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Abstract6

Combustion in a biomass-fired boiler causes build-up of soot, which reduces
the heat transfer and decreases the efficiency of operation. In order to miti-
gate this natural occurrence, cleaning via soot blowing is an important main-
tenance action. The objective of this study is to develop long-term optimal
maintenance strategies, which are model-based and specifically employ the
dynamics of boiler efficiency and of anticipated heating demand, both of
which are identified from empirical data. An approximate dynamic pro-
gramming algorithm is set up, resulting in the optimal maintenance actions
over time, so that the total operational costs of the biomass boiler plus the
cleaning costs are minimised. A practical case study with real data is used
to elucidate the benefits of the new approach.
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1. Introduction9

Biomass boilers are one of the promising future avenues for heat genera-10

tion [1], and have been recently deployed significantly in the United Kingdom,11

due to vigorous governmental subsidies [2]. However, they have arisen sev-12

eral concerns, ranging from hardware design [3] to dynamic control [4]. The13

main reason is that biomass boilers have longer response times than gas or14

coal boilers. Poor hardware design and installation, as well as inappropriate15

and overly reactive control, may result in frequent on/off switching that is16

very inefficient.17

Another difficulty is what is known as fouling. On the surfaces of the18

heat exchangers, soot is accumulated during operation. It causes worse heat19
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transfer to water and more heat is lost in the exhaust air. Fouling in biomass20

boilers may be more problematic than in more traditional types of boilers21

because the biomass particles are typically more volatile than e.g. coal ones.22

This article addresses the problem of mitigating fouling in biomass boilers23

by deriving optimal maintenance strategies. Specifically, it determines when24

is the most appropriate moment to clean the heat exchanger against the cost25

of biomass, the cost of cleaning itself, the dynamics of fouling, and a predicted26

heating demand. Considering all these aspects explicitly and within the same27

framework of dynamic programming (as already outlined in [5]) makes the28

present approach unique and novel.29

[6, 7] have examined the option of inference over the system based on30

expert knowledge, where manually specified rules are applied to current data.31

Others have dealt with the optimization of the boiler maintenance already:32

[8] assume the presence of soot blowers and use a set of neural networks to33

capture the behaviour of the system. The result of these neural networks34

is evaluated by a set of fuzzy logic rules. More recently, [9] apply more35

accurate first-principle modelling and the ultimate decision is made about the36

duration and timing of operation of soot blowers. Similarly [10] focus on soot37

blowers: they combine neural network modelling with optimisation based on38

sequential quadratic programming. None of these articles considers long-term39

prediction of demand as an important factor for the decision making about40

maintenance actions. The need for that becomes more evident in the case41

of boilers without soot blowers, where the maintenance (cleaning) requires42

manual work that is more expensive in contrast to operation of the soot43

blowers.44

This article has the following structure: Section 2 defines the problem45

formally. Then, model construction is discussed in Section 3. The model46

is used for optimisation via dynamic programming in Section 4. The algo-47

rithms are demonstrated on a case study with real data in Section 5. Finally,48

Section 6 concludes the article.49

2. Problem Formulation50

2.1. Description of the Physical System51

We consider a system that involves a biomass boiler with a hopper within52

a building, as shown in Figure 1. We consider three mass flows: the biomass53

delivery ṁfuel [kg/h], the air flowing through the combustion chamber ṁair54

[kg/h], and the heated water flowing out of the boiler ṁwater [kg/h]. In this55
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Figure 1: Layout of the physical system.

article, we will assume ṁwater and ṁair to be constant. This assumption is56

valid especially in smaller installations where these two quantities are not57

subject to control. On the other hand, we consider ṁfuel to be a measurable58

quantity that is controlled to satisfy the heat demand in the building.59

There are several energy flows related to the mass flows. First, the heat60

produced by burning the biomass can be expressed as61

Pin = Hfuel · ṁfuel, (1)

where Hfuel [J/kg], is the amount of heat released by total combustion of62

unit of fuel, which is assumed to be known. Thus, Pin [kW] is observable.63

A part of the generated heat is delivered to the building, while another is64

lost with the exhaust air. We will denote them as Pout [kW] and Ploss [kW]65

respectively and it holds that66

Pin = Pout + Ploss. (2)

