
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. ??, NO. ??, JUNE 2022 1

SMT-based Reachability Analysis of High
Dimensional Interval Max-Plus Linear Systems

Muhammad Syifa’ul Mufid, Dieky Adzkiya, and Alessandro Abate

Abstract—This paper discusses the reachability analysis (RA)
of Interval Max-Plus Linear (IMPL) systems, a subclass of
continuous-space, discrete-event systems defined over the max-
plus algebra. Unlike standard Max-Plus Linear (MPL) systems,
where the transition matrix is fixed at each discrete step, IMPL
systems allow for uncertainty on state matrices. Given an initial
and a target set, we develop algorithms to verify the existence
of IMPL system trajectories that, starting from the initial set,
eventually reach the target set. We show that RA can be solved
by encoding the IMPL system, as well as initial and target
sets, into linear real arithmetic expressions, and then checking
the satisfaction of a resulting logical formula via a satisfiability
modulo theory (SMT) solver. The performance and scalability of
the developed SMT-based algorithms are shown to drastically
outperform state-of-the-art RA algorithms applied to IMPL
systems, which promises to usher their use in practical, industrial-
sized IMPL models.

Index Terms—max-plus linear systems, reachability analysis,
piecewise-affine systems, difference-bound matrices, linear real
arithmetic, satisfiability modulo theory

I. INTRODUCTION

Max-Plus Linear (MPL) systems are a subclass of discrete-
event systems (DES) with a continuous state space defined
over the so-called max-plus algebra. They are commonly
used to describe synchronisation without concurrency, under
the assumption that the timing of the “next” discrete event
depends linearly (within the max-plus algebra) on the current
times. MPL systems are widely applied for the analysis of
models where the timing of discrete events is of interest,
such as in transportation networks [22] and in manufacturing
systems [23]. Another application of MPL systems deals with
biological systems [12], [16].

Recently, the notion of uncertainty has also been considered
for the analysis and control of MPL systems [35], where
delays between successive events are characterised by random
quantities. There are several ways to address the uncertainty
in MPL systems. For instance, in Stochastic MPL (SMPL)
systems [33], the random variables of the matrices can be
defined on a common probability space. Whilst in Interval
MPL (IMPL) systems [14], the entries of matrices belong
to a fixed interval. In practical applications, IMPL systems
are more realistic than the simple MPL ones: for instance, in

M. S. Mufid and A. Abate are with the Department of Computer Sci-
ence, University of Oxford, Oxford OX1 2JD, United Kingdom. (e-mail:
{muhammad.syifaul.mufid,alessandro.abate}@cs.ox.ac.uk)

D. Adzkiya is with the Department of Mathematics, Institut Teknologi
Sepuluh Nopember, Surabaya 60111, Indonesia. (e-mail: dieky@matematika.
its.ac.id)

M. S. Mufid is supported by Indonesia Endowment Fund for Education
(LPDP)

a model for manufacturing production lines, the processing
time of a machine depends on the machine’s and the raw
materials’ conditions. IMPL systems have been studied for
control and analysis of uncertain models, and used in fault-
tolerant control for automated vehicles [34] and in robust
control and disturbance rejection [30].

Reachability analysis (RA) is the problem to assess whether
a given target set of a dynamical system is reachable from a set
of initial conditions. As for dynamical models, also for MPL
systems the RA can be performed by computing the forward
reach sets from the initial set [4], or alternatively computing
the backward reach sets from the target [3]. Both methods
employ the translation of an MPL system into an equivalent
Piecewise-Affine (PWA) system [5], which is characterised
by spatial partitions (PWA regions) and corresponding affine
dynamics. They also use Difference-Bound Matrices (DBM)
to express initial and target sets. It has been shown in [14]
that the aforementioned procedures from [3], [4], [5] can be
applied for IMPL systems.

Whilst the approaches in [14] can be applied to systems with
multiple initial conditions (rather than starting from a single
vector), they only work for small-dimensional IMPL systems.
Furthermore, there are a few elements contributing to the
computational bottleneck (time and memory requirements) of
the approach. First, the translation of IMPL systems into PWA
systems has an exponential complexity [2], [14]. Second, the
forward and backward reach sets are characterised as unions
of finitely many DBMs, which grow exponentially with the
time horizon [3], [4], [14].

This paper proposes a new approach to perform the RA of
IMPL systems based on SMT solving. Instead of computing
reach sets explicitly, as in [14], we employ symbolic variables
to encode the states of trajectories of IMPL systems at each
time instant. Namely, the trajectories of the IMPL system,
together with initial and target sets, are translated into a
formula that can be parsed by a Satisfiability Modulo Theory
(SMT) solver. An SMT problem refers to the satisfaction of a
logic formula w.r.t. a given theory, such as linear arithmetics or
bit vectors [11], with possible quantified (∃,∀) variables. The
satisfiability of the formula encoding a reachability problem
is checked using an SMT solver. If the SMT solver reports
“satisfiable” (resp. “unsatisfiable”), this entails that the target
set is reachable (resp. not reachable) from an (resp. any) initial
condition within the initial set. In the proposed approach, the
initial and target sets are defined as the set of states expressed
as linear real arithmetic expressions, which are more general
than DBM. In addition to the novel approach to the RA of
IMPL systems, the paper also develops a procedure to solve

{muhammad.syifaul.mufid,alessandro.abate}@cs.ox.ac.uk
dieky@matematika.its.ac.id
dieky@matematika.its.ac.id

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. ??, NO. ??, JUNE 2022 2

quantified reachability analysis (cf. Section 5.3) by allowing
quantifiers over initial conditions and state matrices.

We have implemented the SMT-based RA of IMPL systems
in C++, using Z3 [18] as the SMT solver, and Armadillo
[29] for matrix operations in max-plus algebra. According to
the computational benchmark, the proposed implementation
is significantly faster than the existing procedure in [14].
Furthermore, our implementation can be pushed to perform
RA of high-dimensional IMPL systems within reasonable
time.

The remaining parts of this paper are structured as follows.
Section 2 introduces the brief description of MPL and IMPL
systems followed by the definition of DBM and PWA systems.
The novel method to compute the image and inverse image
of DBM w.r.t. an IMPL system is described in Section 3.
The resulting procedure is inspired by the computation of the
image and inverse image of DBM w.r.t. an MPL system in
[27]. Section 4 summarises the reachability analysis of IMPL
systems based on reach sets computation. In Section 5, we
present the basic definition of SMT and the main contributions
of this paper. The computational benchmarks are presented in
Section 6, and we conclude with Section 7.

II. MODELS AND PRELIMINARIES

A. Max-Plus Algebra

In max-plus algebra, R,Rmax, ε are defined respectively as
the set of real numbers, R ∪ {ε}, and −∞. The set Rmax is
equipped with two binary operations, ⊕ and ⊗, where

a⊕ b := max{a, b} and a⊗ b := a+ b, (1)

for all a, b ∈ Rmax. The algebraic structure (Rmax,⊕,⊗)
is a semi-ring with ε and 0 as the null and unit elements,
respectively [7], [22].

By Rm×n
max , we denote the set of (m×n)-dimensional max-

plus algebraic matrices whose elements are in Rmax. The
notation A(i, j) represents the entry of matrix A at ith row
and jth column. Furthermore, A(i, ·) and A(·, j) denote the
vectors corresponding to the ith row and jth column of A,
respectively. The operations in (1) can be extended to matrices,
as follows. For A,B ∈ Rm×n

max , C ∈ Rn×p
max and α ∈ Rmax,

[A⊕B](i, j) = A(i, j)⊕B(i, j),

[A⊗ C](i, j) =

n⊕
k=1

A(i, k)⊗ C(k, j),

[α⊗A](i, j) = α⊗A(i, j) = α+A(i, j),

for all i, j ranging within the corresponding dimensions. The
linear order ≤ can be applied to max-plus algebra as follows:

a ≤ b if and only if a⊕ b = b,

A ≤ B if and only if A⊕B = B,

for all a, b ∈ Rmax and A,B ∈ Rm×n
max .

Given a natural number k, the k-th max-plus algebraic
power of A ∈ Rn×n

max is denoted by A⊗k and corresponds to
A ⊗ . . . ⊗ A (k times). For k = 0, A⊗0 is an n-dimensional
identity matrix In whose diagonal and non-diagonal elements
are 0 and ε, respectively. Similarly, for a, b ∈ R, the max-plus

algebraic power of a w.r.t. b is denoted by a⊗b and equals to
ab in conventional algebra.

A matrix A ∈ Rn×n
max is called regular if there is at least

one finite element in each row [22]. Furthermore, a tuple g =
(g1, . . . , gn) ∈ {1, . . . , n}n is said to be a finite coefficient
of A if A(i, gi) 6= ε for 1 ≤ i ≤ n. The region matrix of a
regular matrix A w.r.t. a finite coefficient g is defined as

Ag(i, j) =

{
A(i, j), if gi = j,
ε, otherwise. (2)

The conjugate of A is Ac, where

Ac(i, j) =

{
−A(j, i), if A(j, i) 6= ε,
ε, otherwise. (3)

B. Max-Plus and Interval Max-Plus Linear Systems

An autonomous Max-Plus Linear (MPL) system is defined as

x(k) = A⊗ x(k − 1), k = 1, 2, . . . (4)

where A ∈ Rn×n
max is the system matrix and vector x(k) =

[x1(k) . . . xn(k)]> denotes the state variables [7]. The
variable x represents the time instances of discrete events,
while k corresponds to the counter of discrete events. Hence,
it makes practical sense to take Rn as the state space and A
to be a regular matrix.

Definition 1. [7]. The precedence graph of A ∈ Rn×n
max ,

denoted by G(A), is a weighted directed graph with nodes
1, . . . , n and an edge from j to i with weight A(i, j) for each
A(i, j) 6= ε. �

Definition 2. [7]. A matrix A ∈ Rn×n
max is called irreducible if

G(A) is strongly connected. �

Recall that a directed graph is strongly connected if for
two different nodes i, j there exists a path from i to j [7].
The weight of a path p = i1i2 . . . ik is equal to the sum of
edge-weight in p. A circuit, a path that begins and ends at
the same node, is called critical if it has maximum average
weight, which is the weight divided by the length of path [7].

An interval over max-plus algebra is defined as

a = [a, a] = {a ∈ Rmax | a ≤ a ≤ a}, (5)

where a ≤ a. If a and a are both finite, (5) coincides with
a closed interval over R. On the other hand, if a = ε and
a > ε, (5) is a right-bounded interval. Notice that [ε ε] is
also an interval over the max-plus algebra: for the sake of
simplicity, we denote it by ε instead. The extensions of max-
plus algebraic operations to intervals are defined as follows:

[a, a]⊕ [b, b] = [a⊕ b, a⊕ b],
[a, a]⊗ [b, b] = [a⊗ b, a⊗ b].

By (IRmax,⊕,⊗) we denote the interval max-plus algebraic
structure, where IRmax is the set of intervals introduced in (5).
Similarly, IRm×n

max denotes the set of m × n interval matrices
over IRmax. One could check that the algebraic structure
(IRmax,⊕,⊗) is a semi-ring with [ε, ε] and [0, 0] as the null
and unit element, respectively.

For each interval matrix A = {aij} ∈ IRm×n
max , we define

A,A ∈ Rm×n
max respectively as the lower and upper matrix of

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. ??, NO. ??, JUNE 2022 3

A i.e., A(i, j) = aij and A(i, j) = aij for 1 ≤ i ≤ m, 1 ≤
j ≤ n. Hence, A can be writen as [A,A] and A ∈ A iff
A ≤ A ≤ A. For A,B ∈ IRm×n

max ,C ∈ IRn×p
max and α ∈ IRmax,

the operations for interval matrices are defined as follows:

A⊕ B = [A⊕B,A⊕B],

A⊗ C = [A⊗ C,A⊗ C],

α⊗ A = [α⊗A,α⊗A].

