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Abstract

This paper presents a Bayesian framework for the identification of nonlinear

hybrid systems in the form of Switched Nonlinear AutoRegressive models with

an eXogenous part (SNARX). The identification is done via three levels of in-

ference, using Bayes’ rule. At the first level, a hyper-parameter is assigned to

each of the model parameters, which are then estimated by maximizing their

posterior probabilities. The introduced hyper-parameters control the complex-

ity of the model and leverage the Occam’s Razor principle by selecting a model

with sufficient complexity and proper accuracy. This is done in the second level

of inference, where the optimum values of hyper parameters are calculated. At

the third level of inference, a quality of measure is derived in order to contrast

different results obtained from various identification procedures, comparing and

selecting different model structures and their respective parameters. The pro-

posed framework is compared with existing relevant methods and is tested on

different numerical models, which has shown promising performance.
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1. Introduction

A Hybrid System (HS) is a dynamical system that consists of components

with continuous and discrete behaviors [1]. In other words, a HS comprises more

than one dynamical sub-system and the output at a specific time is determined

by the governing sub-system at that time: in our setup, this is controlled by a5

discrete signal, also known as a switching signal. Hybrid systems have attracted

considerable attention in the past few years since many current embedded sys-

tems are in essence hybrid. furthermore, HSs can be used to model complex

nonlinear systems by means of a collection of simpler linear models [1].

In our framework, a HS in the form of a Switched Auto-Regressive Exogenous

(SARX) system can be defined as

𝑦𝑖 = 𝑓𝜆𝑖
(x𝑖) + 𝑒𝑖, (1)

where x𝑖 = [𝑦𝑖−1 ... 𝑦𝑖−𝑛𝑎
𝑢𝑖−1−𝑛𝑘

... 𝑢𝑖−𝑛𝑏−𝑛𝑘
] is the continuous state10

composed of 𝑛𝑏 and 𝑛𝑎 samples of lagged input 𝑢 and output 𝑦 respectively,

𝑛𝑘 is the number of delayed samples, and 𝑒𝑖 is the measurement noise. The

exogenous, time-dependent variable 𝜆𝑖 ∈ {1, ..., 𝑛} denotes the discrete mode

and it determines which of the 𝑛 sub-systems 𝜆𝑖 are active at that specific

time (which means the corresponding dynamics are charecterised by the terms15

𝑓𝜆𝑖
). If the functions 𝑓𝜆𝑖

are nonlinear, then the resulting system is a Switched

Nonlinear ARX system (SNARX).

Considering the training data set 𝒟 = {(𝑥𝑖, 𝑦𝑖)}𝑁𝑖=1, the nonlinear sub-

systems {𝑓𝑗}𝑛𝑗=1 can be expressed as a summation of kernel functions in the

following form [2]:

𝑓𝑗(x;𝛼𝑗 , 𝑏𝑗) =

𝑁∑︁
𝑖=1

𝛼𝑖𝑗𝑘𝑗 (x𝑖,x) + 𝑏𝑗 , (2)

where the weights 𝛼𝑗 = [𝛼1𝑗 ... 𝛼𝑁𝑗 ]
𝑇 and the bias term 𝑏𝑗 are the param-

eters of 𝑗𝑡ℎ sub-system and 𝑘𝑗(·) is a kernel function that satisfies Mercer’s
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condition [3] and represents the model structure ℋ𝑗 . It should be emphasised20

that 𝛼𝑗 and 𝑏𝑗 are the parameters for each sub-system 𝑓𝑗 , while each model

structure ℋ𝑗 has one or more hyper-parameters (e.g., the width of the Gaussian

kernel).

The problem of identification of nonlinear HS is to fit the best parameters

of the nonlinear sub-systems {𝑓𝑗}𝑛𝑗=1 (weights 𝛼𝑗 and bias term 𝑏𝑗) and the25

time-dependent switching signal 𝜆𝑖 ∈ {1, ..., 𝑛} (which of course selects the cor-

responding index 𝑗) to the training data set 𝒟. This problem consists of two

sub-problems that should be solved jointly: the identification of the switch-

ing signal and the estimation of each sub-system. If the switching signal is

known a-priori, then the problem of identification of hybrid system reduces to30

a conventional identification of each sub-systems [4]; whereas if the dynamics of

sub-systems are known, it becomes a classification problem [5].

Related literature. Various methods have been developed for identification of

linear HSs. The major categories of methods are: clustering techniques [6, 7],

Bayesian approaches [8, 9], mixed integer programming techniques [10, 11],35

bounded error approaches [12, 13], algebraic approaches [5, 14], and meth-

ods based on Support Vector Regression (SVR) [15]. Other methods, such

as sum-of-norm optimization [16] and kernel methods using the hybrid stable

spline algorithm [17] have been also developed to identify linear HSs. More-

over, the identifiability conditions that are specific to linear switched systems40

are discussed in [18, 19, 20]. For further information about these methods and

other literature regarding the identification of linear hybrid systems, please see

[21, 22, 23].

In the field of identification of nonlinear hybrid systems, much less research

has been done. The authors in [24] extend the SVR method to the hybrid do-45

main. In [2, 25] the authors use reduced-size kernels to decrease the dimension of

the problem, so that it can be used for large data sets. In [26], sparse optimiza-

tion techniques are used for identification. These techniques are extended into

SVR and kernel expansion form in [27]. Authors in [28] propose a randomized
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approach in order to identify nonlinear HSs, which reduces to a combinatorial50

optimisation problem. In [29] a Gaussian approach and stochastic simulations

(Markov chain Monte Carlo) are used to identify a switched system consisting

of one linear and one nonlinear sub-system.

Motivations. In SVR-based methods, the output is a point-wise prediction. Fur-

thermore, the coefficient that determines the trade-off between the complexity55

of the model and data fitness should be determined by the user, which is a non-

trivial task that is usually done by cross validation and search methods (e.g.

random search or grid search). Moreover, the best structures for the family

of models (i.e, best kernel functions, e.g. polynomial or Gaussian) and their

respective parameters (such as the degree of polynomial and the width of a60

Gaussian) should be selected by the user. In order to choose the best kernels,

the identification results for different kernels should be compared with each

other. Moreover, the identification of nonlinear hybrid systems with SVR-based

method will result in a non-convex optimization problem, which possesses many

near optimal solutions [15]. Selecting the best output among the different re-65

sults requires a comparison process which should encompass all the important

factors affecting the quality of the identification. These factors are: fitness of

data to the model, data assignment, and model complexity. Without a compre-

hensive quality measure, this comparison is done by selecting the best fitness

(minimum error). However, using the fitness criterion alone is not sufficient as70

more complex models will just fit the data better. Besides, the quality of the

identified switching signal and the amount of assigned data to each sub-system

should be considered in selecting the set of the models. This requires a compre-

hensive quality measure that takes all the vital factors affecting the quality of

the identification into account.75

Contributions. In this paper, a three-level Bayesian framework[30] is introduced

for identification of nonlinear hybrid systems. The model parameters are calcu-

lated in the first level, while the hyper-parameters controlling the complexity of

the model and the estimated variance of the noise are calculated in the second
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level, so that they provide a model with the best trade-off between complexity80

and data-fitness. In the third level of inference, a comprehensive quality measure

is derived to assess the quality of the identification results, compare different ker-

nel structures with various hyper-parameters, and also to compare the resulting

estimated systems and to choose the best kernels and hyper-parameters. The

derived quality measure takes data fitness, complexity of the model, and number85

of correct data assignments into consideration, and selects the simplest model

with the best fitness and the most correct data assignment. Unlike SVR-based

and randomized methods, the prediction provided by this method incorporates

the uncertainty in the model parameters and also provides a probability distri-

bution that can be used for sampling.90

Contrasted with [24], where the noise can be estimated through a constrained

optimization, in the presented method it is estimated by solving a set of equa-

tions using simple gradient-based methods. Furthermore, the best parameters

for controlling the model complexity and data fitness are calculated in such a

way that they satisfy the Occam’s Razor factor, while in [24, 25, 2, 27], the95

trade-off parameter between complexity and data fitness should be determined

using search methods, which is time consuming, and provides no guarantee

that the chosen parameters produce the simplest model with the best data fit.

In [24, 25, 2, 27], the comparison between different types of kernels or differ-

ent hyper-parameters for kernels is possible only through data-fitness criteria,100

whereas our proposed method is able to comprehensively compare different ker-

nels and parameters by considering their complexity, uncertainty, data fitness,

and mode estimation.

Outline of the paper. The rest of the paper is organized as follows: in Section 2

the Bayesian set-up is introduced. The first, second, and third level of inference105

are introduce in Sections 3,4 and 5, respectively. Comparison with existing rele-

vant methods, case studies and numerical simulations are presented in Section 6,

while the results are discussed in Section 7.

