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Abstract

In this work we present a scalable approach to perform Bayesian verification over
uncertain models of Chemical Reaction Networks (CRN). We blend two main
procedures, one for data-based model verification and the other for model
inference; we then expand their combination to a multifidelity setup. More
precisely, we perform verification via (Bayesian) statistical model checking (SMC)
based on model simulations; we at the same time update uncertain models by
means of likelihood-free Approximate Bayesian Computation (ABC) schemes;
finally, we push the scalability of the approach by newly leveraging a multifidelity
setup (MF), whereby high- and low-fidelity models are traded off, also depending
on their closeness. The possible different interleaving of these three parts
comprise the core of the overall procedure, MF-ABC-(SMC)2, which is tested on
a number of diverse case studies for CRN.

Keywords: Stochastic Processes; Continuous-time Markov Chains; Stochastic
Differential Equations; Formal Verification; Supervised Machine Learning;
Likelihood-free Bayesian Inference; Multifidelity Models; Chemical Reaction
Networks

Background
Problem under Study

Constructing accurate and explainable models of biological systems is a prevalent

activity in systems and synthetic biology. Models allow to encompass prior knowl-

edge, to extract more information from data, and lead to fine-grained analysis

and prediction of the biological systems of interest. Attaining precise knowledge

of many existing biological systems is however hard, making the formal analysis of

their models a challenge and requiring models to encompass degrees of uncertainty.

Data-driven, statistical approaches, such as Bayesian inference, allow to learn and

update models as data becomes available. Similarly, statistical approaches can be

leveraged to analyse and verify built models, particularly as their complexity and

dimensionality grows (which is often the case for industrially-relevant biological

systems), thus providing an alternative to formal mathematical approaches.

Contributions

We introduce a scalable framework that deploys multifidelity methods [1] combined

with Bayesian inference and formal verification, which allows for model-based prob-

abilistic verification of data-generating stochastic biological systems. Specifically, we

extend earlier work integrating Bayesian inference and statistical model checking

(SMC) [2], with new multifidelity methods recently developed for Bayesian learning

[3, 4]. The reference technique in [2] allows for simultaneous inference and formal

verification on a wide variety of stochastic models of interest, but possibly relies on
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computationally costly simulations: here we make the use of multifidelity models to

reduce the computational cost of the required simulations. Furthermore, in order to

reduce not only the cost but also the required number of simulations, we make use

of a Bayesian SMC algorithm based on a small subset of the sampled model param-

eters which are carefully chosen, rather than näıvely running a costly (frequentist)

SMC algorithm for every sampled parameter, as in [2]. By running SMC on samples

generated from the prior for instance, we are able to perform a parameter classifica-

tion, which is needed for the overall procedure, with fewer simulations than in [2].

Also, we deploy a multifidelity (Bayesian) SMC algorithm allowing one to explore

the statistical relation between the high- and low-fidelity models. By blending such

techniques, we reduce the number of simulations as well as the computational cost

of these simulations which culminates in the MF-ABC-(SMC)2 algorithm, a new

scalable multifidelity Bayesian verification approach.

Approach and Structure of this Article

Our new proposed framework can be crisply described as follows. We are given a

property of interest (expressed as a formal specification in a relevant temporal logic),

a class of high-fidelity (computationally expensive but accurate) and low-fidelity

(computationally cheaper but less precise) parametrised models, and data from the

underlying biological system (a CRN) - these ingredients are introduced in Section
[1]. We rapidly infer parameters and perform statistical model checking,leveraging

multifidelity methods and either Bayesian or frequentist techniques. We quantify

the probability on whether or not the biological system that generates the data

satisfies the given property, by integrating the results of the approximate (Bayesian)

inference and of statistical model checking.We argue, both technically and through

a number of case studies, that the approach requires fewer simulations, which are

additionally computationally cheaper to generate, compared to earlier results in

[2, 5]. We conclude the article with a discussion on the breadth of the proposed

framework, and consequently on the many possible avenues for future work.

Related Recent Work

Learning models from data via Bayesian inference has been widely studied within

the realms of biology [6, 7]. Due to the intractability of the likelihood function [8]

of many models of interest, likelihood-free methods such as Approximate Bayesian

Computation (ABC) [9, 10] have grown in popularity. In this work we build on the

Bayesian verification framework introduced in [2, 5], which integrates likelihood-free

inference and statistical model checking (SMC), incorporating multifidelity methods

[1] into the framework to increase scalability. Beyond this extension of earlier work

by the authors, this contribution also compares Bayesian [11, 12] vs. frequentist

approaches to SMC, and further discusses how to possibly interleave the latter

(SMC) step within the sample-based inference algorithms, thus trading off speed

for generality and accuracy. Newer case studies and benchmarks further distinguish

this contributions from [2, 5].

[1]We emphasise that, due to our likelihood-free inference technique, with this framework we are
able to work with a wide variety of (high-fidelity) stochastic models, provided we have a low-fidelity
model equivalent, and that we may also verify properties defined in various formal logics of our
choice, provided that such properties can be assessed by means of a statistical model checking
technique.
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Multifidelity methods integrate information from multiple models of the same

system to accelerate tasks such as inference and uncertainty quantification. Appli-

cations of multifidelity methods, such as Multilevel Monte Carlo [13, 14], have been

practically successful, and have been recently exploited for likelihood-free inference

using ABC [15]. For our work, we utilise multifidelity methods to accelerate the

parameter inference part of our framework, specifically working with Multifidelity

ABC [3] and its sequential Monte Carlo extension [4].

The Bayesian verification framework was proposed in [16], later extended to

Markov models in [17, 18], and finally endowed with SMC techniques and applied

to CRNs in [2, 5]. It leverages results in probabilistic and statistical model check-

ing, which have been applied successfully to a wide variety of biological models

[11, 19–23]. Parametric verification has been considered from a statistical approach

underpinned by Gaussian Processes: smoothed Model checking [24] provides an

estimate of the satisfaction probability with uncertainty estimates, and has been

used for parameter estimation from Boolean observations [25] and for parameter

synthesis [26]. Closely related work that integrates ABC-based inference with ver-

ification is the the Automaton-ABC presented in [27, 28]. This scheme similarly

computes the satisfaction probability of a temporal specification as a function of

the parameters of a given stochastic model. However quite distinctively, whilst in

our work the distance metrics considered relate to distance between generated trace

(or simulations) and the data observed from a data-generating system, in [27] the

ABC framework relies on a distance measure that quantifies how far a generated

trace from a stochastic model is from satisfying the property of interest. The use of

an automaton-based formalism for properties, as in [29], allows to work with more

sophisticated properties than those that can be defined using CSL.

Models and Properties

Although our methodology can be applied to a number of parametrised stochas-

tic models, in view of the applications of interest we work with discrete-state,

continuous-time Markov chains [30] and stochastic differential equations [31].

Parametric Continuous-Time Models

Let us first present the definition of continuous-time Markov chains.

Definition 1 (Continuous-time Markov Chain) A continuous-time Markov chain

(CTMC) M is a tuple (X , T , x0), where

• X is a finite, non-empty set of enumerable states,

• x0 is the initial state of the CTMC,

• T : X × X → R≥0 is the transition rate matrix, where T (x, x′) is the rate of

transition from state x to state x′.

We additionally define a labelling function L : X → 2AP which maps each state,

x ∈ X , to the set L(x) ⊆ AP of atomic propositions in AP that hold true in x.

This will be relevant to specify properties defined over models. The transition rate

matrix T governs the dynamics of the overall model.
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Definition 2 (Path of a CTMC) Let M = (X , T , x0) be a CTMC. An infinite path

of a CTMC M is a non-empty sequence ω∞ = x0t0x1t1 . . . where T (xi, xi+1) > 0

and ti ∈ R>0 for all i ≥ 0. In this work, we focus on finite paths, namely sequences

ω = x0t0x1t1 . . . xk−1tk−1xk such that xk is absorbing. The value ti represents the

amount of time spent in the state xi before jumping to the next state in the chain,

namely state xi+1. We denote by PathM(x) the set of all paths of the CTMC M
starting in state x. A trace of a CTMC is the mapping of a path through the labelling

function L.

Parametric CTMCs extend the notion of CTMC by allowing transition rates to

depend on a vector of parameters θ = (θ1, . . . , θk) ∈ Rk. The range of possible

values of each parameter θi is given by a closed and bounded real interval [θ⊥i , θ
⊤
i ].

The parameter space Θ is the hyper-rectangle defined as the Cartesian product of

the individual intervals, Θ =×i∈{1,...,k}[θ
⊥
i , θ

⊤
i ]. Finally, Tθ : X × X → R[θ] is

the parametric rate matrix, where R[θ] denotes a set of polynomials over R+ with

variables θk, θ ∈ Θ. Given a pCTMC and a parameter space Θ, we denote with MΘ

the set {Mθ, θ ∈ Θ} where Mθ is the instantiated CTMC obtained by replacing

the parameters in T with their valuation in θ. So a standard CTMC is induced

by selecting a specific parameter θ ∈ Θ. For the models in this paper, we assume

that x0 is unique and deterministically given, although the parametrisation can be

trivially extended to encode sets of initial conditions.

We now define stochastic differential equations (SDEs), which are analogous to

CTMCs in depending on a continuous time variable, but which unlike CTMCs

evolve over a continuous space. Let (Ω,F , P ) be a probability space where Ω is a

sample space, A ∈ F an event in the sample space F , and ω ∈ Ω is a sample or

outcome.

Definition 3 (Stochastic Differential Equation) We define a stochastic process

on the probability space (Ω,F , P ) as x̃(t), t ≥ 0 : R≥0 × Ω → Rd and we describe

the evolution of this continuous stochastic process with the stochastic differential

equation (SDE) defined by

dx̃i(t) = ςi0(x̃(t)) dt+

J∑
j=1

ςij(x̃(t)) dW
j(t), i = 1, 2, . . . , d,

where x̃(0) ∈ Rd is the initial condition with state space of dimension d, W (t) =

[W 1(t), . . . ,W J(t)]⊤t≥0 is a standard Brownian Motion in RJ on (Ω,F , P ) and ςij :

Rd → R, i = 1, 2, . . . , d, j = 0, 1, 2, . . . , J are Borel measurable functions under

proper structural conditions, which ensure the existence and uniqueness of solutions

to the SDEs [31].

We can similarly introduce a labelling map over the state space of the SDE,

as done previously for the case of CTMCs. Later we shall employ the Chemical

Langevin Equation (CLE) as a low-fidelity abstraction of CTMCs, and thus denote

them as M̃. We introduce the semantics of SDE over discrete time steps: an SDE

can be numerically integrated in time using various techniques, for instance via the
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known Euler-Maruyama scheme [32], which is presented in detail in the section on

Methods.

In this work we shall exclusively focus on finite time horizons up to a terminal time

T , t ∈ [0, T ]: let ∆t = T/K for some K ∈ N, then τk = k∆t, where k = 1, 2, . . . ,K,

is a uniform sequence of sampling times. With the Euler-Maruyama discretisation

scheme,the definition of a path of the SDE follows intuitively as a sequence Ω =

x̃0t0x̃1t1 . . . tK−1x̃K comprising sampled times tk = τk and corresponding states

x̃k ∈ Rd for k = 1, 2, . . . ,K. We denote by PathM̃(x̃) the set of all finite (and,

by extension, infinite) paths of the SDE M̃ starting in state x̃. We can also work

with parametrised SDEs, which is defined similarly to SDEs above and shall later

be denoted as M̃θ. Let θ = (θ1, . . . , θk) be the vector of parameters, taking values

in Θ ⊂ Rk
≥0. A parametric stochastic differential equation (pSDE) over θ is defined

similarly to the SDE in Definition 3, except that ςij are now a function of the

parameters, ςij : Rk × RJ → R, i = 1, 2, . . . , d, j = 0, 1, 2, . . . , J, namely ςij =

ςij(θ, x̃(t)).

Chemical Reaction Networks

In this work we deal with Chemical Reaction Networks (CRNs), which are modelled

as either CTMC or as SDE.

Definition 4 (Chemical Reaction Network) A Chemical Reaction Network (CRN)

is a tuple (X,R,K), where

• X = (X1, ..., XNS
) is a vector where each Xi represents the number of

molecules of each species i = 1, . . . NS. X ⊆ NNS the state space,

• R = {R1, . . . , RNR
} is the set of NR chemical reactions, each of the form

Rj = (υj , aj), with υj the stoichiometry vector of size NS for reaction j and

aj(X) = aj(X, kj) is the propensity or rate function,

• k = (k1, . . . , kNR
) is the vector of (kinetic) parameters, taking values in a

compact subset of RNR .

Each reaction j of the CRN is represented as

Rj :

NS∑
i=1

υ−i,jXi
kj−→

NS∑
i=1

υ+
i,jXi,

where υ−i,j (υ+
i,j) is the amount of species Xi consumed (produced) by reaction Rj .

This results in the stoichiometric matrix υi,j = υ+
i,j − υ−i,j , which allows one to de-

scribe how the state vector X(t) changes in time when reactions occur. Specifically,

if a reaction j occurs, then the state vector X(t) is updated by adding the stoi-

chiometric vector υj = [υ1,j , υ2,j , . . . , υNS ,j ]
⊤
. The probability of such an event is

encapsulated within the propensity function aj(X(t)), defined such that aj(X(t))dt

is the probability, given X(t), that reaction Rj will occur in an infinitesimal time

interval [t, t+ dt) [33, 34].
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CRN models: CTMC

CRNs can be modelled by CTMCs. In this work CTMCs are employed as

“high-fidelity” models. A CTMC at time t models the state vector represent-

ing the number of molecules of each chemical species at that time, X(t) =

[X1(t), X2(t), . . . , XNS
(t)]⊤ and the state space X comprises every possible com-

bination of molecules. The rate of transitioning from state to state is governed by

the kinetic parameters that relate to the rate of the reactions. The initial state of

the CTMC is given as x0 = X(0) = [X1(0), X2(0), . . . , XNS
(0)]⊤. We can addition-

ally model a CRN as a pCTMC if we were to parametrise the kinetic reaction rates:

we let Mθ be the pCTMC, where θ is the vector comprising the unknown kinetic

rates.

Simulations of a CRN, modelled by a pCTMC, can be generated using the Stochas-

tic Simulation Algorithm (SSA) [33]. The SSA allows one to simulate independently

a reaction index (among the possible NR reactions) and a reaction time for each

reaction that occurs, providing a highly detailed simulation at a high computational

cost: at each iteration of the SSA algorithm, both a reaction time and index must be

drawn to calculate the associated propensity function, which also updates the state

vector at every stage. To circumvent this problem, we can simulate the number of

reactions that can occur in a fixed time interval of length ∆t. This method leads

to the tau-leaping [35] and, core to our work, to the Chemical Langevin Equation

(CLE) [34, 35], which is an approximation to the SSA algorithm that allows for a

speed-up of simulation time, but which introduces errors that will be small as long

as the updates are relatively small.

CRN models: Chemical Langevin Equation

In this work we utilise the chemical Langevin equations (CLEs) as the “low-fidelity”

models of CRNs. The CLE models the CRN using NS SDEs, where each SDE

corresponds to the evolution of a chemical species over a time interval, t ∈ [0, T ].

The full derivation of the CLE can be found in the Methods.The evolution of the ith

chemical species, denoted by the ith element of the state vector, Xi(t), is described

by the corresponding variable x̃i(t),

x̃i(t+∆t) = x̃i(t) +

NR∑
j=1

υi,jaj(Y (t))∆t+

NR∑
j=1

υi,j

√
aj(Y (t))∆tZj , (1)

where Z ∼ N (0, 1). The SDE in (1) is in fact an Euler-Maruyama discretisation [36]

with uniform time samples of duration ∆t of an SDE of the form [31, 32]

dx̃(t) =

NR∑
j=1

υjaj(x̃(t))∆t+

NR∑
j=1

υj

√
aj(x̃(t)) dW

j(t),

where W j(t) are independent scalar Brownian motions. We note that the dimen-

sionality of the Brownian motion, d, depends on the number of different chemical

species present in the CRN, thus d = NS , and that dimensionality of the stochastic

process depends on the total number of chemical reactions in the CRN, J = NR,

using d and J from Definition 3.
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We have presented the CLE approximation to the evolution of a biochemical re-

action network. This approximation is only appropriate when certain conditions are

met (particularly when aj(X(t))∆t ≫ 1) and we go from discrete molecule counts,

X(t), to continuous molecule counts, x̃(t), due to the use of the Normal approxi-

mation to the Poisson distribution. By taking advantage of this approximation we

are able to simulate a larger number of reactions within a given timestep ∆t, rather

than simulating each individual reaction that fires, allowing for computational sav-

ings and faster simulation times. These savings and faster simulating times come at

a price however, as the CLE is in practice a good approximation to the underlying

dynamics only when the biological system presents a large number of molecules.

