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Abstract We study the problem of finite-horizon probabilistic invariance for
discrete-time Markov processes over general (uncountable) state spaces. We com-
pute discrete-time, finite-state Markov chains as formal abstractions of the given
Markov processes. Our abstraction differs from existing approaches in two ways:
first, we exploit the structure of the underlying Markov process to compute the
abstraction separately for each dimension; second, we employ dynamic Bayesian
networks (DBN) as compact representations of the abstraction. In contrast, ap-
proaches which represent and store the (exponentially large) Markov chain explic-
itly incur significantly higher memory requirements. In our experiments, explicit
representations scaled to models of dimension less than half the size as those an-
alyzable by DBN representations.

We show how to construct a DBN abstraction of a Markov process satisfying an
independence assumption on the driving process noise. We compute a guaranteed
bound on the error in the abstraction w.r.t. the probabilistic invariance property
– the dimension-dependent abstraction makes the error bounds more precise than
existing approaches. Additionally, we show how factor graphs and the sum-product
algorithm for DBNs can be used to solve the finite-horizon probabilistic invariance
problem. Together, DBN-based representations and algorithms can be significantly
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more efficient than explicit representations of Markov chains for abstracting and
model checking structured Markov processes.

Keywords Structured stochastic systems · general-space Markov processes ·
formal verification · dynamic Bayesian networks · Markov chain abstractions

1 Introduction

Markov processes over general (uncountable) state spaces appear in many areas
of engineering, such as power and transportation networks, biological processes,
robotics, and manufacturing systems. The importance of this class of stochas-
tic processes in applications has motivated a significant research effort into their
foundations, analysis, and verification.

We study the problem of algorithmically verifying finite-horizon probabilistic
invariance for Markov processes, that is computing the probability that a stochastic
process remains within a given set for a given finite time horizon. For finite-state
stochastic processes, there is a mature theory of model checking discrete-time
Markov chains [7], and a number of probabilistic model checking tools [17,21]
compute explicit solutions to related verification problems. On the other hand,
stochastic processes taking values over uncountable state spaces do not in general
admit explicit solutions, and related verification problems are undecidable even
for simple dynamics [2]. A number of studies have therefore explored abstraction
techniques that reduce the given stochastic process (over a general state space)
to a finite-state process, while preserving properties in a quantitative sense [2,
9]. The abstracted model allows the application of standard model checking tech-
niques (and software tools) over finite-state models. The work in [2] has further
shown that an explicit error can be attached to the abstraction: this error is com-
puted purely based on continuity properties of the concrete Markov process. As
such, properties proved on the finite-state abstraction can be used to reason about
properties of the original process. The overall approach has been extended to linear
temporal specifications [3,29], and a software tool has been developed to automate
the abstraction procedure [13] and to couple it with standard probabilistic model
checkers [17,21].

In previous work, the structure of the underlying Markov process (namely,
the interdependence among its variables) has not been actively reflected in the
abstraction algorithms, and the finite-state Markov chain has been always repre-
sented explicitly, which can become quite expensive in terms of memory require-
ments. In many applications, the dynamics of the Markov process, which are fully
characterized by a conditional stochastic kernel, often exhibit specific structural
properties. More precisely, the dynamics of any state variable may depend only
on a limited number of other state variables, and the process noise driving each
state variable can be assumed to be independent. Examples of such structured
systems are models of power grids and sensor-actuator networks as large-scale in-
terconnected networks [28], and mass-spring-damper systems [5,6] with a given
non-dense topology.

In this work we present an abstraction and model checking algorithm for
discrete-time stochastic dynamical systems over general (uncountable) state spaces.
The procedure constructs a finite-state Markov abstraction of the process, but dif-
fers from previous work in that it is based on a dimension-dependent partitioning of
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the state space. Additionally, we perform a precise dimension-dependent analysis
of the error introduced by the abstraction, and our error bounds can be exponen-
tially smaller than the earlier bounds obtained in [2]. Furthermore, we represent
the abstraction as a dynamic Bayesian network (DBN) [18], instead of explicitly
representing it via a probabilistic transition matrix. The Bayesian network repre-
sentation exploits independence assumptions in the model to potentially provide
polynomially sized representations (in the number of dimensions) for the Markov
chain abstraction, whereas the explicit transition matrix would be exponential in
the number of dimensions. We show how factor graphs and the sum-product al-
gorithm, developed for belief propagation in Bayesian networks, can be used to
model check probabilistic invariance properties without constructing the transition
matrix. Overall, our approach leads to significant reduction in computational and
memory resources for model checking structured Markov processes, and provides
tighter error bounds.

The material is organized in seven sections. Section 2 defines discrete-time
Markov processes and the probabilistic invariance problem. Section 3 presents a
new algorithm for abstracting a process to a DBN, together with the quantification
of the abstraction error. We discuss efficient model checking of the constructed
DBN in Section 4. The performance of the DBN abstraction approach is compared
with the state-of-the-art abstraction procedure in Section 5. We apply the overall
abstraction algorithm to a case study in Section 6. Section 7 outlines current
directions of investigation.

2 Markov Processes and Probabilistic Invariance

2.1 Discrete-Time Markov Processes

We write N for the non-negative integers N := {0, 1, 2, . . .} and Nn for positive
integers not greater than n, Nn := {1, 2, . . . , n}. We use bold typeset for vectors
and normal typeset for one-dimensional quantities.

We consider discrete-time stochastic dynamical systems defined over a general
state space S. For a sequence of independent and identically distributed (iid)
random variables {ζ(t), t ∈ N} taking values in Rn, and a measurable map f :
S × Rn → S, the dynamical system is characterized as

s(t+ 1) = f(s(t), ζ(t)), ∀t ∈ N, s(0) = s0 ∈ S. (1)

The stochastic dynamical system (1) can be seen as a discrete-time Markov
process Ms characterized by the tuple (S,B, Ts): S is the continuous state space,
which we assume to be endowed with a metric and to be separable1; B is the
Borel σ-algebra associated to S, which is the smallest σ-algebra containing all
open subsets of S; and Ts : S ×B → [0, 1] is a stochastic kernel, so that Ts(·, B) is
a non-negative measurable function for any set B ∈ B, and Ts(s, ·) is a probability
measure on (S,B) for any s ∈ S. The stochastic kernel Ts(s, ·) of dynamical system
(1) is computed as

Ts(s, B) = Tζ (ζ ∈ Rn : f(s, ζ) ∈ B) ,

1 A metric space S is called separable if it admits a countable dense subset.
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where Tζ is the distribution of the r.v. ζ(0) (in fact, of any ζ(t) since these are
iid random variables). In other words, the map f and the distribution of the r.v.
{ζ(t)} uniquely define the stochastic kernel of the process.