5



2. Bayesian Set-Up

The identification problem for SNARX systems in a Bayesian framework110

consists in estimating several sets of parameters and hyper-parameters by max-

imizing their respective posterior probabilities. These posterior probabilities are

calculated according to Bayes’ rule in three levels of inference as shown in Fig-

ure 1. As it can be seen in Figure 1, the evidence of each level is the likelihood

of the next level. We now introduce the parameters and the hyper-parameters115

that are required for this framework:

Figure 1: The three levels of inference in the Bayesian framework

∙ The total vector of the model parameters: 𝜃 = [𝛼, 𝑏]𝑇 : where 𝛼 is the

vector of the models’ weights and 𝑏 is the vector of bias terms: 𝛼 =

[𝛼1...𝛼𝑛]𝑇 , 𝑏 = [𝑏1...𝑏𝑛]𝑇 (𝑛 is the number of sub-systems);

∙ The total vector of the model hyper-parameters: 𝒳 = [𝜇, 𝛽]: This vector120

contains the variances for prior distribution of the weights and estimated

noise variance;

∙ The family of kernels: ℋ = {ℋ𝑗 |𝑗 = 1, ..., 𝑛}: is the family of the models

with different structures and/or different values for parameters (e.g. the

width of the Gaussian kernel or the degree or the polynomial kernel).125
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3. First level of inference: Model parameters

At the first level of inference, the vector of the model parameters 𝜃 = [𝛼, 𝑏]𝑇 ,

which consists of weights and bias terms for each sub-system, is calculated

through maximizing their posterior probabilities. The conditional posterior

probability of the model parameters given the training data set consisting of

𝑁 points 𝒟 = {𝑥𝑖, 𝑦𝑖}𝑁𝑖=1, the vector of hyper-parameters 𝜒 and the family of

the kernels ℋ is calculated according to the Bayes’ rule

𝑃 (𝜃|𝒟,𝒳 ,ℋ) =
𝑃 (𝒟|𝜃,𝒳 ,ℋ)𝑃 (𝜃|𝒳 ,ℋ)

𝑃 (𝒟|𝒳 ,ℋ)
, (3)

where 𝑃 (𝜃|𝒳 ,ℋ) is the prior probability distribution of the model parameters.

The term 𝑃 (𝒟|𝜃,𝒳 ,ℋ) is the “ likelihood ” of the data points. The denom-

inator of the equation (3) is called the hyper-parameter evidence and usually

ignored in the calculation process of the model parameters since as it will be130

shown, it is not a function of model parameters [30].

3.1. Prior probability of the model parameters

In order to calculate the prior distribution of the model parameters, it is

assumed that the parameters of each sub-system are independent from other

sub-systems. Furthermore, the weights 𝛼𝑗 and bias term 𝑏𝑗 are independent for

each sub-system [30, 31, 32, 33]. Therefore, the conditional probability of the

prior distribution over model parameters can be written as:

𝑃 (𝛼, 𝑏|𝒳 ,ℋ) =

𝑛∏︁
𝑗=1

𝑃 (𝛼𝑗 |𝒳 ,ℋ)𝑃 (𝑏𝑗 |𝒳 ,ℋ) . (4)

It should be mentioned that while it is not possible to assume that the output

of each sub-system at different data points are independent, due to the gov-

erning dynamical equations), the assumption of independent model parameters135

(weights and bias terms) can be sensibly made.

In the next step, it is assumed that the prior distribution of the weights

𝛼𝑗 of 𝑗𝑡ℎ sub-system has a normal distribution with zero mean and covariance
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matrix equal to 𝜇−1
𝑗 𝐼𝑁 :

𝑃 (𝛼, 𝑏|𝒳 ,ℋ) =

𝑛∏︁
𝑗=1

𝑃 (𝛼𝑗 |𝒳 ,ℋ)𝑃 (𝑏𝑗 |𝒳 ,ℋ) . (5)

𝑃 (𝛼𝑗 |𝒳 ,ℋ) =
1

𝑍𝛼𝑗

𝑒−
𝜇𝑗
2 𝛼𝑇𝛼;

𝑍𝛼𝑗 =

(︂
2𝜋

𝜇𝑗

)︂𝑁
2

.

(6)

It is possible to use other types of prior, for example a Laplace distribution, but

as it will be shown, the evidence cannot be computed in exact form and the

obtained evidence is an approximation [30]. In (6), 𝜇𝑗 represents how sure we

are about the weights a priori. This term will be discussed further in Section 4.140

The second term in (5) is the prior probability distribution on the bias

terms which is usually considered to be uninformative, due to the lack of prior

information [30]. Under the assumption of non-informative prior distribution

for the bias term 𝑏𝑗 and of normal prior distribution (6) for weights 𝛼𝑗 , the

prior distribution of the model parameters can be written as follows:

𝑃 (𝛼, 𝑏|𝒳 ,ℋ) =
1∏︀𝑛

𝑗=1 𝑍𝛼𝑗

𝑒(
∑︀𝑛

𝑗=1 −
𝜇𝑗
2 𝛼𝑇

𝑗 𝛼𝑗). (7)

3.2. Likelihood of the first level

The conditional distribution of 𝑃 (𝒟|𝛼, 𝑏,𝒳 ,ℋ) is the likelihood term that

can be seen as a model of the system noise that disturbs the measured training

data. In order to write the complete likelihood, the data points should first

be assigned to their respective sub-systems. For this purpose, the maximum

likelihood principle is used [15]. The maximum likelihood mode estimation for

hybrid systems tries to assign each data point (𝑥𝑖, 𝑦𝑖) to a sub-system that most

likely generates the data point, i.e. the one that maximizes the likelihood of

the data with respect to the estimated sub-system 𝑓𝑗 . The maximum likelihood

mode estimation can be expressed as:

�̂�𝑖 = arg max
𝑗=1,...,𝑛

𝑃 (𝑦𝑖|𝑥𝑖, 𝑓𝑗),

𝑃 (𝑦𝑖|𝑥𝑖, 𝑓𝑗) =
𝑒−ℓ(𝑦𝑖−𝑓𝑗(𝑥𝑖))

𝑍𝛿
,

(8)
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where ℓ(.) is a proper loss function and 𝑍𝛿 is a normalizing constant, while 𝑓𝑗

is the estimated model of the 𝑗𝑡ℎ sub-system. Here we choose the likelihood

function as a Gaussian distribution with the variance equal to 1/𝛽, which is

our prior belief on the noise variance of the system. The term 𝑦𝑖 − 𝑓𝑗(𝑥𝑖) in

(8) is the prediction error and 𝑃 (𝑦𝑖|𝑥𝑖, 𝑓𝑗) is the probability density function

of the prediction errors [34]. A typical assumption is that the prediction errors

are independent (more information regarding this assumption can be found in

Chapter 5 of [34]). Using this assumption, the complete likelihood of the data

can be written as:

𝑃 (𝒟|𝛼, 𝑏,𝒳 ,ℋ) =

𝑁∏︁
𝑖=1

arg max
𝑗=1,...,𝑛

𝑃
(︁
𝑦𝑖 − 𝑓𝑗(𝑥𝑖)

)︁
=

𝑁∏︁
𝑖=1

arg max
𝑗=1,...,𝑛

𝑒−
𝛽
2 (𝑦𝑖−𝑓𝑗(𝑥𝑖))

2

𝑍𝛿
=

𝑁∏︁
𝑖=1

1

𝑍𝛿
𝑒
argmax

𝑗
− 𝛽

2 (𝑦𝑖−𝑓𝑗(𝑥𝑖))
2

,

𝑍𝛿 = (
2𝜋

𝛽
).

(9)

3.3. Posterior probability distribution of model parameters

The posterior probability of the model parameters is calculated by combining

the prior distribution of parameters (7) and the complete likelihood of the data

(9) as:

𝑃 (𝛼, 𝑏|𝒟,𝒳 ,ℋ) =

∏︀𝑁
𝑖=1 𝑍

−1
𝛿

∏︀𝑛
𝑗=1 𝑍

−1
𝛼𝑗

𝑒−𝒥1(𝛼,𝑏)

𝑃 (𝒟|𝒳 ,ℋ)
,

𝒥1(𝛼, 𝑏) =
𝑛∑︁

𝑗=1

𝜇𝑗

2
𝛼𝑇

𝑗 𝛼𝑗 +
𝛽

2

𝑁∑︁
𝑖=1

arg min
𝑗=1,...,𝑛

(︁
𝑦𝑖 − 𝑓𝑗(𝑥𝑖)

)︁2
.

(10)

In this expression, the normalizing term 𝑃 (𝒟|𝒳 ,ℋ) is the evidence of the hyper-

parameters which will be used as the likelihood in the next level of inference. In

order to obtain the parameters of the model, this posterior probability distribu-

tion should be maximized, which results in maximum a posteriori estimation of

the parameters, denoted by 𝛼𝑀𝐴𝑃 and 𝑏𝑀𝐴𝑃 . Maximizing this term is equiv-

alent to minimizing the negative logarithm of the posterior distribution, which
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is expressed as

𝛼𝑀𝐴𝑃 , 𝑏𝑀𝐴𝑃 : min
𝛼,𝑏

𝒥1 = min
𝛼,𝑏

𝑛∑︁
𝑗=1

𝜇𝑗

2
𝛼𝑇

𝑗 𝛼𝑗

+
𝛽

2

𝑁∑︁
𝑖=1

arg min
𝑗=1,...,𝑛

(︁
𝑦𝑖 − 𝑓𝑗(𝛼𝑗 , 𝑏𝑗 ,𝑥𝑖)

)︁2
.

(11)

Remark on the size of the data set. Since each data-point is associated with a

weight for every sub-system, this optimization problem will become computa-

tionally expensive as the size of the data set increases; This problem is in fact145

common with every kernel based method, unless some appropriate measures

such as dimension reduction techniques are being used to reduce the number of

variables [25]. This issue will be addressed in our future research.