Having defined the stochastic models of interest, we consider now how to formally

define properties over these models.

Properties - Continuous Stochastic Logic

We wish to verify properties over CRNs and their pCTMC and pSDE interpretation,

and employ a time-bounded, non-nested fragment of continuous stochastic logic

(CSL) [19, 37, 38].

CSL is a temporal and quantitative logic that is sufficient for our purposes, as

also evidenced by its wide use in systems biology literature. This is particularly so

in terms of expressivity and ease of use within verification tasks.

Definition 5 A CSL formula ϕ is interpreted over states x ∈ X of a model (e.g.,

a pCTMC Mθ), and φ is a formula over its paths, with syntax

ϕ := true | a | ¬ϕ | ϕ ∧ ϕ | ϕ ∨ ϕ | P⋔ζ [φ] , φ := ϕ1U
[t,t′]ϕ2 ,

where a ∈ AP , ⋔ ∈ {<,≤,≥, >}, ζ ∈ [0, 1], and t, t′ ∈ R≥0, t ≤ t′.

Path formulae are defined by combining state formulae through the temporal

operator ϕ1U
Iϕ2, which is true if ϕ2 is satisfied at some τ ∈ I and ϕ1 holds at all

preceding time instants [19]. Notice that, with very limited loss of expressivity, we

have excluded the next operator, which can meaningfully apply to CTMCs, but not

to SDEs.

We consider CSL formulae over models by associating atomic propositions to their

state spaces via the model’s labelling function L. Let Mθ denote a parametrised

stochastic model of choice, with associated initial state x0, and set of paths

PathMθ (x0). We qualitatively discuss the semantics of satisfaction of CSL formulae,

noting that later we shall compute such satisfaction by means of statistical (rather

than probabilistic) model checking approaches, namely by means of simulations of

the models of interest.

The semantics of satisfaction of the propositional fragment of CSL is trivially

related to the initial state of a path and to its associated label. Conversely, the

semantics of the probabilistic operator can be explained as follows. Formula P⋔ζ [φ]

holds if the probability of the path formula φ being satisfied by the set of paths

originating from a given initial state meets the inequality ⋔ ζ. The path formula

φ describes the bounded-horizon temporal requirement ϕ1U
[t,t′]ϕ2, widely known
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as the “until” specification. A path satisfies such requirement if the latter label

ϕ2 is met by a path within the time interval [t, t′], whilst the earlier label ϕ1 has

continuously held beforehand. The measurability of the concerned (temporal) events

depends on the underlying probability spaces of the model under study: for a CTMC

this has been argued in [39] and can be similarly extended for SDE models, assuming

labelling functions are measurable and have non-trivial co-domains, namely labels

are associated to sets of non-zero measure, see [40] for further details.

The satisfaction function captures the probability of a property for a model (here

a pCTMC, but this holds also for pSDEs) relates to its parameters and initial state.

This function will be used later to classify the parameters (and the corresponding

models) in the set Θ according to their property satisfaction. We note that the

notation involved with the satisfaction function above is aligned with pCTMCs,

however it is be straightforward to define an equivalent satisfaction function for

pSDEs.

Definition 6 (Satisfaction Function) Let ϕ be a CSL formula, Mθ be a stochastic

parametrised model over a space Θ, x0 is the initial state, and PathMθ (x0) is the

set of all paths generated by a parametrised stochastic model Mθ with initial state

x0. Denote by Λϕ : θ → [0, 1] the satisfaction function such that

Λϕ(θ) = P
(
{ω ∈ PathMθ (x0) |= φ} | ω(0) = x0

)
,

where a path ω |= φ if its associated trace satisfies the path formula φ corresponding

to the CSL formula ϕ. That is, Λϕ(θ) is the probability that the set of paths from a

given parametrised stochastic model Mθ satisfies a property φ. If Λϕ(θ) ⋔ ζ, then

we say that Mθ |= ϕ.

Bayesian Inference

Given a set of observations or data, yobs ∈ Y, and a parametrised model Mθ, the

task of Bayesian inference is to learn model parameters via probability distributions.

Here Y is a general space that contains observations, which will be later related to

the state space (and corresponding variables) of our models of interest. Prior beliefs

about the model parameters, expressed through a probability distribution π(θ),

are updated via yobs, where assumptions on the model dynamics are encoded into

the likelihood function p(yobs | θ), which depends on the stochastic model Mθ.

Using Bayes’ theorem, the posterior distribution is calculated by π(θ | yobs) =

p(yobs | θ)π(θ)/p(yobs).
For many complicated models that exhibit interesting dynamics, such as general

CRNs, the likelihoods required to calculate the posterior probability distribution

cannot be calculated directly, or are deemed to be computationally intractable. One

can thus resort to likelihood-free methods, such as Approximate Bayesian Compu-

tation (ABC)[9], to approximate this posterior as πABC(θ | yobs) ≈ π(θ | yobs). We

resort to likelihood-free methods for inferring parameters of CRN networks from

noisy data observed at discrete points in time. We assume that the observation of

the state vector sample path is yobs(t) = O(X(t)), where O is an arbitrary obser-

vation function on X(t) that takes values in Y, the space of observations. We shall
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additionally leverage simulations from models that generate data that is appropri-

ate for these observations - in particular, sampling CTMCs and SDEs at specific

time instances generates data points that can be related to observations.

Approximate Bayesian Computation

In ABC methods [9], the likelihood is approximated by matching simulated data

y ∼ p(y | θ) from a model, where y ∈ Y, with the observed data yobs, according

to some function of a distance metric, d(y, yobs). Ideally, the physical observations

yobs are directly mapped to the simulations y generated by the model.

The simplest form of ABC is referred to as rejection sampling : samples are gen-

erated by θ∗ ∼ π(θ), each of which is used to generate simulated data y ∼ p(y | θ∗),
where the proposed sample θ∗ is accepted if d(y, yobs) ≤ h for some h ≥ 0, h ∈ R+,

and rejected if d(y, yobs) > h. This is equivalent to drawing a sample (θ, y) from

the joint distribution πABC(θ, y | yobs) ∝ Kh(d(y, yobs))p(y | θ)π(θ), where Kh(·)
is a standard smoothing kernel function [41], here Kh(d(y, yobs)) = 1Ωh

(y), where

Ωh(y) = {y ∈ Y | d(y, yobs) ≤ h} and d(y, yobs) = ∥y − yobs∥. The ABC approxi-

mation to the true posterior distribution is πABC(θ | yobs) =
∫
πABC(θ, y | yobs) dy.

As h → 0, samples from the true posterior distribution are obtained[9] as:

lim
h→0

πABC(θ | yobs) ∝
∫

δyobs
(y)p(y | θ)π(θ) dy = p(yobs | θ)π(θ),

where δyobs
(y) is the Dirac delta measure. It is common and computationally ad-

vantageous to use sufficient summary statistics s = S(y) for the datasets yobs and y,

ideally so that π(θ | yobs) = π(θ | sobs) [42]. We present the ABC rejection sampling

scheme in the Methods, Algorithm 3.

Approximate Bayesian Computation - Sequential Monte Carlo

The major issue with the standard ABC procedure introduced previously is that if

the prior π(θ) differs from the posterior distribution, π(θ | yobs), then the rates

at which sampled parameters are accepted, will be low. Approximate Bayesian

Computation - Sequential Monte Carlo (ABC-SMC) [10, 43] techniques are devel-

oped to mitigate this issue: they construct a sequence of intermediate distributions,

fm(θ), m = 0, . . . ,M , where f0(θ) = π(θ) is the initial sampling distribution and

fM (θ) = f(θ) is the target distribution of interest, namely the approximated pos-

terior, πABC(θ | sobs). A population of particles or samples from generation m,

θ
(i)
m , where i = 1, . . . , N , are sequentially propagated between these intermediary

distributions that act as importance sampling [9]. The success of importance sam-

pling hinges on the choice of the importance probability distribution which gener-

ates sample proposals. Consider an importance probability distribution of the form

q̂(θ) = q(θ)/Zq, where q(θ) > 0 for all θ in the support of π(θ) and Zq is a normalisa-

tion constant. The ABC importance sampling (ABC-IS) distribution first samples a

parameter θ∗ ∼ q̂(θ) and simulates a corresponding trace y ∼ p(y | θ∗) which is ac-

cepted or rejected with a corresponding weight w(θ∗, y) = [π(θ∗)/q(θ)] ·1Ωh
(y) ≥ 0,

to produce a weighted sample {θ(i), w(i)}. The ABC-RS algorithm (Algorithm 3)

corresponds to the ABC-IS (Algorithm 4) when the importance distribution is cho-

sen to be equal to the prior q̂ = π and the number of simulations for each sampled
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parameter is set to Bm = 1. The ABC-SMC technique (presented in Algorithm

5) attempts to bridge the gap between the prior π(θ) and the (unknown) poste-

rior π(θ | sobs) or π(θ | y), where sobs = S(yobs), using importance sampling via

intermediary distributions, chosen as

fm(θ) = πhm

ABC(θ, s | sobs) ∝ 1Ωhm
(s)p(y | θ)π(θ),

where again s = S(y), m = 0, . . . ,M , and where hm is a monotonically de-

creasing sequence, namely such that hm > hm+1 ≥ 0. We expect that the limit

limhm→0 π
hm

ABC(θ | sobs) = π(θ | sobs) [9], and that the more samples N are gener-

ated, the more accurate the approximated quantity becomes.

A key part of the ABC-SMC scheme is the generation of samples θ∗ and the set-

ting of weights. Sample θ∗ is initially (m = 0) taken from the prior and subsequently

(m > 0) sampled from the intermediary distributions fm−1(θ) through its corre-

sponding weights (see below), as parameter θ
(j)
m−1. If m > 0, θ∗ is perturbed into

θ∗∗ by a kernel, Fm(θ∗∗ | θ∗) as demonstrated in Algorithm 5. For the perturbed

parameter θ∗∗, a number Bm of simulations yb (and, in turn, sb), are generated from

p(y | θ∗∗), and the quantity bm(θ∗∗) =
∑Bm

b=1 1Ωhm
(sb) is calculated. If bm(θ∗∗) = 0,

then θ∗∗ is discarded and θ∗ resampled again. Otherwise, the accepted θ∗∗ results

in the pair {θ(i)m , w
(i)
m }, where the corresponding weights w

(i)
m are set to

w(i)
m =


bm

(
θ(i)m

)
, if m = 0

π
(
θ
(i)
m

)
bm

(
θ
(i)
m

)
∑N

j=1 w
(j)
m−1Fm

(
θ
(i)
m | θ(j)m−1

) , if m > 0

and later normalised, after re-sampling each ith particle, i = 1, . . . , N . Stopping

rules for ABC-SMC schemes vary: here, we have opted for terminating the algorithm

after a predetermined number m = M of steps (a.k.a. epochs). The algorithm

returns the weighted samples, representing the empirical posterior:

{
θ
(i)
M , w

(i)
M

}
∼ πhM

ABC(θ | sobs) ∝
∫
1ΩhM

(s)p(y | θ)π(θ) dy.

Verification via Statistical Model Checking

Bayesian Statistical Model Checking

So far we have introduced inference techniques to learn models, such as ABC-

SMC. We focus now on formally verifying properties on these models through

statistical means, namely, via the means of Statistical Model Checking (SMC).

The goal of SMC is to either calculate an estimate to the satisfaction probability

Λϕ(θ) = P (Mθ |= ϕ) for the model parametrised by θ, which we denote as Λ̂ϕ(θ);

alternatively, it may be used to set up a statistical hypothesis test for the given

model and property. In this work, we are interested solely in estimating the satis-

faction probability and refer the interested reader to [44] for a comprehensive review

that covers SMC techniques based on both hypothesis testing or estimation. In this

work, the statistical model checking problem can be stated as the estimation of a
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Bernoulli random variable with unknown mean Λϕ(θ), which can be achieved by

generating draws from such a Bernoulli random variable: akin to [2], the simulations

that are generated within the ABC-SMC algorithm for the inference aspect of the

work can be used to compute the estimate of Λϕ(θ).

Among the Bayesian approaches to SMC, we leverage here Bayesian interval es-

timation [12] to estimates the Bernoulli random variable V with unknown mean

Λϕ(θ) = u. The conditional probability density function associated with V is given

by p(v | u) = uv(1− u)1−v, where v = 1 if y |= φ,where y is a simulation generated

from the high-fidelity model, otherwise v = 0. A natural choice for the prior are

Beta distributions π(·) = π(u, α, β), as they are conjugate to Bernoulli ones. If we

sample from a density p(·|u) where the unknown probability u is given by π(·), the
posterior given observed Bernoulli r.v. V = {v1, . . . , vn} is

π(u | V) = p(V | u)π(u)∫ 1

0
p(V | l)π(l) dl

and, as the vi are iid, the likelihood factorises as p(V | u) = p(v1, . . . , vn | u) =

Πn
i=1p(vi | u). When sampling from a Bernoulli distribution with conjugate Beta

prior, the integral in Equation (2) can be calculated analytically. If we define a

coverage goal c ∈ ( 12 , 1), any interval (l0, l1) s.t.

∫ l1

l0

π(u | v1, . . . , vn) du = c, (2)

is defined as the 100c percent Bayesian interval estimate for u = Λϕ(θ).

In the Bayesian statistical model checking algorithm (BSMC) (via Bayesian in-

tervals), we define the half-size interval ℓ ∈ (0, 1
2 ) of the interval estimate for Λϕ(θ),

a coverage parameter c ∈ ( 12 , 1) and coefficients α, β for the Beta prior, π(·). We

generate traces yi ∼ p(y|θ) from model Mθ and verify whether the trace satisfies

a property of interest yi |= φ, where φ is the path formula associated with ϕ. At

each iteration i of the algorithm, we compute the posterior mean Λ̂ϕ(θ) analytically,

which is the Bayes estimator for Λϕ(θ), and then compute the posterior probability

of the interval (l0, l1) = (Λ̂ϕ(θ)− ℓ, Λ̂ϕ(θ)+ ℓ), given by Υ =
∫ l1
l0

π(u | v1, . . . , vi) du.
If Υ ≥ c, then the algorithm terminates and returns Λ̂ϕ(θ) with corresponding upper

and lower limits, (l0, l1) = (Λ̂ϕ(θ)− ℓ, Λ̂ϕ(θ) + ℓ) = (Λ̂L
ϕ (θ), Λ̂

U
ϕ (θ)). If the posterior

mean estimate, Λϕ(θ), converges to the extreme points of the interval (0, 1), the

algorithm returns (l0, l1) = (0, 2ℓ) if l0 < 0 or (l0, l1) = (1− 2ℓ, 1) if l1 > 1.

As it will become clear shortly, this BSMC algorithm is used for parameter classi-

fication (next section), as well as to relate high- and low-fidelity models.

Approximate Parameter Classification via SMC

The aim of parameter classification is to partition the parameter space Θ according

to the satisfaction of the CSL property ϕ. Parameter classification results in the

feasible set of parameters Θϕ = {θ ∈ Θ : Mθ |= ϕ} = {θ ∈ Θ : Λϕ(θ) ⋔ ζ}
which would ideally be computed via parameter synthesis techniques such as[23].

However, by classifying the outputs obtained from statistical model checking via
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supervised machine learning, as is done in [2], one can rapidly perform a parameter

classification over the entire parameter space for a general variety of models.