Trajectories (also called traces or paths) of Ms are sequences (s(0), s(1), s(2), . . .)
which belong to the set Ω = SN. The product σ-algebra on Ω is denoted by F .
Given the initial state s(0) = s0 ∈ S of Ms, the stochastic Kernel Ts induces
a unique probability measure P on (Ω,F) that satisfies the Markov property:
namely for any measurable set B ∈ B and any t ∈ N

P (s(t+ 1) ∈ B|s(0), s(1), . . . , s(t)) = P (s(t+ 1) ∈ B|s(t)) = Ts(s(t), B).

We assume that the stochastic kernel Ts admits a density function ts : S × S →
R≥0, such that Ts(s, B) =

∫
B
ts(s̄|s)ds̄.

Let us expand the dynamical equation (1) explicitly over its states s = [s1, . . . , sn]T ,
map components f = [f1, . . . , fn]T , and uncertainly terms ζ = [ζ1, . . . , ζn]T , as
follows:

s1(t+ 1) = f1(s1(t), s2(t), . . . , sn(t), ζ1(t)),
s2(t+ 1) = f2(s1(t), s2(t), . . . , sn(t), ζ2(t)),

...
sn(t+ 1) = fn(s1(t), s2(t), . . . , sn(t), ζn(t)).

(2)

In this article we are interested in exploiting the knowledge of the structure of
the dynamics in (2), in order to scale up formal verification algorithms based
on abstractions [2,9,10]. We focus our attention on continuous (unbounded and
uncountable) Euclidean spaces S = Rn, and further assume that for any t ∈ N,
ζk(t) are independent for all k ∈ Nn. This latter assumption is widely used in the
theory of dynamical systems, and allows for the following multiplicative structure
on the conditional density function of the process:

ts(s̄|s) = t1(s̄1|s)t2(s̄2|s) . . . tn(s̄n|s), (3)

where the function tk : Rn × R → R≥0 solely depends on the map fk and the
distribution of ζk. The following example is adapted from [11] to demonstrate
the computation of the function tk based on some regularity assumptions on the
function fk.

Example 1 Consider a kth order version of the system of equations in (2),

sk(t+ 1) = fk(s(t), ζk(t)), s(·) ∈ Rn, ζk(·) ∈ R,

where ζk(·) are iid with known distribution tζk(·). Suppose that the vector field
fk : Rn×R→ R is continuously differentiable and that ∂fk

∂ζk
is invertible. Then the

implicit function theorem guarantees the existence and uniqueness of a function
gk : R × Rn → R such that ζk(t) = gk(sk(t + 1), s(t)). The conditional density
function tk in this case is [26]:

tk(s̄k|s) =

∣∣∣∣det

[
∂gk
∂s̄k

(s̄k, s)

]∣∣∣∣ tζk(gk(s̄k, s)).

As a special case the invertibility of ∂fk
∂ζk

is guaranteed for systems with additive

process noise, namely fk(s, ζk) = fkd(s) + ζk, which results in tk(s̄k|s) = tζk(s̄k −
fkd(s)). This fact is used in the subsequent examples and in Section 5. ut
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Remark 1 The results of this article are presented under the structural assumption
that ζk(·) are independent over k ∈ Nn. These results can be generalized to a
broader class of processes by allowing inter-dependencies between the entries of
the process noise, which leads to form subsets of the entries of ζ(·), which are so
that any two entries from different subsets are independent, whereas entries within
a subset may be dependent. This assumption induces a multiplicative structure on
ts(s̄|s) among the different subsets, which is similar to (3). As it will be discussed in
Section 3, our abstraction approach requires partitioning the state space projected
over these independent subsets, thus algorithmically the higher the number of
subsets, the more efficient our abstraction process. ut

The following two examples provide instances of stochastic dynamical systems
(2) and justify the structural assumption raised in (3).

Example 2 Figure 1 shows a system of nmasses connected by springs and dampers.
For i ∈ Nn, block i has mass mi, the ith spring has stiffness ki, and the ith

damper has damping coefficient bi. The first mass is connected to a fixed wall by
the left-most spring/damper connection. All other masses are connected to the
previous mass with a spring and a damper. A force ζi is applied to each mass,
modeling the effect of a disturbance or of process noise. The dynamics of the
overall system is comprised of the position and velocity of the blocks. It can be
shown that the dynamics in discrete time take the form s(t + 1) = Φs(t) + ζ(t),
where s(t) ∈ R2n with s2i−1(t), s2i(t) indicating the velocity and position of mass
i. The state transition matrix Φ = [Φij ]i,j ∈ R2n×2n is a band matrix with lower
and upper bandwidth 3 and 2, respectively (Φij = 0 for j < i−3 and for j > i+2).

ut

Example 3 A second example of structured dynamical systems is a discrete-time
large-scale interconnected system. Consider an interconnected system ofNd hetero-
geneous linear time-invariant (LTI) subsystems described by the following stochas-
tic difference equations:

si(t+ 1) = Φisi(t) +
∑
j∈Ni

Gijsj(t) +Biui(t) + ζi(t),

where i ∈ NNd
denotes the ith subsystem and si ∈ Rn×1,ui ∈ Rp×1, ζi ∈

Rm×1 are the state, the input, and the process noise of subsystem i. The term∑
j∈Ni

Gijsj(t) represents the physical interconnection between the subsystems
where Ni, |Ni| � Nd, is the set of subsystems to which system i is physically con-
nected. The described interconnected system can be found in many application
areas including smart power grids, traffic systems, and sensor-actuator networks
[15]. ut

2.2 Probabilistic Invariance

We focus on verifying probabilistic invariance, which plays a central role in ver-
ifying properties of a system expressed as PCTL formulae or as linear temporal
specifications [7,27,3,29].
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Fig. 1 An n-body mass-spring-damper system.

