with the automaton
structure. Clearly, this disrupts Q-function generalisation by assuming that some states in
product MDP are closer to each other. Consequently, we have turned to the use of n separate
neural nets, which work together in a hybrid fashion, meaning that the agent can switch
between these neural nets as it jumps from one automaton state to another.

19

the projection of E onto qi. Once the exploration phase is completed, each neural
net Bqi is trained based on the associated experience set Eqi . At each iteration
of training, a pattern set Pqi

is generated based on the experience set Eqi
:

Pqi
= {(inputl, targetl), l = 1, ..., |Eqi

|)},

where inputl = (sl
⊗, al) and targetl = R(sl

⊗, al) + γ maxa′ Q(sl
⊗′

, a′) such
that (sl

⊗, al, sl
⊗′

, R(sl
⊗, al), qi) ∈ Eqi . In each epoch of LCNFQ (Algorithm 2),

the pattern set Pqi
is used as the input-output set to train the neural net Bqi

.
In order to update the weights in each neural net, we use Rprop [118] for its
efficiency in batch learning [117]. The training schedule in the hybrid network
starts from individual networks that are associated with accepting states of the
automaton. The training sequence goes backward until it reaches the networks
that are associated to the initial states. By doing so, we allow the Q-value to
back-propagate through the connected networks. In Algorithm 2, without loss
of generality we assume that the automaton states are ordered and hence the
back-propagation starts from qi = |Q|. Despite the improvement in performance
and applicability, LCNFQ cannot deal with the most general case of MDPs, i.e.,
continuous state-action MDPs. Thus, in the following we extend LCRL towards
an online learning scheme that efficiently handles continuous state-action MDPs.

7. Modular Deep Actor-critic Learning

The previous section introduced LCNFQ, a model-free neural-fitted RL
scheme. LCNFQ exploits the positive effects of generalisation in feedforward nets.
Feedforward nets are efficient in predicting Q-values for state-action pairs that
have not been visited by interpolating between available data. This means that
the learning algorithm requires less experience and the learning process is thus
data efficient. However, LCNFQ is an offline learning algorithm, i.e., experience
gathering and learning happens separately. Furthermore, when dealing with
the most general case of MDPs, i.e., uncountably infinite-state and infinite-
action, LCNFQ is of limited use. An obvious approach to adapt LCNFQ to
continuous action domains is to discretise the action space. However, this has
many limitations such as loss of dynamics accuracy, and most importantly the
curse of dimensionality: the number of actions exponentially increases with the
number of degrees of freedom in the MDP.

Policy gradient methods, on the other hand, are online schemes that are
widely used in RL for MDPs with continuous action spaces. The general idea is to
represent the policy by a parametric probability distribution π(·|s, θπ) and then
adjusting the policy parameters θπ in the direction of the greatest cumulative
reward. This policy can of course be deterministic, but there is a crucial difference
between the stochastic and deterministic policy gradients [107]. From a practical
point of view, stochastic policy gradients require more experience samples. In this
work we focus on deterministic policies, as they are sufficient for most control
problems and because deterministic policy gradients are more efficient in terms
of sample complexity.

20

The actor-critic architecture is a widely used method based on the policy
gradient [132, 155], which consists of two interacting components: an actor
and a critic. The actor is the parametric policy π(·|s, θπ) (or π(s|θπ) when the
policy is deterministic), and the critic is an action-value function Q(s, a) that
guides the updates of parameters θπ in the direction of the greatest cumulative
reward. The Deterministic Policy Gradient (DPG) algorithm [129] introduces a
parameterised deterministic function π(s|θπ) as the actor to represent the current
policy by deterministically mapping states to actions, where θπ are the function
approximation parameters for the actor function. A parameterised action-value
function Q(s, a|θQ) is the critic and is learned as described next.

Assume that at time step n the agent is at state sn, takes action an, and
receives a scalar reward R(sn, an) as in (6) with y = 1 in rp. The action-value
function update is then approximated by parameterising Q using a parameter
set θQ, i.e., Q(sn, an|θQ), and by minimising the following loss function:

L(θQ) = Eπ
sn∼ρβ [(Q(sn, an|θQ)−Ξn)2], (10)

where ρβ is the probability distribution of state visits over S under any given
arbitrary stochastic policy β, and Ξn = R(sn, an) + γQ(sn+1, an+1|θQ). The
parameters of the actor π(s|θπ) are updated by applying the chain rule to the
expected return with respect to the actor parameters, which is approximated as
follows [129]:

∇θπ Uπ(sn) ≈ Esn∼pβ [∇θπ Q(s, a|θQ)|s=sn,a=π(sn|θπ)]
= Esn∼pβ [∇aQ(s, a|θQ)|s=sn,a=π(sn)∇θπ π(s|θπ)|s=sn

].

The results in [129] show that this is a policy gradient, and therefore we can apply
a policy gradient algorithm on the deterministic policy. Deep DPG (DDPG)
further extends DPG by employing a deep neural network as function approxi-
mator and updating the network parameters via a “soft update” method, similar
to [101], and is thoroughly explained later.

Given an LTL task and its LDGBA A = (Q, q0, Σ,F, ∆), we propose a modular
architecture of n = |Q| separate actor, actor-target, critic and critic-target neural
networks, along with separate replay buffers. For each automaton state qi, an
actor function µqi(s|θµqi) represents the current policy, where θµqi is the vector of
parameters of the function approximation for the actor. The critic Qqi(s, a|θQqi)
is learned based on (10).

The set of neural nets acts as a global modular actor-critic deep RL archi-
tecture, which allows the agent to jump from one sub-task to another by just
switching between the set of neural nets. The proposed modular DDPG algorithm
is detailed in Algorithm 3. Each actor-critic network set in this algorithm is
associated with its own replay buffer Eqi

, where qi ∈ Q (lines 4 and 12).
At each time-step, actor and critic are updated by sampling a mini-batch

of size M uniformly from Eqi
. We only train the actor-critic network set corre-

sponding to the current automaton state, as experience samples on the current
automaton state have little influence on other actor-critic networks (lines 12–17).

21

(a) (b)

Figure 5: (a) sample run by LCRL policy learnt for Task 3. (b) pacman-lrg—the square on the
left is labelled as food 1 (f1) and the one on the right as food 2 (f2), the state of being caught
by a ghost is labelled as (g) and the rest of the state space is neutral (n).

Further, directly implementing the update of the critic parameters as in (10)
is known to be potentially unstable, and as a result the Q-update (line 14) is
prone to divergence [100]. Hence, instead of directly copying the weights, the
standard DDPG [95] uses “soft” target updates to improve learning stability. The
target networks Q′ and µ′ are time-delayed copies of the original actor and critic
networks that slowly track the learned networks, Q and µ. These target actor
and critic networks are used within the algorithm to gather evidence (line 13)
and subsequently to update the actor and critic networks. In our algorithm, for
each automaton state qi we make a copy of the actor and the critic network,
denoted by µ′

qi
(s|θµ′

qi) and Q′
qi

(s, a|θQ′
qi), respectively. The weights of both

target networks are then updated by θ′ = τθ + (1 − τ)θ′ with a rate of τ < 1
(line 18).

8. Experimental Results

We have tested LCRL on a number of planning experiments that require
policy synthesis for a given temporal specification, both when the state and
action spaces are finite, and when they are continuous. Despite dealing with an
unknown MDP, we have observed that LCRL results are comparable to those
of model-checking methods whenever available, as will be discussed in detail in
this section. All the experiments are run on a standard PC, with an Intel Core
i5 CPU at 2.5 GHz × 4 and with 20 GB of RAM.

The experiments are listed in Table 1. For each MDP, the state space cardinal-
ity |S| and the action space cardinality |A| are given, and for each LTL property
the number of automaton states |Q| is reported. For each MDP-automaton
product pair, Table 1 presents the maximum probability of satisfaction of the
LTL objective at the initial state when using the strategy synthesised by LCRL.

22

Algorithm 3: Modular DDPG
input : LTL mission task φ, black-box model
output : actor and critic networks

1 convert the LTL property φ to LDGBA A = (Q, q0, Σ,F, ∆)
2 randomly initialise |Q| actors µi(s|θµi) and critic Qi(s, a|θQi) networks

with weights θµi and θQi , for each qi ∈ Q, and all state-action pairs
(s, a)

3 initialise |Q| corresponding target networks µ′
i and Q′

i with weights
θµ′

i = θµi , θQ′
i = θQi

4 initialise |Q| replay buffers Ei

5 repeat
6 initialise |Q| random processes Ni

7 initialise state s⊗
1 = (s0, q0)

8 for t = 1 to max iteration number do
9 choose action at = µqt

(st|θµqt) + Nqt

10 observe reward Rt and the new state (st+1, qt+1)
11 store ((st, qt), at, Rt, (st+1, qt+1)) in Eqt

12 sample a random mini-batch of M transitions
((si, qi), ai, Ri, (si+1, qi+1)) from Eqt

13 set Ξi = Ri + γQ′
qi+1

(si+1, µ′
qi+1

(si+1|θ
µ′

qi+1)|θQ′
qi+1)

14 update critic Qqt
and θQqt by minimising the loss:

L = 1/|M|
∑

i(Ξi −Qqt(si, ai|θQqt))2

15 update the actor policy µqt
and θµqt by maximising the sampled

policy gradient:
16 ∇θµqt Uµqt ≈ 1/|M|

∑
i[∇aQqt

(s, a|θQqt)|s=si,a=µqt (si|θµqt)
17 ∇θµqt µqt

(s|θµqt)|s=si
]

18 update the target networks: θQ′
qt ← τθQqt + (1− τ)θQ′

qt

θµ′
qt ← τθµqt + (1− τ)θµ′

qt

19 end
20 until end of trial

As a reference, we also compute the maximum satisfaction probability using the
PRISM model checker [83] and report it in the table, whenever computationally
feasible (the model checker has scalability limits, as expected, that prevent
completion on two of the benchmarks). The remaining columns give the values
of the hyper-parameters. All the reported results are the averages of ten learning
trials done with LCRL.

The minecraft environment, adopted from [7], requires solving challenging
low-level control tasks (minecraft-tX), and features many sequential high-level
goals. For instance, in minecraft-t3 (Fig. 5.a) the agent has to collect three
items sequentially, and to reach a final checkpoint, which is encoded as the

23

(a) (b)

Figure 6: (a) montezuma (Montezuma’s Revenge) initial frame (b) agent successfully unlocks a
door.