In this work we propose to employ again SMC and supervised machine learning

for this task. Rather than perform SMC for every sampled point in the likelihood-

free inference scheme as is done in [2], we consider carefully when to perform SMC

to generate these parameter classification regions. While performing SMC for every

sampled scheme allowed for a detailed parameter classification, by reducing the

number of times we perform SMC, we speed up the simultaneous inference and

verification scheme of [2]. In practice, we use the estimated lower Λ̂L
ϕ (θ) and upper

bounds Λ̂U
ϕ (θ), such that Λϕ(θ) ∈

[
Λ̂L
ϕ (θ), Λ̂

U
ϕ (θ)

]
, to partition the parameter space

as:

• Θϕ = {θ ∈ Θ : Λ̂L
ϕ (θ) > ζ},

• Θ¬ϕ = {θ ∈ Θ : Λ̂U
ϕ (θ) < ζ},

• ΘU = Θ\(Θϕ ∪Θ¬ϕ).

Notice that these sets are a function of θ ∈ Θ. Since in the inference procedure we

generate a finite number of parameter samples, which are biased towards the sought

posterior distribution, there might be areas of the parameter space Θ that are in-

sufficiently covered. We thus resort to supervised learning techniques to classify

parameter regions: we utilise support vector machines (SVMs) [45, 46] as a clas-

sification technique. Support vector machines are a simple yet effective supervised

learning technique as they are effective in high-dimensional spaces and only require

a subset of training points in the decision function. Given a set of training examples,

each classified by the user, the SVM model assigns unseen data to one category or

the other, making it a non-probabilistic binary linear classifier. The SVM constructs

a hyper-plane or set of hyper-planes in a higher dimensional space that is trained

to maximise the largest distance between the two (or more) classes - the larger this

margin is, the lower the generalization error of the classifier. Given the relatively

low number of data points required to train SVMs and the high number of simu-

lations required to perform SMC that generate the data points we wish to classify,

we make use of SVMs as our classification technique - alternative classifiers such as

Stochastic Gradient Descent [47] make for better alternatives if we work with much

larger datasets. We train the SVM classifier on the data produced from the overall

algorithm, namely on the set {θ(r), Λ̂ϕ(θ
(r)), Λ̂L

ϕ (θ
(r)), Λ̂U

ϕ (θ
(r))} where r = 1, . . . , N̄

and N̄ denotes the total number of samples generated, whether accepted or not.

The SVM, which is trained on the generated data, then provides a non-linear

classification function, ξϕ(θ), where ξϕ(θ) = 1 if θ ∈ Θϕ, ξϕ(θ) = −1 if θ ∈ Θ¬ϕ and

ξϕ(θ) = 0 if θ ∈ ΘU . With this classification, we can then generalise over the entire

parameters space θ ∈ Θ.

The Bayesian Verification Framework

Integration of Formal Verification and Inference

There are three aspects to the Bayesian Verification framework, first introduced

in [2, 5] for CRNs: Bayesian inference, parameter classification (done via synthe-

sis techniques [2] or approximately [5], as described above), and a probability (or

credibility) calculation.
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CSL Property ϕ
Model Class

(e.g., pCTMC) Mθ

Data yobs from

System S

Sample Parameter

θ∗

Estimate Satisfaction Probability

Λ̂ϕ(θ
∗) = P (Mθ∗ |= φ)

Bayesian Inference

πhM

ABC(θ
∗ | S(yobs))

Parameter Classification
Θϕ = {θ ∈ Θ : Mθ |= ϕ}

= {θ ∈ Θ : Λ̂ϕ(θ) ⋔ ζ} ⊆ Θ

Credibility Calculation

C =
∫
Θϕ

πhM

ABC(θ | S(yobs))dθ

ABC-(SMC)2 Algorithm

Figure 1. Bayesian Verification via ABC-(SMC)2.

Regardless of how we achieve our parameter classification Θϕ, we integrate the

inferred posterior, πABC(θ | yobs) (or conditioned on sobs = S(yobs)), over Θϕ, the

feasible set of parameters, to compute a probability estimate corresponding to the

satisfaction of a CSL specification formula ϕ by the data-generating system S, which
we denote as the credibility C:

C = P (S |= ϕ | sobs) =
∫
Θϕ

π(θ | sobs) dθ. (3)

The ABC-(SMC)2 Algorithm

[2] introduced ABC-(SMC)2, a technique that addresses the scalability limitations

of previous Bayesian Verification frameworks [5]. Specifically, the work incorpo-

rates SMC (statistical model checking) within the Bayesian inference framework

and approximate the classification of parameters: this allows the Bayesian Verifi-

cation framework to be applied to a wider variety of models. The idea behind this

framework, called Approximate Bayesian Computation - Sequential Monte Carlo

with Statistical Model Checking: ABC-(SMC)2 is presented in Fig. 1.

In the ABC-SMC scheme (Algorithm 5), a total of Bm simulations are performed

for each sampled parameter θ∗∗, whether the sample is retained or not towards

the approximate posterior πhM

ABC(θ | sobs): this leads to a considerable amount of

wasted computational effort. In [2] we proposed instead to use these simulations to

statistically model check each of the sampled parametrised models (whether or not

the sample is retained towards the computation of the posterior) by means of the

generated simulations. With the use of statistical and supervised machine learning

approaches, one can then classify parameter regions using the information gathered

with this simultaneous parameter inference and statistical model checking regime.
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Recall that the output of the ABC-SMC algorithm is a set of samples θ
(i)
M with

their corresponding weights w
(i)
M , which satisfy the following:

{θ(i)M , w
(i)
M } ∼ πhM

ABC(θ | sobs) ∝
∫

KhM
(∥s− sobs∥) p(y | θ)π(θ)dy, (4)

where i = 1, . . . , N is the number of Monte Carlo samples required to approximate

the posterior. For each parameter θ∗∗, simulation data is generated from the model

yb ∼ p(y | θ∗∗) to calculate sb = S(yb), where b = 1, . . . , Bm.

Extending the original ABC-SMC algorithm to the ABC-(SMC)2 algorithm, [2]

set the number of simulations for each sampled parameter, Bm, to be the mini-

mum number of samples estimated in the sequential Massart algorithm [48]: this is

a frequentist approach which, as an alternative to the ealrier Bayesian algorithm,

to calculate an estimated probability Λ̂ϕ(θ
∗∗) (as defined above) with given accu-

racy and confidence. As a result, parameters θ∗∗ are selected a total of N̄ times,

whether or not these samples are accepted at any generation m. For these sampled

parameters, θ(r), r = 1, . . . , N̄ , corresponding mean probabilities, Λ̂ϕ

(
θ(r)

)
, and

(1 − δ)-uncertainty bounds are estimated:
{
θ(r), Λ̂ϕ

(
θ(r)

)
, Λ̂L

ϕ

(
θ(r)

)
, Λ̂U

ϕ

(
θ(r)

)}
,

where r = 1, . . . , N̄ . Here N̄ depends on the acceptance rate of the sampled pa-

rameters θ(r), where N̄ ≥ N × M , and where N is the number of Monte Carlo

samples required and M is the total number of generations of the ABC-SMC

scheme. From the complete algorithm, we obtain a set of weighted parameter vec-

tors from the final generation M , {θ(i)M , w
(i)
M } ∼ πhM

ABC(θ | sobs) where i = 1, . . . , N ,

as well as N̄ sampled parameters and their corresponding estimated probabilities{
θ(r), Λ̂ϕ

(
θ(r)

)
, Λ̂L

ϕ

(
θ(r)

)
, Λ̂U

ϕ

(
θ(r)

)}
, where again r = 1, . . . , N̄ .

We recall that by increasing the number of Monte Carlo samples in the ABC-

SMC scheme, we increase the accuracy of the posterior distribution estimate, and

that this is indeed the case in the new framework too. However, as we increase the

number of parameter samples to accept, we must also remember that we increase the

number of times we perform statistical model checking for each sampled parameter.

While this leads to a more accurate posterior distribution estimate and allows for

a rigorous model verification across the parameter space, it also results in higher

computational costs. When it comes to implementing the ABC-(SMC)2 framework

on more complex models with a higher number of parameters, the algorithm has

the same limitations as the ABC-SMC algorithm. While the ABC-SMC aspect of

the framework provides one with a global parameter sensitivity analysis [10], as

we increase the model complexity the probability of accepting the perturbed or

sampled parameter θ∗∗ decreases and we thus need to explore alternative and more

efficient sampling schemes.

We present the ABC-(SMC)2 scheme introduced in [2] in Algorithm 1. This al-

gorithm takes as inputs a property of interest, ϕ, a prior probability distribution

π(θ) and additional parameters as inputs for the SMC algorithm. The estimated

probabilities
{
θ(r), Λ̂ϕ(θ)

(r), Λ̂L
ϕ (θ)

(r), Λ̂U
ϕ (θ)

(r)
}
, r = 1, . . . , N̄ , will be utilised for

approximate parameter classification, which is discussed in the next section.

Theoretical results on ABC-(SMC)2

We present a rationale for integrating SMC and Bayesian inference, and argue that

the ABC-(SMC)2 algorithm converges asymptotically to the desired quantity C =
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Algorithm 1 ABC-(SMC)2

Input:
• CSL specification ϕ
• Prior π(θ) and data-generating likelihood function p(yobs | θ)
• A neighbourhood that evolves with distance thresholds Ωhm = {y ∈ Y | d(y, yobs) ≤ hm} with corre-

sponding kernel Khm (y) (= 1Ωhm
(y) in this paper)

• N > 0, number of particles used to estimate posterior distributions
• Sequence of perturbation kernels Fm(θ | θ∗), m = 0, 1 . . . ,M
• A quantile υ ∈ [0, 1] to control the rate of decrease of hm

• Summary statistic function s = S(y)
• Bm > 0, number of simulations per sampled particle. For stochastic systems Bm > 1
• Parameters for statistical model checking

Output:

• Set of weighted parameter vectors
{
θ
(i)
M , w

(i)
M

}N

i=1
drawn from πABC(θ | sobs) ∝

∫
KhM

(s)p(y |
θ)π(θ) ds

• {θ(r), Λ̂ϕ(θ
(r)), Λ̂L

ϕ (θ(r)), Λ̂U
ϕ (θ(r))}N̄r=0, where N̄ is the total number of sampled parameters.

1: Set r = 0
2: for m = 0, . . . ,M : do
3: for i = 0, . . . , N : do
4: if m = 0 then
5: Generate θ∗∗ ∼ π(θ)
6: else
7: Generate θ∗ from the previous population {θ(i)

m−1} with weights {w(i)
m−1} and perturb the particle to

obtain θ∗∗ ∼ Fm(θ | θ∗)
8: end if
9: if π(θ∗∗) = 0 then
10: goto line 4
11: end if

12: Calculate
({

Λ̂ϕ (θ∗∗) , [Λ̂L
ϕ (θ∗∗) , Λ̂U

ϕ (θ∗∗)
}
, Bm,

∑Bm
b=1 Khm (∥sb − sobs∥), d̄

)
from SMC algo-

rithm of choice (frequentist, or Bayesian)

13: Calculate bm(θ∗∗) =
∑Bm

b=1 Khm (sb)

14: Set
(
θ(r), Λ̂ϕ

(
θ(r)

)
, Λ̂L

ϕ

(
θ(r)

)
, Λ̂U

ϕ

(
θ(r)

))
=

(
θ∗∗, Λ̂ϕ(θ

∗∗), Λ̂L
ϕ (θ∗∗), Λ̂U

ϕ (θ∗∗)
)

15: r ← r + 1
16: if bm(θ∗∗) = 0 then
17: goto line 4
18: end if
19: Set θ(i)

m = θ∗∗, d̄(i)
m = 1

Bm

∑Bm
b=1∥sb − sobs∥ and calculate

20:

w
(i)
m =


bm

(
θ
(i)
m

)
, if t = 0

π
(
θ(i)
m

)
bm

(
θ(i)
m

)
∑N

j=1 w
(j)
m−1Fm

(
θ
(i)
m | θ(j)

m−1

) , if t > 0

21: end for
22: Generate {θ(i)

m , w(i)
m }

N
i=1 using Algorithm 4 (ABC-IS) with importance distribution fm(θ) and neighbour-

hood Ωhm

23: Normalise weights: w(i)
m ← w(i)

m /
(∑N

i=1 w(i)
m

)
24: Set hm+1 = (υ/N)

∑N
i=1 d̄(i)

m
25: end for

26: return
{(

θ
(i)
M , w

(i)
M

)}N

i=1

{
θ(r), Λ̂ϕ

(
θ(r)

)
, Λ̂L

ϕ

(
θ(r)

)
, Λ̂U

ϕ

(
θ(r)

)}N̄

r=1
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P (S |= ϕ | sobs), which is core to the overall Bayesian Verification approach. Recall

that N denotes the total number of accepted Monte Carlo samples, n is the number

of simulations required for SMC estimates, with absolute error ϵ and confidence

parameter δ leading to (1−δ)-confidence intervals (or Bayesian equivalents) and hm

is the distance threshold for an ABC posterior πhm

ABC(θ | sobs). We let the credibility

calculation that we compute from the ABC-(SMC)2 algorithm be denoted as Cm,N,n.

Theorem 0.1 (ABC-(SMC)2 Convergence) Cm,N,n converges in probability to C
as the quantities hm → 0 (m → ∞) N → ∞ and n → ∞, namely:

∀ϵtot > 0, P (|Cm,N,n − C| > ϵtot) → 0. (5)

Proof To prove convergence, we work from the credibility calculation in Equation

(3), applying the ABC approximation that converges to the true posterior [9]; the

approximation scheme via Monte Carlo integration that converges in probability

to the true integral [49]; and finally the SMC approximation to the satisfaction

probability, given by Λ̂ϕ(θ), which converges in probability to the true value Λϕ(θ).

Starting from the credibility calculation, we note that

C =

∫
Θϕ

π(θ | sobs) dθ =

∫
Θ

1Θϕ
(θ)π(θ | sobs) dθ = Eπ[1Θϕ

(θ)],

where 1Θϕ
(θ) = 1 if θ ∈ Θϕ, and 0 otherwise. Given that we work with likelihood-

free methods, namely ABC, we have that

C =

∫
Θ

1Θϕ
(θ)π(θ | sobs) dθ

= lim
m→∞

∫
Θ

1Θϕ
(θ)πhm

ABC(θ | sobs) dθ (ABC approximation),

where we have used the ABC approximation to the true posterior, specifically π(θ |
sobs) = limm→∞ πhm

ABC(θ | sobs) = limhm→0+ πhm

ABC(θ | sobs)[9]. We then apply the

Monte Carlo approximation, taking the iid samples to be samples from the ABC

posterior, πABC(θ | sobs),

C = lim
m→∞

∫
Θ

1Θϕ
(θ) lim

N→∞

1

N

N∑
i=1

δθ(i)(θ) (Monte Carlo approximation)

= lim
m→∞

[
lim

N→∞

1

N

N∑
i=1

1Θϕ
(θ(i))

]
,

where θ(i) are iid samples from the ABC posterior, θ(i) ∼ πhm

ABC(θ | sobs), δθ(i)(θ)

is the Dirac delta measure, where δx(A) = 1A(x) = 1 if x ∈ A, and δx(A) =

1A(x) = 0 otherwise, and we denote the Monte Carlo approximation to the integral

I =
∫
Θ
f(dθ) as In = (1/n)

∑N
i=1 f(θ

(i)), where it can be shown [49] that In → I
in probability, P (|In − I| > ϵMC) → 0 ∀ϵMC > 0 as N → ∞. The difficulty now is

determining whether the sampled parameters θ(i) lie within the set of parameters

that satisfy the property, θ(i) ∈ Θϕ. We note that Θϕ is defined as Θϕ = {θ ∈ Θ :
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Λϕ(θ) ⋔ ζ}, where ζ is the probability bound contained in a formula ϕ which allows

us to present the function 1Θϕ
(θ) as

1Θϕ
(θ) = 1Λϕ(θ)⋔ζ(θ) =

1, Λϕ(θ) ⋔ ζ,

0, otherwise,
(6)

which results in

C = lim
m→∞

[
lim

N→∞

1

N

N∑
i=1

1Λϕ(θ)⋔ζ(θ
(i))

]
.