Definition 1 (Probabilistic Invariance) Consider a bounded Borel set A ∈ B,
representing a set of safe states. The finite-horizon probabilistic invariance problem
asks to compute the probability that a trajectory of Ms associated with an initial
condition s0 remains within the set A during the finite time horizon N :

pN (s0, A) = P{s(t) ∈ A for all t = 0, 1, 2, . . . , N |s(0) = s0}.

This quantity allows us to extend the result to a general probability distribution
π : B → [0, 1] for the initial state s(0) of the system as

P{s(t) ∈ A for all t = 0, 1, 2, . . . , N} =

∫
S
pN (s0, A)π(ds0). (4)

Solution of the probabilistic invariance problem can be characterized via the value
functions Vk : S → [0, 1], k = 0, 1, 2, . . . , N , defined by the following Bellman
backward recursion [2]:

Vk(s) = 1A(s)

∫
A

Vk+1(s̄)ts(s̄|s)ds̄ for k = 0, 1, 2, . . . , N − 1. (5)

This recursion is initialized with VN (s) = 1A(s), where 1A(s) is the indicator
function which is 1 if s ∈ A and 0 otherwise, and results in the solution pN (s0, A) =
V0(s0).

Equation (5) characterizes the finite-horizon probabilistic invariance quantity
as the solution of a dynamic programming problem. However, since its explicit so-
lution is in general not available, the actual computation of the quantity pN (s0, A)
requires N numerical integrations at each state in the set A. This is usually per-
formed with techniques based on state-space discretization [8].

3 Formal Abstractions as Dynamic Bayesian Networks

3.1 Dynamic Bayesian Networks

A Bayesian network (BN) is a tuple B = (V, E , T ). The pair (V, E) is a directed
acyclic graph (DAG) representing the structure of the network. The nodes in V are
(discrete or continuous) random variables and the arcs in E represent the depen-
dence relationships among the random variables. The set T contains conditional
probability distributions (CPD) in forms of tables or density functions for discrete
and continuous random variables, respectively. In a BN, knowledge is represented
in two ways: qualitatively, as dependences between variables by means of the DAG;



DBNs for Formal Verification of Structured Stochastic Processes 7

and quantitatively, as conditional probability distributions attached to the depen-
dence relationships. Each random variable Xi ∈ V is associated with a conditional
probability distribution P(Xi|Pa(Xi)), where Pa(Y ) represents the parent set of
the variable Y ∈ V: Pa(Y ) = {X ∈ V|(X,Y ) ∈ E}. A BN is called two-layered if
the set of nodes V can be partitioned to two sets V1,V2 with the same cardinality
such that only the nodes in the second layer V2 have an associated CPD.

A dynamic Bayesian network (DBN) [18,24] is a way to extend Bayesian
networks to model probability distributions over collections of random variables
X(0), X(1), X(2), . . . indexed by time t. A DBN2 is defined to be a pair (B0,B→),
where B0 is a BN which defines the distribution of X(0), and B→ is a two-layered
BN that defines the transition probability distribution for (X(t+ 1)|X(t)).

3.2 DBNs as Representations of Markov Processes

We now show that any discrete-time Markov process Ms over Rn can be repre-
sented as a DBN (B0,B→) over n continuous random variables. The advantage
of the reformulation is that it makes the dependencies between random variables
explicit.

The BN B0 is trivial for a given initial state of the Markov process s(0) = s0.
The DAG of B0 has the set of nodes {X1, X2, . . . , Xn} without any arc. The Dirac
delta distribution located in the initial state of the process is assigned to each node
of B0.3 The DAG for the two-layered BN B→ = (V, E , T ) comprises a set of nodes
V = V1 ∪ V2, with V1 = {X1, X2, . . . , Xn} and V2 = {X̄1, X̄2, . . . , X̄n}. Each arc
in E connects a node in V1 to another node in V2; (Xi, X̄j) ∈ E if and only if
tj(s̄j |s) is not a constant function of si. The set T assigns a CPD to each node
X̄j according to the density function tj(s̄j |s).

Example 4 Consider the following stochastic linear dynamical system:

s1(t+ 1) = a11s1(t) + ζ1(t)
s2(t+ 1) = a21s1(t) + a22s2(t) + ζ2(t)
s3(t+ 1) = a32s2(t) + a33s3(t) + ζ3(t)

...
sn(t+ 1) = an(n−1)sn−1(t) + annsn(t) + ζn(t),

(6)

with initial state s(0) = s0 = [s01, s02, . . . , s0n]T , where ζi(·), i ∈ Nn are indepen-
dent Gaussian r.v. N (0, σ2

i ), which clearly satisfies the independence assumption
on the process noise raised in Section 2.1. The conditional density function of the
system takes the following form:

ts(s̄|s) = t1(s̄1|s1)t2(s̄2|s1, s2)t3(s̄3|s2, s3) . . . tn(s̄n|sn−1, sn).

The DAG of the two-layered BN B→ associated with this system is sketched
in Figure 2 for n = 4. The BN B0 has an empty graph on the set of nodes

2 The DBNs considered in this paper are stationary (the structure of the network does not
change with the time index t). They have no input variables and are fully observable: the
output of the DBN model is its entire state.

3 For a general initial probability distribution π : B → [0, 1], a set of arcs must be added to
reflect its possible product structure. This construction is not important at the current stage
because of the backward recursion formulation of the probabilistic safety (please refer to (4)
in Section 2.2).



8 S. Esmaeil Zadeh Soudjani and A. Abate and R. Majumdar

X1 X2 X3 X4

X̄1 X̄2 X̄3 X̄4

Fig. 2 Two-layered BN B→ associated with the stochastic linear dynamical system in (7) for
n = 4.

{X1, . . . , Xn} with the associated Dirac delta density functions located at s0i,
δd(si(0)− s0i).