(a) (b)

Figure 7: (a) cart-pole experiment [134]; (b) learning curves (dark blue) obtained averaging
over 10 randomly initialised experiment, shaded areas (light blue) represent envelopes of 10
generated learning curves.

following LTL formula:

♢(wood ∧ ♢(grass ∧ ♢(iron ∧ ♢(craft table))))

The mars-rover problems are realistic benchmarks taken from [60, 63], and

24

Table 1: Learning results with LCRL. MDP state and action space cardinalities are |S| and
|A|, the number of automaton states in LDBA is denoted by |Q|, the optimal action value
function in the initial state is denoted by “LCRL maxa Q(s0, a)”, which represents the LCRL
estimation of the maximum satisfaction probability. For each experiment, the reported result
includes the mean and the standard error of ten learning trials with LCRL. This probability is
also calculated by the PRISM model checker [83], whenever the MDP model can be processed
by PRISM, and accordingly it is reported in the column “max sat. prob. at s0”. The closer
“LCRL maxa Q(s0, a)” and “max sat. prob. at s0” the better. Note that for continuous state-
action MDPs the maximum satisfaction probability cannot be precisely computed by model
checking tools, unless abstraction approximation techniques (outside of the scope of this work,
cf. [89]) are applied, hence “n/a”. Furthermore, if the MDP state (or action) space is large
enough, e.g. pacman, the process (either learning or model-checking) times out, i.e. “t/o”. The
column “episode num” presents the episode number in which LCRL converged, using LDBA
and also DRA as the underlying automaton. The rest of the columns provide the values of the
hyper-parameters across the different benchmarks.

experiment MDP LDBA LCRL maxa max sat. alg. episode iteration discount learning wall clock
|S|, |A| |Q| Q(s0, a) prob. at s0 num (LDBA/DRA) num max factor∗ rate† time⋆(min)

minecraft-t1 100, 5 3 0.991 ± 0.009 1 ‘ql’ 500/1000 4000 0.95 0.9 0.1
minecraft-t2 100, 5 3 0.991 ± 0.009 1 ‘ql’ 500/1000 4000 0.95 0.9 0.1
minecraft-t3 100, 5 5 0.993 ± 0.007 1 ‘ql’ 1500/6000 4000 0.95 0.9 0.25
minecraft-t4 100, 5 3 0.991 ± 0.009 1 ‘ql’ 500/1000 4000 0.95 0.9 0.1
minecraft-t5 100, 5 3 0.995 ± 0.005 1 ‘ql’ 500/1000 4000 0.95 0.9 0.1
minecraft-t6 100, 5 4 0.995 ± 0.005 1 ‘ql’ 1500/4200 4000 0.95 0.9 0.25
minecraft-t7 100, 5 5 0.993 ± 0.007 1 ‘ql’ 1500/6000 4000 0.95 0.9 0.5
mars-rover-1 ∞, 5 3 0.991 ± 0.002 n/a ‘nfq’ 50/170 3000 0.9 0.01 550
mars-rover-2 ∞, 5 3 0.992 ± 0.006 n/a ‘nfq’ 50/150 3000 0.9 0.01 540
mars-rover-3 ∞, ∞ 3 n/a n/a ‘ddpg’ 1000/3800 18000 0.99 0.05 14
mars-rover-4 ∞, ∞ 3 n/a n/a ‘ddpg’ 1000/3000 18000 0.99 0.05 12
mars-rover-5 ∞, ∞ 13 n/a n/a ‘ddpg’ 17e3/ t/0 25000 0.9 0.003 300
cart-pole ∞, ∞ 4 n/a n/a ‘ddpg’ 100/420 10000 0.99 0.02 1
montezuma ∞, 18 7 n/a n/a ‘dqn’ 400e3/ t/o 150e3 0.99 0.00025 >4000
robot-surve 25, 4 3 0.994 ± 0.006 1 ‘ql’ 500/1000 1000 0.95 0.9 0.1
slp-easy-sml 120, 4 2 0.974 ± 0.026 1 ‘ql’ 300/500 1000 0.99 0.9 0.1
slp-easy-med 400, 4 2 0.990 ± 0.010 1 ‘ql’ 1500/2700 1000 0.99 0.9 0.25
slp-easy-lrg 1600, 4 2 0.970 ± 0.030 1 ‘ql’ 2000/3500 1000 0.99 0.9 2
slp-hard-sml 120, 4 5 0.947 ± 0.039 1 ‘ql’ 500/1800 1000 0.99 0.9 1
slp-hard-med 400, 4 5 0.989 ± 0.010 1 ‘ql’ 4000/9000 2100 0.99 0.9 5
slp-hard-lrg 1600, 4 5 0.980 ± 0.016 1 ‘ql’ 6000/15000 3500 0.99 0.9 9
frozen-lake-1 120, 4 3 0.949 ± 0.050 0.9983 ‘ql’ 400/800 2000 0.99 0.9 0.1
frozen-lake-2 400, 4 3 0.971 ± 0.024 0.9982 ‘ql’ 2000/4100 2000 0.99 0.9 0.5
frozen-lake-3 1600, 4 3 0.969 ± 0.019 0.9720 ‘ql’ 5000/9400 4000 0.99 0.9 1
frozen-lake-4 120, 4 6 0.846 ± 0.135 0.9728 ‘ql’ 2000/9000 2000 0.99 0.9 1
frozen-lake-5 400, 4 6 0.735 ± 0.235 0.9722 ‘ql’ 7000/ t/o 4000 0.99 0.9 2.5
frozen-lake-6 1600, 4 6 0.947 ± 0.011 0.9467 ‘ql’ 5000/ t/o 5000 0.99 0.9 9
pacman-sml 729,000, 5 6 0.290 ± 0.035 t/o‡ ‘ql’ 80e3/400e3 4000 0.95 0.9 1600
pacman-lrg 4,251,000, 5 6 0.282 ± 0.049 t/o‡ ‘ql’ 180e3/ t/o 4000 0.95 0.9 3700

* coefficient η in (2) † learning rate µ ‡ timed out due to the state space
size ⋆ on a machine running macOS 11.6.5 with Intel Core i5 CPU at 2.5 GHz

and with 20 GB of RAM

the models feature uncountably infinite (continuous) state and action spaces.
Fig. 8.a gives the constructed automaton for mars-rover-5. The cart-pole
experiment (Fig. 7) is explained in [134, 63, 22], and the property of interest is
expressed by the LTL formula

□♢y ∧□♢g ∧□¬u.

The pole starts upright, and the goal is to prevent the pendulum from falling
over (□¬u), and to move the cart between the yellow (y) and green (g) regions
(□♢y ∧□♢g), while avoiding the red (unsafe) parts of the track (□¬u).

Atari 2600 Montezuma’s Revenge montezuma is an infamously hard explo-
ration problem. The task in montezuma (Fig 6.a) is to climb down to the floor
from the top of the middle ladder, jump over the skull, fetch the key and move
back up to open either doors. The example robot-surve is adopted from [119],
and the task is to visit two regions (A and B) in sequence, while avoiding multiple

25

q1start q2 q3 q4 q5 q6 q7 q8 q9 q10 q11

q13

q12

¬t1

t1

¬t2

t2 t3 t4 t5 t6 t7 t8 t9 t10 t11

¬t3 ¬t4 ¬t5 ¬t6 ¬t7 ¬t8 ¬t9 ¬t10 ¬t11

u
u

u
u

u u

u
u

u
u

u

t12

True

(a)

q0start

q1

q2

q4 q3

n

f1

f2

n ∨ f1

f2

n ∨ f2

f1

g

g

g
true true

(b)

q0start

q1

q2

¬B ∧ ¬C

B ∧ ¬A ∧ ¬C

A ∧ ¬C

B ∧ ¬A ∧ ¬C

¬A ∧ ¬C

¬B ∧ ¬C

(c)

Figure 8: LDBA for the specification in (a) mars-rover-5; (b) pacman-sml and pacman-lrg;
and (c) robot-surve.

obstacles (C) on the way: □♢A∧□♢B∧□¬C. The LDGBA expressing this LTL
formula is presented in Fig. 8.c. Models slp-easy and slp-hard are inspired by
the widely used noisy MDPs in [132, Chapter 6]: the goal in slp-easy is to reach
a particular region of the MDP, whereas the goal in slp-hard is to visit four
distinct regions sequentially in a given order. The frozen-lake benchmarks are
similar: the first three are reachability problems, whereas the last three require
sequential visits of four regions in the presence of unsafe regions as well. The
frozen-lake MDPs are adopted from the OpenAI Gym [21].

Finally, pacman-sml and pacman-lrg are inspired by the well-known Atari
game Pacman, and are initialised in a tricky configuration (pacman-lrg as in
Fig. 5.b) likely to lead to getting caught: to win the game the agent has to
collect all available tokens without being caught by moving ghosts. Formally,
the agent is required to choose between one of the two available foods and
then find the other one (♢[(f1 ∧ ♢f2) ∨ (f2 ∧ ♢f1)]) while avoiding the ghosts
(□¬g). We feed a conjunction of these associations to the agent by using the
following LTL formula♢[(f1 ∧♢f2)∨ (f2 ∧♢f1)]∧□¬g. The LDGBA expressing
this LTL formula is presented in Fig. 8.b. Standard QL failed to find a policy
with satisfying traces. Similar to LCRL, the reward function in standard QL is
positive if the agent manages to achieve the specified task, and zero otherwise.
However, one major difference is that the state space in standard QL is not

26

enriched with the automaton, and hence any generated policy is memoryless.

9. Related Work

The goal of control (policy) synthesis in finite-state/action MDPs, under
temporal logic specifications, has been considered in numerous works. In [150],
the property of interest is expressed in LTL and converted to a DRA to synthesise
a robust control policy. Specifically, a product MDP is constructed with the
resulting DRA and a modified DP is applied to the product MDP, maximising
the worst-case probability of satisfying the specification over all transition
probabilities. However, [150] assumes that the MDP is known a-priori. This
assumption is relaxed in [40] and transition probabilities in the given MDP model
are considered to be unknown. Instead, a Probably Approximately Correct MDP
(PAC MDP) is constructed and further multiplied by the logical property after
conversion to a DRA. The overall goal is to calculate a finite-horizon T -step
value function for each state such that the obtained value is within an error
bound from the probability of satisfying the given LTL property.

The goal of maximising the probability of satisfying unbounded-time reacha-
bility properties, when the MDP transition probabilities are unknown, is investi-
gated in [20]. The policy generation relies on approximate DP, which requires a
mechanism to approximate these probabilities (much like the PAC MDP above),
and the quality of the generated policy critically depends on the accuracy of
this approximation, which might require a large number of simulation runs.
Furthermore, the algorithm in [20] assumes prior knowledge about the smallest
transition probability in the MDP. Using an LTL-to-DRA conversion, the algo-
rithm given in [20] can be extended to the problem of control synthesis for LTL
specifications, at the expense of a double-exponential blow-up of the obtained
automaton.