However, we statistically estimate the satisfaction probability Λϕ(θ). Let V be a

Bernoulli random variable with corresponding mean parameter Λϕ(θ
(i)), that is,

v ∼ Bern(Λϕ(θ
(i))). Then Λϕ(θ) can be estimated using n sample draws from this

distribution, Λ̂ϕ(θ
(i)) ≈ (1/n)

∑n
i=1 vi. This estimate has been shown (for both

frequentist and Bayesian SMC [12, 44, 48]) to converge in probability to the true

mean Λϕ(θ), that is, P (|Λ̂ϕ(θ)−Λϕ(θ)| > ϵSMC) → 0, ∀ϵSMC > 0 as n → ∞. Thus,

taking a further limit n → ∞, this leads us to

C = lim
m→∞

[
lim

N→∞

1

N

N∑
i=1

[
lim
n→∞

1Λ̂ϕ(θ)⋔ζ(θ
(i))

]]
≈ Cm,N,n, (7)

where Cm,N,n = 1
N

∑N
i=1 1Λ̂ϕ(θ)⋔ζ(θ

(i)) and θ(i) are iid draws from the ABC poste-

rior, θ(i) ∼ πhm

ABC(θ | sobs). Thus by taking the limits limm,N,n→∞ Cm,N,n = C.

Results
Multifidelity Bayesian Verification

Multifidelity Bayesian Inference

Multifidelity Bayesian methods [3, 4] can reduce the computational burden of ABC

by utilising simulations that are generated more cheaply, allowing one to construct

the ABC posterior πhM

ABC(θ | yobs) with lower computational costs. In this section

we integrate multifidelity ABC methods and SMC techniques, which results in a

new, multifidelity Bayesian verification framework, the MF-ABC-(SMC)2 scheme.

This novel framework utilises low-fidelity simulations to construct the posterior at a

lower computational cost than [2], allowing for a faster and cheaper way to calculate

the credibility, namely quantity C in Equation (3). Of course, this might come with

an error introduced by employing models that, whilst faster to simulate, are less

aligned with data, and thus prone to result in more rejected samples.

Multifidelity Approximate Bayesian Computation

Whilst ABC methods are popular due to the ease with which they can be utilised

to provide likelihood-free inference, they rely on a large number of simulations and

can lead to high computational costs, especially if they require a high number of pa-

rameter proposals and subsequent simulations. Multifidelity Approximate Bayesian

Computation (MF-ABC) algorithms [3] make use of multifidelity methods [1] to

reduce the computational cost related to ABC sampling.
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In multifidelity methods, we consider both a high-fidelity (HF) model of interest

and a corresponding low-fidelity (LF) model, which is a model that approximates

the high-fidelity model but is significantly cheaper to generate simulations from.

The high-fidelity model p(y | θ) or Mθ, is a detailed model that is computationally

expensive to generate simulations y ∼ p(y | θ) from (y ∈ Y is the output space),

where we denote this high computational cost as c(θ). The low-fidelity model, de-

noted by p̃(ỹ | θ) or M̃θ, maps parameter samples θ ∈ Θ from a common parameter

space to a distribution on an output space Ỹ. This model comes at a lower compu-

tational cost, say c̃(θ). Notice that in the multifidelity framework, we work directly

with the simulations y and not with summary statistic thereof (previously denoted

as s = S(y)): working with fewer simulations in the ABC scheme (and multifidelity

variants) allows one to explore the parameter space more efficiently [50]. In our CRN

setup, the high-fidelity model is a pCTMC Mθ, whereas the low-fidelity model is

a pSDE M̃θ. We assume the signals y and ỹ can be compared amongst each other

and against the observations yobs. In general, we can define a low-fidelity equivalent

of yobs, denoted by ỹobs, which we obtain by mapping yobs to the output space Ỹ.

However in this work, for simplicity we work with the case where ỹobs = yobs. Sim-

ilarly to how a distance function d(y, yobs) and a neighbourhood Ωh is defined for

ABC, one can define a low-fidelity distance function d̃(ỹ, ỹobs) and a neighbourhood

Ωh̃ = {ỹ ∈ Ỹ | d̃(ỹ, ỹobs)} with corresponding kernel 1Ωh̃
(ỹ) associated with this

new output space for the low-fidelity model. So whilst the MF-ABC framework can

be quite general, for this paper we set ỹobs = yobs and we use simple indicator func-

tions for both the high- and low-fidelity kernels, 1Ωh
(y) and 1Ωh̃

(ỹ) respectively,

where the distance metric is chosen to be the same, that is, d̃(·, ·) = d(·, ·). These
low-fidelity models come with an associated cost c̃(θ) and it is assumed that, on

average, it is cheaper to generate simulations from the low-fidelity model as opposed

to the high-fidelity model, E[c̃(θ)] ≪ E[c(θ)], where the expectation acts over the

model’s probability space. With this lower cost, the low-fidelity models, parameters

and their associated weights, w̃(θ) = 1Ωh̃
(ỹ), {θ(i), w̃(i)}Ni=1 can be sampled quickly

compared to the high-fidelity equivalent {θ(i), w(i)}Ni=1. However, the ABC approx-

imations are not identical, 1Ωh
(y)p(y | θ)π(θ) ̸= 1Ωh̃

(ỹ)p̃(ỹ | θ)π(θ) and using the

low-fidelity model incurs a further bias when implementing the ABC scheme. [3]

develops an MF-ABC algorithm that utilises both the low- and high-fidelity models

to estimate πABC(θ | yobs). Doing so reduces the reliance of the ABC algorithm on

generating simulations on the high-fidelity model, which thus reduces the compu-

tational burden of the algorithm. The key idea to the MF-ABC algorithm is the

introduction of a multifidelity weight [3], namely

wmf(θ) = 1Ωh̃
(ỹ) +

I(U < η(ỹ))

η(ỹ)

[
1Ωh

(y)− 1Ωh̃
(ỹ)

]
, (8)

where U ∼ U(0, 1) and η(ỹ) ∈ (0, 1) is a continuation probability, defined by η(ỹ) =

η11Ωh̃
(ỹ) + η2(1 − 1Ωh̃

(ỹ)), where η1 ∈ [0, 1] and η2 ∈ [0, 1], determined at the

discretion of the user. This is presented in Algorithm 6 with further particulars to

be found in [3]. The multifidelity weight defined in Equation (8) combines ideas in

alternative ABC techniques that make use of low-fidelity simulations to speed up

the ABC algorithm. Specifically, the MF-ABC algorithm combines ideas from early
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rejection ABC [51, 52] and early decision ABC. In early rejection ABC, the low

fidelity simulation ỹ is used to determine whether or not to proceed and simulate

y ∼ p(y | θ) from the high-fidelity model, meanwhile in early decision ABC, the low-

fidelity simulations are used to determine whether or not the proposed parameter

is to be accepted without simulating the high-fidelity model. Combining these ideas

for early rejection and early decision ABC into the multifidelity weight wmf(θ) gives

rise to four possible values:

wmf(θ) =



1 ỹ ∈ Ωh̃ ∧ U ≥ η1 (early accept)

0 ỹ ̸∈ Ωh̃ ∧ U ≥ η2 (early reject)

1 ỹ ∈ Ωh̃ ∧ y ∈ Ωh ∧ U < η1 (checked true positives)

0 ỹ ̸∈ Ωh̃ ∧ y ̸∈ Ωh ∧ U < η2 (checked true negative)

1− 1/η1 ỹ ∈ Ωh̃ ∧ y ̸∈ Ωh ∧ U < η1 (checked false positive)

0 + 1/η2 ỹ ̸∈ Ωh̃ ∧ y ∈ Ωh ∧ U < η2 (checked false negative).

(9)

Due to the possible negative weight values, the pairs {θ(i), w(i)
mf}Ni=1 cannot be treated

as direct weighted samples from the ABC posterior πABC(θ | yobs). Still, we obtain

an estimator for the ABC approximation of the posterior expectation of an arbitrary

function g(θ) [3], as

EABC(g(θ) | yobs) =
∫

g(θ)πABC(θ | yobs) dθ ≈
∑N

i=1 w
(i)
mfg(θ

(i))/N∑N
j=1 w

(i)
mf/N

.

Multifidelity Approximate Bayesian Computation - Sequential Monte Carlo

The Multifidelity approach of [3] presented in the previous section improves the

performance of the native ABC algorithm (Algorithm 3) by allowing sampled pa-

rameters to be weighted and evaluated with a combination of low- and high-fidelity

models. This method specifically allows one to take advantage of low-fidelity mod-

els to evaluate weights instead of relying solely on high-fidelity models, which

means that a fixed number of Monte Carlo samples N from the ABC posterior

πABC(θ | yobs) can be obtained for a lower computational cost, and thus faster,

compared to high-fidelity models. Whilst this extension does not decrease the to-

tal number of simulations required, it does increase the speed at which weights

can be evaluated. Similar to how sequential Monte Carlo approaches [10, 43] were

introduced to reduce the total number of simulations required for ABC, [4] intro-

duces a sequential Monte Carlo extension to the MF-ABC approach, aptly named

MF-ABC-SMC, resulting in a framework that reduces the total number of sim-

ulations required as well as their computational cost. The MF-ABC part speeds

up the evaluation of the weights given sampled parameters, whereas the sequential

Monte Carlo approach (similar to the ABC-SMC extension to the ABC scheme) is

expected to reduce the total number of sampled parameters (and in turn, the total

number of simulations). The two approaches are integrated by extending the ABC

importance sampling approach presented in Algorithm 4 to the multifidelity frame-

work, resulting in a Multifidelity ABC importance sampler scheme (MF-ABC-IS).

The continuation probabilities presented in the MF-ABC-IS algorithm, η(ỹ), is now
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an explicit function on both the low-fidelity simulation, ỹ, and the parameter sam-

ples θ; η = η(θ, ỹ) ∈ (0, 1]. With the MF-ABC-IS algorithm, if we were to define

both a sequence of decreasing thresholds h1 > · · · > hM that induce the neighbour-

hoods Ωh1 ⊇ · · · ⊃ ΩhM
for the high-fidelity model and a corresponding sequence

of decreasing thresholds for the low-fidelity model, h̃1 > · · · > h̃M that induce

the neighbourhoods Ωh̃1
⊇ · · · ⊇ Ωh̃m

, using an appropriate perturbation kernel

Fm(θ∗ | θ), then the sequential Monte Carlo algorithm could proceed similarly to

the ABC-SMC introduced previously.

Recall that the newly generated weights might be negative and cannot be sampled

from directly: [4] proposes using non-negative weights ŵ
(i)
m = |w(i)

m |, so that at each

generation m, two weights for the same sampled parameters are produced at once,

{θ(i)m , ŵ
(i)
m } and {θ(i)m , w

(i)
m }. The weighted samples {ŵ(i)

m , θ
(i)
m } are drawn from an

alternative target distribution, ϖm(θ) ∝ πhm

ABC(θ | yobs) + δm(θ), where the addi-

tional term δm(θ) is the difference between this alternative target distribution and

the ABC posterior - see [4] for details. Although this new importance distribution

now targets ϖm(θ) at each generation m, instead of the desired πhm

ABC(θ | yobs), the
MF-ABC-SMC scheme still produces an estimate of an arbitrary function g : Θ → R
with the retained weights w

(i)
m , Ehm

ABC(g(θ) | yobs), which is a consistent Monte Carlo

estimate under the ABC posterior at the m-th epoch [4].

Multifidelity Bayesian Statistical Model Checking

We propose to extend the MF-ABC-SMC to incorporate Statistical Model Check-

ing. We work with Bayesian SMC, which theoretically has been shown to achieve the

same statistical guarantees with fewer simulations - see the example in [11] and Fig-

ure 5. Whilst we can perform SMC separately for the high- and low-fidelity models,

if we perform SMC simultaneously for the multifidelity model, we are able to seam-

lessly quantify the assessment via [53] of the low-fidelity model as an approximate

abstraction of the high-fidelity model, as well as estimate parameter classification

regions for Bayesian verification, akin to [2].

Let us recall the MF-ABC-SMC scheme, where the high-fidelity model is denoted

as Mθ with respective simulations y generated via y ∼ p(y | θ) and we denote the

low-fidelity model as M̃θ with respective simulations generated by ỹ ∼ p̃(ỹ | θ).
Let us denote the specification that we wish to verify on the high-fidelity model

as ϕ (with respective threshold probability ζ), which we assume to be checkable

also on the low-fidelity model. Both models are parametrised by the same set of

parameters θ, but might lead to different satisfaction probabilities Λϕ(θ): we denote

the high-fidelity satisfaction probability estimate as Λ̂ϕ(θ), and the corresponding

low-fidelity satisfaction probability estimate as Λ̃ϕ(θ).

The MF-BSMC method follows closely to the BSMC algorithm, where we assume

in this case that we are interested in the same coverage (c), half-interval width

size (ℓ) and prior Beta distribution parameters (α, β) for both models. By storing

the information generated from both the high- and low-fidelity models, we can

further assess the approximation quality of the low-fidelity model compared to the

high-fidelity model. We quantify how well this low-fidelity model acts as a proxy

to the high-fidelity model with the use of a metric, namely γ̂ϵ, which is based

on [53] and further discussed in detail in the Methods section.This multifidelity
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approach to Bayesian SMC results in Algorithm 10, which performs BSMC on both

models, returning the set {Λ̂ϕ(θ), Λ̂
L
ϕ (θ), Λ̂

U
ϕ (θ)} for the high-fidelity model, and

{Λ̃ϕ(θ), Λ̃
L
ϕ (θ), Λ̃ϕ(θ)

U} for the low-fidelity model, and finally γ̂ε. We note here that

the number of simulations required to estimate the high/low-fidelity satisfaction

probability estimates might differ (n vs ñ). As a result, we set nγ = min {n, ñ} for

the quantification γ̂ε.

By integrating the MF-BSMC algorithm with the MF-ABC-SMC scheme, we

obtain the multifidelity weighted samples {θ(i)M , w
(i)
M }Ni=1 and associated satisfaction

probabilities, Λ̂ϕ(θ) and Λ̃ϕ(θ). Recalling the definition of the credibility calculation

in Equation (3), C = P (S |= ϕ | yobs) = Eπ

[
1Θϕ

(θ)
]
, and noting the fact that the

set Θϕ is defined as Θϕ = {θ ∈ Θ : Λϕ(θ) ⋔ ζ}, we can set 1Θϕ
(θ) = 1Λϕ(θ)⋔ζ(θ),

and using the multifidelity weights we can get an approximation of the credibility

calculation of the form

Cmf = EhM

ABC(1Λϕ(θ)⋔ζ(θ) | yobs) ≈
∑N

i=1 w
(i)
M 1Λϕ(θ)⋔ζ(θ

(i)
M )∑N

j=1 w
(j)
M

. (10)

Recall that the satisfaction probabilities are statistically estimated with guarantees

via SMC, namely by estimating the interval Λ̂ϕ(θ) ∈
[
Λ̂L
ϕ (θ), Λ̂

U
ϕ (θ)

]
. The lower and

upper limits will be chosen to make a decision on whether θ ∈ Θϕ, depending on

the sign of the threshold decision in Λϕ(θ) ⋔ ζ. To improve the scalability of the

Bayesian verification framework, we set the number of simulations associated with

each sampled parameter to Bm = 1 according to [50] and thus no summary statistics

are required. In conclusion, rather than performing rigorous SMC techniques for

every sampled parameter, as in [2], we explore when to perform SMC and by which

model at different stages of the algorithm, which results in a credibility calculation

Cmf that is obtained with a fewer number of simulations that are of a lower (or at

most equal) computational cost than the original ABC-(SMC)2 scheme introduced

in [2] and discussed above.