Note that model (6) is in the form

s(t+ 1) = Φs(t) + ζ(t) t ∈ N, (7)

for a lower bidiagonal matrix Φ = [aij ]i,j and independent Gaussian r.v. ζ(t) ∼
N (0, Σ) with the diagonal covariance matrix Σ = diag([σ2

1 , σ
2
2 , . . . , σ

2
n]). For the

linear dynamical system (7), which has a non-diagonal covariance matrix Σ, a
linear transformation can be employed to change the coordinates and to obtain a
stochastic linear system with a diagonal covariance matrix satisfying the indepen-
dence assumption on the process noise raised in Section 2.1. ut

3.3 Finite Abstraction of Markov Processes as Discrete DBNs

Let A ∈ B be a bounded Borel set of safe states. We abstract the structured
Markov process Ms interpreted in the previous section as a DBN with continuous
variables to a DBN with discrete random variables. Our abstraction is relative to
the set A. Algorithm 1 provides the steps of the abstraction procedure. It consists
of discretizing each dimension into a finite number of bins.

The first step of Algorithm 1 is to project the safe set A over different di-
mensions, Di

.
= Πi(A), where the projection operators Πi : Rn → R, i ∈ Nn,

are defined as Πi(s) = si for any s = [s1, . . . , sn]T ∈ Rn. In step 2 of the Algo-
rithm, set Di is partitioned as {Dij}ni

j=1 (for any i ∈ Nn, Dij ’s are arbitrary but
non-empty, non-intersecting, and Di = ∪ni

j=1Dij). In the next step, representative
points zij ∈ Dij are also chosen arbitrarily. The subsequent results are indepen-
dent of the choice of these representative points, but a natural option for interval
partition sets Dij is their center point. Then the DAG (V, E) of the DBN B→ is
constructed with V = {Xi, X̄i, i ∈ Nn} and E as per Section 3.2. Step 5 of the
algorithm constructs the support of the random variables in V. For any i ∈ Nn,
the support of Xi, X̄i will be Ωi

.
= Zi ∪ {φi} with the set Zi

.
= {zi1, . . . , zini}

containing the representative points selected in step 3 and the dummy state φi
representing the complement of the set Di. Finally, step 6 computes the discrete
CPDs Ti(X̄i|Pa(X̄i)), reflecting the dependencies among the variables.

Each row of the CPD Ti includes values of conditional random variables Pa(X̄i),
the value of r.v. X̄i, and their associated probability. This probability is written
as Ti(X̄i = z|v(Pa(X̄i))) in step 6 of the algorithm. In other words, the function
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Algorithm 1 Abstraction of model Ms as a DBN with B→ = (V, E , T ) over
discrete r.v.
Require: input model Ms = (S,B, Ts), safe set A
1: Project safe set A in each dimension Di

.
= Πi(A), i ∈ Nn

2: Select finite ni-dimensional partition of Di as Di = ∪ni
j=1Dij , i ∈ Nn

3: For each Dij , select single representative point zij ∈ Dij , zij = ξi(Dij)
4: Construct the DAG (V, E), with V = {Xi, X̄i, i ∈ Nn} and E as per Section 3.2
5: Define Zi = {zi1, . . . , zini}, i ∈ Nn, and take Ωi = Zi ∪ {φi} as the finite state space of

two r.v. Xi and X̄i, φi being dummy states as per Section 3.3
6: Compute elements of the set T , namely CPD Ti related to the node X̄i, i ∈ Ni, as

Ti(X̄i = z|v(Pa(X̄i))) =



∫
Ξi(z)

ti(s̄i|v(Pa(X̄i)))ds̄i, z ∈ Zi, v(Pa(X̄i)) ∩ φ = ∅
1−

∑
z∈Zi

∫
Ξi(z)

ti(s̄i|v(Pa(X̄i)))ds̄i, z = φi, v(Pa(X̄i)) ∩ φ = ∅

1, z = φi, v(Pa(X̄i)) ∩ φ 6= ∅
0, z ∈ Zi, v(Pa(X̄i)) ∩ φ 6= ∅

Ensure: output DBN with B→ = (V, E, T ) over discrete r.v.

v(·) acts on (possibly a set of) random variables and provides their instantiation.
The term v(Pa(X̄i)) that is present in the conditioned argument of ti leads to
evaluate function ti(s̄i|·) at the instantiated values of Pa(X̄i).

For any i ∈ Nn, Ξi : Zi → 2Di represents a set-valued map that associates to
any point zij ∈ Zi the corresponding partition set Dij ⊂ Di (this is known as the
“refinement map”). Furthermore, the abstraction map ξi : Di → Zi associates to
any point si ∈ Di the corresponding discrete state in Zi. Additionally, notice that
the absorbing states φ = {φ1, . . . , φn} are added to the definition of BN B→ so
that the conditional probabilities Ti(X̄i|Pa(X̄i)) marginalize to one.

The construction of the DBN with discrete r.v. in Algorithm 1 is closely related
to the Markov chain abstraction method in [2,10]. The main difference lies in
partitioning in each dimension separately instead of doing it for the whole state
space. Absorbing states are also assigned to each dimension separately instead of
having only one for the unsafe set. Moreover, Algorithm 1 stores the transition
probabilities efficiently as a BN.

3.4 Probabilistic Invariance for the Abstract DBN

We extend the use of P by denoting the probability measure on the set of events
defined over a DBN with discrete r.v. z = (X1, X2, . . . , Xn). Given a discrete set
Za ⊂

∏
iΩi, the probabilistic invariance problem asks to evaluate the probability

pN (z0, Za) that a finite execution associated with the initial condition z(0) =
z0 remains within the set Za during the finite time horizon t = 0, 1, 2, . . . , N .
Formally,

pN (z0, Za) = P(z(t) ∈ Za, for all t = 0, 1, 2, . . . , N |z(0) = z0).

This probability can be computed by a discrete analogue of the Bellman backward
recursion (see [4] for details).
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Theorem 1 Consider value functions V dk :
∏
iΩi → [0, 1], k = 0, 1, 2, . . . , N ,

computed by the backward recursion

V dk (z) = 1Za
(z)

∑
z̄∈

∏
i Ωi

V dk+1(z̄)P(z̄|z) k = 0, 1, 2, . . . , N − 1, (8)

and initialized with V dN (z) = 1Za
(z). Then the solution of the invariance problem

is characterized as pN (z0, Za) = V d0 (z0).

