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Formal Verification of Stochastic Max-Plus-Linear Systems
Sadegh Esmaeil Zadeh Soudjani, Dieky Adzkiya, and Alessandro Abate

Abstract—This work investigates the computation of finite
abstractions of Stochastic Max-Plus-Linear (SMPL) systems and
their formal verification against general bounded-time linear
temporal specifications. SMPL systems are probabilistic exten-
sions of discrete-event MPL systems, which are widely employed
for modeling engineering systems dealing with practical timing
and synchronization issues. Departing from the standard existing
approaches for the analysis of SMPL systems, we newly propose
to construct formal, finite abstractions of a given SMPL system:
the SMPL system is first re-formulated as a discrete-time Markov
process, then abstracted as a finite-state Markov Chain (MC).
The derivation of precise guarantees on the level of the intro-
duced formal approximation allows us to probabilistically model
check the obtained MC against bounded-time linear temporal
specifications (which are of rather general applicability), and
to reliably export the obtained results over the original SMPL
system. The approach is practically implemented on a dedicated
software and is elucidated and run over numerical examples.

Index Terms—Max-plus-linear systems, max-plus algebra,
discrete-time stochastic processes, continuous-state processes,
probabilistic model checking, linear-time logic, finite abstractions.

I. BACKGROUND AND GOALS

MAX-PLUS-LINEAR (MPL) systems are a class of
discrete-event systems [1], [2] with a continuous state

space characterizing the timing of the underlying sequential
discrete events. MPL systems are used to describe the tim-
ing synchronization between interleaved processes, under the
assumption that timing events are dependent linearly (within
the max-plus algebra) on previous event occurrences. MPL
systems are widely employed in the analysis and scheduling
of infrastructure networks, such as communication and railway
systems [3], or production and manufacturing lines [4], [5].

Stochastic Max-Plus-Linear (SMPL) systems [6], [7], [8]
are MPL systems where the time interval between successive
event occurrences (in the examples above, the transportation,
processing, or production times) are now characterized by
random quantities. In practical applications SMPL systems are
evidently more realistic than simpler MPL ones: for instance in
a model for a railway network, train running times depend on
imperceptible changes in driver behavior, on hardly predictable
weather conditions, and on volatile passenger numbers at
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stations: as such they can arguably be more suitably modeled
by random variables than fixed deterministic delays.

We are interested in analyzing general dynamical properties
of SMPL systems. Only a few approaches have been developed
in the literature, and focus on the study of the steady-state
behavior of SMPL systems, for example employing Lyapunov
exponents and asymptotic growth rates [9], [10], [11], [12],
[13], [14]. The Lyapunov exponent of an SMPL system is
analogous to the max-plus eigenvalue for an autonomous MPL
system [11, Sec. 7.3]. The series expansion formula of a
Lyapunov exponent has been discussed in [12], [13]. The
asymptotic behavior of sequences of states of SMPL systems
is analyzed in [14]. The computation of Lyapunov exponent
of SMPL systems under some assumptions has been studied
in [9], and later extended to approximate computations under
other technical assumptions in [10, p. 251]. The application of
model predictive control and system identification to SMPL
systems is studied in [15], [16]. An alternative approach
to model uncertainties in MPL systems using intervals is
discussed in [17], [18], [19].

As we mentioned in the previous paragraph, the existing
works on SMPL systems focus on the study of steady-state
behaviors: as such, existing approaches cannot distinguish
time-dependent dynamical properties of trajectories outside
their steady state. This motivates us to develop a new approach
for studying general dynamical properties of SMPL systems
via formal verification. The formal verification approach is
based on developing finite-state abstractions and, whilst quite
different in the nature of the used techniques and of the models
of interest, can be related to the approach discussed in [20]
for (deterministic) MPL systems. As discussed shortly, here
general dynamical properties are expressed as formulae in a
temporal logic, and verification is attained via (probabilistic)
model checking. Furthermore this work can also be seen
as broad extension of [3, Ch. 9], where the authors discuss
the sensitivity of deterministic MPL systems w.r.t. a periodic
timetable against disturbances: this contribution focuses on
verifying general behaviors of SMPL systems w.r.t. a periodic
timetable.

Verification techniques and tools for deterministic, discrete-
time, finite-state systems have been widely investigated and
developed in the past decades [21], often by means of model
checking [22]. The application of formal methods to stochastic
models is typically limited to discrete-state structures, either
in continuous or in discrete time [22], [23]. Continuous-space
models on the other hand require the use of finite abstractions,
as it is classically done for example with finite bisimulations
of timed automata [24]. With focus on stochastic models with
continuous state space, as is the case for SMPL systems,
numerical schemes based on Markov Chain (MC) approxi-
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mations of stochastic systems have been introduced in [25],
[26], and applied to the approximate study of probabilistic
reachability or invariance in [27], [28], however these finite
abstractions do not come with explicit error bounds and as
such their use cannot lead to certified guarantees. On the
contrary in [29], [30], a technique with formal guarantees has
been introduced to provide formal abstractions of discrete-
time, continuous-space Markov models, with the objective of
investigating their probabilistic invariance [29] by employing
probabilistic model checking algorithms over a finite-state MC
[30]. In view of scalability and of generality, the approach
has been improved in [31], [32] and applied to Probabilistic
Computation Tree Logic (PCTL) properties. Furthermore the
abstraction approach proposed in [33] allows constructing a
single abstraction to be then used for verifying any bounded
linear temporal specification. Interestingly, these procedures
have been shown [34] to introduce an approximate probabilis-
tic bisimulation of the concrete model [35], which reinforces
the quantitative relationship between concrete and abstract
models.

Contributions: The aim of this work is to formally verify
SMPL systems w.r.t. a periodic timetable via probabilistic
model checking, and in particular to characterize and to
compute the satisfiability of Bounded Linear Temporal Logic
(BLTL) formulae [36]. More precisely, for any allowable initial
event time, we determine the probability that the time differ-
ence between the occurrence of events and a deterministic
periodic timetable satisfies a given BLTL formula (cf. Section
II-C). BLTL formulae are a class of Linear Temporal Logic
(LTL) formulae where time horizon of the specifications is
finite. LTL formulae have been widely used to characterize
dynamical properties of numerous models, such as discrete-
time linear systems [37], stochastic systems [38], [39], and
Markov decision processes [40]. A number of interesting
dynamical properties can be expressed as BLTL formulae,
e.g. finite-time invariance, finite-time reachability, finite-time
reach-avoid, or properties expressed as finite strings over
automata.

The approach works as follows. We first interpret a given
SMPL system as a discrete-time Markov process, as first sug-
gested by [7], [8]. Then we adapt the techniques in [30], [32],
[33] to the structure of the SMPL system, in order to generate a
finite abstraction in the form of a finite-state MC, together with
guarantees on the level of approximation introduced in the pro-
cess. The formal approximation is guaranteed to hold over any
BLTL formula [33]. The BLTL property over the obtained MC
can then be analyzed via probabilistic model checking [22] and
computed via existing software [41], [42]. The result obtained
from the model checking software is then combined with the
approximation guarantees, in order to obtain the probability
that the concrete (original) SMPL system satisfies the given
property. Throughout the manuscript we discuss the structural
assumptions and computational requirements underpinning our
results, and examine relaxations and algorithmic improvements
aimed towards generalization and scalability.

In order to further elucidate the approach, we discuss the
computation of finite-horizon probabilistic invariance, here
encoded as a simple BLTL formula, of an SMPL system: more

precisely, for any given occurrence time for the initial event,
we determine the probability that the time associated with the
occurrence of N consecutive events remains close to a given
deterministic N -step timetable.

Finally, we conclude by discussing an alternative technique
based on the following approach: first, we approximate the
original density functions by piecewise polynomial density
functions; in the second step, the value function associated
with the approximated density functions is computed explicitly
using a computer algebra program. We compare the perfor-
mance of this technique and the abstraction approach: our
experiments suggest that the abstraction approach at the core
of this work is more scalable, thus reinforcing its potential for
applications.

Structure of this article: The article is structured as fol-
lows. Initially, Section II-A introduces the SMPL formalism,
whereas Section II-C presents the problem of probabilistic
model checking of SMPL systems against BLTL specifi-
cations. Section III discusses the formal abstraction of an
SMPL system as a Markov chain. Section IV describes the
quantification of the abstraction error and presents numerical
examples, focused on the probabilistic invariance problem.
An alternative formal approach for the computation of the
solution of the probabilistic invariance problem is discussed
in Section V, which is based on the approximation of the
density functions with piecewise polynomials. Finally, Section
VI concludes this work with future research directions.