End Result: The MF-ABC-(SMC)2 Algorithm

The overall MF-ABC-(SMC)2 scheme is presented in Algorithm 2, and results from

integrating MF-ABC-SMC with MF-BSMC. In this scheme we can decide where to

input the MF-BSMC algorithm (Algorithm 10) into the MF-ABC-SMC algorithm

(Algorithm 8). Arguably the optimal choice would be to perform SMC on the high-

fidelity model when we have inferred the posterior probability distribution after

M thresholds, πhM

ABC(θ | yobs), as we are interested in the credibility calculation

Cmf = P (S |= ϕ | yobs) as per (10). However, in the Case Studies we will explore

alternative options of when to perform BSMC, such as on parameters sampled from

the prior π(θ) rather than the posterior distribution, and on the low-fidelity model

rather than the high-fidelity one.

Case Studies

Experimental Setup

All experiments have been run on an Intel(R) Xeon(R) CPU E5-1660 v3 @ 3.00GHz,

16 cores with 16GB memory. Both ABC-(SMC)2 and MF-ABC-(SMC)2 are coded

in C++, while Python is used for the SVM classifier.
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Algorithm 2 Multifidelity ABC-(SMC)2 (MF-ABC-(SMC)2)
Input:

• Observed data yobs

• Prior Beta distribution π(θ) with parameters α, β
• High-fidelity model p(y | θ) and low-fidelity model p̃(ỹ | θ)
• Initial importance distribution r̂0(θ) (commonly set to r̂0(θ) = π(θ))
• Sequence of high fidelity neighbourhoods Ωhm = {y ∈ Y | d(y, yobs) ≤ hm} and low-fidelity neighbour-

hoods Ωh̃m
= {ỹ ∈ Ỹ | d̃(ỹ, ỹobs) ≤ h̃m} with respective kernels 1Ωhm

(y) and 1Ω
h̃m

(ỹ)

• Initial continuation probability function η0 = η0(θ, ỹ) = 1

• Lower bounds on continuation probabilities, ηL
1 , ηL

2 ∈ (0, 1)
• Sequence of perturbation kernels Fm(θ|θ∗)
• Monte Carlo sample size N > 0
• Property defined on both high- and low-fidelity model ϕ
• Half-interval width size ℓ ∈ (0, 1

2 ), interval coverage parameter c ∈ ( 1
2 , 1)

• Parameter ε to obtain (1− ε)-level approximate abstraction γ̂ε

Output:

• {θ(i), w(i), }Ni=1, accepted parameters with corresponding weights

1: for m = 0, . . . ,M : do

2: Produce {θ(i)
m , w(i)

m }
N
i=1 and store information required to estimate optimal con-

tinuation probabilities from MF-ABC-IS algorithm (Algorithm 7) with inputs(
yobs, ỹobs,Ωhm ,Ωh̃m

, π(θ), p(y | θ), p̃(ỹ | θ), ηm(θ, ỹ)
)

setting q̂ = r̂m(θ)

3: Set ŵ(i)
m = |w(i)

m | for i = 1, . . . , N
4: Define r̂m+1 proportional to rm+1 (see [4])

5: Calculate (η∗
1 , η

∗
2 ) with lower bounds (ηL

1 , ηL
2 ) using importance distribution rt+1(θ), ABC thresholds hm+1

and h̃m+1 with values stored from MF-ABC-IS algorithm at step 2 (see [4])
6: Set ηm+1(θ, ỹ) = η∗

11Ω
h̃m

(ỹ) + η∗
2 (1− 1Ω

h̃m
(ỹ))

7: if (m = 0) ∧ {Perform MF-BSMC for π(θ) } then

8: Calculate {Λ̂ϕ(θ
(i)
0 ), Λ̃ϕ(θ

(i)
0 ), γ̂(i)

ε }
N
i=1 from MF-BSMC algorithm (Algorithm 10)

9: end if
10: end for
11: if {Perform MF-BSMC for π

hM
ABC(θ | yobs) } then

12: Calculate {Λ̂ϕ(θ
(i)
M ), Λ̃ϕ(θ

(i)
M ), γ̂(i)

ε }
N
i=1 from MF-BSMC algorithm (Algorithm 10)

13: end if
14: return {θ(i)

M , w
(i)
M }

N
i=1

Application of the ABC-(SMC)2 Algorithm

SIR System and Parametrised Stochastic Model

The SIR system describes the dynamics of three epidemic types, a susceptible group

(S), an infected group (I), and a recovered group of individuals (R) - here we let

S, I and R evolve via the two rules

S + I
ki−→ 2I, I

kr−→ R.

A pCTMC model for the SIR system is governed by the rate parameters θ =

(ki, kr), and each state of the pCTMC describes the combination of the number

of each type (S, I,R) (equating to molecule/species counts in CRNs), where the

state vector is given by X(t) = [S(t), I(t), R(t)]⊤, which denotes the number of

molecules of each species at a given time t. For the complete details on the case

study, please see the Methods.The initial state of the system/pCTMC is given

by x0 = X(0) = [S0, I0, R0]
⊤ = [95, 5, 0]⊤. The property we are interested in

verifying is defined as the CSL formula ϕ = P>0.1((I > 0)U [100,150](I = 0)), i.e.

whether, with a probability greater than 0.1, the infection dies out within a time

interval between t = 100 and t = 150 seconds. We confine our parameters to the

set Θ = [k⊥i , k
⊤
i ]× [k⊥r , k

⊤
r ] = [5× 10−5, 0.003]× [0.005, 0.2], generating observation

data from the SIR model with three different parameter choices,θϕ, θ¬ϕ and θU ,

corresponding to the CTMCs Mθϕ , Mθ¬ϕ
and MθU . These models will correspond

to three “true” underlying stochastic systems S, with associated observation data.

For each instance, we work with observed data yobs that is sampled at a finite
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number of time steps. The observed data consists of only 5 simulated traces (nsims =

5), observed at 10 time points (nobs = 10). The summary statistics S(yobs) = sobs

corresponds to the average of the five traces and is used for the inference aspect of

the algorithm. It is worth emphasising that with so few observation traces, black-

box SMC (directly based on observation traces, not on model-generated simulations)

would be hopeless.

The ABC-(SMC)2 algorithm (Algorithm 1) outputs samples from the approx-

imated posterior and their corresponding weights,
{
θ
(i)
M , w

(i)
M

}
∼ πhM

ABC(θ | sobs)
where i = 1, . . . , N . We choose the number of Monte Carlo samples to be N = 500;

the number of sequential steps (epochs) to be M = 20; the kernel function

Kh(d(y, yobs)) = 1Ωh
(y) to be a simple indicator function, i.e. Kh(d(y, yobs)) = 1

if d(y, yobs) = ∥y − yobs∥ < h, Kh(d(y, yobs)) = 0 otherwise; the rate at which the

thresholds hm decrease to be υ = 0.5; and the summary statistic s = S(y) is chosen

to be the sample mean of the simulations and of the observations. We choose π(θ)

to be a uniform prior over Θ, which we define as

π(θ) =


(
ΠNR

i=1(θ
⊤
i − θ⊥i )

)−1
, if θ ∈ Θ = [θ⊥1 , θ

⊤
2 ]× · · · × [θ⊥NR

, θ⊤NR
]

0, otherwise.
(11)

For the remainder of this work, π(θ), the prior, is chosen to be a uniform prior over

the parameter space, Θ, regardless of which model we work with. The perturbation

kernel Fm(θ∗∗ | θ∗) is chosen to be a multivariate Normal distribution, so that

θ∗∗ ∼ N (θ∗, 2Σm−1), where the covariance is twice the second moment computed

over the accepted weights and particles at step m−1, namely
{
θ
(i)
m−1, w

(i)
m−1

}
, where

i = 1, . . . , N . For further details on alternative choices for threshold sequences,

summary statistics and perturbation kernels, see [9, 54–57].

Parameter Classification: A Motivating Comparison

For the SMC component of the overall ABC-(SMC)2 scheme, we run the Massart

algorithm [48] with the following choice of parameters: (ϵ, δ, δc) = (0.01, 0.05, 0.001),

which results in a maximum number of necessary simulations that equals Bm ≤
nO = ⌈ 1

2ϵ2 log
2
δ ⌉ = 18445. At the conclusion of the ABC-(SMC)2 algorithm, we

train the classifier over half of the sampled parameters (whether eventually accepted

or rejected), with the corresponding estimated probabilities and test it on the other

half, which results in the SVM classifier accuracy presented in Table 3 and further

described below. We now briefly present the approximate parameter classification

generated from the ABC-(SMC)2 approach and compare that to the numerical

approach of [22, 23], which we present in Figure 2.

Classification can be performed as a synthesis problem via PRISM: this technique

dissects the parameter space into 14413 grid regions (Figure 2b), which results in

calculating the satisfaction probability at 57652 points. Instead, to illustrate how we

can generate an approximate parameter classification using SMC, we consider sam-

pling 1000 points from the prior π(θ) (see Eq. 11). We run the Massart algorithm

at each point to obtain an estimated probability with corresponding (1 − δ) con-

fidence bounds, where δ = 0.05. With these samples and probabilities, we classify

parameter regions with an SVM, which results in Figure (2c), with corresponding
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(a) (b)

(c) (d)

Figure 2. The set Θϕ, is shown in yellow (lighter colour), meanwhile Θ¬ϕ,

is shown in blue (darker colour) Θ¬ϕ. The undecided areas, ΘU

(if any) are shown in magenta.(a) Parameter regions synthesised

by GPU-Accelerated PRISM [23]. (b) Gridding scheme.(c) Pa-

rameter regions from SVM classification with 1000 samples from

uniform distribution. (d) Estimated probabilities Λϕ(θ
∗) .

Table 1. Parameter classification - runtimes.

Parameter classification Times [seconds]

PRISM-GPU 3096

SVM & SMC 1653.8

estimated probabilities in Figure (2d). The runtimes presented in Table 1 suggest

that we obtain a good approximation of the parameter classification region in half

the time of the GPU-accelerated PRISM tool, which could be further improved if

we parallelised the computation [48]. These considerations have led us to embed the

statistical parameter classification in the parameter inference algorithm.

Outcomes of the ABC-(SMC)2 Algorithm

For the three models considered in the SIR case study, the inferred posterior mean

θ̂M , covariance ΣM , total number of sampled parameters, N̄ , and resulting credibil-

ity calculation are given in Table 3, with corresponding runtimes in Table 4. Figures

3d, e and f plot the inferred posterior, showing the mean (denoted by ×) and two

standard deviations from the mean (corresponding ellipse around the mean), as well

as the true parameter value (△). In Case θϕ, we can assert, with a parameter classi-

fication based off a confidence of (1−δ) = 0.95 and absolute-error ϵ = 0.01, that the
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Table 3. Bayesian Verification Results via ABC-(SMC)2 for SIR case study.

Case θ̂M ΣM Sampled SVM Credibility

Pars, N̄ Accuracy Calculation

θϕ

[
0.00215

0.07050

] [
1.46 · 10−8 4.24 · 10−7

4.24 · 10−7 1.97 · 10−5

]
10952 99.6% 1

θ¬ϕ

[
0.00072

0.14519

] [
2.47 · 10−8 3.41 · 10−6

3.41 · 10−6 9.22 · 10−4

]
10069 99.8% 0.0054

θU

[
0.00193

0.11337

] [
8.89 · 10−8 5.86 · 10−6

5.86 · 10−6 4.21 · 10−4

]
10807 98.7% 0.6784

Table 4. Runtimes for ABC-(SMC)2 algorithm on SIR case study.

Times [seconds]

Case ABC(SMC)2 SVM Optimisation SVM Classification

θϕ 64790 168 3.98

θ¬ϕ 8014 82 4.25

θU 35833 2166 5.12

underlying stochastic system S does indeed satisfy the property of interest, as the

credibility calculation gives P (S |= ϕ | sobs) = 1. Case θ¬ϕ has a low probability of

satisfying the property of interest (P (S |= ϕ | sobs) = 0.0054), whereas for Case θU

the inferred mean converges to the true mean that we would expect the estimated

probability of satisfying the property to converge to, which is 0.5.

Table 2, and Figure 4 suggest that simulation times are largely dependent on the

estimated probabilities, Λ̂ϕ(θ): the closer the estimated probabilities are to 0.5, the

larger the number of simulations required. To improve the runtime of Case θU , we

would need to reduce variance and improve the accuracy of the inferred parameters,

for instance by increasing the number of observed data points yobs or with an

alternative choice of either the summary statistics chosen or of the perturbation

kernels [56]. The inferred posterior, total number of sampled parameters, SVM

accuracy and output credibility calculation, are presented in Table 3, with the

corresponding runtimes in Table 4.

Outcomes of the MF-ABC-(SMC)2 Algorithm

In this section we illustrate the advantages of extending the ABC-(SMC)2 algo-

rithm to a multifidelity setup, whereby we can obtain a credibility calculation using

computationally cheaper simulations. We also explore when to perform SMC, high-

lighting that we can achieve comparable results without running SMC for every

sampled parameter, as proposed in the native ABC-(SMC)2 algorithm. Further-

more, we provide motivation as to why we work with Bayesian SMC methods as

opposed to a frequentist one, namely the Massart algorithm, which has been shown

to be one of the best performing frequentist SMC schemes [58].

We consider three case studies, the production-degradation model, SIR model and

the Michaelis-Menten model. See Methods for full details of variables and parame-
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(a) θϕ samples. (b) θ¬ϕ samples. (c) θU samples.

(d) θϕ posterior. (e) θ¬ϕ posterior. (f) θU posterior.

(g) Samples traces from θϕ
posterior.

(h) Samples traces from
θ¬ϕ posterior.

(i) Samples traces from θU
posterior.

Figure 3. Bayesian verification results from ABC-(SMC)2 for Case θϕ (a

and d), Case θ¬ϕ(b and e), and Case θU (c and f). Sampled

points θ with estimated probabilities Λ̂ϕ(θ) (a, b and c). Inferred

posterior πhM

ABC(θ | sobs) and parameter regions (d, e and f).

Traces of I molecules simulated from Mθ, with θ sampled from

the θϕ posterior (g), the θ¬ϕ posterior (h) and the θU posterior

(i). The set Θϕ, is shown in yellow, whereas Θ¬ϕ is shown in

blue. The undecided areas ΘU is shown in magenta. For Fig (g-i)

the traces colour represent which set the sampled parameters are

members of.

ters chosen. For the multifidelity scheme, we will use pCTMCs as high-fidelity (HF)

models Mθ, and pSDEs (based on the chemical Langevin equations, or CLE), as

low-fidelity (LF) models M̃θ. The CLE is known to be a good approximation for

a CTMC a when the CRN has a large number of molecules [34]: this motivates to

select an initial state for the SIR case study that differs from that considered in the

previous experiments. We note that, for each study, a specific θ⋆ is chosen to emu-

late an actual biological system such that Mθ⋆ |= ϕ, and thus Mθ⋆ is considered to

be the “true” data-generating system. We summarise credibility calculations and

runtimes in Table 5: we notice that time is mostly spent running MF-BSMC for the

sampled parameters, whilst the parameter inference is quite rapid - this justifies

the careful selection of SMC within the overall scheme discussed in this work. First,
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Case Λ̂ϕ(θ) Total simulations

θϕ 0.47254 18445

θ¬ϕ 0.00408719 2202

θU 0.100433 14775

Figure 4 & Table 2. True parameter values with corresponding estimated

probabilities using SMC (15000 uniform samples),

and number of SMC simulations used in ABC-

(SMC)2 .

Table 5. MF-ABC-(SMC)2 Credibility Outcomes and Runtimes.

Case Study Cmf Times [seconds]

MF-ABC-(SMC)2 (MF-BSMC aspect)

Production-degradation 0.631 9621 (9582)

SIR 1.0 9572 (8825)

Michaelis-Menten 0.836 2423 (1701)

we provide a brief discussion as to our choice of working with Bayesian SMC as

opposed to the Massart algorithm considered previously.