The discrete transition probabilities P(z̄|z) in Equation (8) are computed by taking
the product of the CPD in T . More specifically, for any z, z̄ ∈

∏
iΩi of the form

z = (z1, z2, . . . , zn), z̄ = (z̄1, z̄2, . . . , z̄n) we have

P(z̄|z) =
∏
i

Ti(X̄i = z̄i|Pa(X̄i) = z).

Our algorithm for probabilistic invariance computes pN (z0, Za) to approximate
pN (s0, A), for suitable choices of z0 and Za depending on s0 and A. The natural
choice for the initial state is z0 = (z1(0), . . . , zn(0)) with zi(0) = ξi(Πi(s0)). For
A, the n-fold Cartesian product of the collection of the partition sets {Dij}, i ∈ Nn
generates a cover of A as

A ⊂
⋃
{D1j}n1

j=1 × {D2j}n2
j=1 × . . .× {Dnj}

nn
j=1

=
⋃
j

{Dj |j = (j1, j2, . . . , jn), Dj
.
= D1j1 ×D2j2 × . . .×Dnjn} .

We define the safe set Za of the DBN as

Za =
⋃
j

{(z1j1 , z2j2 , . . . , znjn), such that A ∩Dj 6= ∅ for j = (j1, j2, . . . , jn)} ,

(9)
which is a discrete representation of the continuous set Ā ⊂ Rn

Ā =
⋃
j

{Dj , such that j = (j1, j2, . . . , jn), A ∩Dj 6= ∅} . (10)

For instance Ā can be a finite union of hypercubes in Rn if the partition sets Dij
are intervals. It is clear that the set Ā is in general different form A.

There are thus two sources of error: first due to replacing A with Ā, and second,
due to the abstraction of the dynamics between the discrete outcome obtained by
Theorem 1 and the continuous solution that results from (5). In the next section
we provide a quantitative bound on the two sources of error.

3.5 Quantification of the Error due to Abstraction

Let us explicitly write the Bellman recursion (5) of the safety problem over the
set Ā:

WN (s) = 1Ā(s), Wk(s) =

∫
Ā

Wk+1(s̄)ts(s̄|s)ds̄, k = 0, 1, 2, . . . , N − 1, (11)

which results in pN (s0, Ā) = W0(s0). Theorem 2 characterizes the error due to
replacing the safe set A by Ā.
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Theorem 2 Solution of the probabilistic invariance problem with the time horizon
N and two safe sets A, Ā satisfies the inequality

|pN (s0, A)− pN (s0, Ā)| ≤MNL(A∆Ā), ∀s0 ∈ A ∩ Ā,

where M
.
= sup

{
ts(s̄|s)

∣∣s, s̄ ∈ A∆Ā}, L(B) denotes the Lebesgue measure of any
set B ∈ B, and A∆Ā

.
= (A\Ā)∪ (Ā\A) is the symmetric difference of the two sets

A, Ā.

Proof Recall the recursive equations for the probabilistic safety problem over sets
A and Ā as in (5) and (11), respectively. Solutions of the safety problems are
pN (s0, A) = V0(s0) and pN (s0, Ā) = W0(s0). We prove inductively that the in-
equality |Vk(s) − Wk(s)| ≤ M(N − k)L(Ā∆A) holds for all s ∈ A ∩ Ā. This
inequality is true for k = N since VN (s) = WN (s) = 1 for s ∈ A ∩ Ā. For any
k = 0, 1, 2, . . . , N − 1 and any state s ∈ A ∩ Ā we have

|Vk(s)−Wk(s)| ≤
∫
A∩Ā

|Vk+1(s̄)−Wk+1(s̄)|ts(s̄|s)ds̄

+

∫
A\Ā

Vk+1(s̄)ts(s̄|s)ds̄+

∫
Ā\A

Wk+1(s̄)ts(s̄|s)ds̄

≤M(N − k − 1)L(Ā∆A) +ML(Ā\A) +ML(A\Ā)

= M(N − k)L(Ā∆A).

The inequality for k = 0 proves the upper bound MNL(Ā∆A) on |pN (s0, A) −
pN (s0, Ā)|. ut

The second contribution to the error is related to the discretization of Algorithm
1 which is quantified by posing regularity conditions on the dynamics of the pro-
cess. The following Lipschitz continuity assumption restricts the generality of the
density functions tk characterizing the dynamics of model Ms.

Assumption 1 Assume the density functions tk(s̄i|·) are Lipschitz continuous
with the finite positive Lipschitz constants dij:

|tj(s̄j |s)− tj(s̄j |s′)| ≤ dij |si − s′i|, (12)

with s = [s1, . . . , si−1, si, si+1, . . . , sn] and s′ = [s1, . . . , si−1, s
′
i, si+1, . . . , sn], for

all sk, s
′
k, s̄k ∈ Dk, k ∈ Nn, and for all i, j ∈ Nn.

Note that Assumption 1 holds with dij = 0 if and only if (Xi, X̄j) /∈ E in the DAG
of the BN B→. Assumption 1 enables us to assign non-zero weights wij = dijL(Dj)
to the arcs (Xi, X̄j) ∈ E , for all i, j ∈ Nn, of the graph. We define the out-weight of
the nodeXi byOi =

∑n
j=1 wij and the in-weight of the node X̄j by Ij =

∑n
i=1 wij .

Remark 2 The Lipschitz constants dij in (12) can be obtained as an upper bound
on the absolute value of the partial derivative (with respect to si) of the den-
sity function tj(s̄j |s). Each constant can be computed using symbolic or numeric
differentiation, then performing one single local optimization over the partition
of interest. Available software like MATLAB can easily be used to automate such
computations. The software tool FAUST2 [13] already employs computation of Lip-
schitz constants to perform Markov chain abstraction of stochastic systems. Note
that Assumption 1 is a mild restriction on the class of stochastic systems under
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study and is not bound to linear dynamics. For instance, any non-linear system
with additive noise sj(t+ 1) = fj(s(t)) + ζ(t) in which both fj(·) and the density
function of ζ(·) are Lipschitz continuous, satisfies Assumption 1. ut

Remark 3 Additionally, the above assumption implies Lipschitz continuity of the
conditional density functions tj(s̄j |s). Since trivially |si − s′i| ≤ ‖s − s′‖ for all
i ∈ Nn, we obtain

|tj(s̄j |s)− tj(s̄j |s′)| ≤ Hj‖s− s′‖ ∀s, s′ ∈ Ā, s̄j ∈ Dj ,

where Hj =
∑n
i=1 dij . The density function ts(s̄|s) is also Lipschitz continuous

if the density functions tj(s̄j |s) are bounded, but the boundedness assumption is
not necessary for the results of this paper to hold. ut

Assumption 1 enables us to establish Lipschitz continuity of the value functions
Wk in (11). This continuity property is essential in proving an upper bound on
the discretization error of Algorithm 1, which we shall present in Corollary 1.