The output power can be calculated as67

Pout = cwater · (Tsw − Trw) · ṁwater, (3)

where cwater [J/kgK] is the specific heat capacity of water, Tsw [K] is the68

temperature of supply water and Trw [K] is the temperature of return water.69

All the quantities on the right-hand side are known or observable. Hence,70

Pout can be directly inferred from the measurements.71

The proportion of the heat delivered to the building is called combustion72

efficiency (a dimensionless quantity) and is defined as73

η =
Pout
Pin

. (4)

The efficiency decreases during the use of the boiler. In other words, more74

fuel is required to cover a particular heating demand. However, we assume75
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that the boiler can be subject to cleaning (either manual or automatic by soot76

blowers), which brings it back to the original state. These cleaning costs pcln77

are in monetary units, in this work [EUR]. Another price is pfuel [EUR/kg],78

the price of a unit of biomass, which can be transformed easily to price of a79

unit of input energy as pen = pfuel/Hfuel [EUR/J] .80

2.2. General Requirements81

Before we define the problem formally, we can intuitively claim some82

properties that a system for optimal boiler maintenance ought to satisfy:83

• The total operational costs, for a mass of fuel mfuel [kg], are pop =84

pcln +mfuelpfuel.85

• If mfuelpfuel � pcln, it is beneficial to perform maintenance as often as86

possible, such that mfuel is kept at a minimum.87

• If mfuelpfuel � pcln, it is beneficial to do no maintenance.88

• If there are almost no heat losses to be compensated in the building,89

i.e. Pout ≈ 0, no maintenance is required, regardless to the state of90

boiler.91

• If there is extreme (hypothetically infinite) demand on compensation92

of the heat losses, i.e. Pout ≈ ∞, the maintenance is to be very frequent93

(hypothetically continuous).94

The decisions about maintenance actions depend on the heat demand Pout.95

Specifically, the decisions will be influenced not only by the current heat96

demand, but also by the forecasted heat demand. This fact motivates the97

formalisation of the problem as a dynamical system - this is in contrast to98

the cited state-of-art approaches.99

2.3. Problem Formalisation as a Dynamical System100

We formalise the process of boiler fouling with a dynamical system. The101

time step can be arbitrary, but we select rather longer periods such weeks.102

There are three reasons for that: (i) boiler maintenance actions are consid-103

ered in long time horizons; (ii) considering short periods such as in the order104

of hours (the horizon used for thermal dynamics) makes the problem compu-105

tationally more complex; (iii) the use of longer time intervals can help with106
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aggregation: we can indeed consider the weekly heating demand as some-107

thing that can be predicted for months ahead, but we cannot do the same108

with hourly consumptions (the precision would be extremely low).109

We will use n = 1, . . . , N as the indices of time intervals. For example, n is110

index of a week and the horizon has N weeks. The length of a time interval111

l (e.g. number of seconds in a week) leads to consider the aggregation in112

time of the considered quantities. The aggregated input power forms the113

aggregated input heat Qin[n] [J] as114

Qin[n] =

∫ nl

(n−1)l
Pin(t)dt; (5)

the aggregated output heat Qout[n] [J] is formed similarly as115

Qout[n] =

∫ nl

(n−1)l
Pout(t)dt, (6)

and the aggregated heat loss is Qloss[n] [J]. Using these quantities, we can116

write the aggregated efficiency η[n] as117

η[n] =
Qout[n]

Qin[n]
. (7)

With respect to the identities (2) and (7), it is sufficient to model the state118

as vector x[n] = (η[n], Qout[n])T , leaving out Qin[n] = Qout[n]/η[n] and119

Qloss[n] = Qin[n]−Qout[n].120

The dynamical system is subject to actions u (a dimensionless quantity).121

At the end of each period n, we can decide to either carry out the maintenance122

action, i.e. u[n] = 1, or not, i.e. u[n] = 0.123

The so-called single transition costs C(x[n], u[n]) [EUR] express the cost124

incurred during one period, comprising the cost of operation and of mainte-125

nance as126

C(x[n], u[n]) = pen ·
Qout[n]

η[n]
+ pcln · u[n]. (8)

The dynamics of the system is given by the state-evolution model x[n+ 1] =127

f (x[n], u[n]). The construction of the mapping f is not straightforward and128

we deal with it in Section 3.129
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2.4. Problem Statement130