Frequentist vs Bayesian SMC

Both SMC techniques based on Chernoff-Hoeffding or Bayesian methods offer

bounded confidence intervals, where for SMC methods utilising Chernoff-Hoeffding

bounds, these bounds hold for any random variable with a bounded variance, mean-

while the Bayesian SMC approach explicitly constructs the posterior distribution

based on the Bernoulli distribution. Through empirical studies, [11] shows that the

performance of the BSMC algorithm depends more on the half-size ℓ of the in-

terval than on the coverage of the interval. However, we note that the Bayesian

SMC result indeed requires a fewer number of simulations in comparison with the

frequentist Massart Algorithm previously considered. Whilst not formally proved

here [12], we compare the frequentist SMC approach with the Bayesian approach

by comparing the average number of simulations required to obtain results from

BSMC (Algorithm 9) and from the Massart Algorithm [58]. Results are shown in

Figure 5.

Production-degradation model

We work with a biochemical system that consists of a single chemical species X,

involving production and degradation reactions of the form

∅ k1−→ X, X
k2−→ ∅,
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Figure 5. Comparison of average number of simulations required to esti-

mate the true probability of satisfying a given property, Λϕ(θ)

using Bayesian SMC or frequentist SMC (Massart Algorithm[48])

with coverage parameter c = 0.999 ((1 − δ)-confidence interval)

and width parameter ℓ = 0.01. (ϵ = 0.01). The number of sam-

ples obtained is the mean of 100 repetitions of each SMC tech-

nique.

that is, X is produced at a rate k1 ∈ R≥0, the parameter we wish to infer θ = k1,

and X is degraded at a fixed rate of k2 = 0.01. The propensity functions are given

by a1(X(t)) = k1 and a2(X(t)) = k2X(t), where X(t) is the number of X molecules

at time t. The associated stoichiometric vectors are given by υ1 = 1 and υ2 = −1.

We obtain the following CLE,

dx̃(t) = (k1 − k2x̃(t))dt+
√
k1 dW

(1)(t)−
√
k2x̃(t) dW

(2)(t),

where W (i)(t), i = 1, 2 are independent scalar Wiener processes. The property we

wish to verify is ϕ̄ = P≥0.7(□[200,500] (120 ≤ X ≤ 180)), that is, whether with a

probability of at least 0.7 (inclusive), the number of X molecules remain between

120 ≤ X ≤ 180 for t ∈ [200, 500]. This is equivalent to checking the dual prop-

erty ϕ = P<0.3(true U [200,500] (X < 120 ∪X > 180), thus ζ = 0.3. We present the

inference and estimated satisfaction probabilities in Figure 6.

From Figure 6b we note that the weights are strictly positive, which imply that

for most cases the LF model comes to the same conclusion as the HF model. (In

the Methods section we instead explore the case when we obtain negative weights.)

The satisfaction probabilities estimated via BSMC, for samples generated from the

prior π(θ) and from the posterior πhM

ABC(θ | yobs), are presented in Figures 6c and

6d, respectively. The credibility value Cmf in Table 5 is calculated by using the

Λ̂ϕ(θ) estimated from the HF model and the weights generated from the posterior :

according to (10), the integral boils down to summing weights associated to pa-
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(a) Histogram for πhM
ABC(θ | yobs) . (b) πhM

ABC(θ | yobs) weights.

(c) π(θ). (d) πhM
ABC(θ | yobs).

Figure 6. Production-degradation - Inference results (a) and weights (b)

for sampled parameters θ ∼ πhM

ABC(θ | yobs) as well as estimated

satisfaction probabilities for high-fidelity (Λ̂ϕ(θ), blue points)

and low-fidelity model (Λ̃ϕ(θ), green points), using samples from

(c) π(θ) and (d) πhM

ABC(θ | yobs). The posterior mean is denoted

by θ̂, while the “true parameter” is denoted by θ⋆ .

rameters/models satisfying the property. From the satisfaction probabilities given

in Figures 6c and 6d, we can see that the outcome of the Bayesian verification tech-

nique Cmf not only hinges on the accuracy and variance from the inference part,

but also on the location of the posterior distribution with respect to the satisfaction

probability Λϕ(θ): in this case study θ⋆ lies close to the boundary of the feasible set

of parameters, hence the obtained (somewhat uninformative) credibility of 0.631. As

we increase the accuracy of the inference part, we expect the posterior to converge

to the “true parameter” value θ⋆, thus Cmf → 1 for the credibility.

SIR model

Recalling the SIR case study considered when investigating the ABC-(SMC)2

regime, the CRN is governed by the following pair of rules

S + I
k1−→ 2I, I

k2−→ R,

where θ = (θ1, θ2) = (k1, k2). The above system has propensity functions a1(X(t)) =

k1S(t)I(t) and a2(X(t)) = k2I(t) which have respective vectors υ1 = [−1, 1, 0]⊤ and
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υ2 = [0,−1, 1]⊤, which leads us to the CLE approximation

dx̃1(t) = −k1x̃
1(t)x̃2(t) dt−

√
k1x̃1(t)x̃2(t) dW (1)(t),

dx̃2(t) = x̃2(t)
(
k1x̃

1(t)− k2
)
dt+

√
x̃2(t)

(√
k1x̃1(t) dW (1)(t)−

√
k2 dW

(2)(t)
)
,

dx̃3(t) =
√
k2x̃2(t)

(√
k2x̃2(t) dt+ dW (2)(t)

)
,

where x̃(t) = [x̃1(t), x̃2(t), x̃3(t)]⊤ are the continuous approximations to the state

X(t) = [S(t), I(t), R(t)]⊤ and W (j)(t), j = 1, 2, are scalar independent Wiener

processes. The property we consider is ϕ = P≥0.5((I > I0)U
[7.5,10](I > R)), ex-

pressing whether, with probability greater than or equal to ζ = 0.5, the number of

I molecules exceeds that of R molecules within a time interval [7.5, 10].

(a) Λ̂ϕ(θ) where θ ∼ π(θ). (b) Λ̃ϕ(θ) where θ ∼ π(θ).

(c) Λ̂ϕ(θ) where θ ∼ πhM
ABC(θ | yobs). (d) Λ̃ϕ(θ) where θ ∼ πhM

ABC(θ | yobs).

Figure 7. SIR - Mean estimated satisfaction probabilities (colour bars) for

high-fidelity model Mθ (a and c) and low-fidelity model M̃θ (b

and d) when the parameters are sampled from the prior π(θ) (a

and b), and from the posterior πhM

ABC(θ | yobs) (c and d).

We present the MF-BSMC results obtained from running the MF-ABC-(SMC)2

algorithm, in Figure 7. The credibility reported in Table 5 is computed via the

estimates Λ̂ϕ(θ) where θ ∼ πhM

ABC(θ | yobs). We can see that we infer the parameters

closely, however there seems to be a discrepancy between the estimated satisfaction

probabilities of the HF and LF model based on the posterior distribution. If we

were to consider running MF-BSMC on the prior alone, by utilising a supervised

classifier akin to the parameter classification technique introduced in [2], we could
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obtain a detailed feasibility set Θϕ across the whole parameter space Θ, in addition

to the credibility calculation Cmf - see Methods for further particulars. In addition to

this, by performing MF-BSMC on the prior with an appropriate choice of distance

metric (here we use γ̂ϵ from [53]), we can examine the relationship between Λ̂ϕ(θ)

and Λ̃ϕ(θ) across the parameter space Θ - see Figure 12.We conclude that whilst we

can obtain an accurate credibility calculation Cmf by performing SMC for the HF

model with samples generated from the posterior πhM

ABC(θ | yobs), more information

can be gathered by performing MF-BSMC with samples from the prior: this can

be useful for parameter classification or to analyse the relationship between models

(See Methods), in addition to calculating the overall credibility Cmf.

Michaelis-Menten Case study

The Michaelis-Menten model [59, 60] comprises a state vectorX(t) = [E(t), S(t), C(t), P (t)]
⊤

with stoichiometry

E + S
k1−→ C, C

k2−→ E + S, C
k3−→ E + P.

The reactions above have the respective propensities a1(X(t)) = k1E(t)S(t),

a2(X(t)) = k2C(t) and a3(X(t)) = k3C(t) where the respective stoichiometric

vectors are given by υ1 = [−1,−1, 1, 0]⊤, υ2 = [1, 1,−1, 0]⊤ and υ3 = [1, 0,−1, 1]⊤.

With these propensity functions and stoichiometric vectors, the CLE approximation

is given by

dx̃1(t) =
(
(k2 + k3)x̃

3(t)− k1x̃
1(t)x̃2(t)

)
dt−

√
k1x̃1(t)x̃2(t) dW (1)(t)

+
√

k2x̃3(t) dW (2)(t) +
√
k3x̃3(t) dW (3)(t),

dx̃2(t) =
(
k2x̃

3(t)− k1x̃
1(t)x̃2(t)

)
dt−

√
k1x̃1(t)x̃2(t) dW (1)(t) +

√
k2x̃3(t) dW (2)(t),

dx̃3(t) =
(
k1x̃

1(t)x̃2(t)− (k2 + k3)x̃
3(t)

)
dt+

√
k1x̃1(t)x̃2(t) dW (1)(t)

−
√

k2x̃3(t) dW (2)(t)−
√
k3x̃3(t) dW (3)(t),

dx̃4(t) = k3x̃
3(t) dt+

√
k3x̃3(t) dW (3)(t),

where x̃(t) = [x̃1(t), x̃2(t), x̃3(t), x̃4(t)]⊤ = [Ẽ(t), S̃(t), C̃(t), P̃ (t)]⊤ and once again

each W (j)(t) are independent scalar Weiner processes driving the reactions, j =

1, 2, 3. We are interested in verifying whether or not the true system satisfies ϕ =

P≥0.8(□[20,60](25 ≤ E ≤ 55)) = P≤0.2(true U [20,60](E < 25) ∪ (E > 25)) (thus

ζ = 0.8), namely whether, with probability at least ζ = 0.8, for time t ∈ [20, 60]

the number of enzyme molecules E remains between 25 ≤ E ≤ 55. The inference

results are presented in Figure 8. We generate a credibility Cmf = 0.836 and expect

it to converge to 1 as the inference accuracy improves.

Computational Considerations

With the MF-ABC-(SMC)2 scheme we have succeeded in reducing both the total

number of simulations required and the computational costs of said simulations by

extending the ABC-(SMC)2 with multifidelity techniques and by exploring when

to perform SMC in a smarter way. With the multifidelity ABC framework, setting

weights w(i) for sampled parameters θ(i) may be calculated without incurring the
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Figure 8. Michaelis-Mentern – Inference results (θ̂ posterior mean, θ⋆ “true

parameters”).

computational cost of simulating y, whereas in the previous ABC-(SMC)2 we are

required to simulate y ∼ p(y | θ) for every weight evaluation, where the compu-

tational cost of doing so is E[c(θ)] ≫ E[c̃(θ)], where E[c̃(θ)] is the average cost of

generating LF simulations ỹ ∼ p(ỹ | θ) from models (here the expectation is defined

over their probability spaces).

With regards to the number of simulations, recall that in the ABC-(SMC)2 for a

given model the worst-case scenario for the total number of simulations would be

N̄ × nO, where nO is the maximum number of simulations required for the SMC

scheme in ABC-(SMC)2 (calculated in the Massart algorithm [58]) and N̄ ≥ N×M ,

where N̄ denotes the total number of parameters sampled, whether they are ac-

cepted or not. In the MF-ABC-(SMC)2 scheme however, rather than perform-

ing SMC for every sampled parameter θ(r), r = 1, . . . , N̄ , we run either SMC

on parameter samples used to estimate the prior or the posterior. In this case,

we would run SMC for a total of either N or 2N times, whether we use sam-

ples from the prior (N) or both prior and posterior (2N). Additionally, we see

from Figure 5 that a fewer number of simulations are required to verify proper-

ties using Bayesian SMC compared to the Massart algorithm. By denoting the

maximum number of simulations required for Bayesian SMC as nB, we note that

nB < nO and in the worst case scenario the total number of simulations required

to estimate parameter regions using the MF-ABC-(SMC)2 algorithm is equal to

N × nB < 2N × nB < N ×M × nO ≤ N̄ × nO.

Discussion
Discussion of ABC-(SMC)2

The ABC-(SMC)2 framework presented in [2] allows the Bayesian verification frame-

work of [5] to be applied to a wide variety of models. The overall ABC-(SMC)2

scheme can easily be parallelised over its components to drastically speed up the

framework: each part of the scheme - the CRN simulations [61], the inference

scheme [62] and the SMC scheme [48] - naturally allow for parallelisation. Be-

sides parallelisation, our interests lay in reducing the overall workload: indeed no

matter how the simulations are performed, either sequentially or in parallel, the

ABC-(SMC)2 framework leads to a large number of simulations and thus a possibly

heavy computational burden.

Setting Bm to a small value (even Bm = 1), the acceptance probability is cheaper

to evaluate [50] but can become highly variable, allowing for more time to ex-
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plore the parameter space rather than obtaining more detailed information for a

single sampled parameter that may be rejected. The trade-off is that, whilst the

ABC-(SMC)2 framework allows for a rigorous and informative Bayesian verifica-

tion technique across the whole parameter space, for the credibility calculation one

is solely interested in the posterior distribution, πhM

ABC(θ | sobs), and the associated

satisfaction probabilities. In addition to this, by setting Bm to the minimum num-

ber of simulations required for SMC, in a worst case scenario this would lead to a

total of N̄ × nO simulations, where N̄ ≥ N × M is the total number of sampled

parameters, N is the number of accepted particles, M is the total number of gen-

erations or epochs in the sequential Monte Carlo scheme, and nO is the maximum

number of simulations required for guarantees in SMC.

Whilst these proposals drastically can reduce the total number of simulations

required, we look at further mitigating the computational burden of requiring a

high number of expensive/slow simulations, by deploying multifidelity Monte Carlo

methods [1], specifically Multifidelity ABC [3, 4].

Discussion on Multifidelity Bayesian Verification

Whilst the ABC-(SMC)2 extension introduced in [5] greatly improves the appli-

cability and scalability of the Bayesian verification framework, in this form the

framework may require a restrictive number of simulations. Despite the ease as to

which [2] can be easily parallelised, in this paper we looked to reduce the overall

workload required from the ABC-(SMC)2 technique. To reduce the workload, we

looked at limiting both the number of simulations required and mitigate the com-

putational cost of the required simulations. The former is achieved by choosing an

alternative SMC technique which requires fewer simulations, as well as only per-

forming SMC on samples generated either from the prior or posterior, allowing for

a faster exploration of the parameter space [50]. The latter is achieved by extending

the framework to utilise multifidelity methods, which allows one to use low-fidelity

models that are cheaper and faster to simulate, in combination with high-fidelity

models to perform Bayesian inference: we have thus introduced a multifidelity ex-

tension to the Bayesian verification framework of [2]. We also extended the use of

multifidelity methods to allow for statistical model checking, which can be used

to quantitatively assess (via the metric introduced in [53]) how well the LF model

approximates the HF model.

With the introduction of multifidelity weights, however, there is a non-negative

probability of obtaining negative weights - see further details in the Method section

- these weights can however still be used to assess the overall credibility under the

inferred posterior. Further extensions would be to consider how to avoid generating

negative weights in the multifidelity framework, where mitigating the effects of

negative Monte Carlo weights is the subject of current research [63, 64].

It is worth stressing the importance of selecting when to perform the multifi-

delity Bayesian SMC technique, MF-BSMC, as studied in our experiments. If one

is interested in the credibility calculation alone, the most accurate method is to

perform SMC using parameters sampled from the posterior distribution. Instead,

if one is interested in generating an approximate parameter classification technique

over the whole parameter space, and in exploring the relationship between the low-
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and high-fidelity models (see Methods section), then one should consider performing

MF-BSMC on models generated from the prior (or over the entire parameter space).

By doing so, one could obtain an approximate parameter classification technique

that can also be used to perform a credibility calculation, using SVMs similar to

that proposed in [2]. Future work involves further investigation as to how one could

formally verify properties defined on the high-fidelity model by using information

gathered solely utilising the low-fidelity model.