Lemma 1 Consider the value functions Wk(·), k = 0, 1, 2, . . . , N , employed in
Bellman recursion (11) of the safety problem over the set Ā. Under Assumption
1, these value functions are Lipschitz continuous

|Wk(s)−Wk(s′)| ≤ κ‖s− s′‖, ∀s, s′ ∈ Ā,

for all k = 0, 1, 2, . . . , N with the constant κ =
∑n
j=1 Ij, where Ij is the in-weight

of the node X̄j in the DAG of the BN B→.

Proof The inequality holds for k = N sinceWN (s) = WN (s′) = 1 for any s, s′ ∈ Ā.
For k = 0, 1, 2, . . . , N − 1 and any s, s′ ∈ Ā we have

|Wk(s)−Wk(s′)| ≤
∫
Ā

Wk+1(s̄)|ts(s̄|s)− ts(s̄|s′)|ds̄

≤
∫
Ā

|ts(s̄|s)− ts(s̄|s′)|ds̄

Next, we employ a telescopic sum for the multiplicative structure of the density
functions in the integrand on the right-hand side, to obtain:

|Wk(s)−Wk(s′)| ≤
∫
Ā

∣∣∣∣∣
n∏
i=1

ti(s̄i|s)−
n∏
i=1

ti(s̄i|s′)

∣∣∣∣∣ ds̄
=

∫
Ā

∣∣∣∣∣∣
n∑
j=1

j−1∏
i=1

ti(s̄i|s′)
n∏
i=j

ti(s̄i|s)−
j∏
i=1

ti(s̄i|s′)
n∏

i=j+1

ti(s̄i|s)

∣∣∣∣∣∣ ds̄
≤

n∑
j=1

∫
Ā

j−1∏
i=1

ti(s̄i|s′)
n∏

i=j+1

ti(s̄i|s)
∣∣tj(s̄j |s)− tj(s̄j |s′)∣∣

 ds̄
≤

n∑
j=1

∫
Dj

∣∣tj(s̄j |s)− tj(s̄j |s′)∣∣ ds̄j
≤

n∑
j=1

Hj‖s− s′‖L(Dj) = ‖s− s′‖
n∑
j=1

HjL(Dj) = ‖s− s′‖
n∑
j=1

Ij . (13)

ut
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Corollary 1 The following inequality holds under Assumption 1:

|pN (s0, A)− pN (z0, Za)| ≤MNL(A∆Ā) +Nκδ ∀s0 ∈ A,

where pN (z0, Za) is the invariance probability for the DBN obtained by Algorithm
1. The initial state of the DBN is z0 = (z1(0), . . . , zn(0)) with zi(0) = ξi(Πi(s0)).
The set Za and the constant M are defined in (9) and Theorem 2, respectively.
The diameter of the partition of Algorithm 1 is defined and used as

δ = sup{‖s− s′‖,∀s, s′ ∈ Dj ,∀j Dj ⊂ Ā}.

Proof Construction of the set Ā in (10) implies that A ⊆ Ā. We use triangle
inequality and utilize the bound established in Theorem 2 to get, for all s0 ∈ A,

|pN (s0, A)− pN (z0, Za)| ≤ |pN (s0, A)− pN (s0, Ā)|+ |pN (s0, Ā)− pN (z0, Za)|

≤MNL(A∆Ā) + |W0(s0)− V d0 (z0)|,

where V d0 and W0 are defined respectively in (8) and (11). DBN constructed in Sec-
tion 3.3 is in fact a finite-state Markov chain with a specific structure. Combining
this with the Lipschitz continuity property of W0 proved in Lemma 1 enable us to
utilize the bound provided in [2]: the error caused by the state-space discretization
is upper-bounded by multiplication of three terms, which are Lipschitz constant of
the value functions κ, horizon of the invariance specification N , and the diameter
δ of the partition selected for the set Ā. Then we have |W0(s0)− V d0 (z0)| ≤ Nκδ,
which completes the proof. ut

The second error term in Corollary 1 is a linear function of the partition diameter
δ, which depends on all partition sets along different dimensions. We are interested
in proving a dimension-dependent error bound in order to parallelize the whole
abstraction procedure along different dimensions. The next theorem gives this
dimension-dependent error bound.

Theorem 3 The following inequality holds under Assumption 1:

|pN (s0, A)− pN (z0, Za)| ≤MNL(A∆Ā) +N
n∑
i=1

Oiδi ∀s0 ∈ A, (14)

with the constants defined in Corollary 1. Oi is the out-weight of the node Xi in
the DAG of the BN B→. The quantity δi is the maximum diameter of the partition
sets along the ith dimension

δi = sup{|si − s′i|,∀si, s′i ∈ Dij ,∀j ∈ Nni}.