Based on the available data, we want to schedule maintenance actions131

optimally. Considering X to be the set of all possible states and U the set132

of all possible actions, we want to calculate decision rules π[n] : X → U for133

all n = 1, . . . , N − 1 so that the total cost134

N∑
n=1

C(x[n], u[n]) (9)

is minimal, subject to the conditions on the transitions135

x[n+ 1] = f(x[n], u[n]) (10)

and the application of the action136

u[n] = π[n](x[n]). (11)

We solve the problem in two steps. First, we identify the state-evolution137

model in Section 3. Then, we calculate the optimal strategy by means of138

dynamic programming in Section 4.139

Figure 2 summarises the structure of model and control signals. The140

plant/process has states consisting of efficiency and heat demand that are141

observed by the controller. The controller applies the current decision rule on142

the current observation and decides about next action (input), i.e. whether143

the boiler is to be cleaned or not. This influences the state of the plant. The144

state of the plant is also influenced by the reference heating demand. Finally,145

the cost function quantifies the cost of one-step operations.146

3. Modeling the System Dynamics147

In this section, we discuss the model dynamics x[n+ 1] = f(x[n], u[n]).148

The system state has two components: the first one is the efficiency level, the149

second one is the heating demand. Both of them capture the most essential150

dynamics for the optimal maintenance problem. The construction of the151

corresponding models is described in the following.152
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Figure 2: Structure of model and control signals.

3.1. Heating Demand153

We discuss how to model the demanded heat supply Qout[n]. As men-154

tioned above, Qout[n] is the amount of heat that is required to compensate155

the heat losses of the building to maintain the indoor comfort at a given level.156

For the sake of simplicity, we assume that the heating demand is always met.157

The heating demand does not depend on the state of the boiler, because158

it is rather a property of the building and would be the same even if we would159

equip the building by a completely different heating system. Thus, demand160

does not depend on the boiler efficiency η[n] nor on the maintenance action161

u[n]. However, Qout[n + 1] possibly depends on Qout[n], because we can162

assume that the heating demand will not change rapidly, and on n because163

the heating demand has a long-term trend, which depends especially on the164

seasonal influences. We adopt the model165

Qout[n+ 1] = γQout[n] + (1− γ)Q̃out[n+ 1], (12)

where Q̃out[n+1] is the long-term trend of Qout and γ ∈ [0, 1] is a parameter.166

A similar approach combining the autoregressive behaviour and long-term167

trends was employed also in [11].168

Given the model structure (12), two steps are to be carried out: (i) to169

construct the long-term trend Q̃out[n+ 1] and (ii) to estimate the parameter170

γ.171

The construction of the long-term trends of heat demand (and energy172

demand in general) has been addressed by many authors, e.g. [12, 13, 14].173
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Any of the mentioned methods can be adopted and possibly tailored. Since174

some of the periods will have no demand (especially in warm season of the175

year), we construct the auxiliary long-term trend r[n] [J] as follows:176

1. First, we create a classifier h that will indicate whether any heat de-177

mand is considered for a given n: this function takes value one during178

the heating season, zero otherwise.179

2. Then, the trend r is calculated from data when the heating demand is180

positive. For that purpose Gaussian process, local regression, or (as in181

our case) frequency-domain linear regression [15] can be adopted.182

The prediction of this trend has been examined extensively [16, 17, 18]. Hav-183

ing identified h and r, the trend is defined as184

Q̃out[n] =

{
r[n] if h[n] = 1
0 otherwise.

(13)

Further, in order to estimate γ, we can use a de-trending term185

∆[n] = Qout[n]− Q̃out[n] (14)

and employ standard tools for autoregressive modelling. Considering the186

constraint γ ∈ [0, 1], we can solve an optimisation problem with the objective187

function188

γ∗ = arg min
γ∈[0,1]

D∑
n=2

(
Qout,d[n]− γQout,d[n− 1]− (1− γ)Q̃out,d[n])

)2
(15)

considering a data set
{
Qout,d[n], Q̃out,d[n]

}D
n=1

where D is number of samples189

(e.g. observed weeks)1.190

3.2. Fouling Process and Efficiency191

In this section, we discuss the dynamics of the efficiency term η[n+ 1],192

which depends on:193

• The most recent efficiency η[n]. This efficiency corresponds to the level194

of accumulated soot.195

1Throughout this paper we denote data variables with xd and model variables as x.
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• The most recent operation. If there is no operation, i.e. the boiler is not196

used, and no biomass is burned in it, then the efficiency level remains197

the same. If the operation is intensive, i.e. the boiler burns a large198

amount of biomass and generates much soot, the efficiency decreases199

rapidly. The operation can be quantified in terms of delivered heat200

Qout[n], generated input heat Qin[n], or the number of switches.201

• The most recent action u[n]. If the boiler is cleaned and all soot is202

removed, its efficiency improves, possibly to the original level.203

We have adopted an approximate model that satisfies these conditions:204

η[n+ 1] =

{
η[n] + αQout[n] if u[n] = 0
ηmax otherwise.