Related work by the authors: This manuscript represents
an extension and a completion of the results in [43]: there finite
abstraction techniques are constructed exclusively towards the
solution of the probabilistic invariance problem. This work
generalizes [43] and develops abstractions of SMPL systems
for model checking against general BLTL specifications. We
further elaborate on extensions geared towards computability,
and in particular provide a formulation of the abstraction
error that is dimension-dependent, and, as such, parallelizable.
Moreover, we discuss an alternative formal approach for
computation of the solution of the probabilistic invariance
problem based on approximation of the density functions with
piecewise-polynomial ones.

II. MODELS AND PROBLEM STATEMENT

We introduce the basics of max-plus algebra and of au-
tonomous SMPL systems, and discuss probabilistic model
checking of SMPL systems against BLTL specifications, a goal
that will be further elaborated throughout the article.

A. Modeling: Stochastic Max-Plus-Linear Systems

The notations N and Nn represent the whole positive inte-
gers {1, 2, . . .} and the first n positive integers {1, 2, . . . , n},
respectively. We use bold letters to denote vectors and indexed
letters for the elements of the vector, for instance x =
[x1, . . . , xn]T . Furthermore we define Rε and ε respectively as
R∪{ε} and −∞. For α, β ∈ Rε, introduce the two operations

α⊕ β = max{α, β} and α⊗ β = α+ β,
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where the element ε is considered to be absorbing w.r.t. ⊗
[11, Definition 3.4], namely α ⊗ ε = ε for all α ∈ Rε. The
rules for the order of evaluation of the max-algebraic operators
correspond to those in the conventional algebra: max-algebraic
multiplication ⊗ has a higher precedence than max-algebraic
addition ⊕ [11, Sec. 3.1].

The basic max-algebraic operations are extended to matrices
as follows. If A,B ∈ Rm×nε ; C ∈ Rm×pε ; D ∈ Rp×nε ; and
α ∈ Rε, then

[α⊗A]ij = α⊗Aij = α+Aij ,

[A⊕B]ij = Aij ⊕Bij = max{Aij , Bij},

[C ⊗D]ij =

p⊕
k=1

Cik ⊗Dkj = max
k∈{1,...,p}

{Cik +Dkj},

for each i ∈ Nm and j ∈ Nn. Notice the analogy between ⊕,
⊗ and respectively +, × for matrix and vector operations in
the conventional algebra. In this paper the usual multiplication
× is usually omitted, whereas the max-algebraic multiplication
⊗ is always written explicitly. Given m ∈ N, the m-th
max-algebraic power of A ∈ Rn×nε is denoted by A⊗m

and corresponds to A ⊗ · · · ⊗ A (m times). Notice that
max-algebraic power has higher precedence than ⊗ and ⊕;
A⊗0 is an n-dimensional max-plus identity matrix, i.e. the
diagonal and non-diagonal elements are 0 and ε, respectively.
In this paper, the following notation is adopted for reasons of
convenience. A vector with each component being equal to 0
(resp., −∞) is also denoted by 0 (resp., ε).

An autonomous SMPL system is defined as:

x(k + 1) = A(k)⊗ x(k), (1)

where x(k) = [x1(k), . . . , xn(k)]T ∈ Rn; each entry of
the state matrix A(k) either equals the constant ε, or is an
independent and identically distributed random variable w.r.t.
k ∈ N, taking values on the real line; and further Aij(·) are
independent for all i, j ∈ Nn. The random sequence {Aij(·)}
is then characterized by a given density function tij(·) and
corresponding distribution function Tij(·) (cf. Theorem 1
below). In (1) the independent variable k denotes an increasing
deterministic occurrence index, whereas the state variable x(k)
defines the (continuous) time of the k-th occurrence of the
discrete events. The state component xi(k) denotes the time
of the k-th occurrence of the i-th event. In this work, the
occurrence time of all events is a real number because the state
space is Rn (rather than Rnε ): in order to guarantee x(k) ∈ Rn
for all k, the random matrix A has to be regular (or row-finite)
[3, Sec. 1.2], namely A contains at least one element different
from ε in each row. Since this article is based exclusively on
autonomous (that is, not non-deterministic) SMPL systems,
the adjective will be dropped for simplicity.

In contrast with SMPL systems, deterministic MPL systems
are defined according to (1) where the state matrix A(k)
is given and event-invariant (independent of k). Under a
natural irreducibility condition [11, Definition 2.13] on matrix
A, the deterministic MPL system admits periodic regimes,
namely there exists a finite sequence of (max-plus) linearly-
independent vectors {x1,x2, . . . ,xµ} such that xk+1 = A ⊗
xk, k ∈ Nµ−1, and there is a constant d that satisfies

A⊗xµ = d⊗x1. The parameter d and corresponding vectors
for the periodic regime x1,x2, . . . ,xµ represent the max-plus
eigenvalue and its associated eigenvectors of matrix A⊗µ,
respectively [6, Sec. 2.5.3]. Such periodic regimes are essential
ingredients in the analysis and design of timetables for real
applications [44] modeled as MPL systems.

Example 1: Consider the following SMPL system represent-
ing a simple railway network between two connected stations.
The state variables xi(k) for i ∈ N2 denote the time of the
k-th departure at station i:

x(k + 1) = A(k)⊗ x(k),

=

[
2 + e11(k) 5 + e12(k)
3 + e21(k) 3 + e22(k)

]
⊗ x(k),

or equivalently,

x1(k + 1) = max{2 + e11(k) + x1(k), 5 + e12(k) + x2(k)},
x2(k + 1) = max{3 + e21(k) + x1(k), 3 + e22(k) + x2(k)},
where we have assumed that e11(·) ∼ Exp(2), e12(·) ∼
Exp(4/5), e21(·) ∼ Exp(4/3), and e22(·) ∼ Exp(4/3), and
Exp(λ) represents the exponential distribution with rate λ.
Notice that Aij(·) denotes the traveling time from station j
to station i and amounts to a deterministic constant plus a
delay modeled by the random variable eij(·). A few sample
trajectories of the SMPL system, initialized at x(0) = [1, 0]T ,
are displayed in Fig. 1 (left). Note that when all random delays
are assumed to be equal to zero, the resulting deterministic
system

s(k + 1) = Ad ⊗ s(k), Ad =

[
2 5
3 3

]
, s(0) = x(0), (2)

admits the unique solution s(k) = s(0) + dk = [1 + 4k, 4k]T ,
where d = 4 is the max-plus eigenvalue of matrix Ad,
and s(0) = [1, 0]T is a corresponding eigenvector of the
deterministic MPL system. Then the initial condition {s(0)}
is associated with a periodic regime with period µ = 1, and
the associated periodic trajectory can be used as a timetable
(cf. Section II-B) for the train departures. Note that in this
particular example the increasing sequence {s(k)} provides
a lower bound on the SMPL trajectories x(k), due to the
positive supports of the density functions for the delays eij(·),
as visible in Fig. 1 (left).

B. Properties of Interest

Let us consider events that are scheduled to occur periodi-
cally, that is assume there is a periodic timetable where each
event is repeated at regular intervals characterized by the cycle
time d ∈ R. For instance a periodic railway timetable defines
the scheduled arrival and departure times within a basic period
of length d for each periodic train line at all served stations. As
discussed in Section I, stochastic delays due to transportation
times and train interactions are an unavoidable characteristic
of real-world railway networks: it is therefore meaningful
to study and analyze properties of a railway timetable w.r.t.
daily transportation time variations. For instance, stability and
recoverability properties of a timetable associated to an SMPL
system representing a railway network are studied in [44]. In
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Fig. 1. The left and right plots represent 100 sample trajectories of the
SMPL system in Examples 1 and 2 for 10 discrete steps (horizontal axis),
respectively. Notice the different scales for the vertical axes.

this work, we consider probabilistic model checking of the
SMPL system in (1) against a specification w.r.t. a periodic
timetable. More specifically, for each possible time of initial
occurrence of all the events (xi(0), i ∈ Nn), we are interested
in determining the probability that the difference of the time
of k-th occurrence of all events (x(k)) and the corresponding
time of the periodic timetable satisfies a given BLTL formula,
for k ∈ NN ∪ {0}. For instance, we may want to determine
the probability that the time of the occurrence of all events
is at least 5 time units ahead of the corresponding events
in the periodic timetable, as well as at most 5 time units
behind it: this example deals with an invariance property,
where the (bounded) invariant set is defined as the desired
time of occurrence of all events w.r.t. the periodic timetable.

Let us formally define a periodic timetable: s(·) is called a
periodic timetable with cycle time d > 0 and (arbitrary) initial
time s(0) = s0 ∈ Rn, if the successive scheduled event times
are given by the deterministic MPL system s(k+1) = d⊗s(k).
In our analysis the periodic timetable can be freely selected:
for instance, it can be an arbitrary function of the periodic
regimes of the SMPL system in the absence of stochastic
delays (cf. (2) in Example 1, where a periodic trajectory is
generated from a fixed initial condition in the eigenspace of
the model). The mean behavior of the SMPL system, which
is proved in general to be eventually periodic [44], may also
be selected as the given timetable.