After calculating the optimal values for the sub-system parameters through

(11), the estimated sub-systems 𝑓𝑗 is calculated using (2). At this stage, since150

the estimated sub-systems are known, the discrete mode of each data point can

be calculated by utilizing the maximum likelihood principle: the probability of

each data point belonging to all the sub-system is calculated. The data point

belongs to the sub-system with highest probability. Substituting the optimal

values of the sub-system parameters obtained earlier in the maximum likelihood155

estimation (8) results in:

𝜆𝑖 = arg max
𝑗=1,...,𝑛

𝑃 (𝑦𝑖|𝑥𝑖, 𝑓𝑗(.;𝛼
𝑀𝐴𝑃 , 𝑏𝑀𝐴𝑃 )), 𝑖 = 1, ..., 𝑁. (12)

This is a continuous-discrete optimization problem. In order to avoid the

optimization problem on both continuous and discrete variables, [35] proposes

to replace the min function on discrete variables with the Product of Errors

(PE) estimator as a smooth approximation for the min function. Although160

the PE estimation can be used to approximate the min function, it is not the

best smooth approximation. In this paper, we propose to use Min LogSumExp

(MinLSE) function instead of the min. The logarithm of Summation of Ex-

ponential or LSE is a smooth approximation for maximum function [36]. The

MinLSE function is defined based on this approximation, as follows.165
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Definition 1. The MinLSE function for a set of {𝑥𝑗}𝑛𝑗=1 is defined as

𝑀𝑖𝑛𝐿𝑆𝐸(𝑥1, ..., 𝑥𝑛) = −𝜅−1 log

⎛⎝ 𝑛∑︁
𝑗=1

exp(−𝜅𝑥𝑗)

⎞⎠ , (13)

where 𝜅> 0 is a scale factor to further improve the accuracy of the approxima-

tion.

The accuracy of a PE estimator depends on both the values and the numbers

of its arguments. However, the maximum difference of MinLSE from the true

minimum depends only on the number of the function arguments. The lower170

and upper bounds of the MinLSE are expressed in the following Theorem.

Lemma 1. The MinLSE approximation of the min function for a set of 𝑛

variables {𝑥𝑗}𝑛𝑗=1 has the following lower and upper bounds:

𝑚𝑖𝑛{𝑥1, ..., 𝑥𝑛} − 𝜅−1𝑙𝑜𝑔(𝑛) ≤ 𝑀𝑖𝑛𝐿𝑆𝐸(𝑥1, ..., 𝑥𝑛) < min{𝑥1, ..., 𝑥𝑛}. (14)

Proof. We can write min
𝑗=1,...,𝑛

{𝑥𝑗} = −𝜅−1 log

(︂
exp

(︂
max

𝑗=1,...,𝑛
{−𝜅𝑥𝑗}

)︂)︂
. Sup-

pose that the max
𝑗=1,...,𝑛

{−𝜅𝑥𝑗} = −𝜅𝑥*. The logarithm on right hand side has

the following upper bound:

log

(︂
exp

(︂
max

𝑗=1,...,𝑛
{−𝜅𝑥𝑗}

)︂)︂
< log

⎛⎝ 𝑛∑︁
𝑗=1

exp(−𝜅𝑥𝑗)

⎞⎠
≤ log (𝑛× exp(−𝜅𝑥*)) = log𝑛− 𝜅𝑥*.

(15)

By multiplying (15) with −𝜅−1, the lower and upper bounds in (14) will be

obtained.

It should be evident that with a proper 𝜅, this lower bound can be made

sufficiently small. The accuracy of PE estimation and MinLSE estimation versus175

min function is shown in Figure 2 for a two-argument case. It can be seen

that the MinLSE function is very accurate compared to PE estimation and its

performance slightly deteriorates only when the two arguments are very close

to each other. Yet, its difference with the actual minimum is negligible.
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Figure 2: Accuracy of PE and MinLSE compared to actual min function.

Using the MinLSE function, the optimization problem (11) is re-written as

follows. The posterior distribution of the model parameters can be summarized

using the calculated values for 𝛼𝑀𝐴𝑃 , 𝑏𝑀𝐴𝑃 and the confidence interval on

these maximum a-posteriori parameters. The confidence intervals are calculated

from the curvature of the posterior distribution [30]. The posterior can be

approximated locally with a Gaussian distribution as:

𝛼𝑀𝐴𝑃 , 𝑏𝑀𝐴𝑃 : min
𝛼,𝑏

𝒥1 = min
𝛼,𝑏

𝑛∑︁
𝑗=1

𝜇𝑗

2
𝛼𝑇

𝑗 𝛼𝑗

+
𝛽

2

𝑁∑︁
𝑖=1

𝑀𝑖𝑛𝐿𝑆𝐸
𝑗=1,...,𝑛

(︂(︁
𝑦𝑖 − 𝑓𝑗(𝑥𝑖)

)︁2)︂
,

(16)

𝑃 (𝜃|𝒟,𝒳 ,ℋ) u 𝑃 (𝜃𝑀𝐴𝑃 |𝒟,𝒳 ,ℋ) exp

(︂
−1

2
△ 𝜃𝑇 Σ △ 𝜃

)︂
, (17)

where 𝜃𝑀𝐴𝑃 = [𝛼𝑀𝐴𝑃 , 𝑏𝑀𝐴𝑃 ]𝑇 and △𝜃 = 𝜃 − 𝜃𝑀𝐴𝑃 . In (17), Σ is the180

Hessian matrix, namely Σ = − ▽ ▽ log𝑃 (𝛼, 𝑏|𝒟,𝒳 ,ℋ), and the covariance

(confidence interval) of 𝒥1 is equal to Σ−1. The accuracy of this approximation

depends on the problem. For the quadratic term that is used in this research,

the approximation is exact [30].

After the most probable values of parameters have been obtained, the mode

estimation will be done according to (12) and values of 𝜆𝑖 are calculated for

each data point. The estimated modes can be encoded in a discrete variable

12



𝐵𝑖𝑗 that is defined as

𝐵𝑖𝑗 ∈ {0, 1}, ∀𝑖 = 1, ..., 𝑁 𝑗 = 1, ..., 𝑛,

𝑠.𝑡 𝐵𝑖𝑗 = 1 iff 𝜆𝑖 = 𝑗 and
𝑛∑︁

𝑗=1

𝐵𝑖𝑗 = 1,
(18)

which encodes each data point to a sub-system.185

Introducing this discrete variable into (11), the cost function 𝒥1 can be re-

written as

𝒥1 =

𝑛∑︁
𝑗=1

𝜇𝑗

2
𝛼𝑇

𝑗 𝛼𝑗 +
𝛽

2

𝑁∑︁
𝑖=1

𝑛∑︁
𝑗=1

𝐵𝑖𝑗

(︁
𝑦𝑖 − 𝑓𝑗(𝑥𝑖)

)︁2
. (19)

The first term in this equation is called regularization, which expresses the kind

of smoothness we expect from resulting model[30]. The second term is the data

fitness.

4. Second level of inference: Hyper-parameters

The purpose of the second and third levels of inference is to obtain the190

optimal values for the model hyper-parameters, i.e. the variances of the weights

for each model (1/𝜇𝑗) and the a-priori noise variance (1/𝛽). But, why is it

necessary to obtain the optimal values of the hyper parameters? The answer to

this question is that even for the case of dynamical (non-hybrid) systems, the

model parameters depend heavily on the values of prior variances of the weights195

and noise, as they can cause severe under-fitting or over-fitting [30, 31, 37]

(depending on the values of model parameters and the ratio 𝛽/𝜇𝑗). For hybrid

systems, this is even more important, since the purpose is not only to fit models

on the data, but also to estimate the the switching sequence. Improper values

for 𝜇𝑗 ,𝛽 and model parameters may result in the wrong mode estimation.200

One can argue that only the ratio 𝛽/𝜇𝑗 is important. This is true if the goal

is only to obtain the best-fit parameters. But the advantage of separating these

two parameters is that it provides the capability to incorporate the knowledge

from other sources (for example the bound on the value of the noise). Also,

13



in order to construct the confidence intervals or to generate samples from the205

posterior distribution for use in Monte Carlo methods, this separation becomes

important [31].

The second level of inference is dedicated to maximizing the posterior dis-

tribution of the hyper-parameters given the data points and the model using

Bayes formula. This posterior probability distribution is expressed as

𝑃 (𝒳 |𝒟,ℋ) =
𝑃 (𝒟|𝒳 ,ℋ)𝑃 (𝒳 |ℋ)

𝑃 (𝒟|ℋ)
, (20)

where 𝑃 (𝒳 |ℋ) is the prior distribution given the model set ℋ. Since before

the training little information is known about the optimum values of the hyper-

parameters, their prior distribution is assumed to be flat [31] (flat over logarith-210

mic scale, since they are scale parameters). This assumption implies that none

of the values for the hyper-parameters have any advantages against others and

all of them are equally probable. For more information about priors, one can

refer to [30]. Also, 𝑃 (𝒟|ℋ) is the evidence of the model, which will be used in

the third level of inference.215

4.1. Likelihood of the second level of inference

The term 𝑃 (𝒟|𝒳 ,ℋ) is the likelihood of the training data given the model

hyper-parameters and model family ℋ, which according to (3) is the evidence

of the first level of inference. Using the assumption of uniform prior for hyper-

parameters, maximizing the posterior distribution is equivalent to maximizing

the likelihood of the second level. Let 𝜃 = [𝛼 𝑏]
𝑇 represent the parameters of

the model. The evidence of the first level is calculated by marginalizing over

model parameters using the following integral [30].