Conclusions
In this paper we introduced a novel data-driven verification framework which

utilises multifidelity methods, namely, Multifidelity Bayesian verification. Multifi-

delity methods for likelihood-free inference and statistical model checking, leverage

both high-fidelity and low-fidelity models to reduce the computational burden of

having to rely solely on a costly, high-fidelity model. The success of simulation-

based techniques, whether used for inference, model checking or a wider range of

Monte Carlo methods, hinge solely on the computational complexity of the un-

derlying model. Simulation-based techniques remain popular however due to the

higher degree of flexibility allowed when it comes to mathematical modelling, de-

spite the high number of simulations required. By leveraging both low-fidelity and

high-fidelity models, we can reduce the computational burden, and as such improve

the scalability, of techniques such as [2], which rely entirely on simulation-based

methods. With this multifidelity extension, the Bayesian verification technique in-

troduced above can be used on a wider class of low- and high-fidelity models, al-

lowing for a more rapid inference and verification.
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Methods
In this section, we present the algorithms, concepts and further details on the case

studies which is required to introduce our novel Multifidelity Bayesian Verification

framework. Specifically we present the likelihood-free inference algorithms, statisti-

cal model checking and their multifidelity extensions. Many of the details of these

algorithms are presented in the background and we present the novel framework and

case studies in the Results section. To motivate our use of the low-fidelity models, we

present a derivation of the chemical Langevin equation, followed by supplementary

material regarding the case studies.

Algorithms

Algorithm 3 ABC Rejection Sampler (ABC-RS)
Input:

• Observed data yobs

• Prior distribution π(θ) and data generating function p(y | θ) for modelMθ

• A neighbourhood Ωh = {y ∈ Y | d(y, yobs) ≤ h} with corresponding kernel 1Ωh
(y)

• N > 0, Monte Carlo sample size
Output:

• {θ(i), w(i)}Ni=1, accepted parameters with corresponding weights

1: for i = 0, . . . , N do

2: Generate θ(i) ∼ π(θ)
3: Simulate y ∼ p(y | θ∗)

4: Calculate w(i) = 1Ωh
(y)

5: end for
6: return {θ(i), w(i)}Ni=1

Algorithm 4 ABC Importance Sampler (ABC-IS)
Input:

• Observed data yobs

• Prior distribution π(θ) and data generating function p(y | θ) for modelMθ

• Importance distribution q̂ proportional to q
• A neighbourhood Ωh = {y ∈ Y | d(y, yobs) ≤ h} with corresponding kernel 1Ωh

(y)
• N > 0, Monte Carlo sample size
• Bm > 0 number of simulations

Output:

• {θ(i), w(i)}Ni=1, accepted parameters with corresponding weights

1: for i = 0, . . . , N do

2: Generate θ(i) ∼ q̂(θ)
3: for b = 1, . . . , Bm: do

4: Simulate yb ∼ p(y | θ(i)) (if working with summary statistics, set sb = S(yb))
5: end for

6: Calculate w(i) =
[
π(θ(i))/q(θ(i))

]
·
∑Bm

b=1 1Ωh
(yb)

7: end for
8: return {θ(i), w(i)}Ni=1
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Algorithm 5 ABC-SMC
Input:

• Prior π(θ) and data-generating likelihood function p(yobs | θ)
• A neighbourhood that evolves with distance thresholds Ωhm = {y ∈ Y | d(y, yobs) ≤ hm} with corre-

sponding kernel Khm (y) (= 1Ωhm
(y) in this paper)

• N > 0, number of particles used to estimate posterior distributions
• Sequence of perturbation kernels Fm(θ | θ∗), m = 0, 1 . . . ,M
• A quantile υ ∈ [0, 1] to control the rate of decrease of hm

• Summary statistic function s = S(y)
• Bm > 0, number of simulations per sampled particle. For stochastic systems Bm > 1

Output:

• Set of weighted parameter vectors
{
θ
(i)
M , w

(i)
M

}N

i=1
drawn from

πABC(θ | sobs) ∝
∫

KhM
(s)p(y | θ)π(θ) ds

1: for m = 0, . . . ,M : do
2: for i = 0, . . . , N : do
3: if m = 0 then
4: Generate θ∗∗ ∼ π(θ)
5: else
6: Generate θ∗ from the previous population {θ(i)

m−1} with weights {w(i)
m−1} and perturb the particle to

obtain θ∗∗ ∼ Fm(θ | θ∗)
7: end if
8: if π(θ∗∗) = 0 then
9: goto line 4
10: end if
11: for b = 1, . . . , Bm : do
12: Generate yb ∼ p(y | θ∗∗)
13: Calculate sb = s(yb)
14: end for
15: Calculate bm(θ∗∗) =

∑Bm
b=1 Khm (sb)

16: if bm(θ∗∗) = 0 then
17: goto line 4
18: end if
19: Set θ(i)

m = θ∗∗, d̄(i)
m = 1

Bm

∑Bm
b=1∥sb − sobs∥ and calculate

20:

w
(i)
m =


bm

(
θ
(i)
m

)
, if t = 0

π
(
θ(i)
m

)
bm

(
θ(i)
m

)
∑N

j=1 w
(j)
m−1Fm

(
θ
(i)
m | θ(j)

m−1

) , if t > 0

21: end for
22: Generate {θ(i)

m , w(i)
m }

N
i=1 using Algorithm 4 (ABC-IS) with importance distribution fm(θ) and neighbour-

hood Ωhm

23: Normalise weights: w(i)
m ← w(i)

m /
(∑N

i=1 w(i)
m

)
24: Set hm+1 = (υ/N)

∑N
i=1 d̄(i)

m
25: end for

26: return
{(

θ
(i)
M , w

(i)
M

)}N

i=1
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Algorithm 6 Multifidelity ABC Rejection Sampler (MF-ABC-RS)
Input:

• Observed data yobs (= ỹobs)
• Prior distribution π(θ), high-fidelity model p(y | θ) and low-fidelity model p̃(ỹ | θ)
• High fidelity neighbourhood Ωh = {y ∈ Y | d(y, yobs) ≤ h} and low-fidelity neighbourhood Ωh̃ = {ỹ ∈
Ỹ | d̃(ỹ, ỹobs) ≤ h̃} with respective kernels 1Ωh

(y) and 1Ω
h̃
(ỹ)

• Continuation probabilities (η1, η2)
• Monte Carlo sample size N > 0

Output:

• {θ(i), w(i)}Ni=1, accepted parameters with corresponding weights

1: for i = 0, . . . , N do

2: Generate θ(i) ∼ π(θ) and U ∼ U(0, 1)
3: Simulate ỹ ∼ p̃(ỹ | θ(i)) from low-fidelity model
4: Calculate w̃ = 1Ω

h̃
(ỹ)

5: Set w(i) = w̃ and η = η1w̃ + η2(1− w̃)
6: if U < η then

7: Simulate y ∼ p(y | θ(i)) from the high-fidelity model
8: Calculate w = 1Ωh

(y)

9: Update w(i) ← w(i) + (w − w(i))/η
10: end if
11: end for
12: (Optional) Calculate the approximation to EABC(g(θ) | yobs), ÊABC(g(θ) | yobs) =∑N

i=1 w(i)g(θ(i))/
∑N

i=1 w(i)

13: return {θ(i), w(i)}Ni=1

Algorithm 7 Multifidelity ABC Importance Sampler (MF-ABC-IS)
Input:

• Observed data yobs (= ỹobs)
• Prior distribution π(θ), high-fidelity model p(y | θ) and low-fidelity model p̃(ỹ | θ)
• Importance distribution q̂(θ) ∝ q(θ)
• High fidelity neighbourhood Ωh = {y ∈ Y | d(y, yobs) ≤ h} and low-fidelity neighbourhood Ωh̃ = {ỹ ∈
Ỹ | d̃(ỹ, ỹobs) ≤ h̃} with respective kernels 1Ωh

(y) and 1Ω
h̃
(ỹ)

• Continuation probability function η = η(θ, ỹ)
• Monte Carlo sample size N > 0

Output:

• {θ(i), w(i), }Ni=1, accepted parameters with corresponding weights

1: for i = 0, . . . , N do

2: Generate θ(i) ∼ q̂(θ) and U ∼ U(0, 1)
3: Simulate ỹ ∼ p̃(ỹ | θ(i)) from low-fidelity model
4: Calculate w̃ = 1Ω

h̃
(ỹ)

5: Set w(i) = w̃
6: if U < η(θ, ỹ) then

7: Simulate y ∼ p(y | θ(i)) from the high-fidelity model
8: Calculate w = 1Ωh

(y)

9: Update w(i) ← w(i) + (w − w(i))/η
10: end if

11: w(i) ←
[
π(θ(i))/q(θ(i))

]
w(i)

12: end for
13: return {θ(i), w(i)}Ni=1
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Algorithm 8 Multifidelity ABC-SMC (MF-ABC-SMC)
Input:

• Observed data yobs (= ỹobs)
• Prior distribution π(θ), high-fidelity model p(y | θ) and low-fidelity model p̃(ỹ | θ)
• Initial importance distribution r̂0(θ) (commonly set to r̂0(θ) = π(θ))
• Sequence of high fidelity neighbourhoods Ωhm = {y ∈ Y | d(y, yobs) ≤ hm} and low-fidelity neigh-

bourhoods Ωh̃m
= {ỹ ∈ Ỹ | d̃(ỹ, ỹobs) ≤ h̃m} with respective kernels 1Ωh

(y) and 1Ω
h̃
(ỹ) and

m = 1, 2, . . . ,M
• Initial continuation probability function η0 = η0(θ, ỹ) = 1

• Lower bounds on continuation probabilities, ηL
1 , ηL

2 ∈ (0, 1)
• Sequence of perturbation kernels Fm(θ|θ∗)
• Monte Carlo sample size N > 0

Output:

• {θ(i), w(i), }Ni=1, accepted parameters with corresponding weights

1: for m = 0, . . . ,M do

2: Produce {θ(i)
m , w(i)

m }
N
i=1 and store information required to estimate optimal con-

tinuation probabilities ([4]) from MF-ABC-IS algorithm (Algorithm 7) with inputs(
yobs, ỹobs,Ωhm ,Ωh̃m

, π(θ), p(y | θ), p̃(ỹ | θ), ηm(θ, ỹ)
)

setting q̂ = r̂m(θ)

3: Set ŵ(i)
m = |w(i)

m | for i = 1, . . . , N
4: Define r̂m+1 proportional to rm+1 (See [4])

5: Calculate (η∗
1 , η

∗
2 ) with lower bounds (ηL

1 , ηL
2 ) using importance distribution rt+1(θ), ABC thresholds hm+1

and h̃m+1 with values stored from MF-ABC-IS algorithm at step 2 (See [4]).
6: Set ηm+1(θ, ỹ) = η∗

11Ω
h̃m

(ỹ) + η∗
2 (1− 1Ω

h̃m
(ỹ))

7: end for
8: return {θ(i)

M , w
(i)
M }

N
i=1

Algorithm 9 Bayesian Statistical Model Checking (BSMC)
Input:

• Parametrised stochastic modelMθ

• Property ϕ defined in a formal logic, with path formula φ
• Half-interval width size ℓ ∈ (0, 1

2 )

• Interval coverage parameter c ∈ ( 1
2 , 1)

• Prior Beta distribution with parameters α, β for (unknown) probability Λϕ(θ) = P (Mθ |= ϕ)
Output:

• Posterior mean estimate Λ̂ϕ(θ) for true probability Λϕ(θ)

• Interval of width 2ℓ, (l0, l1) = (Λ̂L
ϕ (θ), Λ̂U

ϕ (θ)) with posterior probability at least c

1: Initialise n = 0, total number of simulations.
2: Initialise v = 0, number of traces satisfying, y |= φ
3: while Υ < c do
4: Generate trace y ∼ p(y | θ) fromMθ

5: n← n + 1
6: if y |= φ then
7: v ← v + 1
8: end if
9: Calculate Λ̂ϕ(θ) = (v + α)/(n + α + β)

10: Set (l0, l1) = (Λ̂ϕ(θ)− ℓ, Λ̂ϕ(θ) + ℓ)
11: if l1 > 1 then
12: (l0, l1) = (1− 2ℓ, 1)
13: else if l0 < 0 then
14: (l0, l1) = (0, 2ℓ)
15: end if
16: Compute posterior probability Υ = F(v+α,n−v+β)(l1)− F(v+α,n−v+β)(l0)
17: end while

18: return Posterior mean estimate, Λ̂ϕ(θ) and interval (l0, l1) =
(
Λ̂L

ϕ (θ), Λ̂U
ϕ (θ)

)
=

(
Λ̂ϕ(θ)− ℓ, Λ̂ϕ(θ) + ℓ

)
.
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Algorithm 10 Multifidelity Bayesian Statistical Model Checking (MF-BSMC)
Input:

• Parametrised high-fidelity (HF) model p(y | θ) and low-fidelity (LF) model p̃(ỹ | θ)
• Property ϕ defined over HF and LF model, encoded as temporal logic formulae
• Half-interval width size ℓ ∈ (0, 1

2 )

• Interval coverage parameter c ∈ ( 1
2 , 1)

• Prior Beta distribution with parameters α, β
• Parameter to obtain a (1− ε)-level approximate abstraction, ε

Output:
• Posterior mean estimates for HF satisfaction probability Λ̂ϕ(θ) and LF sat. prob. Λ̃ϕ(θ)

• Interval of width 2ℓ for HF model (l0, l1) = (Λ̂L
ϕ (θ), Λ̂U

ϕ (θ)), and for LF model (l̃0, l̃1) = (Λ̃L
ϕ (θ), Λ̃U

ϕ (θ))
with posterior probability at least c

• Measure of quality of the LF model compared to HF, γ̂ε (Using [53] in this work)

1: Initialise n = 0, ñ = 0, total number of simulations
2: Initialise v = 0 and ṽ = 0, number of traces satisfying, y |= ϕ and ỹ |= ϕ respectively
3: Initialise nγ = 0

4: while Υ < c or Υ̃ < c do
5: if Υ < c then
6: Generate trace y ∼ p(y | θ) fromMθ

7: n← n + 1
8: if y |= φ then
9: v ← v + 1
10: end if
11: Calculate Λ̂ϕ(θ) = (v + α)/(n + α + β)

12: Set (l0, l1) = (Λ̂ϕ(θ)− ℓ, Λ̂ϕ(θ) + ℓ)
13: if l1 > 1 then
14: (l0, l1) = (1− 2ℓ, 1)
15: else if l0 < 0 then
16: (l0, l1) = (0, 2ℓ)
17: end if
18: Compute posterior probability Υ = F(v+α,n−v+β)(l1)− F(v+α,n−v+β)(l0)
19: end if
20: if Υ̃ < c then
21: Generate trace ỹ ∼ p̃(ỹ | θ) from M̃θ

22: ñ← ñ + 1
23: if ỹ |= φ̃ then
24: ṽ ← ṽ + 1
25: end if
26: Calculate Λ̃ϕ(θ) = (ṽ + α)/(ñ + α + β)

27: Set (l̃0, l̃1) = (Λ̃ϕ(θ)− ℓ, Λ̃ϕ(θ) + ℓ)

28: if l̃1 > 1 then
29: (l̃0, l̃1) = (1− 2ℓ, 1)

30: else if l̃0 < 0 then
31: (l̃0, l̃1) = (0, 2ℓ)
32: end if
33: Compute posterior probability Υ̃ = F(ṽ+α,ñ−ṽ+β)(l̃1)− F(ṽ+α,ñ−ṽ+β)(l̃0)
34: end if
35: if n = ñ then
36: i← i + 1
37: Calculate γ̂(i) = dT (ỹ, y) and store
38: nγ ← nγ + 1
39: end if
40: end while
41: Calculate number of z values of γ̂(i), i = 1, . . . , nγ to discard via [53] with parameter ε
42: Set

γ̂ε = max
i∈{1,2,...,nγ}\{j1,j2,...,jz}

γ̂
(i)

,

where {j1, j2, . . . , jz} ⊂ {1, 2, . . . , nγ} denote the indices of the discarded values of γ̂(i)

43: return HF estimates, {Λ̂ϕ(θ), Λ̂
L
ϕ (θ), Λ̂U

ϕ (θ)}, LF estimates, {Λ̃ϕ(θ), Λ̃
L
ϕ (θ), Λ̃U

ϕ (θ)} and γ̂ε
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Derivation and Use of Chemical Langevin Equation

As mentioned in the main body of the text, SDEs can be integrated numerically

via the Euler-Maruyama sheme [32], which is introduced next.