Since we are interested in delays of event occurrences w.r.t.
the given timetable, we introduce new variables z(·) defined as
the difference between the states of the original SMPL system
in (1) and those of the periodic timetable s(·), i.e. z(k) =
x(k) − s(k), and z(k) = [z1(k), . . . , zn(k)]T ∈ Rn for k ∈
N ∪ {0}. The dynamics of z(·) are given by

zi(k + 1) = max{Ai1(k)− d+ x1(k)− si(k), . . .
. . . , Ain(k)− d+ xn(k)− si(k)},

for i ∈ Nn. From the dynamics of s(k), we obtain si(k) −
sj(k) = si(0)−sj(0) for all i, j ∈ Nn and k ∈ N∪{0}. Then

we substitute si(k) = si(0)−sj(0)+sj(k) to the j-th term of
the equation for zi(k+1), and further substitute xi(k)−si(k)
by zi(k) to obtain

zi(k + 1) = max{Ai1(k) + s1(0)− si(0)− d+ z1(k), . . .
. . . , Ain(k) + sn(0)− si(0)− d+ zn(k)}.

In matrix notation, the dynamics of the newly introduced
SMPL system are then given by

z(k + 1) = [A(k) +D]⊗ z(k), (3)

where D = [dij ]i,j ∈ Rn×n (i.e. dij is the entry of matrix D
at row i and column j), dij = sj(0)− si(0)− d. Notice that
Aij(k)⊗dij are independent for all k ∈ N∪{0} and i, j ∈ Nn.
The density (resp., distribution) function of Aij(k) ⊗ dij
corresponds to the density (resp., distribution) function of
Aij(k) shifted forward of dij units. In (3) the deterministic
index k again denotes an increasing occurrence index, whereas
the state variable z(k) defines the delay w.r.t. the schedule
of the k-th occurrence of all events: in particular the state
component zi(k) denotes the delay w.r.t. the schedule of k-th
occurrence of the i-th event. Notice that if the delay is negative
then the event occurs ahead of the schedule, whereas if the
delay is positive then the event occurs behind the schedule.

As confirmed by Example 1, the trajectories of the SMPL
system (1) are lower bounded by a monotonically increasing
sequence under some weak conditions on the density functions
tij(·)1. This condition results in a potentially very large state
space for the state variable x(·). In contrast, the timing of
events w.r.t. to the timetable, encompassed by z(·), belongs
to a substantially smaller set Z: this is beneficial since it will
reduce the computational complexity of our abstraction, as
detailed later.

Example 2: Consider the SMPL system in Example 1.
Sample trajectories of the new SMPL system associated with
s(0) = [0, 0]T and d = 5 are depicted in Fig. 1 (right).

The next theorem shows that, much like the original model
in (1), the new SMPL system can be described as a discrete-
time homogeneous Markov process.2 A Markov process is a
stochastic process where the probability distribution of the next
state depends only on the current state.

Theorem 1: The SMPL system in (3) is fully characterized
by the following conditional density function

tz(z̄|z) =
n∏
i=1

ti(z̄i|z) where

ti(z̄i|z) =
n∑
j=1

tij(z̄i − dij − zj) n∏
k=1
k 6=j

Tik(z̄i − dik − zk)


for i ∈ Nn.
The proof of Theorem 1 appears in Appendix A.

1More precisely, it can be shown that if Aij(k) ≥ aij > 0, such that
A = [aij ]i,j is irreducible, then there exists a subsequence of x(k) that is
bounded element-wise from below by a monotonically increasing sequence.

2Note that this result can be generalized to multi-periodic timetables,
namely timetables characterized by s(k+1) = d⊗ s(k), where d ∈ Rn×n

is a diagonal matrix, whereas in periodic timetables the cycle time is a scalar.
However the associated Markov process becomes inhomogeneous, which
greatly increases the computational complexity of the discussed procedures.
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C. Problem Statement: Probabilistic Model Checking of
SMPL Systems Against BLTL Formulae

We present some basic definitions to formalize the prob-
abilistic model checking problem on the SMPL system in
(3). We introduce a set of finitely many atomic propositions
AP and a labeling function L : Z → 2AP . Notation 2AP

denotes the power set of AP . Atomic propositions intuitively
express simple facts about the states of the system, or can be
thought of as properties associated to the states (e.g., “initial,”
“safe,” or “target” states). The labeling function L relates a set
L(z) ∈ 2AP of atomic propositions to any state z ∈ Z . The
set L(z) represents the atomic propositions that are satisfied
by state z.

BLTL is a fragment of LTL, made up of formulae where the
time horizon of the specifications is bounded [33, Sec. 2.4].
This class of formulae has been recently employed in statistical
model checking of stochastic systems [39]. Recall that an LTL
formula consists of atomic propositions, of Boolean connec-
tors, and of two temporal modalities: © (pronounced “next”)
and U (pronounced “until”). BLTL formulae are instead ob-
tained with only the temporal modality ©. More formally,
the syntax of BLTL over the set of atomic propositions AP
is given by the following grammar:

ϕ ::= a | ¬ϕ | ϕ1 ∧ ϕ2 | ©ϕ,
where a ∈ AP . The semantics of BLTL formulae are inherited
from those of LTL formulae [45, Sec. 5.1.2].

We define the probabilistic model-checking problem over
a BLTL specification as follows. Given the SMPL system in
(3), a set of atomic propositions AP , a labeling function L,
an initial state z(0) ∈ Z , and a BLTL formula ϕ, find the
probability that the trajectory starting from state z(0) satisfies
ϕ:

Pr{z(0) � ϕ}. (4)

BLTL formulae can express well-known bounded-time ver-
ification problems, such as probabilistic reachability, reach-
avoid, and invariance (safety) [36, p. 220]. In order to make
the discussion as clear as possible, we provide the details of
the construction of a BLTL formula associated with the sim-
plest problem of invariance. The finite-horizon probabilistic
invariance problem amounts to evaluating the probability that
a finite execution associated with the initial condition z(0)
remains inside a given invariant set A during the finite event
horizon N , as follows:

Pz0
(A) = Pr{z(k) ∈ A for all k ∈ NN ∪ {0}|z(0) = z0},

(5)
where A is assumed to be Borel measurable (that is, con-
structed from open sets via operations of countable union,
countable intersection, and relative complement). Define the
set of atomic propositions AP = {a} and the labeling function
as L(z) = {a} if z ∈ A and L(z) = ∅ if z /∈ A. Consider a
BLTL formula given by

�≤Na = a ∧©a ∧©© a ∧ · · · ∧©© · · ·©︸ ︷︷ ︸
Ntimes

a.

Then the probabilistic invariance can be characterized as the
following probability: Pr{z(0) � �≤Na}. This quantity, or

input: SMPL system (3) and labeling function L : Z → 2AP

output: A finite-state MC (P, Tp)
1: Select a finite partition of the state space Z of cardinality
m, as Z = ∪mi=1Zi, such that all states in a partition set
satisfy the same set of atomic propositions

2: For each Zi, select a single representative point zi ∈ Zi
3: Define P = {φi, i ∈ Nm} as the finite state space of the

MC
4: Compute the transition probability matrix Tp as

Tp(φi, φj) =

∫
Ξ(φj)

tz(z̄|zi)dz̄, for all i, j ∈ Nm.

5: Define the induced labeling function Lp : P → 2AP for
the MC as Lp(φi) = L(zi) for all i ∈ Nm

Fig. 2. Algorithm 2. Generation of a finite-state MC from an SMPL system
and a labeling function L.

more generally the expression in (4), is numerically computed
over finite-space models such as Markov chains, via known
existing software PRISM [41]. An explicit characterization
of probabilistic invariance is provided in Proposition 2 and
can indeed be computed in PRISM. On the other hand, the
characterization over models of interest in this work requires
the approach discussed next, and will leverage the software
FAUST2 [46], to be discussed below.

III. ABSTRACTIONS BY FINITE-STATE MARKOV CHAINS

We resort to the abstraction procedure presented in [30,
Sec. 3.1], properly extended to the models under study. The
procedure generates a finite-state MC (P, Tp) from a given
SMPL system (3), a set of finitely many atomic propositions
AP , and a labeling function L : Z → 2AP . We employ the
obtained MC to approximately model check the SMPL system
against a given BLTL specification defined over the atomic
propositions AP .