Much in the same direction, if there exists a policy whose traces satisfy
the property with probability one, [119] employs a learning-based approach to
generate one such policy. As for [20], the algorithm in [119] hinges on approxi-
mating the transition probabilities, which affects precision and scalability of the
approach.

Our work on model-free RL for LTL has been first introduced in [58]. Since
then, growing research has been devoted to model-free RL with different kinds
of automata [25], including limit-deterministic Büchi automata [54, 19], where
different forms of reward schemes have been examined [92, 27, 98, 76, 75].
Specifically, [54] employs a limit-deterministic Büchi automata based on a Non-
deterministic Büchi Automaton (NBA) that is structurally different than [126]’s
LDGBA, used in this work. Bozkurt and others [19] extend upon the NBA-based
automata, by proposing an interleaving reward and discounting scheme, and [22]
employs policy gradient to tackle MDPs with high-dimensional state/action
spaces.

There has been significant interest also in specifying tasks in RL via sub-
fragments of LTL [138, 28, 29, 88] and other forms of temporal logic [77, 146, 10].
The problem of synthesising a policy that satisfies a temporal logic specification

27

and that at the same time optimises a performance criterion is considered
in [93, 133, 35, 149]. In [82], scLTL is proposed for mission specifications, which
results in Deterministic Finite Automata (DFAs). A product MDP is then
constructed and a linear programming solver is used to find optimal policies. [66,
97] synthesise DFAs on-the-fly in the context of deep RL and inverse RL, to infer
an scLTL property. Conversely, Mealy machines are inferred in [116] to represent
a temporal non-Markovian task in Monte Carlo tree search. PCTL specifications
are investigated in [84], where a linear optimisation solution is used to synthesise
a control policy. In [105], an automated method is proposed to verify and repair
the policies that are generated by RL with respect to a PCTL formula - the key
engine runs by feeding the Markov chain induced by the policy to a probabilistic
model checker. In [5], practical challenges of RL are addressed by letting the
agent plan ahead in real time using constrained optimisation.

In [149], the problem is separated into two sub-problems: extracting a (maxi-
mally) permissive strategy for the agent and then quantifying the performance
as a reward function and computing an optimal strategy for the agent within
the operating envelope allowed by the permissive strategy. Similarly, [74] first
computes safe, permissive strategies with respect to a reachability property.
Then, under these constrained strategies, RL is applied to synthesise a policy
that minimises an expected cost. The concept of shielding is employed in [3] to
synthesise a policy that ensures that the agent remains safe during and after
learning for a fully-deterministic reactive system. This approach is closely related
to teacher-guided RL [135]. In order to express the temporal specification, [3]
uses DFAs and then translates the problem into a safety game. The game is
played between the environment and the agent, where in every state of the game
the environment chooses an input, and then the agent selects an output. The
game is won by the agent if only safe states are visited during the play. However,
the generated policy always needs the shield to be online, as the shield maps
every unsafe action to a safe action. The work in [73] extends [3] to probabilistic
systems modelled as MDPs with adversarial uncontrollable agents. The general
assumption in [73] is that the controllable agent acquires full observations over
the MDP and the adversarial agent: unlike the proposed method in this work,
the RL scheme used in [73] is model-based and requires the agent to first build
a model of the stochastic MDP. The concept of a bounded-prescience shield
is proposed in [48] for analysing and ensuring the safety of deep RL agents in
Atari games. [41, 44, 42, 141] address safety-critical settings in the context of
cyber-physical systems, where the agent has to deal with a heterogeneous set
of models in model-based RL. [44] first generates a set of feasible models given
an initial model and data on runs of the system. With such a set of feasible
models, the agent has to learn how to safely identify which model is the most
accurate one. [43] further employs differential dynamic logic [110], a first-order
multimodal logic for specifying and proving properties of hybrid models.

Safe RL is an active area of research whose focus is on the efficient implemen-
tation of safety properties, and is mostly based on reward engineering [46, 12].
Our proposed method is related to work on safe RL, but cannot simply be
reduced to it, due to its generality and to its inherent structural differences. By

28

focusing on the safety fragment of LTL, the proposed scheme does not require the
reward function to be handcrafted. The reward function is automatically shaped
by exploiting the structure of the LDGBA and its generalised Büchi acceptance
condition. However, for the safety fragment of LTL the proposed automatic
reward shaping can be seen as a way of “modifying the optimisation criterion,”
as in [46]. Additionally, we would like to emphasise that our work cannot be
considered a Constrained MDP (CMDP) method, as the LTL satisfaction is
encoded in the expected return itself, while in CMDP algorithms the original
objective is separated from the constraint. In a nutshell, the proposed method
inherits reward engineering aspects that are standard in safe RL, however at the
same time it infuses notions from formal methods that allow guiding exploration
and certifying its outcomes. Note that safe RL in general is not equivalent to
ensuring agent safety during learning. Learning-while-being-safe by itself is a
semantically-different research area that has attracted considerable attention
recently, e.g., [112, 61, 12, 50, 140, 139, 26, 121, 99]

A relevant body of work had been done on both finite- and continuous-state-
action MDPs, when the MDP model is fully known [89]. Probabilistic reachability
over a finite horizon for hybrid continuous-state-action MDPs is investigated in [1],
where a DP-based algorithm is employed to produce safe policies. DFAs have
been employed in [136] to find an optimal policy for infinite-horizon probabilistic
reachability problems. FAUST2 [130], StocHy [31], and AMYTISS [87] deal with
uncountable-state MDPs by generating a discrete-state abstraction based on
the knowledge of the MDP model. Using probabilistic bi-simulation [53] showed
that abstraction-based model checking can be effectively employed to generate
control policies in continuous-state/action MDPs. Bounded LTL is proposed
in [94] as the specification language, and a policy search method is used for
synthesis. Automatic control approaches are also studied to deal with partially
infeasible LTL specifications [24, 23].

Statistical Model Checking (SMC) techniques have also been studied for
policy synthesis in MDPs, however they are not well suited to models that
exhibit non-determinism. This is due to the fact that SMC techniques often rely
on generation of random paths, which are not well-defined for an MDP with
non-determinism [18, 91]. Some SMC approaches proposed to resolve the MDP
non-determinism by using uniform distributions [36, 85] and others proposed
to consider all possible strategies [86, 68] and produced policies that are close
to an optimal one. Unlike RL, which improves its exploration policy during
learning, a constant random policy is expected to waste time and computational
resources to generate sample traces. Also, a trace is “only” used to reinforce
each state-action pair visited by the associated path if the trace satisfies the
property of interest. This is quite similar to Monte Carlo methods rather than
RL or DP. For this reason, SMC methods are not expected to scale as well
as RL. Further, sampling and checking of traces needs to be computationally
feasible: SMC techniques are effective with finite-horizon LTL properties, as
opposed to the focus of this work on infinite-horizon properties and full LTL.
The efforts on statistical model-checking of unbounded properties is limited to
a few specifications [154]. However, there have been some recent developments,

29

e.g., [68], that leverage RL to reduce the randomness in the policy.
This article summarises and extends material presented in earlier conference

publications [22, 60, 61, 62, 63, 64, 65], whilst presenting it in a more compre-
hensive manner and with a unique set of experiments. More specifically, in this
article we present and expand rigorous theoretical guarantees, upon which our
earlier work [22, 64] was established. This includes new definitions, propositions,
and theorems on automata and RL theory along with complexity analysis. Fur-
thermore, we present new experiments that are significantly more complicated
and sophisticated than those presented in [22, 64]—an example is the well-known
Atari game Montezuma’s Revenge which is still a hard problem for modern
AI solutions. These new experimental results are a significant improvement
over the results presented in [60, 61, 62, 63], and further support the claims on
performance, correctness, and sample efficiency [57].

10. Conclusions

We have proposed LCRL, a method for guiding the training of an RL
agent using a priori knowledge about the environment given in the form of an
LTL property, expressed via an automaton known as LDBA. This additional
knowledge, as we have observed in many experiments presented in this work,
improves training drastically. We have shown that the policy synthesised using
LCRL is guaranteed to maximise the probability of satisfying the LTL property:
this architecture is shown to be working across many environments, whether
with finite or continuous states and actions. This direct relationship between
the expected return of the policy generated using LCRL and the maximum
probability of satisfaction enables us to quantify the degree of safety of the
generated policy for any given state.

Good avenues for future work are problems in which the specification is
initially unknown and has to be discovered along the learning process [66].
Furthermore, there are relevant synergies between the use of LTL to guide an
agent and LTL to restrict the exploration of the agent during training (“learning
while staying safe”) [61]. Multi-agent setups, in which a (heterogeneous) set of
agents collaborate to satisfy an LTL formula is an interesting research direction
with various applications [55].

30

Appendices
A. Proofs

Before proving Proposition 1, let us present the following definition.
Definition 15 (G-sub-formula). Given an LTL property φ and a set of G-
sub-formulae G7 we define φ[G] the resulting formula when we substitute true
for every G-sub-formula in G and ¬true for other G-sub-formulae of φ. ⌟

Proposition 1. Given an LTL formula φ and its associated LDGBA A = (Q, q0,
Σ,F, ∆), the set members of A only depend on the current state of the automaton
and not on the sequence of automaton states that have been already visited.

proof.
Let G = {□ζ1, ...,□ζf} be the set of all G-sub-formulae of φ. Since elements of
G are sub-formulae of φ we can assume an ordering over G, so that if □ζi is
a sub-formula of □ζj , then j > i. In particular, □ζf is not a sub-formula any
G-sub-formula. The accepting component of the LDGBA QD is a product of f of
the DBAs {D1,, Df} called G-monitors, such that each Di = (Qi, qi0, Σ, Fi, δi)
expresses □ζi[G], where Qi is the state space of the i-th G-monitor, Σ = 2AP,
and δi : Qi × Σ → Qi [126]. Note that ζi[G] has no G-sub-formula any more
(Definition 15). The states of the G-monitor Di are pairs of formulae where at
each state the the G-monitor only checks if the run satisfies □ζi[G] while putting
the next G-sub-formula in the ordering of G on hold, assuming that it is true.