𝑃 (𝒟|𝒳 ,ℋ) =

∫︁
𝑃 (𝒟|𝜃,𝒳 ,ℋ)𝑃 (𝜃|𝒳 ,ℋ)𝑑𝜃. (21)

It is common that this posterior has a peak around the most probable values

for model parameters, so the evidence integral can be approximated with the

integrand’s peak and its width △𝜃 [31]. The best fit likelihood is multiplied by

14



the Occam’s factor, which is less than one and penalises model ℋ for having

parameter 𝜃:

𝑃 (𝒟|𝒳 ,ℋ)⏟  ⏞  
Evidence

≈ 𝑃 (𝒟|𝜃𝑀𝐴𝑃 ,𝒳 ,ℋ)⏟  ⏞  
Best Fit Likelihood

𝑃 (𝜃𝑀𝐴𝑃 |𝒳 ,ℋ) △ 𝜃⏟  ⏞  
Occam’s Factor

. (22)

The Occam’s Razor principle states that “a model should be sufficiently com-

plex to fit the data” or, in other words, a model should not be overly complex.

Complex models which possess a lot of parameters that can take values in a

broad interval will typically penalized with a large Occam factor, compared to

simple models [30]. The Occam factor rewards simpler models. This factor

also penalizes models that need to be tuned finely in order to fit the data [30].

In other words, it encourages models that require rough precision on their pa-

rameters [30]. The integral (21) can be approximated locally as a Gaussian

distribution with covariance matrix Σ, as follows:

𝑃 (𝒟|𝒳 ,ℋ) =

𝑛∏︁
𝑗=1

𝑍−1
𝛼𝑗

𝑁∏︁
𝑖=1

𝑍−1
𝛿 𝑒−𝒥1(𝜃

𝑀𝐴𝑃 )(2𝜋)
𝑛(𝑁+1)

2 |Σ|− 1
2 , (23)

where 𝑍𝛼𝑗 =

(︂
2𝜋

𝜇𝑗

)︂𝑁
2

, 𝑍𝛿 =

(︂
2𝜋

𝛽

)︂ 1
2

and Σ is the Hessian matrix of the first-

level cost function.

Remark on the choice of the prior distributions. In General, any prior distri-

bution can be assumed for the parameters (e.g., we have assumed flat prior220

or uninformative for the bias term). However, since obtaining the posterior

distribution requires integration from a term with include the prior, and these

integrals might be difficult to calculate, assuming Gaussian priors allows to use

the Gaussian approximation of the integral [30, 31].

The hyper-parameters 𝜇𝑗 have the duty to control the complexity of the225

model. A model with large values for 𝜇𝑗 (low variance on prior distribution of

weights) fits data from a smooth function, while a model with small 𝜇𝑗 (large

freedom on the prior range of possible 𝛼) fits the data from both complex and

smooth function. According to the Occam’s Razor principle, this parameter

should not be too high or too low [38]. One of the most interesting aspects230
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of the Bayesian approach is that the Occam’s Razor principle will be applied

automatically by integrating out all the irrelevant variables. In other words,

the Bayesian framework automatically prefers simple models that sufficiently

explain the data without unnecessary complexity [38] and this property holds

even if the prior probability is completely uninformative [30].235

In order to obtain the most probable values of the hyper-parameters, the

posterior probability (23) should be maximized; or equivalently, its negative

logarithm should be minimized. Therefore, the cost function of the second level

of inference can be calculated as:

𝒥2 = −𝑁

2

⎛⎝ 𝑛∑︁
𝑗=1

log𝜇𝑗 + log 𝛽

⎞⎠+
𝑁 − 𝑛

2
log 2𝜋 + 𝒥1(𝜃𝑀𝐴𝑃 ;𝜇, 𝛽) +

1

2
log |Σ|.

(24)

The Hessian matrix Σ can be written as:

Σ =

⎛⎝𝑀𝜇 + 𝛽𝐻1 𝛽𝐻2

𝛽𝐻𝑇
2 𝛽𝐻3

⎞⎠ , (25)

where

[𝐻1𝑗 ]𝑡𝑠 =

[︂
𝜕2𝒥1

𝜕𝛼𝑡𝑗𝜕𝛼𝑠𝑗

]︂
=

⎧⎨⎩ 𝑖𝑓 𝑡 = 𝑠 : 𝜇𝑧 + 𝛽
∑︀𝑁

𝑖=1 𝐵𝑖𝑧𝑘𝑧(𝑥𝑖,𝑥𝑡)
2

𝑖𝑓 𝑡 ̸= 𝑠 : 𝛽
∑︀𝑁

𝑖=1 𝐵𝑖𝑧𝑘𝑧(𝑥𝑖,𝑥𝑡)𝑘𝑧(𝑥𝑖,𝑥𝑠)

[𝐻2𝑗 ]𝑠1 = [
𝜕2𝒥1

𝜕𝑏𝑗𝜕𝛼𝑠𝑗
] = 𝛽

𝑁∑︁
𝑖=1

𝐵𝑖𝑧𝑘𝑧(𝑥𝑖,𝑥𝑠)

𝐻3𝑗 =
𝜕2𝒥1

𝜕𝑏𝑗𝜕𝑏𝑗
= 𝛽

𝑁∑︁
𝑖=1

𝐵𝑖𝑧,

and where 𝑀𝜇 is a diagonal (𝑛𝑁 × 𝑛𝑁) matrix. One of the properties of

this Hessian matrix is that, due to the devised formulation, it is sparse and

its elements are block-diagonal matrices: 𝑀𝜇 = diag(𝜇1𝐼𝑁 , ..., 𝜇𝑛𝐼𝑁 ), 𝐻1 =

diag (𝐻11, ...,𝐻1𝑛) ∈ R𝑛𝑁×𝑛𝑁 and 𝐻1𝑗 ∈ R𝑁×𝑁 , 𝐻2 = diag (𝐻21, ...,𝐻2𝑛) ∈

R𝑛𝑁×𝑛 and 𝐻2𝑗 ∈ R𝑁×1 and 𝐻3 = diag (𝐻31, ...,𝐻3𝑛) ∈ R𝑛×𝑛 and 𝐻3𝑗 ∈ R for240

𝑗 = 1, ..., 𝑛.

The determinant of the Hessian matrix can be calculated as: |Σ| = |𝑀𝜇 +

𝛽𝐻𝑎||𝛽𝐻3|, where 𝐻𝑎 = (𝐻1 − 𝐻2𝐻
−1
3 𝐻𝑇

2 ). Because of the block-diagonal

16



nature of the components of Σ, 𝐻𝑎 is also a block-diagonal matrix: 𝐻𝑎 =

diag (𝐻𝑎1, ...,𝐻𝑎𝑛), which can be expressed as a function of the components of

Σ as: 𝐻𝑎𝑗 = 𝐻1𝑗 −𝐻2𝑗𝐻
−1
3𝑗 𝐻𝑇

2𝑗 . Using these notations, the determinant of Σ

can be expressed as

|Σ| =

𝑛∏︁
𝑗=1

|𝜇𝑗𝐼𝑁 + 𝛽𝐻𝑎𝑗 | |𝛽𝐻3|. (26)

The logarithm of |Σ| can be written in term of the non-zero eigenvalues of

𝐻𝑎𝑗 as shown below

log |Σ| =

𝑛∑︁
𝑗=1

⎛⎝(𝑁 − 𝑘𝑗) log𝜇𝑗 +

𝑘𝑗∑︁
𝑙=1

log (𝜇𝑗 + 𝛽𝜆𝑙(𝐻𝑎𝑗))

⎞⎠
+ 𝑛 log 𝛽 +

𝑛∑︁
𝑡=1

log 𝜆𝑡(𝐻3),

(27)

where 𝑘𝑗 is the number of non-zero eigenvalues of 𝐻𝑎𝑗 , which is only a function

of the kernel and of the training data points.

4.2. Optimal values of the hyper-parameters

In order to calculate the most probable values for the hyper-parameters245

𝜇𝑀𝐴𝑃
𝑗 and 𝛽𝑀𝐴𝑃 , the posterior distribution (23) should be maximized; or

equivalently the cost function of the second level of inference 𝒥2 should be

minimized. This can be done by differentiating 𝒥2 with respect to the men-

tioned hyper-parameters and solving the resulting equations. The equations for

obtaining these hyper-parameters are derived as follows.250

Variance of the weights 𝜇𝑗. The derivative of 𝒥2 (equation (24)) with respect

to 𝜇𝑗 is:
𝜕𝒥2

𝜕𝜇𝑗
= − 𝑁

2𝜇𝑗
+

1

2

𝜕 log |Σ|
𝜕𝜇𝑗

+
𝜕𝒥1(𝜃𝑀𝐴𝑃 ;𝜇, 𝛽)

𝜕𝜇𝑗
, (28)

where in this equation we have:

𝜕𝒥1(𝜃𝑀𝐴𝑃 ;𝜇, 𝛽)

𝜕𝜇𝑗
=

1

2
‖ 𝛼𝑀𝐴𝑃

𝑗 ‖22,

𝜕 log |Σ|
𝜕𝜇𝑗

=
(𝑁 − 𝑘𝑗)

𝜇𝑗
+

𝑘𝑗∑︁
𝑙=1

1

𝜇𝑗 + 𝛽𝜆𝑙(𝐻𝑎𝑗)
.