Let P = {φ1, . . . , φm} be a set of finitely many discrete
states, and Tp : P ×P → [0, 1] a related transition probability
matrix, such that Tp(φi, φj) characterizes the probability of
transitioning from state φi to state φj and thus induces a
conditional discrete probability distribution over the finite
space P . Given a labeling function L, the algorithm in Fig. 2
provides a procedure to abstract an SMPL system by a finite-
state MC.3 The set P = {φ1, . . . , φm} denotes the discrete
state space of cardinality m. In Algorithm 2, Ξ : P → 2Z

represents the concretization function, i.e. a set-valued map
that associates to any discrete state (point) φi ∈ P the
corresponding continuous partition set Zi ⊂ Z .

Remark 1: The bottleneck of Algorithm 2 lies in the com-
putation of transition probability matrix Tp (step 4), due to the
integration of kernel tz . The required number of integrations
is m2, where m represents the cardinality of the set of discrete
states. This integration can be circumvented if the distribution
functions Tij(·) for all i, j ∈ Nn have explicit analytical form
(e.g. an exponential distribution).

3For simplicity, when referring to an algorithm we will use the term
“Algorithm 2” rather than “the Algorithm in Fig. 2.”
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The abstraction procedure in Algorithm 2 preserves the
underlying labels, and has been shown to introduce an approx-
imate probabilistic bisimulation of the concrete model [35],
[34]. This means that Algorithm 2 can be applied to abstract an
SMPL system as a finite-state MC, regardless of the particular
BLTL specification. As discussed below, the quantification of
the abstraction error in Section IV requires that the state space
Z is bounded.

Considering the obtained finite-state, discrete-time MC
(P, Tp) and the induced labeling function Lp, the BLTL model
checking problem amounts to evaluating the probability that
an execution associated with the initial condition φ(0) ∈ P
satisfies a given BLTL specification ϕ expressed over the
labels induced by function Lp. This can be stated as the
following probability:

Pr{φ(0) � ϕ}. (6)

In general, the solution can be obtained by leveraging proba-
bilistic model checking software [41], [42]. In the special case
of a BLTL specification representing finite-horizon invariance,
the solution can also be characterized using dynamic program-
ming, as shown in Section IV-B. The next section discusses
the error associated to the general abstraction procedure, and
presents numerical examples focused on the simple finite-
horizon invariance problem.

IV. QUANTIFICATION OF THE ABSTRACTION ERROR

This section starts by precisely defining the error related to
the abstraction procedure, which is due to the approximation of
a continuous concrete model by a finite discrete one. A bound
on the abstraction error in [32] is applied to the BLTL model
checking problem under some structural assumptions, namely
in the case of Lipschitz-continuous density functions, or alter-
natively of piecewise Lipschitz-continuous density functions.

The abstraction error is defined as the maximum difference
between the outcomes obtained by (4) and (6) for any pair
of initial conditions z(0) ∈ Z and ξ(z(0)) ∈ P , where the
abstraction function ξ : Z → P associates to any point z ∈
Z on the SMPL state space, the corresponding discrete state
ξ(z) ∈ P . Since an exact computation of this error is not
possible in general, we resort to determining an upper bound
of the abstraction error, which is denoted as E. More formally,
we are interested in quantifying E that satisfies

|Pr{z(0) � ϕ} − Pr{ξ(z(0)) � ϕ}| ≤ E, (7)

for all z(0) ∈ Z and any BLTL formula ϕ. Notice that the
quantification of this error allows making sense of the results
obtained from model checking the MC (Pr{ξ(z(0)) � ϕ}) for
the verification of the SMPL system (Pr{z(0) � ϕ}).

We raise the following assumption on the SMPL system in
(1) and in (3). Recall that the density function of Aij(k)⊗dij
in (3) corresponds to the density function of Aij(k) in (1)
shifted dij units forward.

Assumption 1: The density functions tij(·) for i, j ∈ Nn are
bounded:

tij(z) ≤Mij for all z ∈ R.

Assumption 1 implies that the distribution functions Tij(·)
for i, j ∈ Nn are Lipschitz-continuous. Recall that the (global)
Lipschitz constant of a one-dimensional function can be
computed as the maximum of the absolute value of the first
derivative of the function. Thus

|Tij(z)− Tij(z′)| ≤Mij |z − z′| for all z, z′ ∈ R.

For the computation of the bound on the abstraction error,
we use the following result based on [32], which has inspired
most of this work.

Proposition 1 ([32, pp. 933-934]): Suppose Assumption 1
holds and the density function tz(z̄|z) satisfies the condition∫
Z
|tz(z̄|z)− tz(z̄|z′)|dz̄ ≤ H‖z− z′‖ for all z, z′ ∈ Z,

then an upper bound on the abstraction error in (7) is E =
NHδ, where N is the horizon of the specification ϕ and δ =
max{‖z− z′‖ s.t. z, z′ ∈ Zi and i ∈ Nm} is the diameter.

The horizon of the BLTL specification is easily computed
on the syntax of the formula [33, Sec. 2.4]. Proposition 1
shows that the upper bound on the abstraction error depends
on the partition diameter (cf. step 1 of Algorithm 2). Recall
that the cardinality of the partition in step 1 of Algorithm 2 is
finite. Thus in order to guarantee that δ is finite, the state space
has to be bounded. This restriction requires us to truncate the
state space into a bounded set while maintaining the whole
dynamics of the system. In order to do so, assume the density
function of the initial state and that of entries of state matrix
A have bounded support4. This assumption enables us to
compute bounds on the support of finite trajectories of the
SMPL system in (3), which in turn can be used to construct
a bounded state space [18]. On the other hand, for some
BLTL specifications it is not required to partition the whole
state space: for instance, in the case of invariance only the
boundedness of the invariant set is required for the abstraction
procedure.

In the remainder of this section, we first determine the
constant H for Lipschitz-continuous density functions, then
generalize the result to piecewise Lipschitz-continuous density
functions. We reformulate the upper bound on the abstraction
error as a summation of dimension-dependent terms. Finally
we provide a simple application to the study of the probabilis-
tic invariance problem.

A. Lipschitz-Continuous Density Functions

Assumption 2: The density functions tij(·) for i, j ∈ Nn
are Lipschitz-continuous, namely there exist finite and positive
constants hij , such that

|tij(z)− tij(z′)| ≤ hij |z − z′| for all z, z′ ∈ R.

Assumption 2 requires the density functions tij(·) to be
continuous and to have bounded one-sided derivatives.

Under Assumptions 1 and 2, the conditional density function
tz(z̄|z) is Lipschitz-continuous. This opens up the application

4If instead tij(·) has an unbounded support, we must truncate it to a
bounded one. This introduces another error on top of the abstraction error
presented in this section, see [47] for more details.
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of the results in [30], [32] for the approximate solution of
the probabilistic invariance problem. Notice that the Lipschitz
constant of tz(z̄|z) may be large, which implies a rather
conservative upper bound on the abstraction error. To improve
this bound, we can instead directly use Proposition 1 presented
before – an option also discussed in [32]. In particular we
present three technical lemmas that are essential for the com-
putation of the constant H with proofs appearing in Appendix
A. After the derivation of the improved bound, the obtained
results are applied to a numerical example.

Lemma 1: Any one-dimensional continuous distribution
function T (·) satisfies the inequality∫

R
|T (z̄−z)−T (z̄−z′)|dz̄ ≤ |z−z′| for all z, z′ ∈ R.

Lemma 2: Suppose the random vector z̄ can be organized
as z̄ = [z̄T1 , z̄

T
2 ]T , so that its conditional density function is the

multiplication of the conditional density functions of z̄1, z̄2 as:

f(z̄|z) = f1(z̄1|z)f2(z̄2|z).

Then it holds that∫
Z
|f(z̄|z)− f(z̄|z′)|dz̄ ≤

2∑
i=1

∫
Πi(Z)

|fi(z̄i|z)− fi(z̄i|z′)|dz̄i,

with Πi(·) the projection operator on the i-th axis.
Lemma 3: Suppose the vector z can be organized as

z = [zT1 , z
T
2 ]T , and that the density function of the conditional

random variable (z̄|z) is of the form

f(z̄|z) = f1(z̄, z1)f2(z̄, z2),

where f1(z̄, z1), f2(z̄, z2) are bounded non-negative functions
with M1 = sup f1(z̄, z1) and M2 = sup f2(z̄, z2). Then for a
given set C ∈ B(R):∫

C
|f(z̄|z1, z2)− f(z̄|z′1, z′2)|dz̄

≤M2

∫
C
|f1(z̄, z1)− f1(z̄, z′1)|dz̄

+M1

∫
C
|f2(z̄, z2)− f2(z̄, z′2)|dz̄.