Proof The proof follows the same lines as those of Lemma 1. We refine the in-
equality (13) to obtain an upper bound for |Wk(s)−Wk(s′)| localized to partition
sets. Namely, for any s, s′ ∈ Dj ,

|Wk(s)−Wk(s′)| ≤
n∑
j=1

∫
Dj

∣∣tj(s̄j |s)− tj(s̄j |s′)∣∣ ds̄j
≤

n∑
j=1

∫
Dj

n∑
i=1

dij |si − s′i|ds̄j ≤
n∑

i,j=1

dijδiL(Dj) =
n∑
i=1

Oiδi.
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Next, we utilize the results of [9,10], which give an upper bound on the partitioning
error based on the above local computation. This implies |W0(s0) − V d0 (z0)| ≤
N
∑n
i=1Oiδi. The rest of the proof is exactly the same as that of Corollary 1. ut

For a given error threshold ε, we can select the set Ā and consequently the diam-
eters δi such that MNL(A∆Ā) + N

∑n
i=1Oiδi ≤ ε. Therefore, generation of the

abstract DBN, namely selection of the partition sets {Dij , j ∈ Ni} (according to
the diameter δi) and computation of the CPD, can be implemented in parallel. For
a given ε and set Ā, the cardinality of the state space Ωi, i ∈ Nn, of the discrete
random variable Xi and thus the size of the CPD Ti, grow linearly as a function
of the horizon of the specification N.

Notice that the constant M defined in Theorem 2 and used in (14) depends on
Ā but can be replaced by

MC = sup
{
ts(s̄|s)

∣∣s, s̄ ∈ C} , (15)

where C is any set that contains A∆Ā. In order to tune the error in (14), one
method will be selecting the set C as a box containing the safe set A, computing
the constant MC as in (15), and then choosing Ā such that A ⊆ Ā ⊆ C with a
suitable L(Ā∆A). Subsequently, the partition diameters δi are selected for this set
Ā to guarantee the error threshold ε.

4 Efficient Model Checking of the Finite-State DBN

Existing numerical methods for model checking DBNs with discrete r.v. trans-
form the DBN into an explicit matrix representation [16,22,25], which defeats
the purpose of a compact representation. Instead, we show that the multiplicative
structure of the transition probability matrix can be incorporated in the compu-
tation which makes the construction of P(z̄|z) dispensable. For this purpose we
employ factor graphs and the sum-product algorithm [20] originally developed for
marginalizing functions and applied to belief propagation in Bayesian networks.
Suppose that a global function is given as a product of local functions, and that
each local function depends on a subset of the variables of the global map. In
its most general form, the sum-product algorithm acts on factor graphs in order
to marginalize the global function, i.e., taking summation respect to a subset of
variables, exploiting its product structure [20]. In our problem, we restrict the
summation domain of the Bellman recursion (8) to

∏
i Zi because the value func-

tions are simply equal to zero in the complement of this set. The summand in (8)
has the multiplicative structure

g(z, z̄)
.
= 1Za

(z)V dk+1(z̄)
∏
i

Ti(X̄i = z̄i|Pa(X̄i) = z), V dk (z) =
∑

z̄∈
∏

i Zi

g(z, z̄).

(16)
The function g(z, z̄) depends on variables {zi, z̄i, i ∈ Nn}. The factor graph of
g(z, z̄) has 2n variable nodes, one for each variable and (n+ 2) function nodes for
local functions 1Za

, V dk+1, Ti. An arc connects a variable node to a function node
if and only if the variable is an argument of the local function. The factor graph of
Example 4 for n = 4 is presented in Figure 3 – factor graphs of general functions
g(z, z̄) in (16) are similar to that in Figure 3, the only part needing to be modified
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Fig. 3 Factor graph of the linear
stochastic system (7) for n = 4.
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Fig. 4 Spanning tree of the linear stochastic system
in (7) for n = 4 and two orderings (z̄4, z̄3, z̄2, z̄1) (top
plot) and (z̄1, z̄2, z̄3, z̄4) (bottom plot).

being the set of arcs connecting variable nodes {zi, i ∈ Nn} and function nodes
{Ti, i ∈ Nn}. This part of the graph can be obtained from the DAG of B→ of the
DBN.

The factor graph of a function g(z, z̄) contains loops for n ≥ 2 and must be
transformed to a spanning tree using clustering and stretching transformations
[20]. For this purpose the order of clustering function nodes {Ti, i ∈ Nn} and that
of stretching variable nodes {zi, i ∈ Nn} needs to be chosen. Figure 4 presents the
spanning trees of the stochastic system in (7) for two such orderings. The variable
nodes at the bottom of each spanning tree specify the order of the summation,
whereas the function nodes considered from the left to the right indicate the order
of multiplication of the local functions. The rest of the variable nodes show the
arguments of the intermediate functions, which reflects the required memory for
storing such functions. The computational complexity of the solution carried out
on the spanning tree clearly depends on this ordering.

Algorithm 2 presents a greedy procedure that operates on the factor graph
and provides an ordering of the variables and of the functions to reduce the over-
all memory usage. This algorithm iteratively combines the function nodes and
selects the next variable node, over which the summation is carried out. Step 1
initializes the algorithm by distinguishing three sets of nodes: U1 = {z1, z2, . . . , zn}
and U2 = {z̄1, z̄2, . . . , z̄n} contain the variable nodes and U3 = {T1, T2, . . . , Tn} in-
cludes function nodes. The sequences ef and κf are initially empty and will contain
the function and variables for performing product and sum in the sum-product
algorithm. These sequences are built progressively during the while loop of the
algorithm.

In each iteration of the while loop we compute the set of nodes from U1 and U2

connected to the elements of U3 through functions Paf and Chf, respectively. Steps
4-6 modify the graph to combine the nodes in U3 that are connected to the same
set of nodes in U1 since these function nodes have the same conditional variables
and their memory usage is exactly the same. Step 7 selects the next function and
variable nodes for performing product and sum in the sum-product algorithm such
that the required memory is minimal among the possible selections. Finally, step
8 updates the sets after such selection.