(29)
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Combining these two equations, the derivative of 𝒥2 with respect to 𝜇𝑗 can be

expressed as follows:

𝜕𝒥2

𝜕𝜇𝑗
= − 𝑘𝑗

2𝜇𝑗
+

1

2

𝑘𝑗∑︁
𝑙=1

1

𝜇𝑗 + 𝛽𝜆𝑙(𝐻𝑎𝑗)
+

1

2
‖ 𝛼𝑀𝐴𝑃

𝑗 ‖22 . (30)

Variance of the noise 𝛽. The derivative of 𝒥2 with respect to 𝛽 can be obtained

the same way. It has the following general form

𝜕𝒥2

𝜕𝛽
=

1

2

𝜕 log |Σ|
𝜕𝛽

+
𝜕𝒥1(𝜃𝑀𝐴𝑃 ;𝜇, 𝛽)

𝜕𝛽
− 𝑁

2𝛽
. (31)

The two partial derivatives in this equation are:

𝜕𝒥1(𝜃𝑀𝐴𝑃 ;𝜇, 𝛽)

𝜕𝛽
=

𝑁∑︁
𝑖=1

𝑛∑︁
𝑗=1

𝐵𝑖𝑗

2
(𝑦𝑖 − 𝑓𝑗(𝑥𝑖))

2
,

𝜕 log |Σ|
𝜕𝛽

=

𝑛∑︁
𝑗=1

𝑘𝑗∑︁
𝑙=1

𝜆𝑙(𝐻𝑎𝑗)

𝜇𝑗 + 𝛽𝜆𝑙(𝐻𝑎𝑗)
+

𝑛

𝛽
.

(32)

Combining these equations with (30), the derivative of 𝒥2 with respect to 𝛽 can

be expressed as:

𝜕𝒥2

𝜕𝛽
=

1

2

𝑛∑︁
𝑗=1

𝑘𝑗∑︁
𝑙=1

𝜆𝑙(𝐻𝑎𝑗)

𝜇𝑗 + 𝛽𝜆𝑙(𝐻𝑎𝑗)
+

𝑛−𝑁

2𝛽
+

𝑁∑︁
𝑖=1

𝑛∑︁
𝑗=1

𝐵𝑖𝑗

2
(𝑦𝑖 − 𝑓𝑗(𝑥𝑖))

2
. (33)

As also mentioned in [30, 39], 𝛾𝑗 = 1 +
∑︀𝑘𝑗

𝑙=1

𝛽𝜆𝑙(𝐻𝑎𝑗)

𝜇𝑗 + 𝛽𝜆𝑙(𝐻𝑎𝑗)
is the “num-

ber of good parameter measurements” for the 𝑗𝑡ℎ sub-system. Each eigenvalue

𝛽𝜆𝑙(𝐻𝑎𝑗) determines that how strongly the corresponding parameter has been

determined by data, while 𝜇𝑗 measures the effect of the prior on the parameters

[30].255

It is worth mentioning that we will not perform simultaneous optimization

over weights (from Section 3) and hyper parameters 𝜇𝑗 , 𝛽. The reason behind

this is that both the posterior and likelihood might have skew distributions, so

that the maximum likelihood value for the parameters and for the majority of

the posterior probabilities might be separated [31].260

Remark. Obtaining different values for maximum likelihood and maximum a-

posteriori estimation is similar to finding the parameter of a Gaussian distri-

bution (𝑚,𝜎) from 𝑁 data points. The maximum likelihood estimation and
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the most probable values (obtained by integration over 𝑚, i.e. marginaliza-

tion) for 𝜎 are
√︂

1

𝑁

∑︀𝑁
𝑖=1(𝑥𝑖 − �̄�)2 and

√︂
1

𝑁 − 1

∑︀𝑁
𝑖=1(𝑥𝑖 − �̄�)2, respectively.265

In fact, it is this marginalization that corrects the bias of maximum likelihood

estimation [30].

5. Third level of inference: Hyper-parameters

The third level of inference is dedicated to obtaining a Quality Measure

(QM) for the identification process in order to assess the performance of the270

identification. There are several parameters that affect the identification of

hybrid systems and that contribute to the quality of the identified model. The

key components are:

1. Data fitness;

2. Complexity of the model;275

3. Number of data assignment to each sub-system.

For conventional, non-hybrid systems, Least Square Support Vector Machines

(LS-SVM) [39] incorporates the first two items to rate the identification process

and compare different models. But the objective of the identification of hybrid

systems is to estimate the parameters of each sub-system and the switching280

signal simultaneously. Current methods for identification of nonlinear hybrid

systems can control the complexity of the model through the trade-off coeffi-

cient in the SVR methods, but are not capable of directly incorporating the

complexity of the model with data fitness to compare the different identified

models or model structures. To make the matter more complicated, the amount285

of assigned data to each sub-system should also be considered in order to com-

pare the results of different identification procedures. To our knowledge, there

is not a unified comprehensive criterion for SVR methods that can include all

these items together for hybrid systems.

Another need for having a unified quality measure to compare the results290

of identification is that the current identification problem for non-linear hybrid

systems (including the present research and [35]) is a non-convex optimization
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problem which possesses multiple near-optimal solutions. So, not only the choice

of various model structures or even different model parameters for a particular

sub-system will affect the overall identification process, but also different rep-295

etitions for fixed models structures might also result in different identification

outcomes. Therefore, it is essential to have a comprehensive criterion to assess

the quality of the solutions.

The purpose of the third level of inference is to provide a comprehensive

measure to assess the quality of identification of hybrid systems. This measure300

fulfills the following goals:

∙ Comparing and selecting different solutions for the identification problem;

∙ Comparing and selecting different model structures;

∙ Comparing different model parameters.

It should be noted that comparing different models is a difficult subject,305

since selecting a model by simply choosing the one with the best data fitness

based on criteria such as Mean Square Error (MSE) causes over-fitting, as more

complex models always fit better the data. Therefore, choosing the best model

by only considering the fitness (for example the maximum likelihood) will result

in over-parameterized models with poor generalization. This is where Occam’s310

razor should be used [30]. The third level of inference also provides a tool to

assess the effect of choosing a particular model for one sub-system on the overall

identification process.

The posterior distribution of model ℋ𝑗 will be used as the quality measure

for that particular model. Assuming a flat prior for model ℋ𝑗 , the posterior dis-

tribution will be proportional to the likelihood 𝑃 (𝒟|ℋ𝑗), which is the evidence

of the model in the previous level. This posterior distribution has the following

form

𝑃 (ℋ𝑗 |𝒟) =
𝑃 (𝒟|ℋ𝑗)𝑃 (ℋ𝑗)

𝑃 (𝒟)
. (34)

The evidence 𝑃 (𝒟|ℋ𝑗) will be obtained by integrating out all the variables
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(hyper-parameters 𝒳 𝑗 = [𝜇𝑗 𝛽]):

𝑃 (𝒟|ℋ𝑗) =

∫︁
𝑃 (𝒟|𝒳 𝑗 ,ℋ𝑗)𝑃 (𝒳 𝑗 |ℋ𝑗)𝑑𝒳 𝑗 . (35)

The evidence can be approximated accurately by a separable normal distri-

bution with confidence intervals 𝜎𝜇𝑗
and 𝜎𝛽 . These confidence intervals are

calculated by differentiating (24) twice with respect to 𝜇𝑗 and 𝛽:

(𝜎𝜇𝑗
)2 =

⎛⎝ 𝑘𝑗
2𝜇2

𝑗

− 1

2

𝑘𝑗∑︁
𝑙=1

1

(𝜇𝑗 + 𝛽𝜆𝑙(𝐻𝑎𝑗))2

⎞⎠−1

,

(𝜎𝛽)2 =

⎛⎝𝑁 − 𝑛

2𝛽2
− 1

2

𝑛∑︁
𝑗=1

𝑘𝑗∑︁
𝑙=1

𝜆𝑙(𝐻𝑎𝑗)
2

(𝜇𝑗 + 𝛽𝜆𝑙(𝐻𝑎𝑗))2

⎞⎠−1

.

(36)

Using these confidence intervals in (35) and assuming a flat prior, the evidence

will be calculated as

𝑃 (𝒟|ℋ𝑗) u 𝑃 (𝒟|𝒳𝑀𝐴𝑃
𝑗 ,ℋ𝑗)2𝜋𝜎𝛽𝜎𝜇𝑗 , (37)

where 𝑃 (𝒟|𝒳𝑀𝐴𝑃 ,ℋ𝑗) is calculated by using the most probable values for

hyper-parameter which are obtained in the previous level in (23).315

Neglecting all the constants in (23) and (37), the posterior distribution for

model ℋ𝑗 is calculated as:

𝑃 (𝒟|ℋ𝑗) ∝

⎯⎸⎸⎸⎷ (𝜇𝑀𝐴𝑃
𝑗 )𝑁𝜎2

𝜇𝑗
(𝛽𝑀𝐴𝑃 )

∑︀𝑁
𝑖=1 𝐵𝑖𝑗𝜎2

𝛽𝑒𝑥𝑝(−𝒥1

(︁
𝜃𝑀𝐴𝑃 ,𝒳𝑀𝐴𝑃 )

)︁
(𝜇𝑀𝐴𝑃

𝑗 )(𝑁−𝑘𝑗)
∏︀𝑘𝑗

𝑙=1(𝜇𝑀𝐴𝑃
𝑗 + 𝛽𝑀𝐴𝑃𝜆𝑙(𝐻𝑎𝑗))𝛽𝑀𝐴𝑃𝐻3𝑗

.

(38)

It is more convenient to use the logarithm of (38) as a measure of quality of

model. The Quality Measure for model ℋ𝑗 is expressed as:

𝑄𝑀(ℋ𝑗) = log 𝜎𝜇𝑗
+ log 𝜎𝛽 +

𝑘𝑗
2

log𝜇𝑀𝐴𝑃
𝑗 +

𝜁𝑗 − 1

2
log 𝛽𝑀𝐴𝑃 − 1

2
log 𝜁𝑗

− 1

2

𝑘𝑗∑︁
𝑙=1

(︀
𝜇𝑀𝐴𝑃
𝑗 + 𝛽𝑀𝐴𝑃𝜆𝑙(𝐻𝑎𝑗)

)︀
−

𝜇𝑀𝐴𝑃
𝑗

4
||𝛼𝑗 ||22

− 𝛽𝑀𝐴𝑃

4

𝑁∑︁
𝑖

𝐵𝑖𝑗 (𝑦𝑖 − 𝑓𝑗(𝑥𝑖))
2
.