The product of G-monitor DBAs is a deterministic generalised Büchi au-
tomaton:

PD = (QD, qD0, Σ,F, δ)

where QD = Q1 × ...× Qf , Σ = 2AP, F = {F1, ..., Ff}, and δ = δ1 × ...× δf .
As shown in [126], while a word w is being read by the accepting component

of the LDGBA, the set of G-sub-formulae that hold is “monotonically” expanding.
If w ∈Words(φ), then eventually all G-sub-formulae become true. Now, let the
current state of the automaton be qD = (q1, ..., qi, ..., qf) while the automaton is
checking whether □ζi[G] is satisfied or not, assuming that □ζi+1 is already true
(though needs to be checked later), while all G-monitors □ζj [G], 1 ≤ j ≤ i−1 have
accepted w. At this point, the accepting frontier set is A = {Fi, Fi+1, ..., Ff}.
Reasoning by contradiction, assume that the automaton returns to qD but
A ≠ {Fi, Fi+1, ..., Ff}, then at least one accepting set Fj , j > i has been
removed from A. This means that □ζj is a sub-formula of □ζi, violating the
ordering of check on G. This is a contradiction with respect to the ordering of
G-sub-formulae.

7A G-sub-formula is a sub-formula of φ of the form □(·).

31

Theorem 3. Let φ be the given LTL property and MA be the product MDP
constructed by synchronising the MDP M and the LDGBA A expressing φ. There
exists a discount factor that is close enough to 1 under which an optimal Markov
policy on MA that maximises the expected return over the reward in (6), also
maximises the probability of satisfying φ. This optimal Markov policy induces a
finite-memory policy on the MDP M.

proof.
Assume that there exists a policy π that satisfies φ with maximum (non-zero)
probability. Policy π induces a Markov chain Mπ

A when it is applied over the MDP
MA. This Markov chain comprises a disjoint union between a set of transient
states Tπ and h sets of irreducible recurrent classes Ri

π, i = 1, ..., h [39], namely:

Mπ
A = Tπ ⊔R1

π ⊔ ... ⊔Rh
π.

From (5), policy π satisfies φ if and only if:

∃Ri
π s.t. ∀j ∈ {1, ..., f}, F ⊗

j ∩Ri
π ̸= ∅. (11)

The recurrent classes that satisfy (11) are called accepting. From the irre-
ducibility of the recurrent class Ri

π we know that all the states in Ri
π communicate

with each other thus, once a trace ends up in such set, all the accepting sets
are going to be visited infinitely often. Therefore, from the definition of A and
of the accepting frontier function (Definition 14), the agent receives a positive
reward rp ever after it has reached an accepting recurrent class Ri

π.
There are two other possibilities concerning the remaining recurrent classes

that are not accepting. A non-accepting recurrent class, name it Rk
π, either

1. has no intersection with any accepting set F ⊗
j , i.e.

∀j ∈ {1, ..., f}, F ⊗
j ∩Rk

π = ∅;

2. or has intersection with some of the accepting sets but not all of them, i.e.

∃J ⊂ 2{1,...,f} \ {1, ..., f} s.t. ∀j ∈ J, F ⊗
j ∩Rk

π ̸= ∅. (12)

In the second case, the agent is able to visit some accepting sets but not
all of them. This means that in the update rule of the frontier accepting set A
in Definition 14, the case where (q ∈ Fj) ∧ (A = Fj) will never happen since
there exist always at least one accepting set that has no intersection with Rk

π.
Therefore, after a limited number of times, no positive reward can be obtained,
and the reinitialisation of A in Definition 14 is blocked.

Recall Definition 3, where the expected return for a state s⊗ ∈ S⊗ is defined
as in (2) and (3):

Uπ(s⊗) = Eπ[
∞∑

n=0
γ(s⊗

n)N(s⊗
n) rn)|s⊗

0 = s⊗],

32

In both cases, from (6), for any arbitrary rp > 0 (and rn = 0), there always
exists a discounting coefficient η such that the expected return of a trace reaching
Ri

π with unlimited number of successive times attaining positive reward, is higher
than the expected return of any other trace. With unlimited number of obtaining
positive reward for the traces entering the accepting recurrent class Ri

π, and
with a state-dependent discount factor, it can be shown that the expected return
is bounded and is higher than that for non-accepting traces, which have limited
number of attainment of positive rewards.

In the following, by contradiction, we show that any optimal policy π∗ which
optimises the expected return will satisfy the property with maximum probability
if η is close to one. Recall from Definition 9 that the probability of satisfying φ
under policy π at state s⊗ is:

Pr(s⊗..
π |= φ),

where s⊗..
π is the collection of all paths starting from s⊗ under policy π. Thus,

for the policy π we have:

π = arg sup
π∈D

Pr(s⊗..
π |= φ). (13)

Accordingly, the expected return for for policy π can be rewritten as:

Uπ(s⊗) =

Eπ
[∞∑

n=0
γ(s⊗

n)N(s⊗
n) rn

∣∣∣s⊗
0 = s⊗, ρ = L(s0)L(s1)... |= φ

]
Pr(s⊗..

π |= φ)+

Eπ
[∞∑

n=0
γ(s⊗

n)N(s⊗
n) rn

∣∣∣s⊗
0 = s⊗, ρ = L(s0)L(s1)... ̸|= φ

]
Pr(s⊗..

π ̸|= φ).

(14)

Of course, when the policy traces satisfy the property, with unlimited number of
positive reward attainment the expected return under (2) is

Eπ
[∞∑

n=0
γ(s⊗

n)N(s⊗
n) rn

∣∣∣s⊗
0 = s⊗, ρ = L(s0)L(s1)... |= φ

]
×

Pr(s⊗..
π |= φ) = rp

1− η
Pr(s⊗..

π |= φ).
(15)

Once the induced traces do not satisfy the property we have:

Eπ
[∞∑

n=0
γ(s⊗

n)N(s⊗
n) rn

∣∣∣s⊗
0 = s⊗, ρ = L(s0)L(s1)... ̸|= φ

]
×

Pr(s⊗..
π ̸|= φ) =

∑
ρ∈L(s⊗..π ̸|=φ)

Pr(ρ ∈ L(s⊗..
π ̸|= φ))rp(1− η|J|ρ)

1− η
,

(16)

where |J |ρ is the (finite) number of times that the trace ρ intersected with the
accepting frontier set A and the agent received a positive reward (see (12)).

33

From (15) and (16) we can reformulate (14) as follows:

Uπ(s⊗) = rp

1− η
Pr(s⊗..

π |= φ)+

∑
ρ∈L(s⊗..π ̸|=φ)

Pr(ρ ∈ L(s⊗..
π ̸|= φ))rp(1− η|J|ρ)

1− η
.

(17)

Similarly for the optimal policy π∗ we have

Uπ∗
(s⊗) = rp

1− η
Pr(s⊗..

π∗

|= φ)+

∑
ρ∈L(s⊗..π∗ ̸|=φ)

Pr(ρ ∈ L(s⊗..
π∗

̸|= φ))rp(1− η|J∗|ρ)
1− η

,
(18)

where |J∗|ρ is the (finite) number of times that the trace ρ intersected with the
accepting frontier set A. We then factorise rp/1− η from (17) and (18):

Uπ(s⊗) =
rp

1− η

[
Pr(s⊗..

π |= φ) +
∑

ρ∈L(s⊗..π ̸|=φ)

Pr(ρ ∈ L(s⊗..
π ̸|= φ))(1− η|J|ρ)

]
. (19)

Uπ∗
(s⊗) =

rp

1− η

[
Pr(s⊗..

π∗

|= φ) +
∑

ρ∈L(s⊗..π∗ ̸|=φ)

Pr(ρ ∈ L(s⊗..
π∗

̸|= φ))(1− η|J∗|ρ)
]
. (20)

Now suppose that the optimal policy π∗ does not satisfy the property φ with
maximum probability. Given that π maximises the satisfaction probability, from
(13) we have:

Pr(s⊗..
π |= φ) > Pr(s⊗..

π∗

|= φ). (21)

At the same time, it is easy to see from (19) and (20) that:

lim
η→1−

Uπ(s⊗)
Uπ∗(s⊗) = Pr(s⊗..

π |= φ)
Pr(s⊗..π

∗ |= φ)
,

and consequently from (21):

Uπ(s⊗) > Uπ∗
(s⊗)

This is, however, in direct contrast with Definition 4 and the optimality of the
policy π∗, leading to a contradiction. This essentially means that the optimal
policy π∗ maximises the probability of satisfying φ.

34

Corollary 2 (Maximum Probability of Satisfaction). From Definition 9, for a
discounting factor close enough to 1 the maximum probability of satisfaction at
any state s⊗ can be determined from the LCRL value function as

Prmax(s⊗ |= φ) = 1− η

rp
Uπ∗

(s⊗).

proof.
The proof is a direct consequent of (20) and Theorem 3 results when η → 1−.

35

Corollary 3. If no policy in the MDP M can be generated to satisfy the
property φ, LCRL yields in the limit a policy that is closest (according to the
previous Definition) to satisfying the given LTL formula φ.

proof.
Assume that there exists no policy in the MDP M that can satisfy the property φ.
Construct the induced Markov chain Mπ

A for any arbitrary policy π and its
associated set of transient states Tπ and h sets of irreducible recurrent classes Ri

π:

Mπ
A = Tπ ⊔R1

π ⊔ ... ⊔Rh
π.

By assumption, policy π cannot satisfy the property and we thus have that

∀Ri
π, ∃j ∈ {1, ..., f}, F ⊗

j ∩Ri
π = ∅,

which means that there are some automaton accepting sets like Fj that cannot be
visited. Therefore, after a limited number of times no positive reward is given by
the reward function R(s⊗, a). However, the closest recurrent class to satisfying
the property is the one that intersects with more distinct accepting sets. More
specifically, this is the recurrent class whose runs can partially satisfy φ. From
the LDGBA construction [126], by examining the accepting sets that are visited
in this recurrent class we can also determine which sub-formula of φ is satisfiable
by π.

By Definition 3, for any arbitrary rp > 0 (and rn = 0), the expected
return at the initial state for a trace with highest number of intersections with
distinct accepting sets is maximum among other traces. Hence, an optimal policy
produced by LCRL converges to a policy whose recurrent classes of its induced
Markov chain have the highest number of intersections with the accepting sets
of the automaton.

36

B. Partial Satisfaction

Definition 16 (Closeness to Satisfaction). Assume that the probability of
satisfying the property φ for two policies π1 and π2 is zero. Accordingly, there are
accepting sets in the automaton that have no intersection with runs of induced
Markov chains Mπ1 and Mπ2 . We say that π1 is closer to satisfying the property
if runs of Mπ1 cross a larger number of distinct accepting sets of the automaton,
than runs of Mπ2 . ⌟

In the following we show that even when it is infeasible to satisfy the given
LTL specification, LCRL is able to find a policy whose traces are closest to
satisfying φ. Specifically, depending on whether some accepting sets can be visited
infinitely often, the LTL property can be partially satisfied, i.e. a sub-formula
of φ.