Theorem 2: Under Assumptions 1 and 2, the constant H in
Proposition 1 is

H =

n∑
i,j=1

Hij + (n− 1)Mij ,

where Hij = Lihij , and where the constant Li = L(Πi(Z))
is the Lebesgue measure of the projection of the bounded state
space onto the i-th axis.

In the next section we clarify the derivation of the quantities
above over the computation of the probabilistic invariance as in
(5). The case study utilizes a beta distribution to characterize
delays. The motivation for employing a beta distribution is
that its density function has a bounded support. Thus by
scaling and shifting the density function, we can construct
a distribution taking positive real values within an interval.
This is reasonable, since this distribution is used to model
processing or transportation times, and as such it can only take

positive values. Another reason for using a beta distribution is
that it can approximate the normal distribution with arbitrary
accuracy.

Definition 1 (Beta Distribution): The general formula for
the density function of the beta distribution is

t(x;α, β, a, b) =
(x− a)α−1(b− x)β−1

B(α, β)(b− a)α+β−1
if a ≤ x ≤ b,

and 0 otherwise, where α, β > 0 are the shape parameters;
the interval [a, b] is the support of the density function; and
B(·, ·) is the beta function. A random variable X characterized
by this distribution is denoted by X ∼ Beta(α, β, a, b).

The case where a = 0 and b = 1 is called the standard
beta distribution. Notice that the density function of the beta
distribution is unbounded if any of the shape parameters
belongs to the interval (1, 2). Let us remark that if the shape
parameters are positive integers, the beta distribution has a
piecewise polynomial density function, which has been used
in the literature for the identification of SMPL systems [16,
Sec. 4.3].

B. Application to the Probabilistic Invariance Problem

In this section we characterize explicitly the probabilistic in-
variance problem (5) using dynamic programming. We discuss
the construction of a finite-state MC from the original SMPL
system (3), and describe a computable solution over the finite-
state MC via dynamic programming. The next proposition
provides a theoretical framework to study the finite-horizon
probabilistic invariance problem in (5).

Proposition 2 ([29, Lemma 1]): Consider value functions
Vk : Z → [0, 1], for k ∈ NN ∪ {0}, computed through the
following backward recursion:

Vk(z) = 1A(z)

∫
A
Vk+1(z̄)tz(z̄|z)dz̄ for all z ∈ Z,

and initialized with VN (z) = 1A(z) for all z ∈ Z . Then
Pr{z(0) � �≤Na} = V0(z(0)).

The notation 1A : Z → {0, 1} denotes the indicator
function of the invariant set A ⊆ Z , i.e. 1A(z) = 1 if z ∈ A
and 1A(z) = 0 if z /∈ A. For any k ∈ NN ∪ {0}, notice that
Vk(z) represents the probability that an execution of the SMPL
system (3) remains within the invariant set A over the residual
event horizon {k, . . . , N}, starting from z at event step k. This
result characterizes the finite-horizon probabilistic invariance
problem as a dynamic programming problem.

In order to compute approximate solution of the invariance
problem (5), Algorithm 2 can be employed to abstract the
SMPL system in (3). We select a partition that is proposition-
preserving: in other words, the selected partition for the state
space Z is the union of partition for the invariant set A and
that for the complement of the invariant set Z\A (as shown in
[30], [32], Z\A can be simply regarded as another partition
set).

Considering the obtained finite-state, discrete-time MC
(P, Tp) with the initial condition φ(0) and the induced labeling
function Lp, the probabilistic invariance problem amounts to
evaluating the following probability: Pr{φ(0) � �≤Na}.
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We define the invariant set Ap as the set of discrete states
that satisfy the atomic proposition a, i.e. Ap = {φ ∈ P |
Lp(φ) = {a}}. The solution of the finite-horizon probabilistic
invariance problem over the MC abstraction can be determined
via a discrete version of Proposition 2, as follows.

Proposition 3: Consider value functions V pk : P → [0, 1],
for k ∈ NN ∪ {0}, computed through the following backward
recursion:

V pk (φ) = 1Ap
(φ)

∑
φ̄∈P

V pk+1(φ̄)Tp(φ, φ̄) for all φ ∈ P,

initialized with V pN (φ) = 1Ap(φ) for all φ ∈ P . Then
Pr{φ(0) � �≤Na} = V p0 (φ(0)).

For any k ∈ NN ∪ {0}, notice that V pk (φ) represents the
probability that an execution of the finite-state MC remains
within the discrete invariant set Ap over the residual event
horizon {k, . . . , N}, starting from φ at event step k. The
quantities in Proposition 3 can be easily computed via linear
algebra operations.

Example 3: We apply the results in Theorem 2 to the two-
dimensional system (3), where Aij(·) ∼ Beta(2, 2, 0, bij),
i, j ∈ N2, b11 = 4, b12 = 10, b21 = 6 = b22. Skipping
the details of the direct calculations, the supremum and the
Lipschitz constant of the density functions are respectively[
M11 M12

M21 M22

]
=

[
3/8 3/20
1/4 1/4

]
,

[
h11 h12

h21 h22

]
=

[
3/8 3/50
1/6 1/6

]
.

Considering a periodic timetable with s(0) = [0, 0]T and
d = 4, selecting invariant set A = [−5, 5]2, and event
horizon N = 5, according to Theorem 2 and Proposition
1 we obtain an abstraction error E = 43.5δ. In order to
obtain an abstraction error bounded by E = 0.1, we would
need to discretize set A uniformly with 6152 bins per each
dimension (step 1 of Algorithm 2). The representative points
have been selected at the center of the squares obtained
by uniform discretization (step 2). The obtained finite-state
MC has m = 61522 + 1 discrete states (step 3), where the
additional state [30], [32] is considered as the representative
point of the partition set Z\A. The solution of the invariance
problem obtained over the abstract model (cf. Proposition 3) is
depicted in Fig. 3 (left panel). It is computed via the software
tool FAUST2 [46], which is implemented in MATLAB and
available for download.

C. Piecewise Lipschitz-Continuous Density Functions

The structural assumptions raised in Section IV-A limit the
general applicability of the work. For the sake of generality,
we extend the previous results to models aligned with the
following requirement.

Assumption 3: The density functions tij(·) for i, j ∈ Nn are
piecewise Lipschitz-continuous, namely there exist partitions
R = ∪mij

k=1D
k
ij and corresponding finite and positive constants

hkij , such that

|tkij(z)− tkij(z′)| ≤ hkij |z − z′| for all k ∈ Nmij ; z, z′ ∈ Dk
ij ,

tij(z) =

mij∑
k=1

tkij(z)1Dk
ij

(z) for all z ∈ R.

This alternative assumption relaxes Assumption 2, allowing
discontinuities in the density functions tij(·): this makes the
results applicable to a wider class of SMPL systems.

The notation k used in Assumption 3 does not denote a
power, nor the occurrence index in (1), it is the index of
a set in the partition of cardinality

∑
i,jmij . Notice that if

Assumption 3 holds and the density functions are Lipschitz-
continuous, then Assumption 2 is automatically satisfied with
hij = maxk h

k
ij . In other words, with Assumption 3 we

allow relaxing Assumption 2 to hold only within arbitrary sets
partitioning the state space of the SMPL system. For instance,
as expected for the probabilistic invariance problem we may
limit the assumption to hold within the invariant set.

Under Assumptions 1 and 3, we now present a result
extending Theorem 2 for the computation of the constant H .

Theorem 3: Under Assumptions 1 and 3, the constant H in
Proposition 1 is

H =
n∑

i,j=1

Hij + (n− 1)Mij ,

where Hij = Li maxk h
k
ij +

∑
k |Jkij | and Li = L(Πi(Z)).

The notation Jkij = limz↓ckij tij(z) − limz↑ckij tij(z) denotes
the jump distance of the density function tij(·) at the k-th
discontinuity point ckij .
The proof is similar to that of Theorem 2, the only difference
being in the computation of constant Hij for the inequality∫

Πi(Z)

|tij(z̄i−dij−zj)−tij(z̄i−dij−z′j)|dz̄i ≤ Hij |zj−z′j |, (8)

for all zj , z′j ∈ Πj(Z), which utilizes a decomposition of tij
into a continuous part and a piecewise constant function. The
complete proof is presented in Appendix A. We display the
results with a numerical example.

Example 4: Consider the density function of the exponential
distribution with rate 1, i.e. t(z) = e−z if z ≥ 0 and 0
otherwise (cf. Fig. 4 in the left). Notice that the density
function is piecewise Lipschitz-continuous (cf. Assumption 3).
Furthermore the density function presents one discontinuity
point c1 = 0 with associated jump distance equal to J1 = 1.
One can show that the density function can be decomposed
into a piecewise constant function gd(z) = θ(z) and a
continuous function gc(z) = 01z<0 + (e−z − 1)1z≥0, as
depicted in Fig. 4 (middle and right plots).