(16)

Since we assumeQin andQout to be measurable, we can observe η as well. The205

unknown boiler fouling parameter α is assumed to be negative as it captures206

the negative impact of the operation Qout[n] on the efficiency η[n+ 1]. It can207

be easily fitted by standard tools for linear regression, considering η[n] −208

η[n− 1] as the output variable and Qout[n− 1] as the input variable.209

There are several other models for efficiency that are based on first prin-210

ciples [3, 8], however they cope especially with short-term dynamics, which211

is not the focus of this article.212

4. Optimal Maintenance via Dynamic Programming213

Having a specific model for the state evolution x[n+ 1] = f(x[n], u[n]),214

we can address the problem of the optimal maintenance by means of dynamic215

programming [19]. This employs a so-called value function V [EUR], which216

is updated backwards, starting from the very last time interval217

V [N ](x[N ]) = inf
u[N ]∈U

C(x[N ], u[N ]). (17)

For the remaining time indices n = N−1, N−2, . . . 1, the value is calculated218

recursively as219

V [n](x[n]) = inf
u[n]∈U

C(x[n], u[n]) + V [n+ 1](f(x[n], u[n])). (18)

Having the value functions V[n], the decision rule is defined as220

π[n](x[n]) = arg inf
u[n]∈U

C(x[n], u[n]) + V [n+ 1](f(x[n], u[n])). (19)
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This optimisation is straightforward because set U has two elements only.221

More intuitively, (19) can be qualitatively interpreted as follows:222

Next action for given x[n] =

{
cleaning if it is cheaper in the long term
do nothing otherwise.

(20)
To implement a program calculating this optimal strategy, we discretise223

the state space X ⊂ R2 so the value functions V̂ [n] are computed over a224

discrete domain [20]. We cover the state space by disjoint set of rectangles225 ⋃I
i=1Xi = X. Specifically, we consider the range for the efficiency [ηmin, ηmax],226

sliced into I1 intervals, and for the output heat [Qmin
out , Q

max
out ], sliced into I2227

intervals. The number of the points of the discrete domain is thus I = I1 · I2.228

Having calculated the value function V̂ [n](xi) at the centre of these rect-229

angles xi ∈ Xi, we approximate the value function for any x ∈ X by the230

value of the corresponding centre, i.e.231

V̂ [n](x) = V̂ [n](xi), (21)

where x ∈ Xi.232

The calculation is summarized in Algorithm 1. The algorithm has the233

following inputs: the state-evolution models f , discretization of the input234

space (Xi, xi)
I
i=1, the set of actions U , and the cost function C. On line 2,235

the value function approximation is initiated to zeros for an hypothetical236

time interval N + 1. This initialization assures that the very first step of237

the recursion will be carried out according to (17). Lines 3 to 15 describe238

the backward recursion. In each step of the recursion, the value function is239

calculated for all centers of the rectangles, see lines 4 to 14. Lines 5 to 13240

implement the minimization (18), using the approximation (21) implemented241

on lines 7 to 9.242

4.1. Special Case: No Autoregression243

In Section 3, we discussed the modelling of the heating demand Qout. If244

the estimation procedure results in no autoregression term, specifically γ = 0,245

then we can modify the model as follows: Qout[n] = Q̃out[n] is constant. We246

then introduce a modification in the change of the gridding. Namely, the247

gridding of [ηmin, ηmax] remains the same, and is sliced into I1 intervals. On248

the other hand, the gridding for Qout is implemented so that the second249

coordinates of centres of the rectangles are the forecasted values Q̃out[n].250
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Algorithm 1 Calculation of value functions

1: procedure CalculateV(f, (Xi, xi)
I
i=1 , U, C)

2: V̂ [N ](xi)← 0 ∀i = 1, . . . , I
3: for n = N − 1, . . . , 1 do
4: for i = 1, 2, . . . , I do
5: V̂ [n](xi)←∞
6: for u ∈ U do
7: x′ ← f(xi, u)
8: i′ ← index of the rectangle where x′ ∈ Xi′