It is straightforward to see that if A1, A2 ∈ A, then so
is A1 ⊕ A2. The kth power of A ∈ IRn×n

max is given by
A⊗k = [A⊗k, A

⊗k
]. We call an interval matrix A = [A,A]

to be irreducible if both A and A are irreducible. In fact, it
is straightforward to see that if the lower matrix is irreducible
than so is the upper one.

Interval MPL (IMPL) systems are the extension of MPL
systems, in the sense that the state matrix is event varying.
More precisely, in IMPL systems, for each k, each entry of
state matrix A takes values in a given interval. The dynamical
equation of an autonomous IMPL system with an interval
matrix A = [A A] is

x(k) = Ak−1 ⊗ x(k − 1), k = 1, 2, . . . (6)

where x(k) ∈ Rn, Ak ∈ A for each k ≥ 0. Notice that, in (6),
x(k) ∈ [A⊗ x(k − 1), A⊗ x(k − 1)] which can be expressed
as

n⊕
j=1

(A(i, j) + xj(k − 1))≤xi(k)≤
n⊕

j=1

(A(i, j) + xj(k − 1)),

(7)
for each i ∈ {1, . . . , n}.

Remark 1. In this work, for each i, j ∈ {1, . . . , n}, it is
always the case that either both A(i, j) > ε and A(i, j) > ε,
or A(i, j) = A(i, j) = ε. �

Example 1. Consider a two-dimensional IMPL system (6),
where

A =

[
1 3
2 3

]
, A =

[
2 5
3 5

]
. (8)

The IMPL system (8) represents the simple railway network
shown in Fig. 1 which consists of two stations and four trains.
The intervals represent the time instance required by the trains
to pass through the corresponding tracks. For example, the
shortest and longest time to travel from station S1 to station
S2 is 2 and 3 time units, respectively. �

[1, 2]
[3, 5]

[2, 3]

[3, 5]

S1 S2

Fig. 1. A simple railway network represented by the IMPL system in (8).

C. Difference-Bound Matrices

Difference-Bound Matrices (DBMs) are defined as the inter-
section of sets characterised by the difference of two variables.

Definition 3. [19]. A DBM in Rn is the intersection of sets
defined by xi − xj ∼i,j di,j , where ∼i,j ∈ {>,≥} and
di,j ∈ Rmax for 0 ≤ i, j ≤ n. The value of the special variable
x0 is always equal to 0. �

The variable x0 is used to represent inequalities involving a
single variable: xi ≥ α can be written as xi−x0 ≥ α. A DBM
in R can be expressed as a pair of matrices (D,S): D(i, j)
corresponds to the bound variable di,j , while S(i, j) = 1 if
∼i,j =≥, and 0 otherwise. Notice that, by Definition 3, D is
an (n + 1)-dimensional max-plus algebraic matrix, and S is
an (n+ 1)-dimensional binary matrix.

Some operations can be applied to DBMs, such as intersec-
tion, canonical-form representation (the expression of a DBM
with the tightest possible bounds [19, Sec. 4.1]), emptiness
checking, image and inverse image w.r.t. affine dynamics [2],
[27].

Remark 2. In the rest of this paper, we may use the bound
matrix only whenever recalling a DBM, especially when all
inequalities in the DBM are non-strict ones. For example a
DBM D = {x ∈ R2 | 1 ≤ x1 − x2 ≤ 2} can be expressed as

D =

0 ε ε
ε 0 1
ε −2 0

 .
�

D. Piecewise-Affine Systems

Piecewise-Affine (PWA) systems [32] are defined by parti-
tioning the state space into several domains characterised by
polyhedra. Each domain, or PWA region, is associated with
an affine function expressing the local transition function. It
is shown in [21] that every MPL system can be transformed
into a PWA system. For the model in (4), the PWA regions
are generated from g = (g1, . . . , gn) ∈ {1, . . . , n}n, where
A(i, gi) 6= ε for 1 ≤ i ≤ n. The region corresponding to g is

Rg =

n⋂
i=1

n⋂
j=1

{x ∈ Rn|xgi− xj ≥ A(i, j)−A(i, gi)} . (9)

Notice that Rg is a DBM. The affine dynamics associated to
a non-empty Rg are

xi(k) = xgi(k − 1) +A(i, gi), i = 1, . . . , n. (10)

As shown in [27], the PWA region (9) can be also generated
by matrix operations as follows

Rg = ([Aext]
c
g ⊗Aext)⊕ In+1, (11)

where Aext is the extension of A by adding the 0th row and
column with A(0, 0) = 0, A(0, i) = A(i, 0) = ε for 1 ≤ i ≤
n and g is also extended into (g0, g1, . . . , gn) with g0 = 0.
Moreover, we may add square brackets to represent the region
matrix (2) and the conjugate (3) of Aext, i.e. [Aext]

c
g.

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. ??, NO. ??, JUNE 2022 4

Remark 3. For the sake of simplicity, instead of using
x(k − 1) and x(k), we may write x = [x1, . . . , xn]> and
x′ = [x′1, . . . , x

′
n]> to represent the “current” and the “next”

variables. �

Remark 4. Following the introduction of (11), in the rest of
this paper, all matrices (after extension) and tuples are indexed
starting from zero. In accordance to (12) and (13), it is always
the case that x0 = x′0 = 0. �

As shown in [14], the translation into PWA system from
an IMPL system can be done by generating the PWA regions
from its upper matrix A, i.e.,

Rg =

n⋂
i=0

n⋂
j=0

{
x ∈ Rn|xgi− xj ≥ Aext(i, j)−Aext(i, gi)

}
.

(12)
If (12) is not empty then the corresponding affine dynamics
are

x′i ≥ max{x0 +Aext(i, 0), . . . , xn +Aext(i, n)}
x′i ≤ xgi +Aext(i, gi)

}
, (13)

for i = 0, . . . , n. Let us remark that the IMPL dynamics in
(13) are evidently richer, more complex than the MPL ones in
(10). Furthermore, whilst they are semantically equivalent to
those in (7), they are syntactically simpler, as they do not use
the maximum operation on the right-hand side of (7).

Example 2. Let us generate the PWA regions for the IMPL
system (8). As mentioned above, the regions can be generated
from the upper matrix A: notice that there are four possible
finite coefficients g of Aext, namely (0, 1, 1), (0, 1, 2), (0, 2, 1),
and (0, 2, 2). By (11), we have

R(0,1,1) =

0 ε ε
ε −2 −3
ε ε ε

⊗
0 ε ε
ε 2 5
ε 3 5

⊕I3 =

0 ε ε
ε 0 3
ε ε 0

,
R(0,1,2) =

0 ε ε
ε −2 ε
ε ε −5

⊗
0 ε ε
ε 2 5
ε 3 5

⊕I3 =

0 ε ε
ε 0 3
ε −2 0

,
R(0,2,1) =

0 ε ε
ε ε −3
ε −5 ε

⊗
0 ε ε
ε 2 5
ε 3 5

⊕I3 =

0 ε ε
ε 0 2
ε −3 0

,
R(0,2,2) =

0 ε ε
ε ε ε
ε −5 −5

⊗
0 ε ε
ε 2 5
ε 3 5

⊕I3 =

0 ε ε
ε 0 ε
ε −2 0

,
which respectively corresponds to DBMs

R(0,1,1) = {x ∈ R2 | x1 − x2 ≥ 3},
R(0,1,2) = {x ∈ R2 | 3 ≤ x1 − x2 ≤ 2},
R(0,2,1) = {x ∈ R2 | 2 ≤ x1 − x2 ≤ 3},
R(0,2,2) = {x ∈ R2 | x1 − x2 ≤ 2}.

It is straightforward to see that R(0,1,2) is empty. �

III. COMPUTATION OF IMAGE AND INVERSE IMAGE OF
SETS OVER INTERVAL MAX-PLUS LINEAR SYSTEMS

This section describes a procedure to compute the image
and inverse image of a set X w.r.t. the IMPL system (7),

Img(X) = {A⊗ x | x ∈ X,A ∈ A}, (14)
Inv(X) = {x ∈ Rn | ∃A ∈ A s.t. A⊗ x ∈ X }. (15)

We first show the steps to compute the image and inverse
image of a single DBM w.r.t. IMPL dynamics (13). Notice
that (13) can be rewritten as a DBM in R2n

n⋂
i=0

{[x>, (x′)>]> | xgi − x′i ≥ −Aext(i, gi)}∩
n⋂

i=0

n⋂
j=0

{[x>, (x′)>]> | x′i − xj ≥ Aext(i, j)}.
(16)

As summarised in [13, Algorithm 5.1], the general procedure
to compute the image of a DBM D w.r.t. (13) involves: 1)
computing the intersection of D×Rn and the DBM associated
with the dynamics (16), i.e.{

[x>, (x′)>]> ∈ R2n | x ∈ D
}
∩

n⋂
i=1

{[x>, (x′)>]> ∈ R2n | xgi − x′i ≥ −Aext(i, gi)}∩

n⋂
i=1

n⋂
j=1

{[x>, (x′)>]> ∈ R2n | x′i − xj ≥ Aext(i, j)};

then 2) calculating the canonical-form representation (cf.
Section II-C) of the obtained intersection; and finally 3)
projecting the canonical-form representation over x′1, . . . , x

′
n

by removing the complementary variables, i.e. x1, x2, . . . ,
xn. The complexity of the procedure depends critically on the
second step, which runs in cubic time w.r.t. the number of
variables 2n.

Likewise, the procedure [13, Algorithm 5.2] to compute the
inverse image of a DBM D′ w.r.t. (13) is: 1) intersecting Rn×
D′ and (16), i.e.{

[x>, (x′)>]> ∈ R2n | x′ ∈ D′
}
∩

n⋂
i=1

{[x>, (x′)>]> ∈ R2n | xgi − x′i ≥ −Aext(i, gi)}∩

n⋂
i=1

n⋂
j=1

{[x>, (x′)>]> ∈ R2n | x′i − xj ≥ Aext(i, j)};

2) calculating the canonical-form representation of the ob-
tained intersection; and 3) projecting the canonical-form rep-
resentation over x1, . . . , xn by removing the complementary
variables, i.e., x′1, . . . , x

′
n. The complexity of this procedure

is again cubic in 2n.

Remark 5. In view of the fact that the state-space of IMPL
systems can be partitioned by PWA regions (12) and can be
expressed as DBMs, in this work we assume that the set X
in (14) and (15) can be expressed as a union of finitely many
DBMs. We emphasise that recent work [3], [4], [14] has also
followed this assumption. �

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. ??, NO. ??, JUNE 2022 5

Next, we show that the computation of image and inverse
image of a DBM w.r.t. affine dynamics (13) can be done using
matrix operations in max-plus algebra which, unlike the above
procedures, do not involve the canonical-form computation of
DBMs. These operations later underpin the new Algorithms
1-2.

Proposition 1. The image of DBM D w.r.t. the dynamics in
(13) is a D′ =

⋂n
i=0

⋂n
j=0{x′ ∈ Rn | x′i−x′j ∼ij d

′
ij}, where

d′ij =
⊕n

k=0{Aext(i, k)+D(k, gj)−Aext(j, gj)} and D(k, gj)
represents the bound of xj−xgj in DBM D. The operator ∼ij

depends on the argmax of d′ij (see Algorithm 1). Alternatively,
considering the bound matrix only, the image computation can
be expressed as

D′ = (Aext ⊗D ⊗ [Aext]
c
g)⊕ In+1,

where [Aext]g is the region matrix of Aext w.r.t g and [Aext]
c
g is

the conjugate of [Aext]g.