In some cases, it is possible to obtain a smaller value
for Hij by substituting the density function directly into the
inequality in (8). Furthermore Hij may be independent of the
size of the state space. For instance, if the delay is modeled
by an exponential distribution as in Example 1, then Aij(·)
for all i, j ∈ Nn follows a shifted exponential distribution,
i.e. Aij(·) ∼ SExp(λij , ςij). In this case, Hij = λij + λ2

ijLi,
as per Theorem 3. However if we compute directly the left-
hand side of (8), we get the quantity Hij = 2λij , which is
independent of the shape of the state space. This fact is proven
in general in Theorem 4, for the class of distribution functions
introduced next.
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Fig. 3. The left and right plots show solution of the finite-horizon probabilistic invariance problem for two-dimensional SMPL systems with beta (Example 3)
and exponential (Example 5) distributions, respectively. The plots have been obtained by computing the problem over finite abstractions obtained by uniform
discretization of the set of interest and selection of central representative points. Notice that the abstraction function ξ : Z → P associates to any point z ∈ Z
on the SMPL state space, the corresponding discrete state ξ(z) ∈ P (cf. Section III).
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Fig. 4. The density function of the exponential distribution with rate 1 (left plot) is the sum of two functions: the unit step function θ(·) on the middle plot
and a continuous part on the right plot.

Definition 2 (Shifted Exponential Distribution): The density
function of an exponential distribution shifted by ς is

t(x;λ, ς) = λ exp{−λ(x− ς)}θ(x− ς),

where θ(·) represents the unit step function. A random variable
X characterized by this distribution is denoted by X ∼
SExp(λ, ς).

Theorem 4: Any random sequence Aij(·) ∼ SExp(λij , ςij)
satisfies inequality (8) with Hij = 2λij .

Given the previous result, the bound related to the abstrac-
tion error over SMPL systems with Aij(·) ∼ SExp(λij , ςij)
can be improved and explicitly shown as follows. The max-
imum value of the density function tij(·) equals λij , i.e.
Mij = λij for all i, j ∈ Nn (cf. Assumption 1). By Theorem
3 and Proposition 1, the bound of the abstraction error is then

E = Nδ(n+ 1)

n∑
i,j=1

λij .

Let us go back to Example 3 and adapt according to
Definition 2 and Theorem 4.

Example 5: Consider the two-dimensional SMPL system
(1), where Aij(·) ∼ SExp(λij , ςij) and[

λ11 λ12

λ21 λ22

]
=

[
1/2 1/3
1 1/3

]
,

[
ς11 ς12

ς21 ς22

]
=

[
0 2
2 0

]
.

Considering a periodic timetable with s(0) = [0, 0]T and
d = 4, selecting invariant set A = [−5, 5]2, and event horizon
N = 5, we get E = 32.5δ. In order to obtain a desired error
E = 0.1, we need to use 4597 bins per dimension on a uniform
discretization of the set A. The solution of the invariance
problem over the abstract model is presented in Fig. 3 (right
panel).

Let us now empirically validate the obtained outcomes, to
emphasize that we obtain safe guarantees on the performance
of the approximation algorithm. We have computed 1000
sample trajectories, with an initial condition that has been
uniformly generated from the level set corresponding to a
satisfaction probability equal to 0.3, namely within the set
{z | Pr{ξ(z) � �≤5a} ≥ 0.3}. Practically, this means we
have sampled the initial condition on points corresponding to
colors warmer than the “orange level” in Fig. 3 (right). Given
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the error bound E = 0.1, we would expect that the trajectories
are invariant with a likelihood greater than 0.2. Among the
cohort, we have found that 348 trajectories stay inside the
invariant set for the given 5 steps, which is aligned with the
guarantee we have derived.

Furthermore we have compared the approximate solution
against the following empirical approach: for each represen-
tative point, we generate 1000 sample trajectories starting
from it and compute ratio of the number of trajectories that
stay in the invariant set for 5 steps to the total number of
trajectories (1000). The maximum absolute difference between
the approximate solution and the empirical approach for all
representative points is 0.0673, which aligns with the error
bound of 0.1.

Finally, extending these two empirical studies to the SMPL
system in Example 3 leads to results that are quite analogous
to the ones just discussed.

D. Dimension-Dependent Error Formulation

With the goal of improving the computational efficiency
of the approach, in this section we formulate a bound on
the abstraction error as a summation of dimension-dependent
terms. This allows for a “parallelization” of the computation of
the quantities leading to the error term. Consider the partition
Z = ∪mj=1Zj . For each r ∈ Nn, we define diameter of the
partition along the r-th dimension as

δr = max{|zr − z′r| s.t. zr, z′r ∈ Πr(Zj) and j ∈ Nm}.
Theorem 5: The bound on abstraction error can be written

as E = N
∑n
r=1H(r)δr, where

H(r) =

n∑
i,j=1

Mij +

n∑
i=1

(Hir −Mir), (9)

the constants Hir are defined according to (8), Mij represents
the maximum value of density function tij(·), and N is the
horizon of the BLTL specification.

Theorem 5 suggests that we can refine the partition along
single dimensions, namely that for each r ∈ Nn the value of
δr is determined based on N , H(r) and E. In order to obtain
a partition of Z with minimum cardinality, we distribute the
abstraction error equally along all dimensions, i.e. NH(r)δr =
E/n for each r ∈ Nn.

Remark 2: The quantity H(r) can be further reduced to the
following

H(r) =

n∑
i,j=1

min{Mir,Mij}+

n∑
i=1

(Hir −Mir).

Example 6: Consider the matrix M containing all the
maximum values of the density functions

M = [Mij ]i,j =

 1 3 2
5 6 8
7 4 3

 .
Let us compare the first term of H(r) according to Theorem
5 and Remark 2. In Theorem 5, the constant contribution
of these maximum values is ‖M‖1 =

∑
i,j |Mij | = 39

whereas in Remark 2 it is reduced to 32, 34, 33, for r equals
1, 2, 3, respectively. The reduction will be more relevant as the
difference of the maximal values M(·) are larger.

V. EXPLICIT VERIFICATION VIA SYMBOLIC
COMPUTATIONS

In this section, we discuss an alternative approach to solve
the finite-horizon probabilistic invariance problem. The alter-
native approach assumes that the density functions are or may
be approximated as piecewise polynomial density functions,
which allows for explicit integrations reducing to updates of
the coefficients of the polynomial parts. This approach is also
formal in the sense that we are able to determine the error
of the procedure, which is due to the approximation of the
density functions.

Consider that the density functions tij(·) are approximated
by piecewise polynomial density functions t̃ij(·) for all i, j ∈
Nn. The approximation error of t̃ij(·) is denoted by εij , which
is defined as∫

R
|tij(x)− t̃ij(x)|dx ≤ εij for all i, j ∈ Nn.

We define an SMPL system derived from (3) where the
density functions are the piecewise polynomial approximation,
as follows:

z(k + 1) =
[
Ã(k) +D

]
⊗ z(k). (10)

Each entry of Ã(k) is independent and identically distributed
w.r.t. k ∈ N; and Ãij(·) are independent for all i, j ∈ Nn. The
random sequence {Ãij(·)} is then characterized by the density
function t̃ij(·) and corresponding distribution function T̃ij(·)
for i, j ∈ Nn. The conditional density function is denoted
by t̃z(z̄|z). The expression of t̃z(z̄|z) is similar with that of
Theorem 1.

The finite-horizon probabilistic invariance problem over the
introduced SMPL system (10) can be formulated as follows:

P̃z0
(A) = Pr{z(k) ∈ A for all k ∈ NN ∪ {0}|z(0) = z0}.

As for Proposition 2, the quantity of interest can be charac-
terized by backward recursions over functions Ṽk : Rn →
[0, 1], k ∈ NN ∪ {0}, as follows. Initially we define ṼN (z) =
1A(z), for all z ∈ Z . Then we compute Ṽk for k ∈
NN−1 ∪ {0} using the formula in Proposition 2. This leads
to P̃z0

(A) = Ṽ0(z0). Since t̃z(z̄|z) is a piecewise polynomial
function, Ṽk can be computed via simple integrations using a
computer algebra program. In other words here Ṽk are thus
obtained “symbolically”, rather than numerically as before. It
is of interest to provide a quantitative comparison between the
outcome obtained in this way, and the solution resulting from
Proposition 2: in other words, we are interested in deriving
bounds on the relative error. Next, we define the error related to
the alternative approach, which is due to the approximation of
density functions with piecewise polynomial density functions.
Then a bound of the error is formulated w.r.t. the finite-horizon
probabilistic invariance problem.