(39)
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In this expression, 𝜁𝑗 =
∑︀𝑁

𝑖=1 𝐵𝑖𝑗 is the number of data points assigned to the

model ℋ𝑗 , and 𝑘𝑗 is the number of non-zero eigenvalues of the kernel matrix

corresponding to ℋ𝑗 .

This quality measure has a unique characteristic: it includes all the relevant

components that determine the quality of identification. These components are:320

∙ Model fitness corresponding to ℋ𝑗 :
∑︀𝑁

𝑖 𝐵𝑖𝑗 (𝑦𝑖 − 𝑓𝑗(𝑥𝑖))
2 and prior vari-

ance of noise 1/𝛽𝑀𝐴𝑃 ;

∙ Model Complexity: regularization term ||𝛼𝑗 ||22 and prior variance of the

weights 𝜇𝑀𝑃
𝑗 ;

∙ Uncertainty about the noise and weight variances: log 𝜎𝜇𝑗
, log 𝜎𝛽 ;325

∙ Number of the data points assigned to model ℋ𝑗 : 𝜁𝑗 ;

∙ Characteristics of kernel matrix (eigenvalues) corresponding to ℋ𝑗 .

Summarizing: this quality measure rewards simple models with the best data

fitness and the most assigned data points. Since every change in one ℋ𝑗 will

alter the identification results for other models, an overall quality measure for

identification should be defined to incorporate all the changes in the overall

model family ℋ. This quality measure is defined as the summation of QM for

all the models:

𝑄𝑀𝑂𝑣𝑒𝑟𝑎𝑙𝑙 =

𝑛∑︁
𝑗=1

𝑄𝑀(ℋ𝑗). (40)

Relation with Minimum Description Length and Akaike criterion. The Mini-

mum Description Length (MDL) tries to select a model that best compresses

the data (model with fewer parameters). The MDL can be written in crude330

from as 𝐿(ℋ) + 𝐿(𝒟|ℋ), where 𝐿(ℋ) is the length describing the model ℋ in

bit and 𝐿(𝒟|ℋ) is the length describing the data 𝒟 encodes by ℋ (which can

be seen as − log𝑃 (𝒟|ℋ)) [40]. The QM is obtained from the logarithm of (37),

which is very similar to the MDL for conventional non-hybrid systems and the

Akaike criterion (AIC), which can be seen as the approximation of MDL [30].335
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6. Case Studies

In this section, several case studies are presented to test the performance of

the proposed method. Due to the limited research in the field of identification

of nonlinear hybrid systems, and the fact that the models used in this literature

are deemed to be fairly simple, the models used for the case studies are devised340

anew.

First, the performance of the MinLSE approximation introduced in the first

level of inference of the proposed method is compared with the PE framework

introduced in [15] and used in [24, 25, 2, 35]. The performance comparison is

based on the MSE and the percentage of correct data-assignment for identifica-345

tion of a SNARX system.It should be noted that for this comparison, only the

first level of inference from the proposed method is used. As for the PE frame-

work, although [24, 25, 2, 35] use dimension reduction and support vector (SV)

selection, here for consistency we only implement the optimization formulation

using PE, so no SV selection or dimension reduction is done.350

Two kinds of SNARX systems with different switching characteristics are

identified: an exogenous (or predefined) switch in time, and a state-dependent

switch. (Later, the performance of the third level of inference is verified in order

to compare different models and to judge the performance of the identification

procedure.)355

6.1. Performance Comparison

In this part, the first level of inference of the proposed method is compared

with the PE solver in [15] for identification of the following SNARX model:

𝑦𝑖 =

⎧⎨⎩ −0.4𝑦2𝑖−1 + 0.5𝑢𝑖−1 + 𝑒𝑖 𝑖𝑓 𝜆𝑖 = 1

(0.8 − 0.5𝑒𝑦
2
𝑖−1)𝑦𝑖−1 − 𝑦2𝑖−1 + 0.9𝑢𝑖−1 + 𝑒𝑖 𝑖𝑓 𝜆𝑖 = 2.

(41)

In [15], the identification is done using the following optimization so-called Prod-

uct of Error (PE):

min
{𝛼𝑗},{𝑏𝑗}

1

𝑛

𝑛∑︁
𝑗=1

ℛ(𝛼𝑗) +
𝐶

𝑁

𝑁∑︁
𝑖=1

𝑛∏︁
𝑗=1

ℓ

(︃
𝑦𝑖 −

𝑁∑︁
𝑘=1

𝛼𝑘𝑗𝑘𝑗(𝑥𝑘,𝑥𝑖) − 𝑏𝑗

)︃
, (42)

23



where ℛ(·) is the regularization term, ℓ(.) is the loss function, 𝐶 is the trade-off

coefficient between model complexity and data fitness, and 𝑘𝑗(·, ·) is the kernel

function of the 𝑗𝑡ℎ sub-system. In order to make the comparison, the 𝐿2-norm is

used as regularizer (ℛ(𝛼𝑗) = 𝛼𝑇
𝑗 𝛼𝑗) and a quadratic loss function is employed.360

It should be mentioned that since the objective of this part is to compare the

performance of the MinLSE with PE, only the first level of inference from the

proposed method is used (wihout optimizing the hyper-parameters in the second

level of inference). Furthermore, all of the other hyper-parameters (e.g. regu-

larization term) of the solver for the first level of inference and PE framework,365

along with the kernel type and hyper-parameters, are chosen randomly and are

equal for both solvers.

The output of system (41) is measured for 𝑁 = 100 data points generated

with a random uniform input 𝑢𝑖 in the range of [0 1] starting from a random

initial point 𝑦0. The system mode switches from 𝜆 = 1 to 𝜆 = 2 at 𝑖 = 41.370

The outputs are perturbed with a measurement noise 𝑒𝑖, which is considered

to be Gaussian with variance equal to 0.01. Two Gaussian kernels ℋ𝑖(𝜎) =

exp(−||𝑥𝑖 − 𝑥𝑗 ||2

𝜎
), with equal parameter (width 𝜎) set to 1 are used for both

methods. Towards fairness, hyper-parameter values are set to 𝜇𝑗 = 𝛽 = 2,

while 𝐶 = 50 and identification is repeated 200 times. The obtained results for375

percentage of data-assignment and MSE are shown in the following figures.

As it can be seen from the Figure 3 and Figures 4, the results of the first

level of inference in the proposed method is better than the PE method from [2]

in terms of MSE and of percentage of correct data assignments. As mentioned

before, determining the trade-off coefficient 𝐶 in the PE framework is not a380

trivial task and is usually done through cross validation and search methods,

whereas the optimal values of hyper-parameters in the proposed method are

obtained in the second level of inference, in such a way that the simplest model

with the best data-fitness is obtained.
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Figure 3: Comparison of MSE results between proposed method (with MinLSE) and PE

method.
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Figure 4: Comparison of percentage of correct data-assignment results between proposed

method (with MinLSE) and PE method.

6.2. Identification of switched NARX system385

In this part, the performance of the complete method (with all the three

levels of inference) is tested on two different NARX systems (in the previous

case study in Section 6.1 only the first level of inference was used).

6.2.1. NARX systems with exogenous switching

First, the system in (41) is identified with the set of models ℋ is chosen390

as two Gaussian kernels with parameters (width 𝜎) equal to 0.05 and 1: ℋ =
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{ℋ1(0.05),ℋ2(1)}. After the identification is completed, the optimized hyper-

parameters are estimated as 𝜇1 = 108.6957, 𝜇2 = 119.0476 and 𝛽 = 166.67,

which represent the estimated variances of the weights (𝜎2
𝛼1

= 0.0092, 𝜎2
𝛼2

=

0.0084) and the estimated variance of the noise (𝜎2
𝑒 = 0.006). The identification395

results are illustrated in Figure 5: 84% of the data points have been assigned

correctly and the MSE is only 0.0041.
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Figure 5: Identification results for exogenous switching NARX model

NARX systems with state-dependent switching. The following system is put

under the identification procedure:

𝑦𝑖 =

⎧⎪⎨⎪⎩ 𝑘

√︂
(
𝑦𝑖−1

𝑘
)2 +

𝑢𝑖−1 − 𝑦𝑖−1

𝑠
+ 𝑒𝑖 𝑦𝑖−1 ≤ 𝑌

1.3 +
√
𝑢𝑖−1 + exp(−𝑦𝑖−1) + 𝑒𝑖 𝑦𝑖−1 > 𝑌,

(43)

where 𝑠 = 10, 𝑘 = 0.6 and threshold 𝑌 = 1.3. The system switches between

two modes according to the value of its output. It is started from a random

initial condition 𝑦0 and 𝑁 = 100 data points are generated with a random400

input uniformly distributed in the range 𝑢𝑖 ∈ [0 4] and a Gaussian noise with

zero mean and standard deviation equals to 0.1. Again, two Gaussian kernels
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with parameters set to 0.5 and 1 are chosen: ℋ = {ℋ1(0.5),ℋ2(1)}. The

identification is initialized with 𝜇 = [1 1] and 𝛽 = 1, then repeated with the

optimized values for hyper-parameters obtained at the second level of inference:405

𝜇 = [10.98 11.07] and 𝛽 = 33.94 which corresponds to 0.1716 for the estimated

standard deviation of the noise. The MSE reduces from 0.0202 in initial run to

0.0093 after optimizing the hyper-parameters.