Proof. The DBM D is defined over variabes x0, . . . , xn while
the resulting image will be represented as a DBM D′ over
variables x′0, . . . , x

′
n. Let us denote aij = Aext(i, j) and

aij = Aext(i, j) for i, j ∈ {0, . . . , n}. By (13), for each
i, j ∈ {0, . . . , n}, we have

x′i−x′j ≥ max{x0 +ai0, . . . , xn +ain}− (xgj +ajgj). (17)

Because xi − xj is (lower) bounded by D(i, j) in DBM D,
(17) can be rewritten as

x′i − x′j≥max{D(0, gj) + ai0, . . . , D(n, gj) + ain} − ajgj ,

which can be expressed as

x′i − x′j ≥
n⊕

k=0

(
A(i, k)⊗D(k, gj)− ajgj

)
. (18)

By setting d′ij as the right-hand side of (18), the resulting
image can be expressed as D′ =

⋂n
i=0

⋂n
j=0{x′ ∈ Rn | x′i −

x′j ∼ij d
′
ij}, where ∼ij depends of the argmax of d′ij .

We recall that [Aext]g is a region matrix with only one finite
element in each row. Furthermore, we have [Aext]

c
g(gj , j) =

−[Aext]g(j, gj) = −ajgj . Thus, the expression (18) is equiva-
lent to

x′i − x′j ≥ [Aext ⊗D ⊗ [Aext]
c
g](i, j).

Considering the bound matrix only, one can write D′(i, j) =
[Aext⊗D⊗ [Aext]

c
g](i, j). It is possible that, for i = j, [Aext⊗

D ⊗ [Aext]
c
g](i, j) < 0. Hence, the final expression is D′ =

(Aext ⊗D ⊗ [Aext]
c
g)⊕ In+1.

Bolstered by Proposition 1, Algorithm 1 shows a procedure
to compute the image of a DBM (D,S) w.r.t. the affine
dynamics in (13). It is important to note that Algorithm 1
is applied to the “sub-system” of the IMPL system that is
characterised by the PWA region in (12) and its corresponding
dynamics in (13). Therefore, it assumes that there is exactly
one region Rg such that (D,S) ⊆ Rg.

Algorithm 1 Image computation of a DBM (D,S) w.r.t. affine dynamics
in (13) for IMPL system

Inputs: A = [A,A], where A,A ∈ Rn×n
max with A ≤ A,

D, the bound matrix of the DBM,
S, the sign matrix of the DBM,
g = (g0, . . . , gn), the finite coefficient w.r.t. (13)

Output: a DBM (D′, S′)

1: n← ROW(A)
2: Aext ← EXTEND(A)
3: Aext ← EXTEND(A)
4: D′ ← In+1

5: S′ ← EYE(n+ 1)
6: for i ∈ {0, . . . , n} do
7: for j ∈ {0, . . . , n} do
8: v ← Aext(i, ·) +D(·, gj)> −Aext(j, gj)
9: val← max(v)

10: idx← argmax(v)
11: if val > D′(i, j) then . D′(i, j) is either 0 or ε
12: D′(i, j)← val
13: S′(i, j)← mink∈idx S(k, gj)

14: return (D′, S′)

At the start of Algorithm 1, we extend the upper and lower
matrix by by adding the 0th row and column as Aext(0, ·) =
Aext(0, ·) = Aext(·, 0)> = Aext(·, 0)> = [0 ε . . . ε]. Then,
we initialise D′ as a max-plus identity matrix and S′ as a
Boolean (identity) matrix. Notice that the initial DBM (D′, S′)
represents Rn. In line 8, vector v corresponds to the right side
of (18). Hence, for each i, j ∈ {0, . . . , n}, D′(i, j) is updated
by max(v) if D′(i, j) < max(v). In line 10, idx is a set
of index(es) corresponding to the maximum elements in v.
Notice that the sign in (18) depends on S(k, gj) for k ∈ idx.
Also, > (denoted by 0 in S) is stricter than ≥ (denoted by
1). Thus, we update S′(i, j) by mink∈idx S(k, gj). The worst-
case complexity of Algorithm 1 is in O(n3): the for loops in
lines 6-7 involve (n + 1)2 iterations, and the steps in lines
9-10 run in linear time.

We recall that the the translation of an IMPL system into a
PWA one allows for the simplification of (7) into (13). Thus,
in order to compute the image of a DBM D in Rn w.r.t. the
IMPL system dynamics (7), it is necessary to intersect D with
all the non-empty PWA regions in (12). In general, the image
computation involves the following steps: 1) intersecting the
DBM with each region of the corresponding PWA system;
2) computing the image of non-empty intersections w.r.t. its
corresponding affine dynamics (13) using Algorithm 1; 3)
collecting the resulting images. In general, this procedure
results in a union of finitely many DBMs.

Example 3. Let us compute the image of X0 = {x ∈ R2 | 0 ≤
x1 ≤ 2, 0 ≤ x2 ≤ 2} w.r.t. the IMPL system (8). The intersec-
tion of X0 and the PWA regions are D1 = X0 ∩ R(0,1,1) =

∅, D2 = X0 ∩ R(0,2,1) = {x ∈ R2 | x1 = 2, x2 = 0}, and
D3 = X0 ∩ R(0,2,2) = {x ∈ R2 | 0 ≤ x1 ≤ 2, 0 ≤ x2 ≤
2,−2 ≤ x1 − x2 ≤ 2}. The image of D2 is

D′2 =

0 ε ε
ε 1 3
ε 2 3

⊗
0 −2 0

2 0 2
0 −2 0

⊗
0 ε ε
ε ε −3
ε −5 ε

⊕I3
=

0 −7 −5
3 −2 −2
4 −1 −1

⊕I3 =

0 −7 −5
3 0 −2
3 −1 0

 ,

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. ??, NO. ??, JUNE 2022 6

which can be expressed as D′2 = {x′ ∈ R2 | 3 ≤ x′1 ≤ 7, 4 ≤
x′2 ≤ 5,−2 ≤ x′1 − x′2 ≤ 1}. The image of D3 is

D′3 =

0 ε ε
ε 1 3
ε 2 3

⊗
0 −2 −2

0 0 −2
0 −2 0

⊗
0 ε ε
ε ε ε
ε −5 −5

⊕I3
=

0 −7 −7
3 −2 −2
3 −2 −2

⊕I3 =

0 −7 −7
3 0 −2
3 −2 0

 ,
which can be expressed as D′3 = {x′ ∈ R2 | 3 ≤ x′1 ≤
7, 3 ≤ x′2 ≤ 7,−2 ≤ x′1 − x′2 ≤ 2}. It is a coincidence that,
D′2 ⊂ D′3. Hence, the image of X0 w.r.t. IMPL system (8) is
Img(X0) = D′3, as depicted in Figure 2.

-4

-2

2

4

6

-8 -6 -4 -2 2 4 6
x1

x2

X0

Img(X0)

Inv(X0)

Fig. 2. The image and inverse image of X0 w.r.t. the IMPL system in (8).
The arrows in Inv(X0) indicate there is no finite lower bound for x1 and x2.

Proposition 2. The inverse image of DBM D′ w.r.t. the
dynamics (13) is D =

⋂n
i=0

⋂n
j=0{x ∈ Rn | xi−xj ∼ij dij},

where dij =
⊕n

j=0(−Aext(j, gj)+
⊕n

i=0(D′(j, i)+Aext(i, k)))
and D′(i, j) represents the bound of x′i−x′j in DBM D′. The
operator ∼ij depends on the argmax of dij (see Algorithm 2).
Alternatively, considering the bound matrix only, the inverse
image computation can be expressed as

D = ([Aext]
c
g ⊗D′ ⊗Aext)⊕ In+1.

Proof. The DBM D′ is defined over variabes x′0, . . . , x
′
n while

the resulting inverse image will be represented as a DBM D
over the variables x0, . . . , xn. Notice that (17) is equivalent to

n∧
k=0

(xgj − xk ≥ x′j − x′i +Aext(i, k)−Aext(j, gj)).

Thus, for each fixed j, k ∈ {0, . . . , n}, we have

xgj − xk ≥ −Aext(j, gj) +

n⊕
i=0

(D′(j, i) +Aext(i, k)).

In general, the above expression can be rewritten as

xgj − xk≥
n⊕

j=0

(−Aext(j, gj)+

n⊕
i=0

(D′(j, i)+Aext(i, k))),

(19)

because it is possible that there exists such that l 6= j and gl =
gj . By setting dij as the right-hand side of (19), the resulting
inverse image can be expressed as D =

⋂n
i=0

⋂n
j=0{x ∈ Rn |

xi − xj ∼ij dij} where ∼ij depends on the argmax of dij .
Considering the bound matrix only, (19) can be expressed

as

D(gj , k) = [[Aext]
c
g ⊗D′ ⊗Aext](gj , k).

Again, it is possible that [[Aext]
c
g ⊗D′ ⊗ Aext](gj , k) < 0 for

j, k ∈ {0, . . . , n} such that gj = k. Thus, the final expression
is D = ([Aext]

c
g ⊗D′ ⊗Aext)⊕ In+1.

Algorithm 2 illustrates the steps to compute the inverse
image of DBM (D′, S′) w.r.t. affine dynamics (13). The steps
at lines 1-5 are similar to those in Algorithm 1. In line
8, vector v corresponds to the right side of (19). For each
j, k ∈ {0, . . . , n}, we need to update D(gj , k) and S(gj , k).
The variables val in line 9 and sign in line 11, respectively,
represent the new bound and operator of xgj − xk: that is,
xgj − xk ≥ val if sign = 1 and xgj − xk > val if sign = 0.
If the new bound is larger than the old bound, then the new
bound and operator replaces the old ones. In case the new
bound is equal to the old bound, we only need to update the
operator. Similar to Algorithm 1, the complexity of Algorithm
2 is O(n3).

Algorithm 2 Inverse image computation of a DBM (D′, S′) w.r.t. affine
dynamics in (13) for IMPL system

Inputs: A = [A,A], where A,A ∈ Rn×n
max with A ≤ A,

D′, the bound matrix of the DBM,
S′, the sign matrix of the DBM,
g = (g0, . . . , gn), the finite coefficient w.r.t. (13)

Output: a DBM (D,S)

1: n← ROW(A)
2: Aext ← EXTEND(A)
3: Aext ← EXTEND(A)
4: D ← In+1

5: S ← EYE(n+ 1)
6: for j ∈ {0, . . . , n} do
7: for k ∈ {0, . . . , n} do
8: v ← Aext(·, k)> +D′(j, ·)−Aext(j, gj)
9: val← max(v)

10: idx← argmax(v)
11: sign← mini∈idx S′(j, i)}
12: if val > D(gj , k) then
13: D(gj , k)← val
14: S(gj , k)← sign
15: else if val = D(gj , k) then
16: S(gj , k)← min{S(gj , k), sign}
17: return (D,S)

Similarly, the inverse image of a DBM in Rn w.r.t. IMPL
system dynamics (7) characterised by [A,A] can be computed
by: 1) computing the inverse image of the DBM w.r.t each
affine dynamics (13) of the PWA system; 2) intersecting the
resulting inverse image with the corresponding PWA region;
and 3) collecting the non-empty intersections. Again, this

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. ??, NO. ??, JUNE 2022 7

procedure results in a union of finitely many DBMs. However,
it is possible that the resulting inverse image is an empty set.