Corollary 4. If no policy in the MDP M can be generated to satisfy the
property φ, LCRL yields in the limit a policy that is closest (according to the
previous Definition) to satisfying the given LTL formula φ.

proof.
Assume that there exists no policy in the MDP M that can satisfy the property φ.
Construct the induced Markov chain Mπ

A for any arbitrary policy π and its
associated set of transient states Tπ and h sets of irreducible recurrent classes Ri

π:

Mπ
A = Tπ ⊔R1

π ⊔ ... ⊔Rh
π.

By assumption, policy π cannot satisfy the property and we thus have that

∀Ri
π, ∃j ∈ {1, ..., f}, F ⊗

j ∩Ri
π = ∅,

which means that there are some automaton accepting sets like Fj that cannot be
visited. Therefore, after a limited number of times no positive reward is given by
the reward function R(s⊗, a). However, the closest recurrent class to satisfying
the property is the one that intersects with more distinct accepting sets. More
specifically, this is the recurrent class whose runs can partially satisfy φ. From
the LDGBA construction [126], by examining the accepting sets that are visited
in this recurrent class we can also determine which sub-formula of φ is satisfiable
by π.

By Definition 3, for any arbitrary rp > 0 (and rn = 0), the expected
return at the initial state for a trace with highest number of intersections with
distinct accepting sets is maximum among other traces. Hence, an optimal policy
produced by LCRL converges to a policy whose recurrent classes of its induced
Markov chain have the highest number of intersections with the accepting sets
of the automaton.

37

C. Comparison with a DRA-based Learning Algorithm

The problem of policy synthesis with RL under LTL constraints is investigated
in several previous works, where the general recipe is to translate the LTL
property into a DRA and then to construct a product MDP. For the sake of
comparison, let us consider the example in [119]: a 5× 5 grid world where the
starting state is (0, 3)and the agent has to visit two regions infinitely often (areas
A and B in Fig. 10). The agent has to also avoid the area C. This property can
be encoded as the following LTL formula:

□♢A ∧□♢B ∧□¬C. (22)

q0start

q1

q2

¬B ∧ ¬C

B ∧ ¬A ∧ ¬C

A ∧ ¬C

B ∧ ¬A ∧ ¬C

¬A ∧ ¬C

¬B ∧ ¬C

Figure 9: LDGBA expressing the LTL formula in (22) with removed transitions labelled A ∧ B
(since it is impossible to be at A and B at the same time).

Figure 10: (a) Example considered in [119]. (b) Trajectories under the policy generated by
LCRL in [119].

The product MDP in [119] contains 150 states, which means that the Rabin
automaton has 6 states. Fig. 10.a shows the trajectories under the optimal policy
generated by [119] algorithm after 600 iterations. However, by employing LCRL

38

we are able to generate the same trajectories with only 50 iterations (Fig. 10.b).
The automaton that we consider is an LDGBA with only 3 states as in Fig. 9.
This result in a smaller product MDP and a much more succinct state space
(only 75 states) for the algorithm to learn, which consequently leads to a faster
convergence.

In addition, the reward shaping in LCRL is significantly simpler thanks
to the Büchi acceptance condition. In a DRA R(Q,Q0, Σ,F, ∆), the set F =
{(G1, B1), . . . , (GnF

, BnF
)} represents the acceptance condition in which Gi,

Bi ∈ Q for i = 1, . . . , nF . An infinite run θ ∈ Qω starting from Q0 is accepting if
there exists i ∈ {1, . . . , nF } such that

inf (θ) ∩Gi ̸= ∅ and inf (θ) ∩Bi = ∅.

Therefore for each i ∈ {1, . . . , nF } a separate reward assignment is needed
in [119] which complicates the implementation and increases the required calcu-
lation costs. This complicated reward assignment is not needed by employing
the accepting frontier function in our scheme.

More importantly, LCRL is a model-free learning algorithm that does not
require an approximation of the transition probabilities of the underlying MDP.
This even makes LCRL more easier to employ. We would like to emphasize that
LCRL convergence proof solely depends on the structure of the MDP and this
allows LCRL to find satisfying policies even if they have probability of less than
one.

39

D. Alternatives to LCNFQ

In the following, we discuss the most popular alternative approaches to
solving infinite-state MDPs, namely the Voronoi Quantiser (VQ) and Fitted
Value Iteration (FVI).

D.1. Voronoi Quantiser
VQ can be classified as a discretisation algorithm which abstracts the

continuous-state MDP to a finite-state MDP, allowing classical RL to be run.
However, most of discretisation techniques are usually done in an ad-hoc manner,
disregarding one of the most appealing features of RL: autonomy. In other words,
RL is able to produce the optimal policy with regards to the reward function,
with minimum supervision. Therefore, the state space discretisation should be
performed as part of the learning task, instead of being fixed at the start of the
learning process.

Inspired by [90], we propose a version of VQ that is able to discretise the
state space of the product MDP S⊗, while allowing RL to explore the MDP.

Algorithm 4: Episodic VQ
input : minimum resolution ∆
output : approximated Q-function Q

1 initialize c1 = c = initial state
2 initialize Q(c1, a) = 0, ∀a ∈ A

3 repeat
4 set C = c1
5 a∗ = arg maxa∈A Q(c, a)
6 repeat
7 execute action a∗ and observe the next state (s′, q)
8 if Cq is empty then
9 append cnew = (s′, q) to Cq

10 initialize Q(cnew, a) = 0, ∀a ∈ A

11 else
12 determine the nearest neighbour cnew within Cq

13 if cnew = c then
14 if ||c − (s′, q)||2 > ∆ then
15 append cnew = (s′, q) to Cq

16 initialize Q(cnew, a) = 0, ∀a ∈ A

17 end
18 else
19 Q(c, a∗) = (1 − µ)Q(c, a∗) + µ[R(c, a∗) + γ max

a′
(Q(cnew, a′))]

20 end
21 end
22 c = cnew

23 until end of trial
24 until end of trial

40

VQ maps the state space onto a finite set of disjoint regions called Voronoi
cells [145]. The set of centroids of these cells is denoted by C = {ci}m

i=1, ci ∈ S⊗,
where m is the number of the cells. With C, we are able to use QL and find an
approximation of the optimal policy for a continuous-state MDP.

In the beginning, C is initialised to consist of just one c1, which corresponds
to the initial state. This means that the agent views the entire state space as
a homogeneous region when no a-priori knowledge is available. Assuming that
states are represented by vectors, when the agent explores this unknown state
space, the Euclidean norm of the distance between each newly visited state and
its nearest neighbour can calculated. If this norm is greater than a threshold value
∆ called “minimum resolution”, or if the new state s⊗ comprises an automaton
state that has never been visited, then the newly visited state is appended to C.
Therefore, as the agent continues to explore, the size of C would increase until
the “relevant” parts of the state space are partitioned. In our algorithm, the set
C has |Q| disjoint subsets where Q is the finite set of states of the automaton.
Each subset Cqj , j = 1, ..., |Q| contains the centroids of those Voronoi cells that
have the form of c

qj

i = (·, qj), i.e.
⋃m

i c
qj

i = Cqj and C =
⋃|Q|

j=1 C
qj . Therefore, a

Voronoi cell

{(s, qj) ∈ S⊗, ||(s, qj)− c
qj

i ||2 ≤ ||(s, qj)− c
qj

i′ ||2},

is defined by the nearest neighbour rule for any i′ ̸= i. The proposed VQ
algorithm is presented in Algorithm 4.

D.2. Fitted Value Iteration
FVI is an approximate DP algorithm for continuous-state MDPs, which

employs function approximation techniques [49]. In standard DP the goal is to
find a mapping, i.e. value function, from the state space to R, which can generate
the optimal policy. The value function in our setup is the expected reward in (1)
when π is the optimal policy, i.e. Uπ∗ . Over continuous state spaces, analytical
representations of the value function are in general not available. Approxima-
tions can be obtained numerically through approximate value iterations, which
involve approximately iterating a Bellman operator on a an approximate value
function [131].

We propose a modified version of FVI that can handle the product MDP. The
global value function v : S⊗ → R, or more specifically v : S× Q→ R, consists of
|Q| number of components. For each qj ∈ Q, the sub-value function vqj : S→ R
returns the value the states of the form (s, qj). Similar to the LCNFQ algorithm,
the components are not decoupled.

Let P ⊗(dy|s⊗, a) be the distribution over S⊗ for the successive state given
that the current state is s⊗ and the selected action is a. For each state (s, qj),
the Bellman update over each component of value function vqj is defined as:

τvqj (s) = sup
a∈A

{
∫

v(y)P ⊗(dy|(s, qj), a)}, (23)

41

Algorithm 5: FVI
input : MDP M, a set of samples {s⊗

i }k
i=1 = {(si, qj)}k

i=1 for each qj ∈ Q,
Monte Carlo sampling number Z, smoothing parameter h′

output : approximated value function Lv
1 initialize Lv

2 sample YZ
a (si, qj), ∀qj ∈ Q, ∀i = 1, ..., k , ∀a ∈ A

3 repeat
4 for j = |Q| to 1 do
5 ∀qj ∈ Q, ∀i = 1, ..., k , ∀a ∈ A calculate

Ia((si, qj)) = 1/Z
∑

y∈YZ
a (si,qj) Lv(y) using (25)

6 for each state (si, qj), update vqj (si) = supa∈A{Ia((si, qj))} in (25)
7 end
8 until end of trial

where τ is the Bellman operator [69]. The update in (23) is different than the
standard Bellman update in DP, as it does not comprise a running reward, and
as the (terminal) reward is replaced by the following function initialization:

v(s⊗) =
{

rp if s⊗ ∈ A,
rn otherwise. (24)

The main hurdle in executing the Bellman operator in continuous state MDPs,
as in (23), is that no analytical representations of the value function v and of
its components vqj , qj ∈ Q are in general available. Therefore, we employ an
approximation method, by introducing a new operator L.

The operator L provides an approximation of the value function, denoted by
Lv, and of its components vqj , which we denote by Lvqj . For each qj ∈ Q the
approximation is based on a set of points {(si, qj)}k

i=1 ⊂ S⊗ which are called
centres. For each qj , the centres i = 1, ..., k are distributed uniformly over S.