The estimated modes and output are shown in Figure 6 and Figure 7. It

can be seen from the figures that the overall accuracy of the identification is410

improved after optimizing the hyper-parameters. Furthermore, the standard

deviation of the noise is estimated with relatively good accuracy.

It should be noted that the procedure introduced in [15] is capable of es-

timating the noise variance by using 𝜈-Support Vector Regression [41] and 𝜖-

insensitive loss function, which results in the following constrained optimization

problem:

min
𝛼𝑗 ,{𝑏𝑗},,𝜉𝑗≥0,,𝛿≥0

𝑛∑︁
𝑗=1

𝛼𝑇
𝑗 𝛼𝑗 + 𝐶

𝑁∑︁
𝑖=1

𝑛∏︁
𝑗=1

𝜉𝑖𝑗 + 𝜈𝐶𝑁𝛿2

−𝛿1− 𝜉𝑗 ≤ 𝑦 −𝐾𝑗𝛼𝑘𝑗 − 𝑏𝑗 ≤ 𝛿1 + 𝜉𝑗 .

(44)

The 𝜉𝑗 are the additional slack variables and 𝛿 can be interpreted as standard

deviation of the noise. As it can be seen from this equation, the number of

weights for each sub-system is equal to the number of the data-points 𝑁 . In415

addition to the weights, each sub-system has 𝑁 slack variables 𝜉. Furthermore,

each sub-system has one bias term, hence the number of the variables for one

sub-system is 2𝑁 + 1. Considering the fact that the hybrid system consists of

𝑛 sub-systems, the total number of system variables will be 𝑛(2𝑁 + 1) (plus

the additional variable 𝛿). As such, the constrained optimization (44) contains420

𝑛(2𝑁 + 1) variables, which is almost twice the number of the variables in the

first level of inference. Also to make the matter harder, the optimisation problem

in (44) has one additional parameter beside 𝐶 that should be tuned manually,

i.e, 𝜈. Considering that often the solution of a constrained optimization is more

difficult and more time consuming, our proposed method obtains this parameter425
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by solving a set of equations, which can be done with conventional gradient-

based methods and without requiring to manually tune any parameters. The

model in (43) is identified using the constrained optimization in (44) in 21.4

seconds, while the elapsed time is equal to 6.2 seconds for our proposed method,

for which the estimated standard deviation is equal to 0.0743.
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Figure 6: Mode estimation results for state-dependent SNARX model.
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Figure 7: Estimated output results for state-dependent SNARX model.
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6.3. Model Comparison and Quality Measure

In this part, the nonlinear hybrid system in (41) is studied under several

identification tests in order to study the quality measure introduced in the third

level of inference, which helps assessing the quality of the identification when

the hybrid system is identified several times with the same kernel parameters,435

and also when different kernel parameters are selected. First, the system is

identified 6 times for the same kernels ℋ with fixed parameters, which produces

different identified models due to the non-convex nature of the problem. Then,

the Quality Measure (QM) is used to compare and rank the resulting models

and to select the best one. Afterwards, the width of the first kernel is changed440

and the system is identified with different kernel parameters, and the QM is

used to assess the effect of different kernel parameters and compare the results.

Different repetition for the same models. As mentioned before, the identifica-

tion problem of hybrid systems possesses several near optimal solutions due

to its non-convex nature. Thus two different runs of the problem with same445

parameters might produce different answers. Therefore, one should be able to

compare different solutions. The performance of the proposed QM for this con-

dition is verified here. For this purpose, (41) is identified 6 times with two fixed

Gaussian models ℋ = {ℋ1(0.01),ℋ2(1)}. The results are presented in Table 1.

These results include: regularization terms (complexity of the model), fit-450

ness costs, MSE, percentage of correct data assignments, estimated variances

of weights and noise (inverse of 𝜇 and 𝛽 respectively) and the model evidence

or Quality Measure. It is worth mentioning that since the last study is about

the performance of the QM with regards to different kernel parameters, in each

part of this section, a different value is selected for the first kernel and finally455

the effect of selecting these values are compared in the final case study.

At a first glance and considering only data fitness criteria MSE, it seems

that Case 6 results in the best model; but the QM indicates that Case 3 is

the best model, despite having the third-best MSE. The reason mainly lies

within the complexity of the model: the total regularization of model, which is460
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an indication of its complexity, is lower for Case 3 . This means that Case 6

tends to closely match the noisy measurements, hence loosing its generalization

features [30]. Besides, it has more correct data-assignments. Similar conclusions

can be drawn from the other cases. The QM can be used to compare individual

sub-systems. For example, QM for ℋ1 in Case 5 i.e, 𝑄𝑀5(ℋ1) is higher than465

Case 4 (𝑄𝑀4(ℋ1)) since it has the better generalization and assigns more data

correctly. The exact opposite can be said about ℋ2.

Parameters Case 1 Case 2 Case 3 Case 4 Case 5 Case 6

Regularization

ℋ1 0.4464 0.4360 0.4346 0.6726 0.5236 0.7994

ℋ2 0.1062 0.1670 0.1095 0.1296 0.1525 0.0963

Total 0.5526 0.6030 0.5441 0.8022 0.6761 0.8957

Fitness
Cost 0.2255 0.2277 0.2274 0.2036 0.2387 0.1697

MSE 0.0045 0.0046 0.0045 0.0041 0.0048 0.0034

Data Assignment

ℋ1 68.33 90 71.66 86.66 92.5 71.66

ℋ2 80 61.66 80 67.5 51.66 70

Overall 73 73 75 79 68 71

Hyper-Parameters

𝜎2
𝛼1

0.0134 0.0074 0.0070 0.0094 0.0078 0.0180

𝜎2
𝛼2

0.0069 0.0089 0.0095 0.0074 0.0093 0.0044

𝜎2
𝑒 0.0108 0.0069 0.0067 0.0071 0.0068 0.0092

QM

ℋ1 83.34 109.43 95.60 113.72 119.77 86.36

ℋ2 105.18 90.38 107.81 76.68 74.99 99.66

Total 188.52 199.81 203.42 190.40 194.76 186.02

Table 1: Identification results for 6 different repetition with fixed models.

Different model parameters. In this case, the QM (39) is used for ranking the

different models. This time, system (41) is identified using 4 different Gaussian

kernel parameters for model ℋ1, while model ℋ2 has a fixed parameter equal470

to 1. The parameters for ℋ1 are [0.01 0.05 0.1 0.5], of which three were inves-

tigated earlier in previous case studies. The results are presented in Table 2.

All the models have almost the same MSE. For Case 2 and Case 3, despite

having almost the same MSE and data-assignments, 𝑄𝑀3 is higher than 𝑄𝑀2:

the reason behind this is the lower complexity and better generalization of the475
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corresponding model.

Parameters
Case 1 Case 2 Case 3 Case 4

ℋ1(0.01) ℋ1(0.05) ℋ1(0.1) ℋ1(0.5)

Regularization

ℋ1 0.5134 0.2231 0.1546 0.2102

ℋ2 0.2431 0.1758 0.1937 0.2237

Total 0.7565 0.3989 0.3483 0.4339

Fitness
Cost 0.2907 0.2883 0.2973 0.29

MSE 0.0058 0.0058 0.0059 0.0058

Data Assignment

ℋ1 65 92.5 85 77.5

ℋ2 60 68.33 73.33 88.33

Overall 62 78 78 84

Hyper-Parameters

𝜎2
𝛼1

0.0176 0.0077 0.0056 0.0112

𝜎2
𝛼2

0.0044 0.0105 0.0100 0.0071

𝜎2
𝑒 0.0091 0.0092 0.0073 0.0088

Quality (QM)

ℋ1 83.20 104.91 99.84 77.34

ℋ2 100.60 92.53 108.20 131.29

Total 188.82 197.45 208.04 208.63

Table 2: Identification results for 4 different parameters for ℋ1

The identification in Case 4 has better quality than in Case 1, partly because

of more correct data-assignment, but mainly due to the smaller complexity of

the model. This can be seen form Figure 8. Case 1 (ℋ1(0.01)) tends to match

the noise measurements better than Case 4. However, it should be mentioned480

that some of noise will inevitably fit the model, since some components of noise

can not be distinguished from real data.

The two instances Case 3 and Case 4 have the same quality. Whilst the

later assigns more data correctly, since it is less general than Case 3, it is not

rated as "significantly better". Furthermore, it can be seen from Figure 9 that485

Case 3 (ℋ1(0.1)) performs better than Case 4 (ℋ1(0.5)). This is confirmed by
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Table 2, where 𝑄𝑀3(ℋ1) is higher than 𝑄𝑀4(ℋ1).
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7. Discussion and Conclusions

In this paper, a three-level Bayesian framework for identification of nonlin-

ear hybrid systems has been presented. The parameters of the model (weights

and bias terms) are inferred in the first level. At the second level, the variance490

of the prior distribution for weights, which also controls the complexity of the

model, along with the estimated variance of the noise, are calculated. The ob-

tained values from this level cause the output model to be complex enough to

fit the data, but not too complex that it looses generalization features. The

third level of inference provides a quality measure, in order to compare differ-495

ent models resulting from identification by incorporating all the key ingredients

in identification of hybrid systems in a single unified criterion. These ingredi-

ents are: model complexity, data fitness, and amount of assigned data points

to each sub-system. It can also be used to obtain the best values for the pa-

rameters in a given model structure. This framework also gives a probability500

distribution for prediction, which can be sampled from. The performance of

the proposed method has been tested on nonlinear systems with satisfactory

results. In addition, the introduced quality measure derived in the third level

has been assessed. The results have shown that the quality measure includes

all the criteria for assessing the quality of the identification and can be used to505

choose the best resulting models.