Example 4. Let us determine the inverse image of X0 =
{x ∈ R2 | 0 ≤ x1 ≤ 2, 0 ≤ x2 ≤ 2} w.r.t. IMPL system
(8). The inverse image of X0 w.r.t. the affine dynamics for
R(0,1,1),R(0,2,1) and R(0,2,2) is respectively E1, E2 and E3,
where

E1 =

0 ε ε
ε −2 −3
ε ε ε

⊗
0 −2 −2

0 0 ε
0 ε 0

⊗
0 ε ε
ε 1 3
ε 2 3

⊕I3
=

 0 0 1
−2 −1 1
ε ε ε

⊕ I3 =

 0 0 1
−2 −1 1
ε ε 0

= {x ∈ R2 | −2 ≤ x1 ≤ 0, x2 ≤ −1, x1 − x2 ≥ 1},

E2 =

0 ε ε
ε ε −3
ε −5 ε

⊗
0 −2 −2

0 0 ε
0 ε 0

⊗
0 ε ε
ε 1 3
ε 2 3

⊕I3
=

 0 0 1
−3 −1 0
−5 −4 −2

⊕ I3 =

 0 0 1
−3 0 0
−5 −4 0

= {x ∈ R2 |−3≤x1≤0,−5≤x2≤−1, 0≤x1 − x2≤4},

E3 =

0 ε ε
ε ε ε
ε −5 −5

⊗
0 −2 −2

0 0 ε
0 ε 0

⊗
0 ε ε
ε 1 3
ε 2 3

⊕I3
=

 0 0 1
ε ε ε
−5 −3 −2

⊕ I3 =

 0 0 1
ε 0 ε
−5 −3 0

= {x ∈ R2 | x1 ≤ 0,−5 ≤ x2 ≤ −1, x1 − x2 ≤ 3}.

The intersection of the resulting inverse image w.r.t. the
corresponding PWA region is E1 ∩ R(0,1,1) = {x ∈ R2 |
−2 ≤ x1 ≤ 0, x2 ≤ −3, x1 − x2 ≥ 3}, E2 ∩ R(0,2,1) = {x ∈
R2 | −3 ≤ x1 ≤ 0,−5 ≤ x2 ≤ −2, 2 ≤ x1 − x2 ≤ 3},
and E3 ∩ R(0,2,2) = {x ∈ R2 | x1 ≤ 0,−5 ≤ x2 ≤
−1, x1 − x2 ≤ 2}. Hence the inverse image of X0 is
Inv(X0) = (E1 ∩ R(0,1,1)) ∪ (E2 ∩ R(0,2,1)) ∪ (E3 ∩ R(0,2,2)),
as illustrated in Figure 2. �

Remark 6. It is important to note that, one can find x ∈
Inv(X) such that A⊗x 6∈ X for some A ∈ [A,A]. This is due
to the existential quantifier in the inverse image computation
(15). For instance, from the preceding example, we have x =
[0 −1]> ∈ Inv(X0), A⊗x = [2 2]> ∈ X0 but A⊗x = [4 4] 6∈
X0. �

IV. EXPLICIT REACHABILITY ANALYSIS OF INTERVAL
MAX-PLUS LINEAR SYSTEMS

This section discusses the reachability analysis problem for
IMPL systems and an existing procedure to study it.

Problem 1. Suppose we have the IMPL system in (6),
X0, Y0 ⊆ Rn respectively as the initial and target sets and a
positive integer N ; the bounded reachability analysis refers to
the problem of determining whether the set Y is reachable in at
most N -steps from X0: there exist x(0) ∈ X0 and 1 ≤ k ≤ N

such that x(k) ∈ Y0, where x(k) is computed recursively by
(6) from x(0). It is assumed that X0 ∩ Y0 = ∅. �

The procedure to solve Problem 1 has been discussed in
[14] by explicity computing the reach sets (cf. Definitions 4-
5). The presented results are the extension of work for MPL
systems in [3], [4].

Definition 4 (Forward reach set [14]). Given an IMPL system
(6) and a non-empty set of initial conditions X0 ⊆ Rn, the
forward reach set XN at the event step N > 0 is the set of
all states {x(N) | x(0) ∈ X0} that can be reached by the
dynamics in (7). �

Definition 5 (Backward reach set [14]). Given an IMPL
system (6) and a non-empty target set Y0 ⊆ Rn, the backward
reach set Y−N is the set of all states {y(−N)} that may lead
to Y0 in N steps using the IMPL dynamics (7). �

It is assumed that both X0 and Y0 can be expressed as
the union of finitely many DBMs. For an autonomous IMPL
system (6), given a non-empty set of initial conditions X0,
the forward reach set Xk at time horizon k can be computed
recursively as the image of Xk−1

Xk = Img(Xk−1) = {A⊗ x | A ∈ A, x ∈ Xk−1}. (20)

Likewise, the backward reach set Y−k from a non-empty target
set Y0 is computed recursively as the inverse image of Y−k+1

w.r.t. IMPL dynamics (7)

Y−k = Inv(Y−k+1)
= {x ∈ Rn | ∃A ∈ A s.t. A⊗ x ∈ Y−k+1}.

(21)

The computation of (20) (resp. (21)) is performed by calcu-
lating the image (resp. inverse image) of each DBM in Xk−1
(resp. Y−k+1), as described in Section III. While it is evident
that Xk 6= ∅ for k ≥ 0, it is possible that there exists an l > 0
such that Y−k = ∅ for k ≥ l.

Remark 7. Inspired by a similar procedure in [3], [4]
for MPL systems, a “one-shot” procedure to compute (20)
and (21) is introduced in [13] as follows, where A⊗k =

[A⊗k, A
⊗k

]:

Xk = {A⊗ x | A ∈ A⊗k, x ∈ X0}, (22)

Y−k = {x ∈ Rn | ∃A ∈ A⊗k s.t. A⊗ x ∈ Y0}. (23)

In this work, we argue that the resulting reach sets in (22)-
(23) are in general not equal to their sequential counterparts
(20)-(21). It is true that (20) ⊆ (22) and (21) ⊆ (23). However,
the inclusion relations (22) ⊆ (20) and (23) ⊆ (21) in general
do not hold. For instance, using an IMPL system (8), we have

A⊗2 =

[
5 6
5 6

]
, A
⊗2

=

[
8 10
8 10

]
, A =

[
5 6
8 10

]
∈ A⊗2,

and A⊗ [0 0]> = [6 10]>. One can check that it is impossible
to find A1, A2 ∈ [A,A] and x ∈ R2 such that A1 ⊗ A2 ⊗
x = [6 10]>. In general, given A ∈ [A⊗k, A

⊗k
], it is not

always the case that there exist A1, . . . , Ak ∈ [A,A] such
that A1 ⊗ . . .⊗Ak = A. �

Algorithm 3 summarises the procedure to solve the reach-
ability analysis of IMPL systems via forward reach sets

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. ??, NO. ??, JUNE 2022 8

computation. In line 2, we translate the underlying IMPL
system into an equivalent PWA system w.r.t. its upper matrix
A. Starting from bound k = 1, we compute the reach set Xk

and then intersect the resulting set with the target set Y0. If
the intersection is not empty (line 6), then the procedure is
terminated. In this case, one can conclude that Y0 is reachable
from X0 at bound k. On the other hand, if the intersection
is empty then the bound is increased by one. This process is
repeated until either the condition in line 6 is fulfilled or k
exceeds the maximum bound N .

Algorithm 3 Explicit forward RA of IMPL systems

Inputs: A = [A,A] where A,A ∈ Rn×n
max with A ≤ A,

initial set X0 ⊆ Rn,
target set Y0 ⊆ Rn,
N ∈ N

Output: boolean
1: reach← false
2: generate PWA system w.r.t. A
3: k ← 1
4: while k ≤ N do
5: Xk ← Img(Xk−1)
6: if Xk ∩ Y0 6= ∅ then
7: reach← true
8: break
9: k ← k + 1

10: return reach

Algorithm 4 summarises the steps to solve reachability anal-
ysis of IMPL systems via backward reach sets computation.
Again, we first generate the PWA system from the upper
matrix Ā. Starting from k = 1, the backward reach set Y−k is
computed. If Y−k = ∅ then the algorithm is terminated with
false as output. In case Y−k 6= ∅, one needs to check the
emptiness of Y−k ∩X0. If it is not an empty set, then one can
conclude that Y0 is reachable from X0 at step k. Otherwise,
the bound k is increased by one. This process is repeated until
either one of the conditions in lines 6 and 8 is fulfilled, or k
exceeds the maximum bound N .

Algorithm 4 Explicit backward RA of IMPL systems

Inputs: A = [A,A] where A,A ∈ Rn×n
max with A ≤ A,

initial set X0 ⊆ Rn,
target set Y0 ⊆ Rn,
N ∈ N

Output: boolean
1: reach← false
2: generate PWA system w.r.t. A
3: k ← 1
4: while k ≤ N do
5: Y−k ← Inv(Y−k+1)
6: if Y−k = ∅ then
7: break
8: if Y−k ∩X0 6= ∅ then
9: reach← true

10: break
11: k ← k + 1
12: return reach

Remark 8. Both Algorithms 3 and 4 are similar to the existing
procedure for RA of IMPL systems in [13]. The only difference
is that we compute the images from the initial set X0 and the
inverse images from the target set Y0 using Algorithm 1 and
2, respectively. �

It is straightforward to conclude that both Algorithms 3 and
4 are sound and complete: they are able to provide the correct
answer (true or false) for arbitrary inputs. Thus, the
(bounded) reachability analysis for IMPL systems in Problem
1 is indeed decidable. However, to determine whether there
exists an integer N > 0 such that the target set Y0 is reachable
from X0 at N -steps is undecidable; this is due to the fact that
if Algorithms 3 and 4 yield false, in general we cannot
conclude that that Y0 is not reachable from X0 within time
horizons greater than N .

Example 5. With the preceding IMPL system in Example 1,
we define the initial and target sets respectively as X0 = {x ∈
R2 | x1 − x2 ≤ 3} and Y0 = {x ∈ R2 | x1 − x2 ≥ 5}.

The forward reach sets are Xk = {x ∈ R2 | −2 ≤ x1 −
x2 ≤ 2} for all k ≥ 1. Hence, we can conclude that Y0 is not
reachable from X0. By backward reach set computation, we
have Y1 = ∅, leading to the same conclusion. �

The main drawback of the new approach is its scalability.
First of all, the number of regions in the PWA system depends
on the size of state matrix A and on the number of finite entries
in A. The worst-case complexity for generating the PWA
system via (9) is O(nn+3) [2], where n is the dimension of the
state matrix. Furthermore, the forward and backward reachable
sets are a union of finitely many DBMs. In the worst case, the
number of DBMs grows exponentially w.r.t. the time horizon.
As shown in [14], the worst-case complexity to generate the
forward reach sets up to bound N is O(

∑N−1
k=0 |Xk| · nn+3),

where |Xk| represents the number of DBMs used to express
Xk. Similarly, the complexity for backward reach sets com-
putations is O(

∑N−1
k=0 |Yk| · nn+3). In order to mitigate the

exposed scalability limitations, we provide next a fresh new
look at reachability analysis for IMPL, based on SMT solving.

V. SMT-BASED REACHABILITY ANALYSIS OF INTERVAL
MAX-PLUS LINEAR SYSTEMS

This section discusses a novel approach to solve Problem 1
via SMT solving. We first mention basic notions of Satisfiabil-
ity Modulo Theory (SMT) and then describe the new, SMT-
based procedure for reachability analysis of IMPL systems.
The resulting procedure is inspired by similar work applied to
MPL systems in [28]. At the end of this section, we show that
the SMT-based procedure can be used to solve generalisations
of Problem 1 obtained by allowing logical quantifiers over the
initial set as well as the state matrices in (6).