9: Vtmp ← C(xi, u) + V̂ [n+ 1](xi′)

10: if Vtmp < V̂ [n](xi) then

11: V̂ [n](xi)← Vtmp
12: end if
13: end for
14: end for
15: end for
16: end procedure

It then holds that251

V [n](x[n]) = V [n](η[n], Qout[n]) = V [n](η[n], Q̃out[n]). (22)

This implies that the second argument is fixed. Thus, there is no need to252

approximate V[n] for other Qout[n] 6= Q̃out[n]. Therefore, we can modify line 4253

so that we iterate not for all i = 1, 2, . . . , I, but only for those i = 1, 2, . . . , I254

where the second component of the centre xi ∈ Xi is equal to heat demand255

for n, i.e. xi,2 = Q̃out[n].256

Treating this case separately will increase the precision because there is257

no approximation in terms of Qout. Moreover, it results in faster calculation258

because we process only I1 rectangles in the approximation. The tabular259

representation of the optimal actions can also be practically reduced, as the260

value functions are not calculated for most of the combinations.261

5. Case Study262

For the case study we have used data from a building in Spain, equipped263

by a biomass boiler. Based on almost one year of data, we plan to create a264
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maintenance strategy for the following 10 years. Considering the length of a265

time interval to be 1 week, the chosen horizon results in N = 521 weeks.266

5.1. Specification of Parameters267

The general parameters are: specific heat capacity of water cwater = 4180268

[J/kgK], heating value of biomass Hfuel = 2.2× 107 [J/kg], price of biomass2269

pfuel = 0.27 [EUR/kg], price of maintenance3 pcln = 108.9 [EUR], mass flow270

of the water ṁwater = 2.15× 104 [kg/h].271

5.2. Data Preprocessing272

The measured data are from October 2013 to September 2014. The avail-273

able measurements are: supply water temperature Tsw, return water temper-274

ature Trw, water mass flow ṁwater, biomass consumption ṁfuel. The data are275

measured with a sampling time of 15 minutes, i.e. we have q = 4 ·24 ·7 = 672276

records per week. Let us index the sampled data by l and use temperatures277

Trw,d[l] [K], Tsw,d[l] [K], which represent the mean value of Trw, Tsw within278

the sample, and absolute masses mfuel,d[l] [kg], mwater,d[l] [kg] each computed279

as integral of the corresponding mass flow over sampling interval l.280

To obtain the values for x[n] for the construction of state-evolution models
we have used the following formulas:

Qout,d[n] =

nq∑
l=(n−1)q+1

cwater · (Tsw,d[l]− Trw,d[l]) ·mwater,d[l] , (23)

Qin,d[n] =

nq∑
l=(n−1)q+1

Hfuel ·mfuel,d[l] , (24)

ηd[n] =
Qout,d[n]

Qin,d[n]
. (25)

281

5.3. Results of Modelling282

As described in Section 3, we model the dynamics of the system in two283

steps: first the model of the heating demand, then the model of fouling.284

2http://www.avebiom.org/es/noticias/News/show/precios-del-pellet-en-espana-653
3http://www.tucalderabarata.es/reparacion-de-calderas/
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The first step of heating demand modelling is the construction of the285

classifier h. Based on an inspection of available data, we consider the period286

from the first week in November to the last week of February as a heating287

season, i.e. h[n] = 1, with the exception of the last week in December and288

first week in January, when the building is not used nor heated. Otherwise,289

no heating demand is considered, i.e. h[n] = 0. For this classification as well290

as for the next calculation, we will use t[n] as the expression of the absolute291

time in days, as Matlab implements the date-time values.292

For the weeks when the building was heated, the trend r[n] is fitted using
frequency-domain linear regression [15] to the model

r[n] =β0 + β1 cos

(
2πt[n]

365

)
+ β2 sin

(
2πt[n]

365

)
+ β3 cos

(
4πt[n]

365

)
+ β4 sin

(
4πt[n]

365

)
. (26)

The model was fitted by lscov Matlab function using 14 data samples. The293

parameters are shown in Table 1.