Future work. Future work will focus on extending the proposed framework to

multi-output SNARX system and exploiting sparseness to the framework in

order to make it suitable for large data-sets. We will also attempt to add

robustness to the proposed method with respect to outlier data by considering510

a different and robust distribution for the likelihood of the data.

33



References

[1] J. Lunze, F. Lamnabhi-Lagarrigue, Handbook of hybrid systems control:

Theory, tools, applications, Cambridge University Press, 2009.

[2] F. Lauer, G. Bloch, R. Vidal, Nonlinear hybrid system identification with515

kernel models, in: 49th IEEE Conference on Decision and Control, CDC

2010, IEEE, 2010, pp. 696–701.

[3] A. J. Smola, B. Schölkopf, A tutorial on support vector regression, Statistics

and computing 14 (3) (2004) 199–222.

[4] A. L. Juloski, W. Heemels, G. Ferrari-Trecate, R. Vidal, S. Paoletti,520

J. Niessen, Comparison of four procedures for the identification of hybrid

systems, in: International Workshop on Hybrid Systems: Computation and

Control, Springer, 2005, pp. 354–369.

[5] Y. Ma, R. Vidal, Identification of deterministic switched ARX systems via

identification of algebraic varieties, in: International Workshop on Hybrid525

Systems: Computation and Control, Springer, 2005, pp. 449–465.

[6] G. Ferrari-Trecate, M. Muselli, D. Liberati, M. Morari, A clustering tech-

nique for the identification of piecewise affine systems, Automatica 39 (2)

(2003) 205–217.

[7] H. Nakada, K. Takaba, T. Katayama, Identification of piecewise affine sys-530

tems based on statistical clustering technique, Automatica 41 (5) (2005)

905–913.

[8] A. L. Juloski, S. Weiland, W. Heemels, A Bayesian approach to identifica-

tion of hybrid systems, IEEE Transactions on Automatic Control 50 (10)

(2005) 1520–1533.535

[9] Y. Lu, S. Khatibisepehr, B. Huang, A variational Bayesian approach to

identification of switched arx models, in: Decision and Control (CDC),

2014 IEEE 53rd Annual Conference on, IEEE, 2014, pp. 2542–2547.

34



[10] J. Roll, A. Bemporad, L. Ljung, Identification of piecewise affine systems

via mixed-integer programming, Automatica 40 (1) (2004) 37–50.540

[11] A. Bemporad, J. Roll, L. Ljung, Identification of hybrid systems via mixed-

integer programming, in: Decision and Control, 2001. Proceedings of the

40th IEEE Conference on, Vol. 1, IEEE, 2001, pp. 786–792.

[12] A. Bemporad, A. Garulli, S. Paoletti, A. Vicino, A greedy approach to

identification of piecewise affine models, in: International Workshop on545

Hybrid Systems: Computation and Control, Springer, 2003, pp. 97–112.

[13] A. Bemporad, A. Garulli, S. Paoletti, A. Vicino, A bounded-error approach

to piecewise affine system identification, IEEE Transactions on Automatic

Control 50 (10) (2005) 1567–1580.

[14] R. Vidal, S. Soatto, Y. Ma, S. Sastry, An algebraic geometric approach550

to the identification of a class of linear hybrid systems, in: Decision and

Control, 2003. Proceedings. 42nd IEEE Conference on, Vol. 1, IEEE, 2003,

pp. 167–172.

[15] F. Lauer, From support vector machines to hybrid system identification,

Ph.D. thesis, Université Henri Poincaré-Nancy I (2008).555

[16] A. Hartmann, J. M. Lemos, R. S. Costa, J. Xavier, S. Vinga, Identification

of switched ARX models via convex optimization and expectation maxi-

mization, Journal of Process Control 28 (2015) 9–16.

[17] G. Pillonetto, A new kernel-based approach to hybrid system identification,

Automatica 70 (2016) 21–31.560

[18] M. Petreczky, L. Bako, S. Lecoeuche, Minimality and identifiability of sarx

systems, IFAC Proceedings Volumes 45 (16) (2012) 541–546.

[19] M. Petreczky, L. Bako, J. H. van Schuppen, Identifiability of discrete-time

linear switched systems, in: Proceedings of the 13th ACM international

35



conference on Hybrid systems: computation and control, ACM, 2010, pp.565

141–150.

[20] V. Breschi, A. Bemporad, D. Piga, Identification of hybrid and linear pa-

rameter varying models via recursive piecewise affine regression and dis-

crimination, in: 2016 European Control Conference (ECC), IEEE, 2016,

pp. 2632–2637.570

[21] A. L. Juloski, S. Paoletti, J. Roll, Recent techniques for the identification

of piecewise affine and hybrid systems, in: Current trends in nonlinear

systems and control, Springer, 2006, pp. 79–99.

[22] S. Paoletti, A. L. Juloski, G. Ferrari-Trecate, R. Vidal, Identification of

hybrid systems: A tutorial, European journal of control 13 (2-3) (2007)575

242–260.

[23] A. Garulli, S. Paoletti, A. Vicino, A survey on switched and piecewise affine

system identification, IFAC Proceedings Volumes 45 (16) (2012) 344–355.

[24] F. Lauer, G. Bloch, Switched and piecewise nonlinear hybrid system iden-

tification, in: International Workshop on Hybrid Systems: Computation580

and Control, Springer, 2008, pp. 330–343.

[25] G. Bloch, F. Lauer, et al., Reduced-size kernel models for nonlinear hy-

brid system identification, IEEE Transactions on Neural Networks 22 (12)

(2011) 2398–2405.

[26] L. Bako, K. Boukharouba, S. Lecoeuche, An ℓ0-ℓ1 norm based optimization585

procedure for the identification of switched nonlinear systems, in: Decision

and Control (CDC), 2010 49th IEEE Conference on, IEEE, 2010, pp. 4467–

4472.

[27] V. L. Le, F. Lauer, L. Bako, G. Bloch, Learning nonlinear hybrid systems:

from sparse optimization to support vector regression, in: Proceedings of590

the 16th international conference on Hybrid systems: computation and

control, ACM, 2013, pp. 33–42.

36



[28] F. Bianchi, M. Prandini, L. Piroddi, A randomized approach to switched

nonlinear systems identification, IFAC-PapersOnLine 51 (15) (2018) 281–

286.595

[29] A. Scampicchio, A. Giaretta, G. Pillonetto, Nonlinear hybrid systems iden-

tification using kernel-based techniques, IFAC-PapersOnLine 51 (15) (2018)

269–274.

[30] D. J. MacKay, Bayesian interpolation, Neural computation 4 (3) (1992)

415–447.600

[31] D. J. MacKay, Probable networks and plausible predictions: a review of

practical Bayesian methods for supervised neural networks, Network: com-

putation in neural systems 6 (3) (1995) 469–505.

[32] T. Van Gestel, J. A. Suykens, D.-E. Baestaens, A. Lambrechts, G. Lanck-

riet, B. Vandaele, B. De Moor, J. Vandewalle, Financial time series pre-605

diction using least squares support vector machines within the evidence

framework, IEEE Transactions on neural networks 12 (4) (2001) 809–821.

[33] J. Suykens, T. Van Gestel, J. De Brabanter, B. De Moor, J. Vandewalle,

Least squares support vector machines.,(world scientific publishing: Singa-

pore).610

[34] L. Ljung, System identification, in: Signal analysis and prediction,

Springer, 1998, pp. 163–173.

[35] F. Lauer, R. Vidal, G. Bloch, A product-of-errors framework for linear

hybrid system identification, in: Proc. of the 15th IFAC Symp. on System

Identification (SYSID), Saint-Malo, France, 2009.615

[36] S. Boyd, L. Vandenberghe, Convex optimization, Cambridge University

Press, 2004.

[37] S. S. Keerthi, C.-J. Lin, Asymptotic behaviors of support vector machines

with Gaussian kernel, Neural computation 15 (7) (2003) 1667–1689.

37



[38] M. E. Tipping, Bayesian inference: An introduction to principles and620

practice in machine learning, in: Advanced lectures on machine Learning,

Springer, 2004, pp. 41–62.

[39] T. V. Gestel, J. A. Suykens, G. Lanckriet, A. Lambrechts, B. D. Moor,

J. Vandewalle, Bayesian framework for least-squares support vector ma-

chine classifiers, Gaussian processes, and kernel Fisher discriminant analy-625

sis, Neural computation 14 (5) (2002) 1115–1147.

[40] P. Grünwald, A tutorial introduction to the minimum description length

principle, Advances in minimum description length: Theory and applica-

tions (2005) 3–81.

[41] B. Schölkopf, A. J. Smola, R. C. Williamson, P. L. Bartlett, New support630

vector algorithms, Neural computation 12 (5) (2000) 1207–1245.

38


	Introduction
	Bayesian Set-Up
	First level of inference: Model parameters
	Prior probability of the model parameters
	Likelihood of the first level
	Posterior probability distribution of model parameters

	Second level of inference: Hyper-parameters
	Likelihood of the second level of inference
	Optimal values of the hyper-parameters

	Third level of inference: Hyper-parameters
	Case Studies
	Performance Comparison
	Identification of switched NARX system
	NARX systems with exogenous switching

	Model Comparison and Quality Measure

	Discussion and Conclusions