A. Satisfiability Modulo Theory

Satisfiability Modulo Theory (SMT) concerns the problem
of determining the satisfaction of a first-order logical formula
w.r.t. a background logical theory, such as Boolean logic
(which generalises SAT problems), bit-vectors, real and integer
arithmetics, etc. [9], [11], [25]. For instance, the following
formula

(x ≥ 0) ∧ (y < 2) ∧ (x− y < −1) (24)

admits solutions for x, y ∈ R, but has no solution for x, y ∈ Z.
In general, an SMT formula may contain conjunctions (∧),

disjunctions (∨), and quantifiers (∃,∀). An SMT solver is

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. ??, NO. ??, JUNE 2022 9

a software tool that reports whether the given formula is
satisfiable or not. In the former case, it can provide one of the
satisfying assignments for the formula. The quantifier ∃ (resp.
∀) is used to express that a formula holds for at least one
assignment (respectively, all possible assignments) over the
quantified variables. For instance, the formula ∃x, y ∈ R. F
(where F is as in (24)) holds, while ∀x, y ∈ R. F does not. To
negate a quantified formulae, one can “switch” the quantifiers
(keeping the same order of quantifiers) and then negate the
quantifier-free sub-formula (De Morgan’s law).

One of the widely used theories in SMT is Linear Real
Arithmetic (LRA) [25, Chapter 5]. Given real variables
x1, . . . ,xn, a formula in LRA is an arbitrary Boolean combi-
nation, or quantification, of atoms in the form

∑n
i=1 aixi ./ c,

where ./ ∈ {>,<,≥,≤, 6=,=} and a1, . . . , an, c are rational
constants. Real Difference Logic (RDL) [17] is a sub-logic of
LRA in which all atoms are restricted to the form xi−xj ./ c.
The quantifier-free fragment of LRA and RDL is denoted
as QF-LRA and QF-RDL, respectively. Both theories are
decidable [11, Section 26].

Notice that each DBM can be expressed as a QF-LRA for-
mula, where Boolean connectives are exclusively conjunctions
(∧). Moreover, if a DBM does not contain any inequality with
single variable, then it can be translated into a formula in QF-
RDL [28]. The non-emptiness of a DBM is equivalent to the
satisfiability of its corresponding QF-LRA formula.

SMT has grown into a very active research subject: it
has standardised libraries and a collection of benchmarks
developed by the SMT community [10], as well as an annual
international competition for SMT solvers [8]. As a result,
there are several powerful SMT solvers, such as MATHSAT5
[15], Yices 2.2 [20], and Z3 [18]. Applications of SMT-solving
arise on supervisory control of discrete-event systems [31],
verification of neural networks [24], optimization [26], and
sound synthesis of Lyapunov functions [6] and of control
architectures [1].

B. SMT-Based Reachability Analysis of Interval Max-Plus
Linear Systems

This subsection presents the novel procedure to solve RA of
IMPL systems via SMT-solving. The main idea underpinning
the new method is to transform the underlying IMPL system,
as well as its initial and target sets, into a formula in QF-
LRA, and then passing the formula into an SMT solver. A
similar procedure has been successfully applied to solve RA
of simpler MPL systems in [28].

As shown in [28], the MPL system in (4) with state matrix
A ∈ Rn×n

max can be expressed as a formula in QF-RDL, as
follows:

n∧
i=1

 ∧
j∈fini

x(k)
i − x(k−1)

j ≥ aij

∧
 ∨

j∈fini

x(k)
i − x(k−1)

j = aij

 ,

(25)

where x(k)
1 , . . . ,x(k)

n represents the symbolic variables at a
given step k, and fini is a set containing the indices of the
finite elements of A(i, ·).

For IMPL systems, we know that the state matrix is not
fixed at each step k and bounded by the lower matrix A and
upper matrix A. Thus, formula (25) is modified into a QF-LRA
formula

n∧
i=1

 ∧
j∈fini

x(k)
i − x(k−1)

j ≥ a(k−1)
ij

∧
 ∨

j∈fini

x(k)
i − x(k−1)

j = a(k−1)
ij

∧
 ∧

j∈fini

(a(k−1)
ij ≥ aij) ∧ (a(k−1)

ij ≤ aij)

 ,

(26)

where a(k)
ij represents a symbolic variable for the element of

the state matrix at the k-th step from (6), at row i and column
j, and fini is a set containing the indices of the finite elements
of A(i, ·).

Remark 9. A similar translation to a QF-LRA formula can
be obtained for a time-varying IMPL system of the form
x(k) = Bk ⊗ x(k) ⊕ Ak−1 ⊗ x(k − 1) for Bk ∈ [B,B]
and Ak ∈ [A,A], which has seen practical use in the
literature. The main idea is that any maximisation operation
x′i = max{x1 + ai, . . . , xn + an} can be expressed into
a QF-RDL (a sublogic of QF-LRA) formula as in (25).
Furthermore, one can also translate a minimisation operation
x′i = min{x1+ai, . . . , xn+an} to QF-RDL formula due to the
duality relation min{x1 + ai, . . . , xn + an} = −max{−x1−
ai, . . . ,−xn − an}. �

For simplicity, we introduce the sets of symbolic variables
A(k−1) = {a(k−1)

ij | 1 ≤ i ≤ n, j ∈ fini} and V(k) =

{x(k)
1 , . . . ,x(k)

n }. Also, the first two conjuncts of (26) will
be denoted by Im(V(k−1),V(k)), whilst the last conjunct (a
constraint) is expressed by M(A(k−1)).

Consequently, the following QF-LRA formula
N∧

k=1

(
Im(V(k−1),V(k)) ∧ M(A(k−1))

)
is a symbolic representation of the states of the trajectory of
the IMPL system in (6) for k = 1, . . . , N . Furthermore, it
follows that the reachability of the target set Y0 from the initial
set X0 up to bound N can be equivalently expressed as the
satisfiability of the formula

X(0)∧

(
N∧

k=1

Im(V(k−1),V(k))∧M(A(k−1))

)
∧

N∨
k=1

Y (k), (27)

where X(0) (resp. Y (k)) is the QF-LRA representation of set
X0 (resp. Y0) over V(0) (resp. V(k)).

Algorithm 5 illustrates the SMT-based version of Algorithm
3. The command symb mat(A, k − 1) generates the k-th
symbolic matrix according to the finite elements of A while
the function symb var(k, n) generates a set of n real-valued

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. ??, NO. ??, JUNE 2022 10

variables for time horizon k. In line 4, F is a last-in/first-out
(LIFO) program stack containing SMT formulae, as in (27).
The command push adds a new formula into F , while pop
removes the last one.

At the start of the procedure, both X0 and Y0 are
expressed as QF-LRA formulae over V(0). The function
Y.subs(V(k−1),V(k)) substitutes each appearance of x(k−1)

i in
Y with x(k)

i . The non-emptiness checking of a union of DBMs
in line 6 of Algorithm 3 is now formulated as the satisfiability
checking of a QF-LRA formula in line 14 of Algorithm 5,
where mk and(F) stands for ∧f∈F f . The check function is
implemented by an SMT solver, where check(mk and(F)) =
SAT means that mk and(F) is satisfiable. In lines 10-13 of
Algorithm 5, a QF-LRA formula for (26) and the target set
over V(k) are added to F at each iteration k. If the condition
in line 14 is not fulfilled, then the last element of F (i.e., Y (k))
is removed.

Algorithm 5 SMT-based Forward RA of IMPL systems

Inputs: A = [A,A] where A,A ∈ Rn×n
max with A ≤ A,

initial set X0 ⊆ Rn expressed as a QF-LRA formula,
target set Y0 ⊆ Rn expressed as a QF-LRA formula,
N ∈ N

Output: boolean
1: reach← false
2: n← ROW(A) . the number of rows of A
3: V(0) ← symb var(0, n)
4: F ← ∅ . empty stack
5: F.push(X0) . X0 is defined over V(0)

6: k ← 1
7: while k ≤ N do
8: A(k−1) ← symb mat(A, k − 1)
9: V(k) ← symb var(k, n)

10: F.push(Im(V(k−1),V(k)))
11: F.push(M(A(k−1)))
12: Y0.subs(V(k−1),V(k)) . Y0 is now defined over V(k)

13: F.push(Y0)
14: if check(mk and(F)) = SAT then
15: reach← true
16: break
17: F.pop()
18: k ← k + 1
19: return reach

We now will describe the approach for SMT-based back-
ward RA of IMPL systems. For k ≥ 1, we introduce
V(−k) = {x(−k)

1 , . . . ,x(−k)
n } to represent the set of variables

encompassing the k-step backward states obtained from V(0),
andA(1−k) to express the corresponding k-step backward state
matrix. The backward version of (27) is

Y (0)∧

(
N∧

k=1

Im(V(−k),V(1−k)) ∧ M(A(1−k))

)
∧

N∨
k=1

X(−k).

(28)
Algorithm 6 describes the SMT-based procedure to solve

Problem 1 using the backward approach. The satisfiability
checking in line 12 of Algorithm 6 is equivalent to the non-
emptiness checking in line 6 of Algorithm 4. If the SMT
solver reports “unsatisfiable,” then the procedure terminates
and outputs false. Otherwise, the initial set over V(−k) is
added to the formula before checking its satisfiability again
in line 16. If it is satisfiable then the algorithm is terminated

with true as the output, otherwise the last element of F (i.e.,
X(−k)) is removed.

Algorithm 6 SMT-based Backward RA of IMPL systems

Inputs: A = [A,A] where A,A ∈ Rn×n
max with A ≤ A,

initial set X0 ⊆ Rn expressed as a QF-LRA formula,
target set Y0 ⊆ Rn expressed as a QF-LRA formula,
N ∈ N

Output: boolean
1: reach← false
2: n← ROW(A) . the number of rows of A
3: V(0) ← symb var(0, n)
4: F ← ∅ . empty stack
5: F.push(Y0) . Y0 is defined over V(0)

6: k ← 1
7: while k ≤ N do
8: A(1−k) ← symb mat(A, 1− k)
9: V(−k) ← symb var(−k, n)

10: F.push(Im(V(−k),V(1−k)))
11: F.push(M(A(1−k)))
12: if check(mk and(F)) = UNSAT then
13: break
14: X0.subs(V(1−k),V(−k)) . X0 is now defined over V(−k)

15: F.push(X0)
16: if check(mk and(F)) = SAT then
17: reach← true
18: break
19: F.pop()
20: k ← k + 1
21: return reach

In comparison with Algorithms 3-4, Algorithms 5-6 do not
need to generate the PWA system from the underlying IMPL
system and to compute explicitly the reach sets. The perfor-
mance of the SMT-based Algorithms 5-6 critically hinges on
the number of constraints (inequalities and equalities) in (26):
if both A,A have m finite elements in each row, then there are
4mn constraints in (26). Therefore, excluding the constraints
from initial and target sets, there are 4mnN constraints in (27)
and (28). Indeed, the more constraints in (27) and (28), the
slower the running time for Algorithms 5 and 6. In the next
Section we shall display the drastic increase in scalability of
Algorithms 5-6 over Algorithms 3-4.

With regards to the initial and target sets, the SMT-based
algorithms are more general than the explicit ones, which
compute reach sets. As we mentioned before, Algorithms 3-4
use DBMs to express the initial and target sets. We have argued
that each DBM can be translated into a QF-LRA formula, and
Algorithms 5-6 can more generally accept any initial and target
sets, as long as they are expressible as formulae in QF-LRA.