In the proposed FVI algorithm, we employ the kernel averager method [131],
which can be represented by the following expression for each state (s, qj):

Lv(s, qj) = Lvqj (s) =
∑k

i=1 K(si − s)vqj (si)∑k
i=1 K(si − s)

, (25)

where the kernel K : S→ R is a radial basis function, such as e−|s−si|/h′ , and
h′ is smoothing parameter. Each kernel is characterised by the point si, and its
value decays to zero as s diverges from si. This means that for each qj ∈ Q the
approximation operator L in (25) is a convex combination of the values of the
centres {si}k

i=1 with larger weight given to those values vqj (si) for which si is
close to s. Note that the smoothing parameter h′ controls the weight assigned to
more distant values.

In order to approximate the integral in the Bellman update (23) we use
a Monte Carlo sampling technique [125]. For each centre (si, qj) and for each
action a, we sample the next state yz

a(si, qj) for z = 1, ..., Z times and append

42

these samples to the set of Z subsequent states YZ
a (si, qj). We then replace the

integral with

Ia(si, qj) = 1
Z

Z∑
z=1

Lv(yz
a(si, qj)). (26)

The approximate value function Lv is initialised according to (24). In each
loop in FVI, the Bellman update approximation is first executed over those
sub-value functions that are linked with the accepting states of the LDGBA, i.e.
those that have an initial value of rp. The approximate Bellman update then
goes backward until it reaches those sub-value functions that are linked with the
initial states of the automaton. This allows the state values to back-propagate
through the product MDP transitions that connects the sub-value function
via (26). Without loss of generality we assume that the automaton states are
ordered and hence the back-propagation starts from qi = |Q|. Once we have the
approximated value function, we can generate the optimal policy by following
the maximum value (Algorithm 5).

We conclude this section by emphasising that Algorithms 4 and 5 are proposed
to be benchmarked against LCNFQ. Further, MDP abstraction techniques such
as [130] failed to scale and to find an optimal policy.

43

References

[1] A. Abate, M. Prandini, J. Lygeros, and S. Sastry. Probabilistic reacha-
bility and safety for controlled discrete time stochastic hybrid systems.
Automatica, 44(11):2724–2734, 2008.

[2] P. Abbeel, A. Coates, M. Quigley, and A. Y. Ng. An application of
reinforcement learning to aerobatic helicopter flight. NeurIPS, 19:1, 2007.

[3] M. Alshiekh, R. Bloem, R. Ehlers, B. Könighofer, S. Niekum, and U. Topcu.
Safe reinforcement learning via shielding. arXiv preprint:1708.08611, 2017.

[4] R. Alur and S. La Torre. Deterministic generators and games for LTL
fragments. TOCL, 5(1):1–25, 2004.

[5] O. Andersson, F. Heintz, and P. Doherty. Model-based reinforcement learn-
ing in continuous environments using real-time constrained optimization.
In AAAI Conference on Artificial Intelligence, pages 2497–2503, 2015.

[6] J. Andreas, D. Klein, and S. Levine. Modular multitask reinforcement
learning with policy sketches. In International Conference on Machine
Learning, pages 166–175, 2017.

[7] J. Andreas, D. Klein, and S. Levine. Modular multitask reinforcement
learning with policy sketches. In International Conference on Machine
Learning, volume 70, pages 166–175, 2017.

[8] P.-L. Bacon, J. Harb, and D. Precup. The option-critic architecture. In
AAAI Conference on Artificial Intelligence, 2017.

[9] C. Baier and J.-P. Katoen. Principles of Model Checking. MIT Press, 2008.

[10] S. Bansal, L. Kavraki, M. Y. Vardi, and A. Wells. Synthesis from satisficing
and temporal goals. arXiv preprint arXiv:2205.10464, 2022.

[11] R. Bellman. A Markovian decision process. Journal of Mathematics and
Mechanics, pages 679–684, 1957.

[12] L. Belzner and M. Wirsing. Synthesizing safe policies under probabilistic
constraints with reinforcement learning and Bayesian model checking.
arXiv preprint:2005.03898, 2020.

[13] D. Bertsekas. Convergence of discretization procedures in dynamic pro-
gramming. IEEE Transactions on Automatic Control, 20(3):415–419, 1975.

[14] D. P. Bertsekas and S. Shreve. Stochastic optimal control: the discrete-time
case. Athena Scientific, 2004.

[15] D. P. Bertsekas and J. N. Tsitsiklis. Neuro-dynamic Programming, volume 1.
Athena Scientific, 1996.

44

[16] S. Bharadwaj, S. Le Roux, G. Pérez, and U. Topcu. Reduction techniques
for model checking and learning in MDPs. In International Joint Conference
on Artificial Intelligence, pages 4273–4279, 2017.

[17] F. Blahoudek, M. Heizmann, S. Schewe, J. Strejček, and M.-H. Tsai.
Complementing semi-deterministic Büchi automata. In International
Conference on Tools and Algorithms for the Construction and Analysis of
Systems, pages 770–787. Springer, 2016.

[18] J. Bogdoll, L. M. F. Fioriti, A. Hartmanns, and H. Hermanns. Partial
order methods for statistical model checking and simulation. In Formal
Techniques for Distributed Systems, pages 59–74. Springer, 2011.

[19] A. K. Bozkurt, Y. Wang, M. M. Zavlanos, and M. Pajic. Control synthesis
from linear temporal logic specifications using model-free reinforcement
learning. arXiv preprint:1909.07299, 2019.

[20] T. Brázdil, K. Chatterjee, M. Chmeĺık, V. Forejt, J. Křet́ınskỳ,
M. Kwiatkowska, D. Parker, and M. Ujma. Verification of Markov decision
processes using learning algorithms. In ATVA, pages 98–114. Springer,
2014.

[21] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman, J. Tang,
and W. Zaremba. OpenAI gym. arXiv preprint:1606.01540, 2016.

[22] M. Cai, M. Hasanbeig, S. Xiao, A. Abate, and Z. Kan. Modular deep
reinforcement learning for continuous motion planning with temporal logic.
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS) and IEEE Robotics and Automation letters, 2021.

[23] M. Cai, Z. Li, H. Gao, S. Xiao, and Z. Kan. Optimal probabilis-
tic motion planning with partially infeasible LTL constraints. arXiv
preprint:2007.14325, 2020.

[24] M. Cai, H. Peng, Z. Li, H. Gao, and Z. Kan. Receding horizon control
based online motion planning with partially infeasible LTL specifications.
arXiv preprint:2007.12123, 2020.

[25] M. Cai, H. Peng, Z. Li, and Z. Kan. Learning-based probabilistic LTL
motion planning with environment and motion uncertainties. IEEE Trans.
Autom. Control, 66(5):2386–2392, 2021.

[26] M. Cai and C.-I. Vasile. Safety-critical learning of robot control with
temporal logic specifications. arXiv preprint arXiv:2109.02791, 2021.

[27] M. Cai, S. Xiao, and Z. Kan. Reinforcement learning based temporal logic
control with soft constraints using limit-deterministic Büchi automata.
arXiv preprint:2101.10284, 2021.

45

[28] A. Camacho, O. Chen, S. Sanner, and S. A. McIlraith. Non-Markovian
rewards expressed in LTL: guiding search via reward shaping. In Tenth
Annual Symposium on Combinatorial Search, 2017.

[29] A. Camacho, R. Toro Icarte, T. Q. Klassen, R. Valenzano, and S. A. McIl-
raith. LTL and beyond: Formal languages for reward function specification
in reinforcement learning. In International Joint Conference on Artificial
Intelligence (IJCAI), pages 6065–6073, 2019.

[30] S. Carr, N. Jansen, S. Junges, and U. Topcu. Safe reinforcement learning
via shielding for POMDPs. arXiv preprint arXiv:2204.00755, 2022.

[31] N. Cauchi and A. Abate. Stochy-automated verification and synthesis of
stochastic processes. In HSCC, pages 258–259, 2019.

[32] E. M. Clarke Jr, O. Grumberg, D. Kroening, D. Peled, and H. Veith. Model
checking. MIT Press, 2018.

[33] S. P. Coraluppi and S. I. Marcus. Risk-sensitive and minimax control of
discrete-time, finite-state Markov decision processes. Automatica, 35(2):301–
309, 1999.

[34] C. Daniel, G. Neumann, and J. Peters. Hierarchical relative entropy policy
search. In Artificial Intelligence and Statistics, pages 273–281, 2012.

[35] A. David, P. G. Jensen, K. G. Larsen, M. Mikučionis, and J. H. Taankvist.
Uppaal Stratego. In TACAS, pages 206–211. Springer, 2015.

[36] A. David, K. G. Larsen, A. Legay, M. Mikučionis, and Z. Wang. Time
for statistical model checking of real-time systems. In Computer Aided
Verification, pages 349–355. Springer, 2011.

[37] K. Doya. Reinforcement learning in continuous time and space. Neural
Computation, 12(1):219–245, 2000.

[38] F. Dufour and T. Prieto-Rumeau. Approximation of Markov decision
processes with general state space. Journal of Mathematical Analysis and
Applications, 388(2):1254–1267, 2012.

[39] R. Durrett. Essentials of stochastic processes, volume 1. Springer, 1999.

[40] J. Fu and U. Topcu. Probably approximately correct MDP learning and
control with temporal logic constraints. In Robotics: Science and Systems
X, 2014.

[41] N. Fulton. Verifiably Safe Autonomy for Cyber-Physical Systems. PhD
thesis, Carnegie Mellon University Pittsburgh, PA, 2018.

[42] N. Fulton, N. Hunt, N. Hoang, and S. Das. Formal verification of end-to-
end learning in cyber-physical systems: Progress and challenges. arXiv
preprint:2006.09181, 2020.

46

[43] N. Fulton and A. Platzer. Safe reinforcement learning via formal methods:
Toward safe control through proof and learning. In AAAI Conference on
Artificial Intelligence, pages 6485–6492, 2018.

[44] N. Fulton and A. Platzer. Verifiably safe off-model reinforcement learning.
In TACAS, pages 413–430, 2019.

[45] J. Garcia and F. Fernández. Safe exploration of state and action spaces in
reinforcement learning. Journal of Artificial Intelligence Research, 45:515–
564, 2012.

[46] J. Garcıa and F. Fernández. A comprehensive survey on safe reinforcement
learning. JMLR, 16(1):1437–1480, 2015.

[47] P. Geibel and F. Wysotzki. Risk-sensitive reinforcement learning applied
to control under constraints. Journal of Artificial Intelligence Research,
24:81–108, 2005.

[48] M. Giacobbe, M. Hasanbeig, D. Kroening, and H. Wijk. Shielding Atari
games with bounded prescience. In Autonomous Agents and Multiagent
Systems (AAMAS), pages 1507–1509. ACM, 2021.