Since an exact computation of this error is not possible in
general, we resort to determining an upper bound of the error,
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which is denoted by Ẽ. More formally, we are interested in
quantifying Ẽ satisfying

|Pz0(A)− P̃z0
(A)| ≤ Ẽ for all z0 ∈ A. (11)

Theorem 6: Suppose for each i, j ∈ Nn the density function
tij(·) is replaced by t̃ij(·) such that∫

R
|tij(z)− t̃ij(z)|dz ≤ εij .

Then an upper bound on the error in (11) is Ẽ = NnK, where
N is the event horizon, n is the dimension of the system and
K =

∑n
i,j=1 εij .

Let us now focus on computational experiments.
Example 7: We have implemented this alternative symbolic

approach, and the related approximation procedure, on a
shifted exponential distribution in Mathematica. The procedure
is presented in Appendix B. We have further tested the
implementation of the alternative approach on Example 5,
and run experiments on a 12-core Intel Xeon 3.47 GHz PC
with 24 GB of memory. In this case, we choose Ẽ = 0.1,
N = 5 and n = 2. From Theorem 6, we obtain K = 0.01.
We define εij to be the same for i, j ∈ N2. This implies
εij = K/4 = 0.0025 for i, j ∈ N2. In the approximation
procedure (cf. Algorithm 5), we choose p = 1. The outcome
for the new, symbolic approach has clearly exhibited increased
computational challenges, running short of memory already
during the computation of Ṽ3: a-posteriori, the reason has been
found to reside on the number of regions in Ṽk, which grows
exponentially as k decreases (cf. Proposition 2).

Example 8: We have tested the implementation of the
alternative approach on Example 3, where the density function
is already a piecewise polynomial function. The outcomes are
quite similar with the previous experiment: running short of
memory during the first computations of Ṽ .

In conclusion, while enticing because of its explicit nature
and for the derived related formal error bounds, the alternative
symbolic approach holds promise but requires further research
towards practical scalability. As of now it does not appear to
be as practically deployable as the core technique discussed
earlier in this manuscript.

VI. CONCLUSIONS AND FUTURE WORK

This work has developed new model checking procedures
for Stochastic Max-Plus-Linear (SMPL) systems against BLTL
specifications, based on finite abstractions. We have assumed
that each random variable characterizing the SMPL system
has a fixed support, which implies that the topology of the
SMPL system is fixed over time: we are interested to relax this
assumption in order to obtain results that are robust against
topological changes. Computationally, we are interested in
improving the abstraction by integrating it with the software
tool FAUST2 [46].

APPENDIX

A. Proof of Statements

Proof of Theorem 1: The independence property of
Aij(·) ⊗ dij , for all i, j ∈ Nn, leads to the multiplicative

expression of tz(z̄|z). In order to show the expression of
the components ti(z̄i|z), first we compute the i-th conditional
distribution function Ti(z̄i|z), then we compute the i-th con-
ditional density function ti(z̄i|z) by taking the derivative of
Ti(z̄i|z) w.r.t. z̄i:

Ti(z̄i|z)

= Pr{max{Ai1 + di1 + z1, . . . , Ain + din + zn} ≤ z̄i|z}
= Pr{Ai1 + di1 + z1 ≤ z̄i, . . . , Ain + din + zn ≤ z̄i|z}

=

n∏
j=1

Pr{Aij ≤ z̄i − dij − zj |z} =

n∏
j=1

Tij(z̄i − dij − zj |z).

By simple manipulation, the derivative of Ti(z̄i|z) w.r.t. z̄i
coincides with the expression of ti(z̄i|z).

Proof of Lemma 1: We prove the inequality for the case
z′ > z. For the other case, the proof is similar. Consider
any arbitrary a, b ∈ R. Since the distribution function is non-
decreasing we can write∫ b

a

|T (z̄ − z)− T (z̄ − z′)|dz̄

=

∫ b

a

T (z̄ − z)dz̄ −
∫ b

a

T (z̄ − z′)dz̄ = g(z)− g(z′),

where g(z) =
∫ b
a
T (z̄ − z)dz̄ =

∫ b−z
a−z T (u)du. By the

fundamental theorem of calculus, we obtain

|g′(z)| = |T (a− z)− T (b− z)| ≤ 1.

Finally based on the mean value theorem, we can write |g(z)−
g(z′)| ≤ |z − z′|. Since the inequality holds for any interval
[a, b], we conclude that it also holds over R.

Proof of Lemma 2: In the following derivation, we use
the triangle inequality and the following property of density
functions: they are positive functions and their integral is
bounded by one. We obtain∫

Z
|f(z̄|z)− f(z̄|z′)|dz̄

=

∫
Z
|f1(z̄1|z)f2(z̄2|z)− f1(z̄1|z′)f2(z̄2|z′)|dz̄

≤
∫
Z
|f1(z̄1|z)− f1(z̄1|z′)|f2(z̄2|z)dz̄

+

∫
Z
|f2(z̄2|z)− f2(z̄2|z′)|f1(z̄1|z′)dz̄

≤
∫

Π1(Z)

|f1(z̄1|z)− f1(z̄1|z′)|dz̄1

∫
Π2(Z)

f2(z̄2|z)dz̄2

+

∫
Π2(Z)

|f2(z̄2|z)− f2(z̄2|z′)|dz̄2

∫
Π1(Z)

f1(z̄1|z′)dz̄1

≤
∫

Π1(Z)

|f1(z̄1|z)− f1(z̄1|z′)|dz̄1

+

∫
Π2(Z)

|f2(z̄2|z)− f2(z̄2|z′)|dz̄2

Proof of Lemma 3: By using the triangle inequality, we
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obtain the following chain of inequalities∫
C
|f(z̄|z1, z2)− f(z̄|z′1, z′2)|dz̄

=

∫
C
|f1(z̄, z1)f2(z̄, z2)− f1(z̄, z′1)f2(z̄, z′2)|dz̄

≤
∫
C
|f1(z̄, z1)− f1(z̄, z′1)|f2(z̄, z2)dz̄

+

∫
C
|f2(z̄, z2)− f2(z̄, z′2)|f1(z̄, z′1)dz̄

≤M2

∫
C
|f1(z̄, z1)− f1(z̄, z′1)|dz̄

+M1

∫
C
|f2(z̄, z2)− f2(z̄, z′2)|dz̄.

Proof of Theorem 2: Using Lemma 2 on the multiplica-
tive structure of the conditional density function we have:∫
Z
|tz(z̄|z)− tz(z̄|z′)|dz̄ ≤

n∑
i=1

∫
Πi(Z)

|ti(z̄i|z)− ti(z̄i|z′)|dz̄i,

and employing the triangle inequality for the additive structure
of ti(z̄i|z) and utilizing Lemma 3 and Assumption 1, we
obtain:

≤
n∑

i,j=1

∫
Πi(Z)

|tij(z̄i − dij − zj)− tij(z̄i − dij − z′j)|dz̄i

+

n∑
i,j=1

n∑
k=1
k 6=j

Mij

∫
Πi(Z)

|Tik(z̄i − dik − zk) (12)

−Tik(z̄i − dik − z′k)|dz̄i.
Finally, by Assumption 2 and Lemma 1 we obtain

≤
n∑

i,j=1

hijL(Πi(Z))|zj − z′j |+
n∑

i,j=1

n∑
k=1
k 6=j

Mij |zk − z′k|

≤

 n∑
i,j=1

Hij + (n− 1)Mij

 ‖z− z′‖ = H‖z− z′‖.

Proof of Theorem 3: We show that the constant Hij in
(8) exists for piecewise Lipschitz-continuous density functions
and compute it based on Assumption 3. Introduce the two
functions gdij(z) =

∑mij−1
k=1 J kijθ(z − ckij) and gcij(z) =

tij(z)− gdij(z), where J kij =
∑k
q=1 J

q
ij , θ(·) denotes the unit

step function, and {ckij | k ∈ Nmij−1} are the discontinuity
points of the density function tij(·). Then the density function
is decomposed into tij(z) = gcij(z) + gdij(z), where gcij is
its continuous part and gdij is a piecewise constant function
encompassing its jumps (cf. Fig. 4). It is clear that∫

Πi(Z)

|gdij(z̄ − dij − z)− gdij(z̄ − dij − z′)|dz̄

≤
m−1∑
k=1

|J kij ||z − z′|,∫
Πi(Z)

|gcij(z̄ − dij − z)− gcij(z̄ − dij − z′)|dz̄

≤ Li max
k

hkij |z − z′|.

Adding both sides using the triangle inequality leads to the
desired value for Hij .

Proof of Theorem 4: We will show that the following
inequality holds:∫

Πi(A)

|tij(z̄i − dij − zj ;λij , ςij)− tij(z̄i − dij − z′j ;λij , ςij)|dz̄i

≤ 2λij |zj − z′j |, for all zj , z′j ∈ Πj(Z).