C. Quantified Reachability Analysis of Interval Max-Plus Lin-
ear Systems

This subsection discusses extensions of Problem 1 by al-
lowing quantifiers, ∃ or ∀, over either initial sets or state
matrices in (6), thus resulting in four possible new problems.
Consequently, reachability analysis is studied by modifying
the forward SMT-based RA of IMPL systems (Algorithm 5).
These extensions allow to perform safety analysis of IMPL
systems with respect to uncertainty on the state matrices: for
instance, the dynamics of an IMPL system up to bound N
never reach the undesired conditions regardless the sequence
of state matrices A0, . . . , AN−1. Let us remark that these

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. ??, NO. ??, JUNE 2022 11

extensions (especially those with universal quantifiers) cannot
be solved by standard approaches, namely by computing the
reach sets: the termination condition in line 6 of Algorithm
3 does not necessarily imply x(k) ∈ Y0 for all x(0) ∈ X0

nor for all A0, . . . , AN−1 ∈ [A,A]. Therefore, the new
problem can be uniquely addressed by the proposed SMT-
based approaches.

Problem 2 (Quantified Reachability Analysis). Suppose we
have an IMPL system (6), X0, Y0 ⊆ Rn respectively as the
initial and target sets and a positive integer N , the bounded
quantified reachability analysis refers to one of the following:

1. ∃x(0) ∈ X0. ∃A0, . . . , AN−1 ∈ [A,A]. ∃1 ≤ k ≤
N. x(k) = Ak−1 ⊗ . . .⊗A0 ⊗ x(0) ∈ Y0,

2. ∀x(0) ∈ X0. ∃A0, . . . , AN−1 ∈ [A,A]. ∃1 ≤ k ≤
N. x(k) = Ak−1 ⊗ . . .⊗A0 ⊗ x(0) ∈ Y0,

3. ∃x(0) ∈ X0. ∀A0, . . . , AN−1 ∈ [A,A]. ∃1 ≤ k ≤
N. x(k) = Ak−1 ⊗ . . .⊗A0 ⊗ x(0) ∈ Y0,

4. ∀x(0) ∈ X0. ∀A0, . . . , AN−1 ∈ [A,A]. ∃1 ≤ k ≤
N. x(k) = Ak−1 ⊗ . . .⊗A0 ⊗ x(0) ∈ Y0. �

Essentially, the above problems differ on how we quantify
the initial vector x(0) ∈ X0 and the N state matrices
A0, . . . , AN−1 of (6). Notice that Problem 1 is equivalent to
Problem 2.1 and can be considered as the weakest formulation.
On the other contrary, Problem 2.4 assesses whether for all
x(0) ∈ X0 and for all A0, . . . , AN−1 ∈ [A,A] there exists
1 ≤ k ≤ N such that if we compute x(1), . . . , x(N) according
to (6) then at least one of these vectors belongs to Y0. It is
evident that Problem 2.4 is the strictest one: if the answer for
Problem 2.4 is true, then so are the others. The implication
relation within Problems 2.1-2.4 is illustrated in Figure 3.

Problem 2.4

Problem 2.3 Problem 2.2

Problem 2.1

Fig. 3. Logical relations amongst Problem 2. An arrow corresponds to a
logical implication.

Remark 10. There are two additional possible orders of
quantifiers for Problem 2, namely

∃A0, . . . , AN−1 ∈ [A,A]. ∀x(0) ∈ X0. ∃1 ≤ k ≤ N.
x(k) = Ak−1 ⊗ . . .⊗A0 ⊗ x(0) ∈ Y0,

and

∀A0, . . . , AN−1 ∈ [A,A]. ∃x(0) ∈ X0. ∃1 ≤ k ≤ N.
x(k) = Ak−1 ⊗ . . .⊗A0 ⊗ x(0) ∈ Y0.

This work does not discuss these problems, because it does not
make practical sense to choose state matrices A0, . . . , AN−1
prior to the initial vectors x(0).

The backward formulation of Problems 2.1-2.4

Q1(y ∈ Y0). Q2(A0, . . . , AN−1 ∈ [A,A]). ∃x(0) ∈ X0.

∃1 ≤ k ≤ N. y = Ak−1 ⊗ . . . A0 ⊗ x(0),

where the quantifiers Q1, Q2 ∈ {∃,∀}, is also not discussed
in this work, because it is really unusual to quantify the target
set for a reachability problem. �

Example 6. With regards to the IMPL system in Example 1
and the initial and target sets in Example 5, we already know
that the result for Problem 2.1 is false. Therefore, the output
for other problems is also false.

Now, consider two new initial and target sets, namely X0 =
{x ∈ R2 | x1 − x2 ≥ 3}, Y0 = {x | R2 | x1 − x2 = −2} and
N = 3. We will show that the answer for Problems 2.1 and 2.2
is true while for the remaining ones the output is false.
By taking

A0 = A1 = A2 =

[
1 3
3 5

]
,

it is evident that for all x(0) ∈ X0 we have A0 ⊗ x(0) ∈ Y0
(notice that both columns of A0 belong to Y0). Thus, the output
for Problem 2.2 is true, and then so is Problem 2.1.

On the other hand, by taking A0 = A1 = A2 = A, one
could show that for all x(0) = [x1 x2] ∈ X0, the trajectories
of (8) up to k = 3 are

x(1) =

[
x1 + 1
x1 + 2

]
, x(2) =

[
x1 + 5
x1 + 5

]
, x(3) =

[
x1 + 8
x1 + 8

]
.

It is clear that x(k) 6∈ Y for k = 1, 2, 3 (even for k > 3). Thus,
the negation of Problem 2.3 holds. As a result, the output for
Problems 2.3 and 2.4 is false. �

We argue that, in general, Problems 2.2-2.4 cannot be
solved explicitly by computing forward reach sets. Indeed,
if Problem 2.1 (which can be solved by Algorithm 3) does
not hold, then so do not the other problems. If instead the
output is true, then the condition on line 6 of Algorithm 3 is
fulfilled. However, regardless the corresponding state matrices
A0, . . . , Ak−1, we cannot conclude whether it is satisfied by
all vectors x(0) ∈ X0. In general, given two different vectors
x(0), y(0) ∈ X0 which eventually reach a target set Y0, it is
possible that they “enter” Y0 with: i) different time horizons,
x(k1) ∈ Y0 and y(k2) ∈ Y0 with k1 6= k2, or ii) different state
matrices.

Before describing the procedure to solve Problems 2.1-
2.4, we will explain how to generate a quantified formula
from quantifier-free ones. Given quantifier-free formulae F1

and F2 over variables x1, . . . ,xn, to express that all sat-
isfying assigments of F1 also satisfy F2 we could write
∀x1, . . . ,xn (F1 → F2). On the other hand, to say that there
exists one assignment for F1 that also satisfies F2, we can
write ∃x1, . . . ,xn (F1 ∧ F2).

Now we show how to express Problems 2.1-2.4 as LRA for-
mulae. Recall that the quantifier-free expression for Problems
2.1-2.4 can be formulated as (27). The assertion “∃k, 1 ≤ k ≤

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. ??, NO. ??, JUNE 2022 12

N, such that x(k) ∈ Y ”, present in Problems 2.1-2.4, can be
expressed as a sub-formula of (26), as

F ≡

(
N∧

k=1

Im(V(k−1),V(k))

)
∧

(
N∨

k=1

Y (k)

)
. (29)

Building on this, we can add quantifiers for the respec-
tive symbolic variables V(0), . . . ,V(N) and symbolic matrices
A(0), . . . ,A(N).

The quantifier for V(0) is restricted by the formula X(0),
while the quantifiers for state matrices A(0), . . . ,A(N) are
restricted by the formula M(A(0))∧. . .∧M(A(N−1)). For k ≥ 1,
the set of variables V(k) is always preceded by quantifier
∃ because the vector x(k) is uniquely determined by the
chosen initial vector x(0) and state matrices A0, . . . , Ak−1.
Furthermore, the location for their quantifiers will be on the
last ones. Thus, Problems 2.1 and 2.2 can be respectively
formulated as

∃V(0)∃A[N]∃V [N]

(
X(0) ∧

N−1∧
k=0

M(A(k)) ∧ F

)
, (30a)

∀V(0)∃A[N]∃V [N]

(
X(0)→

(
N−1∧
k=0

M(A(k)) ∧ F

))
, (30b)

where ∃A[N] and ∃V [N] are respectively the abbreviation of
∃A(0) . . . ∃A(N−1) and ∃V(1) . . . ∃V(N).

For the remaining two Problems 2.3-2.4 where the state
matrices are universally quantified, we express their negation
instead. This will positively affect the performance of the
procedure, as it is known that the fewer are the universal
quantifiers in a quantified formula, the faster it is for an SMT-
solver to check its satisfiability. For instance, the negation for
Problem 2.3 is ∀x(0) ∈ X0. ∃A0, . . . , AN−1 ∈ [A,A]. ∀1 ≤
k ≤ N. x(k) = Ak−1 ⊗ . . .⊗A0 ⊗ x(0) 6∈ Y . The quantifier-
free expression of this statement can be expressed as

G ≡

(
N∧

k=1

Im(V(k−1),V(k))

)
∧

(
N∧

k=1

¬Y (k)

)
. (31)

As a result, the negation of Problems 2.3 and 2.4 can be
respectively formulated as

∀V(0)∃A[N]∃V [N]

(
X(0)→

(
N−1∧
k=0

M(A(k)) ∧G

))
, (32a)

∃V(0)∃A[N]∃V [N]

(
X(0) ∧

N−1∧
k=0

M(A(k)) ∧G

)
. (32b)

Notice that, similar to (30b), there is only one universal
quantifier in (32a). Similarly, the formula (32b) does not
contain any universal quantifier: just like in (30a).

Algorithm 7 summarises the steps to solve Problems 2.1-
2.4. At the start, we generate empty stacks that will contain
the formula encoding the trajectories (Trj) and the interval
matrices (I) of the IMPL system and of the target set (Trg).
Other stacks, V ar and Mat, correspond to the symbolic
variables and matrices. In lines 5-11, we collect the symbolic
variables and matrices in (26) and introduce the LRA formulae
for (26). Then, in lines 13-16, a quantifier-free formula w.r.t.

(29) or (31) is generated: the command mk or(Trg) stands for
∨f∈Trgf . The quantifier formula corresponding to one of four
formulae in (30a)-(30b) or (32a)-(32b) is then generated in
lines 17-20. Finally, we check the satisfaction of the resulting
formula using an SMT solver. The result is expressed as a
boolean variable res, which initialised as false. If the SMT
solver reports “satisfiable” then res is changed to true.

The output of the quantified reachability analysis depends
on the type of the problem (represented by an integer type ∈
{1, 2, 3, 4}) and boolean variable res. If 1 ≤ type ≤ 2, this
corresponds to one of Problems 2.1 and 2.2, then the value
of res is the output (line 25). Conversely, recalling that for
Problems 2.3-2.4, the procedure in Algorithm 7 checks the
satisfaction of their negation, if 3 ≤ type ≤ 4, then the
negation of res becomes the output instead (line 27).