Definition 7 (Euler-Maruyama Method) Given an SDE of the form

dx̃(t) = ς0(x̃(t)) dt+

J∑
j=1

ςj(x̃(t)) dW (t), (12)

it can numerically simulated over an increasing sequence of sampling times {τk}k∈N
(finite or infinite) via the Euler-Maruyama scheme [32, 65], which generates a

stochastic difference equation of the following form:

x̃(τk+1) = x̃(τk)+ ς0(x̃(τk))(τk+1 − τk)+

J∑
j=1

ςj(x̃(τk))(W (τk+1)−W (τk)), (13)

where W (t) is the Brownian motion, evaluated at time t ∈ R≥0. In this work we

shall exclusively focus on finite time horizons, t ∈ [0, T ] and assume the following:

let ∆t = T/K for some K ∈ N, then τk = k∆t, where k = 1, 2, . . . ,K, is a uniform

sequence of sampling times.

In this work we utilise the chemical Langevin equation (CLE) for the “low-fidelity”

models of CRNs. We let the random variable Kj(X(t),∆t) denote the number of

Rj reactions that occur over a given time interval [t, t+∆t] from the molecule con-

figuration X(t), and for brevity we omit the explicit dependencies of the propensity

function, aj = aj(X(t)). The number of molecules of chemical species i at time

t+∆t is then given as

Xi(t+∆t) = Xi(t) +

NR∑
j=1

Kj(X(t),∆t)υi,j . (14)

Calculating Kj(X(t),∆t) can be well approximated by imposing two conditions[34].

The first condition is to choose ∆t small enough such that aj(X(t′)) ∼= aj(X(t)),

∀t′ ∈ [t, t +∆t], ∀j ∈ {1, . . . , NR}. Since the reactions that occur during the time

interval [t, t+∆t] do not affect the propensity functions drastically, all of the reaction

events occurring within this time interval can be considered to be independent of

one another. Thus, each Kj(X(t),∆t) will be a statistically independent Poisson

random variable, Pj(aj ,∆t), which allows for the approximation,

Xi(t+∆t) = Xi(t) +

NR∑
j=1

Pj(aj ,∆t), for i = 1, . . . , N. (15)

Conversely, the second condition we require is that ∆t is large enough, such that

the expected number of times that each reaction Rj is fired in [t, t + ∆t] is much

larger than 1, E [Pj(aj ,∆t)] = aj∆t ≫ 1, ∀j ∈ {1, . . . , NR}. When both condi-

tions are met, the Poisson random variable Pj(aj ,∆t) can be approximated by
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a Gaussian r.v. with the same mean and variance, namely Pj(aj(X(t)),∆t) ≈
N (aj(X(t))∆t, aj(X(t))∆t). Accordingly, the evolution of the state vector Xi(t)

is now described by the continuous approximation x̃i(t),

x̃i(t+∆t) = x̃i(t) +

NR∑
j=1

υi,jNj(aj∆t, aj∆t), i = 1, . . . , NS , (16)

where N (µ, σ2) denotes the Normal random variable with mean µ and variance σ2,

and where aj = aj(x̃(t)). Expressing N (µ, σ2) = µ + σZ, where Z ∼ N (0, 1), this

equation now becomes

x̃i(t+∆t) = x̃i(t) +

NR∑
j=1

υi,jaj(Y (t))∆t+

NR∑
j=1

υi,j

√
aj(Y (t))∆tZj . (17)

The stochastic difference equation in (17) is in fact an Euler-Maruyama discretisa-

tion [36] with uniform time samples of duration ∆t of an SDE of the form [31, 32]

dx̃(t) =

NR∑
j=1

υjaj(x̃(t))∆t+

NR∑
j=1

υj

√
aj(x̃(t)) dW

j(t), (18)

where W j(t) are independent scalar Brownian motions. We note that the dimen-

sionality of the Brownian motion d = NS and that dimensionality of the stochastic

process J = NR from Definition 3.
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Supplementary Information for Case Studies

Practicalities

In this section we provide more detail behind the case studies, including generating

traces, yobs, the variables and choice of parameters. Drawing simulations y ∼ p(y | θ)
fromMθ is equivalent to drawing a sample from the stochastic simulation algorithm

(or Gillespie’s algorithm) [66] up to a time T , whereas drawing ỹ ∼ p̃(p̃ | θ) from

M̃θ is equivalent to drawing samples traces from the CLE given in Equation (1) up

to a time T , where we utilise the Euler-Maruyama scheme to integrate the SDEs,

with a time step ∆t chosen subject to the case study. We denote the observed data

as yobs, generating the data for yobs using “true parameters” θ⋆ (or θϕ, θ¬ϕ and

θU in the ABC-(SMC)2 case study) and set ỹobs = yobs. The observed data is an

average of a finite number of traces, denoted by nsims, generated from the true

model Mθ⋆ , up to a time Tobs sampled at nobs discrete points in time. Whilst the

model used to generate the data yobs is intrinsically noisy or stochastic, to emulate

observation error in some case studies we perturb the observations further yobs(t̄k)

with noise, given by σ2, yobs(t̄k) ∼ N (yobs(t̄k), σ
2) where t̄k are the times we take

observations. We set d(a, b) = d̃(a, b) = ∥a − b∥ over time. We verify the same

property on both the high-fidelity and low-fidelity model, ϕ, where the property is

defined in CSL. In these case studies, we work with a fixed number of M thresholds

for the algorithm to iterate through, and we set the initial thresholds h0 = ∞ and

h̃0 = ∞ such that we accept every sample generated from the prior. Rather than

inputting a predetermined sequence of neighbourhoods Ωhm and Ωh̃m
, we set hm+1

and h̃m+1 to be equal to the average distances of the accepted sampled parameters

in threshold hm, such that hm+1 < hm and we will terminate the algorithm if this

is not the case. The credibility calculations and runtimes for the MF-ABC-(SMC)2

case studies are given in Table 5, which include the time taken to perform MF-

BSMC for samples generated from the prior and the posterior, and in Table 7 we

present all the parameters and variables for the case studies considered. For each of

the case studies, the prior π(θ), is chosen to be a non-informative uniform over the

parameter space Θ for each case study. We estimate the satisfaction probabilities for

the HF and LF model using MF-BSMC (Algorithm 10) where the parameters are the

multifidelity weighted parameters from the MF-ABC-SMC part of the algorithm,

{θ(i)M , w
(i)
M }Ni=1.

The effect of negative weights

In the MF-ABC framework that we are now working in, there is a non-negative

probability of obtaining negative weights. We now consider the case when negative

weights are present and what effect they have on the results obtained from the

MF-ABC-(SMC)2 algorithm.

Considering the production-degradation case study in the main text, from Figure

9 we see that the algorithm infers a posterior mean of θ̂ = 1.3992 and we see that

the weights are mainly positive, meaning that the LF model comes to the same

acceptance/rejection decision as the HF model. However, we note the magnitude of

the singular negative weight - recalling the fact that negative weights arise when

ỹ ∈ Ωh̃ but y ̸∈ Ωh. The magnitude of this negative weights influences the credibil-

ity calculation C as it influences the posterior mean parameter θ̂ and in turn Cmf.
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Variables/Parameters
SIR Case Study

Θ [5× 10−5, 0.003]

×[0.005, 0.2]

θϕ [0.002, 0.075]⊤

θ¬ϕ [0.001, 0.15]⊤

θU [0.002, 0.125]⊤

x0 [95, 5, 0]⊤

T 150

Tobs 150

nobs 10

nsims 5

σ 0

N 200

M 20

ϵ 0.01

δ 0.05

δc 0.001

nO 18445

Table 6. Variables and Parameters used in the ABC-(SMC)2 Case Studies.

As we can see from Figure 9, the negative weight skews the posterior mean and the

resulting credibility calculation, which is given by Cmf = 0.1935. If we were to only

consider the positive weights (that is, disregarding the only negative weight, not

taking the absolute values), we obtain a posterior mean of θ̂+ = 1.5188, which is

much closer to the true value θ⋆ and the resulting credibility calculation increases

to C+
mf = 0.5726 when considering only the positive weights. When working with

multifidelity methods, care must be taken when negative weights arise as the nega-

tive weights can influence the inferred posterior distribution. Whilst these negative

weights could be thought of as penalising a region of the parameter space when

ỹ ∈ Ω̃h̃m
but y ̸∈ Ωhm

, in the MF-ABC-(SMC)2 scheme the importance sampling

distribution r̂m(θ) works with an absolute value of these negative weights, which

might lead to additional density in regions where w
(i)
m < 0 is more likely. However,

if the magnitude of these weights are large, the sampling scheme can lead to over-

sampling regions in the parameter space when the weight is negative which could

further influence θ̂ and Cmf. We plot the estimated satisfaction probabilities for the

weighted sample that contains negative weights in Figure 9. We note the location

of θ̂ and compare this with θ̂+, where in Figure 8d the location of θ̂+ is indistin-

guishable from the “true parameter” θ⋆.

Future work will consider how to avoid generating negative weights in the multifi-

delity inference framework.

Parameter Classification

Akin to the work presented in [2] we can use estimated satisfaction probabilities

to perform an approximate parameter classification, namely partitioning the pa-
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Var./Par.
Case Studies

Prod-Deg SIR Michaelis-Menten

[5× 10−5, 0.003] [0.0, 5.0× 10−3]

Θ [0, 2.0] ×[0.005, 0.2] ×[0.0, 2.5× 10−2]

×[0.0, 5.0× 10−2]

θ⋆ 1.5 [0.002, 0.175]⊤ [0.001, 0.005, 0.01]⊤

θ̂ 1.54 [0.001933, 0.17763]⊤ [0.00069, 0.00361, 0.0091]⊤

x0 50 [500, 125, 0]⊤ [100, 100, 0, 0]⊤

∆t 0.5 0.1 1.0

T 500 25 100

Tobs 500 5 100

nobs 25 30 20

nsims 5 5 5

σ 0 0 5.0

c 0.95 0.95 0.95

ℓ 0.01 0.01 0.01

Λ̂ϕ(θ⋆) 0.238791 0.874083 0.98693

Λ̂ϕ(θ⋆)
L 0.228791 0.864083 0.97693

Λ̂ϕ(θ⋆)
U 0.248791 0.884083 0.99693

n 6979 4223 685

Λ̃ϕ(θ⋆) 0.258822 0.99333 0.98804

Λ̃ϕ(θ⋆)
L 0.248822 0.98 0.97804

Λ̃ϕ(θ⋆)
U 0.268822 1.00 0.99804

ñ 7366 148 566

N 200 200 200

M 5 20 20

Table 7. Variables & Parameters in the MF-ABC-(SMC)2 Case Studies.

rameter space to a class of models that satisfy the property Θϕ, and another that

does not Θ¬ϕ. In Figure 10 we present the approximate parameter classification re-

gions generated running SMC using samples from the prior probability distribution

θ ∼ π(θ).

By performing the parameter classification on the prior, we understand how the

parametrised model satisfies the property across the whole parameter space and the

credibility calculation can be calculated using this approximate parameter classifi-

cation. Performing a parameter classification using SVMs with samples generated

from the posterior is not possible instead, as all the parameters have corresponding

satisfaction probabilities that make their corresponding models satisfy the property:

there is no decision boundary for the SVM to learn and thus it cannot partition the

parameter regions. In Figure 11, we see that the posterior lies entirely within Θϕ.

So whilst running SMC over the posterior can be sufficient to compute the overall

credibility Cmf , it might not shed further light on the overall properties of the model

set, which might be relevant when data varies with time, or when the posterior dis-
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(a) Histogram for πhM
ABC(θ | yobs). (b) πhM

ABC(θ | yobs) weights.

(c) π(θ). (d) πhM
ABC(θ | yobs).

Figure 9. Inference results (including negative weights) (a) and weights

(b) for sampled parameters θ ∼ πhM

ABC(θ | yobs) as well as es-

timated satisfaction probabilities obtained for both high-fidelity

(Λ̂ϕ(θ), denoted by blue points) and low-fidelity models (Λ̃ϕ(θ),

denoted by green points), using samples from (c) π(θ) and (d)

πhM

ABC(θ | yobs). We highlight the “true parameter” (θ⋆ = 1.5),

the posterior mean (θ̂ = 1.3992) and the posterior mean consid-

ering only positive weights (θ̂+ = 1.5188).

(a) Param. synthesis for Mθ. (b) Param. synthesis for M̃θ.

Figure 10. Parameter classification regions generated via SVMs, using es-

timated satisfaction probabilities from the prior, π(θ) for the

high-fidelity model Mθ (a), and for the low-fidelity model M̃θ

(b).
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tribution corresponds to models that are close to the probability threshold of the

specification of interest.

(a) Param. synthesis for Mθ.

Figure 11. Parameter classification regions generated via SVMs, using esti-

mated satisfaction probabilities Λ̂ϕ(θ) from the prior π(θ), and

where the (green) sample points are generated from the poste-

rior πhM

ABC(θ | yobs).

Statistical relationship between HF and LF models

From Figure 7, we can see that there is a difference in the estimated satisfaction

probabilities for the HF and LF model - clearly there are regions in the parameter

space where the LF model is a better approximation to the HF model. In this section

we make an initial attempt as to how we could analyse the relation between HF and

LF models using a well chosen metric in the MF-BSMC algorithm. We consider the

metric introduced in [53] and presented here.

Definition 8 (Approximate Abstraction) A model, M̃θ, is a γ-approximate ab-

straction of Mθ up to a level 1− ε if the following condition is satisfied:

P (dT (y, ỹ) ≤ γ) ≥ 1− ε, (19)

where y and ỹ are simulations generated from Mθ and M̃θ respectively, and dT (·, ·)
is a distance metric over a time-horizon with terminal time T chosen at the discre-

tion of the user. Here we choose the metric

dT (y, ỹ) = sup
t∈[t0,T ]

∥y(t)− ỹ(t)∥, (20)

where t0 is the initial time, T the horizon and ỹ(t) (y(t)) is the state of the low-

fidelity model (high-fidelity model) at time t.

We note that the distance metric dT (·, ·) is chosen independently of the distance

metric d(·, ·) employed for the ABC schemes. Here we use this metric to explore

regions of the parameter space Θ where M̃θ is a good approximation of Mθ, and we
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note that the choice for dT (·, ·) is more appropriate for statistical model checking[53].

The quality γ of a low-fidelity model M̃θ as an approximate abstraction of Mθ up

to a level of 1−ε can be assessed by solving the following optimisation problem [53]

min
γ∈R

γ, subject to P (dT (y, ỹ) ≤ γ) ≥ 1− ε.

Let γε be obtained from the equation above, then M̃θ is a γε-approximate abstrac-

tion of Mθ up to level 1 − ε. Computing γε can be done using the randomised

approach in [53], which provides an estimate of γε ≈ γ̂ε with approximation guar-

antees.

Using this approximate abstraction metric and the resulting γ̂ε, in Figure 12 we

quantify the difference over the parameter space between the LF model and the HF

model. The results presented in Figure 12 are obtained by running MF-BSMC on

parameter samples generated from the prior, θ ∼ π(θ) (Figure 12a) and samples

generated from the posterior, θ ∼ πhM

ABC(θ | yobs) (Figure 12b).

Future work would involve exploring alternative choices of metric for γ̂ϵ that would

allow one to perform verification on the LF model that can be formally translated

to the HF model, in addition to exploring alternative distance metrics for both the

inference and approximate abstraction schemes.

(a) π(θ). (b) πhM
ABC(θ | yobs).

Figure 12. Estimated γε values for LF and HF model, where θ is sampled

from prior π(θ) (a) and posterior πhM

ABC(θ | yobs) (b) .
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