Without loss of generality, since the integrand and the
expression on the right-hand side are symmetric w.r.t. zj and
z′j , let us assume that zj ≤ z′j . It follows that the integrand is
a piecewise continuous function of z̄i, zj , z′j :

λij exp{−λij(z̄i − dij − z′j − ςij)}
−λij exp{−λij(z̄i − dij − zj − ςij)},

if z̄i ≥ z′j + dij + ςij ,
λij exp{−λij(z̄i − dij − zj − ςij)},

if zj + dij + ςij ≤ z̄i ≤ z′j + dij + ςij ,
0, if z̄i ≤ zj + dij + ςij .

Thus the overall bounds can be computed based on the bounds
of the first two sub-functions. We will prove that the first two
sub-functions are bounded by λij |zj−z′j |. Let us focus on the
first sub-function:

λij

∫ +∞

z′j+dij+ςij

(
exp{−λij(z̄i − dij − z′j − ςij)}

− exp{−λij(z̄i − dij − zj − ςij)}) dz̄i
= λij(exp{λijz′j} − exp{λijzj})∫ +∞

z′j+dij+ςij

exp{−λij(z̄i − dij − ςij)}dz̄i

= (exp{λijz′j} − exp{λijzj}) exp{−λijz′j}
= 1− exp{−λij(z′j − zj)}
≤ λij |zj − z′j |.

The last inequality holds because λij(z′j − zj) ≥ 0 and 1 −
exp{−z} ≤ z for all z ≥ 0. Then we continue to the second
sub-function:

λij

∫ z′j+dij+ςij

zj+dij+ςij

exp{−λij(z̄i − dij − zj − ςij)}dz̄i

= − exp{−λij(z′j − zj)}+ 1

≤ λij |zj − z′j |.

Proof of Theorem 5: The proof follows the same line of
proofs of Theorems 2 and 3. We utilize the inequality (8) and
Lemma 1 in the right-hand side of (12) to get∫
Z
|tz(z̄|z)− tz(z̄|z′)|dz̄ ≤

n∑
i,j=1

Hijδj +

n∑
i,j=1

n∑
k=1
k 6=j

Mijδk,

which is equal to
∑n
r=1H(r)δr with H(r) defined in (9).

Finally, Proposition 1 guarantees the abstraction error of E =
N
∑n
r=1H(r)δr.
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Proof of Theorem 6: We consider Tij(·) and T̃ij(·) the
associated distribution functions:

|Tij(z)− T̃ij(z)| =
∣∣∣∣∫ z

−∞
tij(u)du−

∫ z

−∞
t̃ij(u)du

∣∣∣∣
≤
∫ z

−∞
|tij(u)− t̃ij(u)|du ≤ εij .

Using this inequality we obtain∫
Z
|tz(z̄|z)− t̃z(z̄|z)|dz̄ ≤

n∑
i=1

∫
Πi(Z)

|ti(z̄i|z)− t̃i(z̄i|z)|dz̄i

≤
n∑

i,j=1

∫
Πi(Z)

|tij(z̄i + d− zj)− t̃ij(z̄i + d− zj)|dz̄i

+

n∑
i,j=1

n∑
k=1
k 6=j

sup
z̄i,zk

|Tik(z̄i + d− zk)− T̃ik(z̄i + d− zk)|

≤
n∑

i,j=1

εij +
n∑

i,j=1

n∑
k=1
k 6=j

εik = n
n∑

i,j=1

εij .

The upper bound on the error Ẽ is obtained by applying the
result in [33, Lemma 1] to the preceding inequality.

B. Approximation of Exponential Functions by Piecewise
Polynomial Functions

We now develop a procedure to compute an approximation
of exponential functions with arbitrary accuracy. The approx-
imation is characterized by a piecewise polynomial function.

Here we consider the negative exponential function f :
[0,+∞) → [0, 1], x 7→ e−x and provide a piecewise poly-
nomial approximation f̃ : [0,+∞)→ R such that∫ +∞

0

|f(x)− f̃(x)|dx ≤ ε,

for any given threshold ε > 0. Having this piecewise polyno-
mial approximation of the negative exponential function and
using shifted scaled variables, we can approximate any shifted
exponential distribution by a piecewise polynomial one for a
given threshold.

For this purpose we select the shifted Legendre polynomials
as the basis function with the following explicit representation

Pn(x) = (−1)n
n∑
k=0

(
n
k

)(
n+ k
k

)
(−x)k,

which are orthogonal in the interval [0, 1], i.e.∫ 1

0

Pm(x)Pn(x)dx =
1

2n+ 1
δmn,

where δmn is the Kronecker delta, which equals 1 if m = n
and 0 otherwise. Note that since we do not have any weighting
function inside the integral, we need to select the basis
functions to be orthogonal with weight 1. To the best of
our knowledge, Legendre polynomials are the only available
option.

Define the new basis functions ψij(x) and construct f̃(x)
according to

ψij(x) = Pj

(
x− i`
`

)
1[i`,(i+1)`)(x),

f̃(x) =

p−1∑
i=0

qi∑
j=0

cijψij(x),

where 1[i`,(i+1)`)(·) is the indicator function of the interval
[i`, (i+ 1)`), the number of intervals for the function f̃(·) is
denoted by p, the maximum degree of basis polynomials in the
i-th interval is denoted by qi, and the length of intervals ` > 0
will be specified later. Note that these basis functions are still
orthogonal over R and the coefficients can be computed as

cij = e−i` (2j + 1)

∫ 1

0

e−`uPj(u)du︸ ︷︷ ︸
αj

.

In the above equation, observe that αj does not depend on i.
This observation makes it possible to take q0 = q1 = . . . =
qp−1 = q and simplify the function f̃(·) by the following

f̃q(x) =

q∑
j=0

αjPj(x),

f̃(x) =

p−1∑
i=0

e−i`f̃q

(
x− i`
`

)
1[i`,(i+1)`)(x).

Remark 3: The coefficients have a closed form

αj = (2j + 1)

j∑
k=0

(−1)j+k
(
j
k

)(
j + k
k

)
k!

`k+1

− (2j + 1)e−`
j∑

k=0

k∑
r=0

(−1)j+k
(
j
k

)(
j + k
k

)
k!

(k − r)!
1

`r+1
.

Algorithm 5 presents the required steps to construct the
approximation function. The advantage of this algorithm is
that we compute the polynomial only for one interval and use
it to generate the polynomials for all intervals. This property
is due to the characteristics of the exponential function and in
general does not hold for other functions.

Theorem 7: If q ∈ N is selected sufficiently large such that∫ 1

0

|e−`x − f̃q(x)|dx ≤ ε1, (13)

then f̃(x) approximates the exponential function f(x) = e−x

which satisfies the inequality
∫ +∞

0
|f(x)− f̃(x)|dx ≤ ε.

Remark 4: The completeness of Legendre polynomials as
basis functions implies that

+∞∑
j=0

α2
j

2j + 1
=

∫ 1

0

e−2`udu =
1− e−2`

2`
.

Moreover it guarantees that

lim
q→∞

∫ 1

0

|e−`x − f̃q(x)|dx = 0.
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input: The approximation precision 0 < ε < 1 and the
number of intervals p ∈ N

output: f̃(x) =
p−1∑
i=0

e−i`f̃q
(
x−i`
`

)
1[i`,(i+1)`)(x)

1: Select the length of intervals ` = − 1
p ln

(
ε
2

)
> 0

2: Compute ε1 =
ε

2`

1− e−`
1− e−p`

3: Define f̃q : [0, 1] → R as the polynomial approximation
of the function e−`x in the interval [0, 1]:

f̃q(x) =

q∑
j=0

αjPj(x), αj = (2j + 1)

∫ 1

0

e−`uPj(u)du.

4: Select q sufficiently large such that∫ 1

0

|e−`x − f̃q(x)|dx ≤ ε1.

Fig. 5. Algorithm 5. Approximation of the function f(x) = e−x by a
piecewise polynomial function f̃ : [0,+∞)→ R.

Then there exists a q such that the inequality (13) is satisfied.
The convergence to zero is not monotonic but we can find
an upper bound for the quantity of q using Cauchy-Schwarz
inequality:∫ 1

0

|e−`x − f̃q(x)|dx ≤
[∫ 1

0

(e−`x − f̃q(x))2dx

]1/2

=

1− e−2`

2`
−

q∑
j=0

α2
j

2j + 1

1/2

.

The right-hand side is now monotonically converges to zero
which can be used to find an upper bound for the smallest
value of q satisfying (13) (cf. step 4 of Algorithm 5). This
upper bound must satisfy the inequality

q∑
j=0

α2
j

2j + 1
≥ 1− e−2`

2`
− ε21.
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