Algorithm 7 Quantified RA of IMPL systems

Inputs: A = [A,A] where A,A ∈ Rn×n
max with A ≤ A,

initial set X0 ⊆ Rn expressed as a QF-LRA formula,
target set Y0 ⊆ Rn expressed as a QF-LRA formula,
N ∈ N,
type ∈ {1 . . . , 4}

Output: boolean
1: n← ROW(A) . the number of rows of A
2: Traj, Trg, I, V ar,Mat← ∅ . empty stacks
3: V(0) ← symb var(0, n)
4: for 1 ≤ k ≤ N do
5: Mat.push(A(k−1)) . symbolic matrices
6: V(k) ← symb var(k, n)
7: V ar.push(V(k)) . symbolic variables
8: I.push(M(A(k−1)))
9: Traj.push(Im(V(k−1),V(k)))

10: Y0.subs(V(k−1),V(k))
11: Trg.push(Y0)

12: F ← mk and(Traj)
13: if (type = 1 ∨ type = 2) then
14: F ← F ∧mk or(Trg) . formula in (29)
15: else if (type = 3 ∨ type = 4) then
16: F ← F ∧ ¬mk or(Trg) . formula in (31)
17: if (type = 1 ∨ type = 4) then
18: F ← ∃V(0). ∃Mat. ∃V ar. (X0 ∧mk and(I) ∧ F)
19: else if (type = 2 ∨ type = 3) then
20: F ← ∀V(0). ∃Mat. ∃V ar. (X0 → (mk and(I) ∧ F))

21: res← false
22: if check(F) = SAT then
23: res← true
24: if (type = 1 ∨ type = 2) then
25: return res
26: else if (type = 3 ∨ type = 4) then
27: return ¬res

The performance of Algorithm 7 crucially depends on
the SMT-checking in line 22. As mentioned before, more
universal quantifiers in a (quantified) formula result in a slower
SMT solver to check its satisfiability. Thus, the running time
of solving Problem 2.1 and 2.4 is potentially faster than
those of Problems 2.2-2.3: this argument is confirmed in the
experiments of the next section (cf. Table V).

VI. COMPUTATIONAL BENCHMARKS

We compare the performance of the new, SMT-based reach-
ability analysis of IMPL systems presented in this paper with
the explicit approaches in [14]. The experiments for both
procedures are implemented in C++. For the SMT solver,
we use Z3 [18]. We use Armadillo [29] to enable matrix

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. ??, NO. ??, JUNE 2022 13

operations in max-plus algebra. The computational benchmark
has been implemented on an Intel R© Xeon R© CPU E5-1660 v3,
16 cores, 3.0GHz each, and 16GB of RAM.

We work with pairs (n,m), where m < n. For each dimen-
sion n (i.e., number of continuous variables), we generate 20
matrices A,A ∈ Rn×n

max (of dimension n), with m finite ele-
ments in each row, where their values are taken to be between
1 and 20. We recall that the upper and lower matrices A,A are
generated under the assumptions in Remark 1. The locations
of the finite elements in each row of are chosen randomly. It is
important to note that, across different experiments (Tables I-
V), we have re-used the generated matrices for the same pairs
of (n,m).

In the first benchmark, we present the comparison of the
procedure to compute image and inverse image of DBMs
w.r.t. an IMPL system from [13] and the new methods in
Algorithms 1-2. For each experiment, we generate the PWA
system from the given IMPL system, then compute the image
and inverse images of each PWA region w.r.t. its corresponding
affine dynamics. Table I summarises the outcomes: the second
column shows the average number of PWA regions, while
the last four columns depict the average running time of the
procedures.

TABLE I
COMPUTATIONAL BENCHMARK FOR IMAGE AND INVERSE IMAGE

COMPUTATION OF DBMS W.R.T. IMPL SYSTEMS.

(n,m)
avg. num. of

regions
image comp. inverse image comp.

[13, Alg. 5.1] Alg. 1 [13, Alg. 5.2] Alg. 2
(4, 2) 11.30 1.63ms 0.28ms 1.74ms 0.31ms
(4, 3) 25.20 3.59ms 0.54ms 3.76ms 0.74ms
(5, 2) 23.75 5.18ms 0.74ms 5.58ms 0.89ms
(5, 3) 74.35 14.38ms 2.27ms 14.39ms 2.50ms
(6, 2) 45.00 15.23ms 1.46ms 13.16ms 1.78ms
(6, 3) 194.15 51.47ms 8.36ms 51.83ms 9.64ms
(7, 2) 89.40 36.75ms 4.81ms 35.11ms 4.81ms
(7, 3) 505.35 98.94ms 14.92ms 99.36ms 16.49ms
(8, 2) 179.80 88.15ms 9.25ms 90.81ms 12.55ms
(8, 3) 1465.40 265.20ms 35.68ms 271.74ms 41.34ms

It is clear that the new procedures to compute the image
and inverse image of DBMs w.r.t. an IMPL system via
Algorithms 1-2, outperform the existing ones in [13]. Although
all algorithms have cubic complexity, our proposed algorithms
are indeed more efficient as they only involve n+ 1 variables
x0, x1, . . . , xn. In comparison, the existing procedures in [13,
Alg. 5.1] and [13, Alg. 5.2] employ additional variables
x′1, x

′
2, . . . , x

′
n.

Next, we compare the performance of the explicit reach-
ability analysis of IMPL systems via Algorithms 3-4 to that
of SMT-based RA by Algorithms 5-6. We select X0 = {x ∈
Rn | 0 ≤ x1 ≤ . . . ≤ xp ≤ 1} and Y = {x ∈ Rn | x1 > . . . >
xp, x1−xp > 20} with p = dn2 e as the set of initial and target
sets, respectively. The experiments have been implemented to
perform the reachability analysis over N = 10 steps. We set
30 minutes as a timeout condition: if a procedure runs more
than a half hour then it will be terminated.

Table II (resp. Table III) shows the average and maximum
running time from 20 experiments of the reachability analysis
of IMPL systems via Algorithms 3 and 4 (resp. Algorithms 5

and 6). The last column of Tables II and III report the number
of experiments, out of 20, with a true outcome. The notation
“timeout (r)” corresponds to “there are r experiments whose
running time exceed 30 minutes”.

TABLE II
COMPUTATIONAL BENCHMARK FOR EXPLICIT REACHABILITY ANALYSIS

OF IMPL SYSTEMS.

(n,m)
runing times

#trueAlgorithm 3 Algorithm 4
(4, 2) {0.32, 2.09}s {0.02, 0.09}s 11
(4, 3) {1.33, 16.17}s {0.03, 0.12}s 10
(5, 2) {0.38, 3.16}s {0.04, 0.16}s 14
(5, 3) {36.54, 522.13}s {0.19, 0.47}s 10
(6, 2) {62.11, 1238.01}s {0.10, 0.15}s 18
(6, 3) timeout (1) {1.11, 2.56}s 15
(7, 2) {69.49, 1091.54}s {17.89, 226.45}s 16
(7, 3) timeout (4) {10.55, 87.96}s 14
(8, 2) timeout (2) timeout (2) -
(8, 3) timeout (1) timeout (1) -

TABLE III
COMPUTATIONAL BENCHMARK FOR SMT-BASED REACHABILITY

ANALYSIS OF IMPL SYSTEM.

(n,m)
running times

#trueAlgorithm 5 Algorithm 6
(4, 2) {0.02, 0.05}s {0.01, 0.03}s 11
(4, 3) {0.02, 0.05}s {0.01, 0.08}s 10
(5, 2) {0.01, 0.03}s {0.01, 0.02}s 14
(5, 3) {0.03, 0.06}s {0.01, 0.09}s 10
(6, 2) {0.01, 0.07}s {0.01, 0.02}s 18
(6, 3) {0.02, 0.06}s {0.01, 0.02}s 15
(7, 2) {0.01, 0.06}s {0.01, 0.13}s 16
(7, 3) {0.02, 0.07}s {0.01, 0.02}s 14
(8, 2) {0.01, 0.06}s {0.01, 0.11}s 17
(8, 3) {0.01, 0.08}s {0.01, 0.02}s 19
(9, 2) {0.01, 0.06}s {0.02, 0.03}s 17
(9, 3) {0.02, 0.18}s {0.02, 0.33}s 18
(10, 2) {0.01, 0.06}s {0.01, 0.02}s 17
(10, 3) {0.02, 0.21}s {0.02, 0.34}s 18

As one can see comparing Tables II and III, the SMT-based
algorithms are significantly faster than those that explicitly
compute the reach sets. With regards to the comparison
between the forward and backward approaches for the explicit
RA of IMPL systems (Algorithms 3 and 4), the latter seems
to be faster. This is likely due to the break condition in line
8 of Algorithm 4, which causes the backward procedure to
terminate earlier than the specified step bound N . On the
other hand, due to the “almost constant” running times in
Table III, we cannot conclude that Algorithm 6 is faster than
Algorithm 5: this suggest to challenge both approaches over
IMPL systems with drastically larger dimensions, which is
pursued next.

Table IV presents a benchmark for SMT-based reachability
analysis for high-dimensional IMPL systems. It is now clear
that that the backward approach is faster then the forward
one. As the dimension increases, we see an increasing gap on
the average and maximum running time. Additionally, based
on our experiments, Algorithm 6 has an advantage when
the experiment yields false, which is owed to the break
condition in line 13 of Algorithm 6.

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. ??, NO. ??, JUNE 2022 14

TABLE IV
COMPUTATIONAL BENCHMARK FOR SMT-BASED REACHABILITY

ANALYSIS OF HIGH-DIMENSIONAL IMPL SYSTEMS.

(n,m)
running times

#trueAlgomrithm 5 Algorith 6
(20, 10) {0.25, 1.59}s {0.05, 0.18}s 17
(30, 15) {1.07, 12.01}s {0.41, 2.54}s 18
(40, 20) {6.34, 51.68}s {0.81, 2.68}s 14
(50, 25) {6.84, 79.30}s {1.14, 7.08}s 18
(60, 30) {33.27, 112.95}s {1.65, 4.78}s 13
(70, 35) {12.02, 213.59}s {2.15, 3.78}s 19
(80, 40) timeout (1) {5.24, 19.81}s 14
(90, 45) - {5.84, 9.69}s 14
(100, 50) - {9.78, 21.76}s 14
(110, 55) - {12.27, 22.78}s 18
(120, 60) - {28.09, 104.85}s 16
(130, 65) - {55.88, 441.55}s 15
(140, 70) - {81.46, 333.28}s 18
(150, 75) - {123.04, 427.03}s 17
(160, 80) - {180.46, 1090.61}s 18

Table IV also suggests that the SMT-based RA of IMPL
system (Algorithms 5-6) is much more scalable than explicit
RA (Algorithms 3-4). For (n,m) = (70, 35), the average
running time for Algorithms 5 and 6 is just over 12 and 2
second, respectively. It seems that the forward approach cannot
be pushed to really high dimensions. Because we get a timeout
experiment for Algorithm 5 with (n,m) = (80, 40), we
continue the study with Algorithm 6 only. The average running
time of Algorithm 6 is about 3 minutes for (n,m) = (160, 80):
this suggests that the new approach can be practically appli-
cable to models of industrial scale.

For the last benchmark, we show the average running time
of Algorithm 7. It is evident that the presence of universal
quantifiers heavily burdens the performance of Algorithm 7.
Thanks to formula (32b), checking the satisfaction of Problem
2.1 is as fast as that of Problem 2.4. Notice that the number of
experiments with true output for Problem 2.1 (sixth column
of Table V) is the same with that of Problem 1 (last column
of Table III). On the other hand, for Problem 2.4, there is
no single experiment with true output, because of its more
restrictive requirements.

TABLE V
COMPUTATIONAL BENCHMARK FOR QUANTIFIED REACHABILITY

ANALYSIS OF IMPL SYSTEMS.