[49] G. J. Gordon. Stable function approximation in dynamic programming.
In Machine Learning, pages 261–268. Elsevier, 1995.

[50] D. Grbic and S. Risi. Safe reinforcement learning through meta-learned
instincts. In Artificial Life Conference Proceedings, pages 283–291. MIT
Press, 2020.

[51] S. Gu, E. Holly, T. Lillicrap, and S. Levine. Deep reinforcement learning
for robotic manipulation with asynchronous off-policy updates. In Interna-
tional Conference on Robotics and Automation (ICRA), pages 3389–3396.
IEEE, 2017.

[52] E. Gunter. From natural language to linear temporal logic: Aspects of
specifying embedded systems in LTL. In Workshop on Software Engineering
for Embedded Systems: From Requirements to Implementation, 2003.

[53] S. Haesaert, S. E. Zadeh Soudjani, and A. Abate. Verification of general
Markov decision processes by approximate similarity relations and policy
refinement. SIAM Journal on Control and Optimization, 55(4):2333–2367,
2017.

[54] E. M. Hahn, M. Perez, S. Schewe, F. Somenzi, A. Trivedi, and D. Wojtczak.
Omega-regular objectives in model-free reinforcement learning. In TACAS,
pages 395–412. Springer, 2019.

[55] L. Hammond, A. Abate, J. Gutierrez, and M. J. Wooldridge. Multi-agent
reinforcement learning with temporal logic specifications. In Autonomous
Agents and Multiagent Systems, pages 583–592. ACM, 2021.

47

[56] D. Harris and S. Harris. Digital Design and Computer Architecture. Morgan
Kaufmann, 2010.

[57] H. Hasanbeig. Safe and certified reinforcement learning with logical con-
straints. PhD thesis, University of Oxford, 2020.

[58] M. Hasanbeig, A. Abate, and D. Kroening. Logically-constrained reinforce-
ment learning. arXiv preprint:1801.08099, 2018.

[59] M. Hasanbeig, A. Abate, and D. Kroening. Certified reinforcement learning
with logic guidance. arXiv preprint:1902.00778, 2019.

[60] M. Hasanbeig, A. Abate, and D. Kroening. Logically-constrained neural
fitted Q-iteration. In AAMAS, pages 2012–2014. International Foundation
for Autonomous Agents and Multiagent Systems, 2019.

[61] M. Hasanbeig, A. Abate, and D. Kroening. Cautious reinforcement learn-
ing with logical constraints. In AAMAS. International Foundation for
Autonomous Agents and Multiagent Systems, 2020.

[62] M. Hasanbeig, Y. Kantaros, A. Abate, D. Kroening, G. J. Pappas, and
I. Lee. Reinforcement learning for temporal logic control synthesis with
probabilistic satisfaction guarantees. In Conference on Decision and Con-
trol, pages 5338–5343. IEEE, 2019.

[63] M. Hasanbeig, D. Kroening, and A. Abate. Deep reinforcement learning
with temporal logics. In International Conference on Formal Modeling and
Analysis of Timed Systems, pages 1–22. Springer, 2020.

[64] M. Hasanbeig, D. Kroening, and A. Abate. Towards verifiable and safe
model-free reinforcement learning. In Workshop on Artificial Intelligence
and Formal Verification, Logics, Automata and Synthesis (OVERLAY),
pages 1–10. Italian Association for Artificial Intelligence, 2020.

[65] M. Hasanbeig, D. Kroening, and A. Abate. LCRL: Certified policy synthesis
via logically-constrained reinforcement learning. In Quantitative Evaluation
of Systems (QEST), pages 217–231. Springer, 2022.

[66] M. Hasanbeig, N. Yogananda Jeppu, A. Abate, T. Melham, and D. Kroen-
ing. DeepSynth: Automata synthesis for automatic task segmentation in
deep reinforcement learning. In AAAI Conference on Artificial Intelligence,
pages 7647–7656. Association for the Advancement of Artificial Intelligence,
2021.

[67] M. Hausknecht and P. Stone. Deep recurrent Q-learning for partially
observable MDPs. In 2015 AAAI Fall Symposium Series, pages 29–37,
2015.

48

[68] D. Henriques, J. G. Martins, P. Zuliani, A. Platzer, and E. M. Clarke.
Statistical model checking for Markov decision processes. In 2012 Ninth
International Conference on Quantitative Evaluation of Systems, pages
84–93. IEEE, 2012.

[69] O. Hernández-Lerma and J. B. Lasserre. Further topics on discrete-time
Markov control processes, volume 42. Springer Science & Business Media,
2012.

[70] K. Hornik. Approximation capabilities of multilayer feedforward networks.
Neural Networks, 4(2):251–257, 1991.

[71] K. Hornik, M. Stinchcombe, and H. White. Multilayer feedforward networks
are universal approximators. Neural Networks, 2(5):359–366, 1989.

[72] T. Jaakkola, M. I. Jordan, and S. P. Singh. Convergence of stochastic
iterative dynamic programming algorithms. In NeurIPS, pages 703–710,
1994.

[73] N. Jansen, B. Könighofer, S. Junges, and R. Bloem. Shielded decision-
making in MDPs. arXiv preprint:1807.06096, 2018.

[74] S. Junges, N. Jansen, C. Dehnert, U. Topcu, and J.-P. Katoen. Safety-
constrained reinforcement learning for MDPs. In TACAS, pages 130–146.
Springer, 2016.

[75] S. Kalluraya, G. J. Pappas, and Y. Kantaros. Resilient temporal logic
planning in the presence of robot failures. arXiv preprint arXiv:2305.05485,
2023.

[76] Y. Kantaros. Accelerated reinforcement learning for temporal logic control
objectives. In International Conference on Intelligent Robots and Systems
(IROS), pages 5077–5082. IEEE, 2022.

[77] P. Kapoor, A. Balakrishnan, and J. V. Deshmukh. Model-based re-
inforcement learning from signal temporal logic specifications. arXiv
preprint:2011.04950, 2020.

[78] M. Kearns and S. Singh. Near-optimal reinforcement learning in polynomial
time. Machine Learning, 49(2-3):209–232, 2002.

[79] D. Kini and M. Viswanathan. Limit deterministic and probabilistic au-
tomata for LTL\GU. In International Conference on Tools and Algorithms
for the Construction and Analysis of Systems, pages 628–642. Springer,
2015.

[80] D. Kini and M. Viswanathan. Optimal translation of LTL to limit deter-
ministic automata. In TACAS, pages 113–129. Springer, 2017.

49

[81] T. D. Kulkarni, K. Narasimhan, A. Saeedi, and J. Tenenbaum. Hierarchical
deep reinforcement learning: Integrating temporal abstraction and intrinsic
motivation. In NeurIPS, pages 3675–3683, 2016.

[82] O. Kupferman and M. Y. Vardi. Model checking of safety properties.
Formal Methods in System Design, 19(3):291–314, 2001.

[83] M. Kwiatkowska, G. Norman, and D. Parker. PRISM 4.0: Verification
of probabilistic real-time systems. In Computer Aided Verification, pages
585–591. Springer, 2011.

[84] M. Lahijanian, J. Wasniewski, S. B. Andersson, and C. Belta. Motion
planning and control from temporal logic specifications with probabilistic
satisfaction guarantees. In ICRA, pages 3227–3232. IEEE, 2010.

[85] K. G. Larsen. Priced timed automata and statistical model checking. In
International Conference on Integrated Formal Methods, pages 154–161.
Springer, 2013.

[86] R. Lassaigne and S. Peyronnet. Approximate planning and verification for
large Markov decision processes. International Journal on Software Tools
for Technology Transfer, 17(4):457–467, 2015.

[87] A. Lavaei, M. Khaled, S. Soudjani, and M. Zamani. AMYTISS: Paral-
lelized automated controller synthesis for large-scale stochastic systems.
In Computer Aided Verification, pages 461–474. Springer, 2020.

[88] A. Lavaei, F. Somenzi, S. Soudjani, A. Trivedi, and M. Zamani. Formal con-
troller synthesis for continuous-space MDPs via model-free reinforcement
learning. In ICCPS, pages 98–107. IEEE, 2020.

[89] A. Lavaei, S. Soudjani, A. Abate, and M. Zamani. Automated verification
and synthesis of stochastic hybrid systems: A survey. Automatica, arXiv
preprint:2101.07491, 2022.

[90] I. S. Lee and H. Y. Lau. Adaptive state space partitioning for reinforcement
learning. Engineering Applications of Artificial Intelligence, 17(6):577–588,
2004.

[91] A. Legay, S. Sedwards, and L.-M. Traonouez. Scalable verification of
Markov decision processes. In International Conference on Software Engi-
neering and Formal Methods, pages 350–362. Springer, 2014.

[92] B. Lennartson and Q. Jia. Reinforcement learning with temporal logic con-
straints. In International Workshop on Discrete Event Systems (WODES),
2020.

[93] K. Lesser and A. Abate. Multiobjective optimal control with safety as a
priority. IEEE Transactions on Control Systems Technology, 26(3):1015–
1027, 2018.

50

[94] X. Li, C.-I. Vasile, and C. Belta. Reinforcement learning with temporal
logic rewards. arXiv preprint:1612.03471, 2016.

[95] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver,
and D. Wierstra. Continuous control with deep reinforcement learning.
arXiv:1509.02971, 2015.

[96] J. Lope and J. Martin. Learning autonomous helicopter flight with evolu-
tionary reinforcement learning. In International Conference on Computer
Aided Systems Theory, pages 75–82. Springer, 2009.

[97] F. Memarian, Z. Xu, B. Wu, M. Wen, and U. Topcu. Active task-inference-
guided deep inverse reinforcement learning. In CDC, pages 1932–1938.
IEEE, 2020.

[98] C. Mingyu, S. Xiao, Z. Li, and Z. Kan. Optimal probabilistic motion
planning with potential infeasible LTL constraints. IEEE Transactions on
Automatic Control, 2021.

[99] R. N. L. Mitta, H. Hasanbeig, D. Kroening, and A. Abate. Risk-aware
Bayesian reinforcement learning for cautious exploration. In NeurIPS ML
Safety Workshop, 2022.

[100] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra,
and M. Riedmiller. Playing Atari with deep reinforcement learning. arXiv
preprint:1312.5602, 2013.

[101] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Belle-
mare, A. Graves, M. Riedmiller, et al. Human-level control through deep
reinforcement learning. Nature, 518(7540):529–533, 2015.