Table 1: Results of the modelling - parameters

Parameter β0 β1 β2 β3 β4
Value (×105) -2.8122 -2.1200 3.6246 0.6391 1.0429

294

The standard deviation from the trend was 3738.8 kWh/week, i.e. 21.69%295

of the mean. We tried to explain this by the use of an autoregressive term,296

however the result was γ = 0 which leads to the special case discussed in297

Subsection 4.1. The final model as well as the underlying data is shown in298

Figure 3.299

The boiler fouling parameter α was estimated also by standard lscov

Matlab function. The result was

α̂ = −7.4160× 10−7 [kWh−1]

which corresponds to 17.91% decrease of the efficiency for a heating season300

without maintenance. This can be seen from Figure 4 which depicts the301

measured data versus the resulting model. The fitted original value η̂max =302

0.6396.303
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5.4. Results of Optimization304

Since the identification resulted in γ = 0, we adopted the approach dis-305

cussed in Subsection 4.1. We used the discretization to I1 = 100 inter-306

vals, considering the efficiencies to range from ηmin = 0.20 to the detected307

ηmax = 0.6396.308

The resulting strategy has the shape as shown in Figure 5. For each309

time n and efficiency level η[n], the optimal action is given. Where the310

colour is white, there is no maintenance, i.e. π[n](x[n]) = 0. Where the311

colour is blue (dark), the maintenance action is carried out, i.e. π[n](x[n]) =312

0. Note that the resulting strategy satisfies the general requirements, as313

outlined in Section 2.2: the maintenance depends on the heat demand. We314

can also observe decreased willingness to clean the boiler in the last year315

of the prediction horizon. This is also an expected behaviour: if there is316

no heating assumed anymore then the maintenance does not make sense.317

Detailed version is provided in Figure 6. We can observe one interesting318

detail: the last month of the prediction horizon is December 2025. The319

maintenance actions are carried out in case of very low efficiency only. It320

is contrasting to December 2024 where the efficiency can be still high and321

the maintenance action is proposed. The reason for this difference is the322

following: the strategy decides myopically in the end because in the short-323

term perspective the maintenance is relatively more expensive than achieved324

savings on fuel.325

The visual inspection indicates that the strategy can be interpreted as326

follows: if the efficiency is below a threshold, specifically, and if there is a327

heating demand in the upcoming period, i.e. Qout[n+ 1] > 0, then the main-328

tenance is to be carried out. We can then define an optimal condition-based329

maintenance strategy by setting the threshold to a fixed value ηthr = 0.58330

based on the visual inspection of Figure 5. Note that this maintenance strat-331

egy differs from standard condition based maintenance significantly because332

it uses a threshold that is not given by an expert estimate, but as a result333

of explicit optimisation that captures all available information. As such, our334

procedure could provide an automatic update of such a threshold, which335

would otherwise be difficult to set based on expert opinion.336

Table 2 summarizes the results of the dynamic programming compared337

to annual or semi-annual maintenance. We can see that the dynamic pro-338

gramming is much better than regular approaches.339
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Figure 5: Calculated decision strategy: values of η[n] when a maintenance action is to be
carried out.
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Figure 6: Detail on last two years.

Table 2: Results
Strategy Total Total Savings by

cost actions Dynamic
[EUR] Programming

Dynamic programming 5.0675e+04 26 0%
Annual cleaning 5.5385e+04 10 8.50%
6month cleaning 5.6474e+04 20 10.27%
No maintenance 1.2949e+05 0 60.87%
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6. Conclusions340

The present article has demonstrated the capability of dynamic program-341

ming as a tool for the optimal predictive maintenance on practical models342

obtained from real data. The described methodology is motivated not only343

on the state of the equipment, but also on the long-term trends of the heating344

demand, which is novel considering the state-of-art. The approach has been345

applied to a biomass boiler at a Spanish school and has highlighted possible346

energy savings when compared to standard maintenance strategies.347

There are many open areas for further development. The article has348

adopted relatively basic tools for the modelling (heating demand, fouling349

process) as well as for the optimisation (discretised dynamic programming).350

Advanced modelling and optimisation tools can enrich the approach. These351

methods can be considered not only in the batch implementation, as de-352

scribed here, but also in an online set-up. It may be also beneficial to353

explore the possibility to consider retrofit as a possible action to optimise354

not only the maintenance, but also the procurement of new equipment. A355

related challenge is to explore the reasonable length of the horizon as the op-356

timal strategy exhibit relatively periodic behaviour. Finally, the cost model357

may incorporate also discomfort monetisation [21], leading to a number of358

interesting technical questions.359
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