(n,m)
running times #true

P1 P2 P3 P4 P1 P2 P3 P4
(4, 2) 0.02s 0.07s 0.09s 0.02s 11 6 7 0
(4, 3) 0.03s 0.06s 0.11s 0.03s 10 3 8 0
(5, 2) 0.03s 0.18s 0.19s 0.03s 14 4 1 0
(5, 3) 0.04s 0.14s 0.30s 0.04s 10 7 3 0
(6, 2) 0.04s 0.93s 0.69s 0.03s 18 15 9 0
(6, 3) 0.06s 0.69s 1.25s 0.05s 15 6 2 0
(7, 2) 0.05s 0.96s 1.11s 0.05s 16 10 1 0
(7, 3) 0.08s 1.24s 2.91s 0.07s 14 8 1 0
(8, 2) 0.06s 11.36s 10.72s 0.05s 17 11 5 0
(8, 3) 0.11s 18.66s 19.52s 0.09s 19 11 6 0
(9, 2) 0.08s 18.17s 33.58s 0.07s 17 12 1 0
(9, 3) 0.14s 66.74s 81.31s 0.10s 18 14 0 0
(10, 2) 0.10s timeout (2) timeout (2) 0.09s 17 - - 0
(10, 3) 0.16s 739.59s timeout (1) 0.13s 18 15 - 0

VII. CONCLUSIONS

This paper has introduced a new, SMT-based approach
to solve reachability problems over IMPL systems based on
SMT solving. The procedure has been tested on computational
benchmarks, which have shown a significant improvement
over existing explicit reachability techniques. Furthermore,
the procedure is scalable as it allows to perform reachability
analysis of very high-dimensional IMPL systems.

REFERENCES

[1] A. Abate, C. David, P. Kesseli, D. Kroening, and E. Polgreen. Coun-
terexample guided inductive synthesis modulo theories. In Proceedings
of CAV, LNCS 10981, pages 270–288, 2018.

[2] D. Adzkiya, B. De Schutter, and A. Abate. Finite abstractions of
max-plus-linear systems. IEEE Transactions on Automatic Control,
58(12):3039–3053, 2013.

[3] D. Adzkiya, B. De Schutter, and A. Abate. Backward reachability
of autonomous max-plus-linear systems. WODES, IFAC Proceedings
Volumes, 47(2):117–122, 2014.

[4] D. Adzkiya, B. De Schutter, and A. Abate. Forward reachability
computation for autonomous max-plus-linear systems. In E. Abraham
and K. Havelund, editors, Intl. Conf. on Tools and Algorithms for the
Construction and Analysis of Systems (TACAS’14), volume 8413 of
LNCS, pages 248–262. Springer, 2014.

[5] D. Adzkiya, B. D. Schutter, and A. Abate. Computational techniques
for reachability analysis of max-plus-linear systems. Automatica,
53(3):293–302, 2015.

[6] D. Ahmed, A. Peruffo, and A. Abate. Automated and sound synthesis
of Lyapunov Functions with SMT solvers. In Proceedings of TACAS,
LNCS 12078, pages 97–114, 2020.

[7] F. Baccelli, G. Cohen, G. J. Olsder, and J.-P. Quadrat. Synchronization
and linearity: an algebra for discrete event systems. John Wiley & Sons
Ltd, 1992.

[8] C. Barrett, L. De Moura, and A. Stump. SMT-COMP: Satisfiability
modulo theories competition. In K. Etessami and S. K. Rajamani,
editors, Intl. Conf. on Computer Aided Verification (CAV’05), volume
3576 of LNCS, pages 20–23. Springer, 2005.

[9] C. Barrett, R. Sebastiani, S. A. Seshia, and C. Tinelli. Satisfiability
modulo theories. In A. Biere, H. van Maaren, and T. Walsh, editors,
Handbook of Satisfiability, volume 4, chapter 8. IOS Press, 2009.

[10] C. Barrett, A. Stump, and C. Tinelli. The satisfiability modulo theories
library, 2010. http://smtlib.cs.uiowa.edu.

[11] C. Barrett and C. Tinelli. Satisfiability modulo theories. In Handbook
of Model Checking, pages 305–343. Springer, 2018.

[12] C. A. Brackley, D. S. Broomhead, M. C. Romano, and M. Thiel. A max-
plus model of ribosome dynamics during mRNA translation. Journal of
Theoretical Biology, 303:128–140, 2012.

[13] R. M. F. Cândido. Reachability Analysis of Uncertain Max Plus Linear
Systems. PhD thesis, Universitè d’Angers, 2017.

[14] R. M. F. Cândido, L. Hardouin, M. Lhommeau, and R. S. Mendes. Con-
ditional reachability of uncertain max plus linear systems. Automatica,
94:426–435, 2018.

[15] A. Cimatti, A. Griggio, B. J. Schaafsma, and R. Sebastiani. The
MATHSAT5 SMT solver. In N. Piterman and S. A. Smolka, editors,
Intl. Conf. on Tools and Algorithms for the Construction and Analysis
of Systems (TACAS’13), volume 7795 of LNCS, pages 93–107. Springer,
2013.

[16] J.-P. Comet. Application of max-plus algebra to biological sequence
comparisons. Theoretical computer science, 293(1):189–217, 2003.

[17] S. Cotton, E. Asarin, O. Maler, and P. Niebert. Some progress in
satisfiability checking for difference logic. In Formal Techniques,
Modelling and Analysis of Timed and Fault-Tolerant Systems, pages
263–276. Springer, 2004.

[18] L. De Moura and N. Bjørner. Z3: An efficient SMT solver. In C. R.
Ramakrishnan and J. Rehof, editors, Intl. Conf. on Tools and Algorithms
for the Construction and Analysis of Systems (TACAS’08), volume 4963
of LNCS, pages 337–340. Springer, 2008.

[19] D. L. Dill. Timing assumptions and verification of finite-state concurrent
systems. In J. Sifakis, editor, Proc. International Conference on
Computer Aided Verification, volume 407 of Lecture Notes in Computer
Science, pages 197–212, Hiedelberg, 1989. Springer.

[20] B. Dutertre. Yices 2.2. In Intl. Conf. on Computer Aided Verification
(CAV’14), volume 8559 of LNCS, pages 737–744, 2014.

http://smtlib.cs.uiowa.edu

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. ??, NO. ??, JUNE 2022 15

[21] W. Heemels, B. De Schutter, and A. Bemporad. Equivalence of hybrid
dynamical models. Automatica, 37(7):1085–1091, July 2001.

[22] B. Heidergott, G. J. Olsder, and J. Van der Woude. Max Plus at work:
modeling and analysis of synchronized systems: a course on Max-Plus
algebra and its applications. Princeton University Press, 2014.

[23] A. Imaev and R. P. Judd. Hierarchial modeling of manufacturing systems
using max-plus algebra. In Proc. American Control Conference, 2008,
pages 471–476, June 2008.

[24] G. Katz, C. Barrett, D. L. Dill, K. Julian, and M. J. Kochenderfer.
Reluplex: An efficient SMT solver for verifying deep neural networks.
In R. Majumdar and V. Kunčak, editors, Intl. Conf. on Computer Aided
Verification (CAV’17), volume 10426 of LNCS, pages 97–117. Springer,
2017.

[25] D. Kroening and O. Strichman. Decision procedures. Springer, 2016.
[26] Y. Li, A. Albarghouthi, Z. Kincaid, A. Gurfinkel, and M. Chechik.

Symbolic optimization with SMT solvers. In ACM SIGPLAN Notices,
volume 49, pages 607–618. ACM, 2014.

[27] M. Mufid, D. Adzkiya, and A. Abate. Tropical abstractions of max-
plus linear systems. In D. Jansen and P. Prabhakar, editors, Int. Conf.
Formal Modeling and Analysis of Timed Systems (FORMATS’18), pages
271–287. Springer, 2018.

[28] M. S. Mufid, D. Adzkiya, and A. Abate. Symbolic reachability analysis
of high dimensional max-plus linear systems. IFAC-PapersOnLine,
53(4):459–465, 2020. 15th IFAC Workshop on Discrete Event Systems
WODES 2020 — Rio de Janeiro, Brazil, 11-13 November 2020.

[29] C. Sanderson and R. Curtin. Armadillo: a template-based C++ library
for linear algebra. Journal of Open Source Software, 1(2):26, 2016.

[30] Y. Shang, L. Hardouin, M. Lhommeau, and C. A. Maia. Robust con-
trollers in disturbance decoupling of uncertain max-plus linear systems:
an application to a high throughput screening system for drug discovery.
In International Workshop on Discrete Event Systems (WODES’16),
pages 404–409. IEEE, 2016.

[31] M. R. Shoaei, L. Kovács, and B. Lennartson. Supervisory control of
discrete-event systems via IC3. In Haifa Verification Conference, pages
252–266. Springer, 2014.

[32] E. Sontag. Nonlinear regulation: The piecewise linear approach. IEEE
Transactions on automatic control, 26(2):346–358, 1981.

[33] S. E. Z. Soudjani, D. Adzkiya, and A. Abate. Formal verification of
stochastic max-plus-linear systems. IEEE Transactions on Automatic
Control, 61(10):2861 – 2876, 2016.

[34] M. Witczak, P. Majdzik, R. Stetter, and G. Bocewicz. Interval max-
plus fault-tolerant control under resource conflicts and redundancies:
application to the seat assembly. International Journal of Control, pages
1–13, 2019.

[35] J. Xu, T. van den Boom, and B. De Schutter. Model predictive control
for stochastic max-plus linear systems with chance constraints. IEEE
Transactions on Automatic Control, 64(1):337–342, 2018.

Muhammad Syifa’ul Mufid received the B.Sc.
degree in September 2012 and the M.Sc. degree in
October 2013, both in Mathematics from the Institut
Teknologi Sepuluh Nopember, Surabaya, Indonesia.
He is currently a DPhil student in Department of
Computer Science, University of Oxford, United
Kingdom.

His research interests are in the analysis and
verification of max-plus-linear systems and in their
applications.

Dieky Adzkiya is an Assistant Professor in the De-
partment of Mathematics and a member of Mecha-
tronics and Industrial Automation Research Center,
both at Institut Teknologi Sepuluh Nopember, In-
donesia. He received the B.Sc. degree in September
2005 and the M.Sc. degree in October 2008, both
in Mathematics from the Institut Teknologi Sepuluh
Nopember, Surabaya, Indonesia. He received the
Ph.D. degree in Systems and Control in October
2014 and after that he continued as a postdoctoral re-
searcher until June 2015, both at the Delft Center for

Systems and Control, Delft University of Technology, Delft, The Netherlands.
His research interests are in the analysis and verification of max-plus-linear
systems and in their applications.

Alessandro Abate (S’02-M’08-SM’19) is Professor
of Verification and Control in the Department of
Computer Science at the University of Oxford, and
a fellow of the Alan Turing Institute for Data Sci-
ences in London. He received a Laurea in Electrical
Engineering in October 2002 from the University
of Padova (IT), an MS in May 2004 and a PhD
in December 2007, both in Electrical Engineering
and Computer Sciences, at UC Berkeley (USA). He
has been an International Fellow in the CS Lab
at SRI International in Menlo Park (USA), and a

PostDoctoral Researcher at Stanford University (USA), in the Department of
Aeronautics and Astronautics. He has also been an Assistant Professor at the
Delft Centre for Systems and Control, TU Delft (NL).

	Introduction
	Models and Preliminaries
	Max-Plus Algebra
	Max-Plus and Interval Max-Plus Linear Systems
	Difference-Bound Matrices
	Piecewise-Affine Systems

	Computation of Image and Inverse Image of Sets over Interval Max-Plus Linear Systems
	Explicit Reachability Analysis of Interval Max-Plus Linear Systems
	SMT-based Reachability Analysis of Interval Max-Plus Linear Systems
	Satisfiability Modulo Theory
	SMT-Based Reachability Analysis of Interval Max-Plus Linear Systems
	Quantified Reachability Analysis of Interval Max-Plus Linear Systems

	Computational Benchmarks
	Conclusions
	References
	Biographies
	Muhammad Syifa'ul Mufid
	Dieky Adzkiya
	Alessandro Abate