[102] R. Munos and A. Moore. Variable resolution discretization in optimal
control. Machine Learning, 49(2-3):291–323, 2002.

[103] R. G. Newell and W. A. Pizer. Discounting the distant future: how much do
uncertain rates increase valuations? Journal of Environmental Economics
and Management, 46(1):52–71, 2003.

[104] A. P. Nikora and G. Balcom. Automated identification of LTL patterns in
natural language requirements. In ISSRE, pages 185–194. IEEE, 2009.

[105] S. Pathak, L. Pulina, and A. Tacchella. Verification and repair of control
policies for safe reinforcement learning. Applied Intelligence, pages 1–23,
2017.

[106] M. Pecka and T. Svoboda. Safe exploration techniques for reinforce-
ment learning–an overview. In International Workshop on Modelling and
Simulation for Autonomous Systems, pages 357–375. Springer, 2014.

[107] J. Peters and J. A. Bagnell. Policy gradient methods. Scholarpedia,
5(11):3698, 2010.

51

[108] N. Piterman. From nondeterministic Büchi and Streett automata to
deterministic parity automata. In LICS, pages 255–264. IEEE, 2006.

[109] S. Pitis. Rethinking the discount factor in reinforcement learning: A
decision theoretic approach. arXiv preprint:1902.02893, 2019.

[110] A. Platzer. Differential dynamic logic for hybrid systems. Journal of
Automated Reasoning, 41(2):143–189, 2008.

[111] A. Pnueli. The temporal logic of programs. In Foundations of Computer
Science, pages 46–57. IEEE, 1977.

[112] K. Polymenakos, A. Abate, and S. Roberts. Safe policy search with
Gaussian process models. arXiv preprint:1712.05556, 2017.

[113] M. Prandini and J. Hu. A stochastic approximation method for reachability
computations. In Stochastic Hybrid Systems, pages 107–139. Springer, 2006.

[114] D. Precup. Temporal abstraction in reinforcement learning. PhD thesis,
University of Massachusetts Amherst, 2001.

[115] M. L. Puterman. Markov decision processes: Discrete stochastic dynamic
programming. John Wiley & Sons, 2014.

[116] G. Rens and J.-F. Raskin. Learning non-Markovian reward models in
MDPs. arXiv preprint:2001.09293, 2020.

[117] M. Riedmiller. Neural fitted Q iteration-first experiences with a data
efficient neural reinforcement learning method. In ECML, volume 3720,
pages 317–328. Springer, 2005.

[118] M. Riedmiller and H. Braun. A direct adaptive method for faster back-
propagation learning: The RPROP algorithm. In Neural Networks, pages
586–591. IEEE, 1993.

[119] D. Sadigh, E. S. Kim, S. Coogan, S. S. Sastry, and S. A. Seshia. A learning
based approach to control synthesis of Markov decision processes for linear
temporal logic specifications. In CDC, pages 1091–1096. IEEE, 2014.

[120] S. Safra. On the complexity of omega-automata. In Foundations of
Computer Science, pages 319–327. IEEE, 1988.

[121] A. Salamati, A. Lavaei, S. Soudjani, and M. Zamani. Data-driven verifica-
tion and synthesis of stochastic systems through barrier certificates. arXiv
preprint arXiv:2111.10330, 2021.

[122] A. E. Sallab, M. Abdou, E. Perot, and S. Yogamani. Deep reinforce-
ment learning framework for autonomous driving. Electronic Imaging,
2017(19):70–76, 2017.

52

[123] M. S. Santos and J. Vigo-Aguiar. Analysis of a numerical dynamic pro-
gramming algorithm applied to economic models. Econometrica, pages
409–426, 1998.

[124] S. Shalev-Shwartz, S. Shammah, and A. Shashua. Safe, multi-agent,
reinforcement learning for autonomous driving. arXiv preprint:1610.03295,
2016.

[125] R. W. Shonkwiler and F. Mendivil. Explorations in Monte Carlo Methods.
Springer Science & Business Media, 2009.

[126] S. Sickert, J. Esparza, S. Jaax, and J. Křet́ınskỳ. Limit-deterministic Büchi
automata for linear temporal logic. In Computer Aided Verification, pages
312–332. Springer, 2016.

[127] S. Sickert and J. Křet́ınskỳ. MoChiBA: Probabilistic LTL model check-
ing using limit-deterministic Büchi automata. In ATVA, pages 130–137.
Springer, 2016.

[128] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van Den Driess-
che, J. Schrittwieser, I. Antonoglou, V. Panneershelvam, M. Lanctot, et al.
Mastering the game of Go with deep neural networks and tree search.
Nature, 529(7587):484, 2016.

[129] D. Silver, G. Lever, N. Heess, D. W. Thomas Degris, and M. Riedmiller.
Deterministic policy gradient algorithms. In International Conference on
Machine Learning, pages 387–395, 2014.

[130] S. E. Z. Soudjani, C. Gevaerts, and A. Abate. FAUST2: Formal Ab-
stractions of Uncountable-STate STochastic Processes. In TACAS, pages
272–286. Springer, 2015.

[131] J. Stachurski. Continuous state dynamic programming via nonexpansive
approximation. Computational Economics, 31(2):141–160, 2008.

[132] R. S. Sutton and A. G. Barto. Reinforcement learning: An introduction,
volume 1. MIT Press Cambridge, 1998.

[133] M. Svorenova, I. Cerna, and C. Belta. Optimal control of MDPs with
temporal logic constraints. In CDC, pages 3938–3943. IEEE, 2013.

[134] Y. Tassa, Y. Doron, A. Muldal, T. Erez, Y. Li, D. de Las Casas, D. Budden,
A. Abdolmaleki, J. Merel, A. Lefrancq, et al. Deepmind control suite. arXiv
preprint:1801.00690, 2018.

[135] A. L. Thomaz and C. Breazeal. Teachable robots: Understanding hu-
man teaching behavior to build more effective robot learners. Artificial
Intelligence, 172(6-7):716–737, 2008.

53

[136] I. Tkachev, A. Mereacre, J.-P. Katoen, and A. Abate. Quantitative
automata-based controller synthesis for non-autonomous stochastic hybrid
systems. In HSCC, pages 293–302. ACM, 2013.

[137] I. Tkachev, A. Mereacre, J.-P. Katoen, and A. Abate. Quantitative model-
checking of controlled discrete-time Markov processes. Information and
Computation, 253:1–35, 2017.

[138] R. Toro Icarte, T. Q. Klassen, R. Valenzano, and S. A. McIlraith. Teaching
multiple tasks to an RL agent using LTL. In AAMAS, pages 452–461,
2018.

[139] M. Turchetta, F. Berkenkamp, and A. Krause. Safe exploration for inter-
active machine learning. arXiv preprint:1910.13726, 2019.

[140] M. Turchetta, A. Kolobov, S. Shah, A. Krause, and A. Agarwal. Safe
reinforcement learning via curriculum induction. arXiv preprint:2006.12136,
2020.

[141] K. Vajjha, A. Shinnar, V. Pestun, B. Trager, and N. Fulton. CertRL:
Formalizing convergence proofs for value and policy iteration in Coq.
arXiv preprint:2009.11403, 2020.

[142] M. van Otterlo and M. Wiering. Reinforcement learning and Markov
decision processes. In Reinforcement Learning, pages 3–42. Springer, 2012.

[143] A. Vezhnevets, V. Mnih, S. Osindero, A. Graves, O. Vinyals, J. Agapiou,
et al. Strategic attentive writer for learning macro-actions. In NeurIPS,
pages 3486–3494, 2016.

[144] O. Vinyals, I. Babuschkin, J. Chung, M. Mathieu, M. Jaderberg, W. M.
Czarnecki, A. Dudzik, A. Huang, P. Georgiev, R. Powell, et al. Alphastar:
Mastering the real-time strategy game StarCraft II. DeepMind Blog, 2019.

[145] G. Voronoi. Nouvelles applications des paramètres continus à la théorie des
formes quadratiques. Deuxième mémoire. Recherches sur les parallélloèdres
primitifs. Journal für die reine und angewandte Mathematik, 134:198–287,
1908.

[146] Y. Wang, N. Roohi, M. West, M. Viswanathan, and G. E. Dullerud. Statis-
tically model checking PCTL specifications on Markov decision processes
via reinforcement learning. arXiv preprint:2004.00273, 2020.

[147] C. J. Watkins and P. Dayan. Q-learning. Machine Learning, 8(3-4):279–292,
1992.

[148] Q. Wei and X. Guo. Markov decision processes with state-dependent dis-
count factors and unbounded rewards/costs. Operations Research Letters,
39(5):369–374, 2011.

54

[149] M. Wen, R. Ehlers, and U. Topcu. Correct-by-synthesis reinforcement
learning with temporal logic constraints. In IROS, pages 4983–4990. IEEE,
2015.

[150] E. M. Wolff, U. Topcu, and R. M. Murray. Robust control of uncertain
Markov decision processes with temporal logic specifications. In CDC,
pages 3372–3379. IEEE, 2012.

[151] J. Xinyu Liu, Z. Yang, I. Idrees, S. Liang, B. Schornstein, S. Tellex, and
A. Shah. Lang2LTL: Translating natural language commands to temporal
robot task specification. arXiv preprint arXiv: 2302.11649, 2023.

[152] R. Yan, C.-H. Cheng, and Y. Chai. Formal consistency checking over
specifications in natural languages. In Design, Automation & Test in
Europe Conference & Exhibition, pages 1677–1682. EDA Consortium, 2015.

[153] N. Yoshida, E. Uchibe, and K. Doya. Reinforcement learning with state-
dependent discount factor. In ICDL, pages 1–6. IEEE, 2013.

[154] H. L. Younes, E. M. Clarke, and P. Zuliani. Statistical verification of
probabilistic properties with unbounded until. In Brazilian Symposium on
Formal Methods, pages 144–160. Springer, 2010.

[155] L. Z. Yuan, M. Hasanbeig, A. Abate, and D. Kroening. Modular
deep reinforcement learning with temporal logic specifications. arXiv
preprint:1909.11591, 2019.

55

	Introduction
	Overview
	Background
	Markov Decision Processes
	Linear Temporal Logic Properties

	Logically-Constrained Reinforcement Learning
	Logically-Constrained Tabular RL
	Logically-Constrained Neural Fitted Q-iteration
	Modular Deep Actor-critic Learning
	Experimental Results
	Related Work
	Conclusions
	Appendices
	Proofs
	Partial Satisfaction
	Comparison with a DRA-based Learning Algorithm
	Alternatives to LCNFQ
	Voronoi Quantiser
	Fitted Value Iteration