Note that Algorithm 2 is applied to the factor graph of the system which has
only (3n+2) nodes. In contrast, the memory usage of the DBN model checking is a
polynomial function of the number of partition sets which is in general much larger
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Algorithm 2 Greedy algorithm for obtaining the order of stretching variables
and clustering functions in the factor graph
Require: Factor graph of the summand in Bellman recursion
1: Initialize the sets U1 = {zi, i ∈ Nn}, U2 = {z̄i, i ∈ Nn}, U3 = {Ti, i ∈ Nn}, ef = κf = ∅
2: while U1 6= ∅ do
3: For any node u ∈ U3 compute Paf(u) (resp. Chf(u)) as the elements of U1 (resp. U2)

connected to u by an arc in the factor graph
4: Define the equivalence relation R on U3 as uRū iff Paf(u) = Paf(ū)
5: Replace the set U3 with the set of equivalence classes induced by R.
6: Combine all the variable nodes of Chf(u) connected to one class
7: Select u ∈ U3 with the minimum cardinality of Paf(u) and put ef = (u, ef), κf =

(Chf(u), κf)
8: Update the sets U1 = U1\Paf(u), U2 = U2∪Paf(u)\Chf(u), U3 = U3\{u}, and eliminate

all the arcs connected to u
9: end while

Ensure: The order of variables κf and functions ef

than (3n+2) for practical accuracies. Thus the overhead related to Algorithm 2 is
definitely worth when viewed from the perspective of the attained memory savings.
Since Algorithm 2 computes the ordering progressively, its outcome depends on
the structure of the factor graph and is sub-optimal in general. The output of
this algorithm implemented on the factor graph of Example 4 is the orderings
κf = (z̄4, z̄3, z̄2, z̄1) and ef = (T4, T3, T2, T1), started from the outermost sum,
which is related to the spanning tree on top of Figure 4.

5 Comparison with the State of the Art

In this section we compare our approach with the state-of-the-art abstraction
procedure presented in [2] (referred to as AKLP in the following), which does
not exploit the structure of the dynamics. The AKLP algorithm approximates the
concrete model with a finite-state Markov chain by uniformly gridding the safe set.
As in our work, the error bound of the AKLP procedure depends on the global
Lipschitz constant of the density function of the model, however it does not exploit
its structure as proposed in this work. We compare the two procedures on (1) error
bounds and (2) computational resources.

Consider the stochastic linear dynamical model in (7), where Φ = [aij ]i,j is an
arbitrary matrix. The Lipschitz constants dij in Assumption 1 can be computed
as dij = |aji|/σ2

j

√
2πe, where e is Euler’s constant. From Theorem 3, we get the

following error bound:

eDBN
.
= MNL(A∆Ā) +

N√
2πe

n∑
i,j=1

|aji|
σ2
j

L(Dj)δi.

On the other hand, the error bound for AKLP is

eAKLP = MNL(A∆Ā) +
Ne−1/2

(
√

2π)nσ1σ2 . . . σn
‖Σ−1/2Φ‖2δL(A).

In order to meaningfully compare the two error bounds, select set A = [−α, α]n

and σi = σ, i ∈ Nn, and consider hypercubes as partition sets. The two error terms
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then become

eDBN = ςnη

(
‖Φ‖1
n
√
n

)
, eAKLP = ςηn‖Φ‖2, η =

2α

σ
√

2π
, ς =

Nδ

σ
√
e
,

where ‖Φ‖1 and ‖Φ‖2 are the entry-wise one-norm and the induced two-norm of
matrix Φ, respectively. The error eAKLP depends exponentially on the dimension n
as ηn, whereas we have reduced this term to a linear one (nη) in our proposed new
approach resulting in error eDBN. Note that η ≤ 1 means that the standard devi-
ation of the process noise is larger than the selected safe set: in this case the value
functions (which characterize the probabilistic invariance problem) uniformly con-
verge to zero with rate ηn; clearly the case of η > 1 is more interesting. On the
other hand for any matrix Φ we have ‖Φ‖1

n
√
n
≤ ‖Φ‖2. This second term indicates

how sparsity is reflected in the error computation. Denote by r the degree of con-
nectivity of the DAG of B→ for this linear system, which is the maximum number
of non-zero elements in rows of matrix Φ. We adapt the following inequalities from
[19] for the norms of matrix Φ (refer to the Appendix for a formal proof):

‖Φ‖2 ≤
√
nrmax

i,j
|aij |,

‖Φ‖1
n
√
n
≤ r√

n
max
i,j
|aij |, (17)

which shows that for a fixed dimension n, sparse dynamics, compared to fully
connected dynamics, results in better error bounds in the new approach.

In order to compare computational resources, consider the numerical values
N = 10, α = 1, σ = 0.2, and the error threshold ε = 0.2 for the lower bidiagonal
matrix Φ with all the non-zero entries set to one. Table 1 compares the number of
required partition sets (or bins) per dimension, the number of marginals, and the
required number of (addition and multiplication) operations for the verification
step, for models of different dimensions (number of continuous variables n). The
numerical values in Table 1 confirm that for a given upper bound on the error ε, the
number of bins per dimension and the required marginals grow exponentially in
dimension for AKLP and polynomially for our DBN-based approach. For instance,
to ensure the error is at most ε for the model of dimension n = 4, the cardinality
of the partition of each dimension for the uniform gridding and for the structured
approach is 2.9×105 and 8.5×103, respectively. Then, AKLP requires storing 4.8×
1043 entries (which is infeasible!), whereas the DBN approach requires 1.8× 1012

entries (∼ 8GB). The number of operations required for computation of the safety
probability are 1.1 × 1045 and 3.5 × 1021, respectively. This shows a substantial
reduction in memory usage and computational time effort: with given memory
and computational resources, the DBN-based approach in compare with AKLP
promises to handle systems with dimension that is at least twice as large.

Statistical model checking (SMC) [23] is an alternative approach to analyse
general probabilistic systems against temporal specifications. Our approach is dis-
tinct from SMC in the type of guarantees we provide on the numerical outcomes:
namely, our approach provides absolute guarantees for satisfaction of the safety
specification as in Corollary 1, whereas SMC provides probabilistic guarantees
(i.e., with a given confidence). Moreover, we can compute safety probabilities for
any initial state of the process belonging to a continuous domain, but the SMC
approach can handle only a finite set of initial states and its computational com-
plexity is linear in the cardinality of the initial set. Therefore SMC by itself cannot
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Table 1 Comparison of the AKLP and the DBN-based algorithms, over the stochastic lin-
ear dynamical model (7). The number of partition sets (or bins) per dimension, the number
of marginals, and the total required number of (addition and multiplication) operations for
the verification step, are compared for models of different dimensions (number of continuous
variables n).

dimension n 1 2 3 4 5 6 7 8

# bins/dim
AKLP 1.2× 103 1.1× 104 6.0× 104 2.9× 105 1.3× 106 5.8× 106 2.5× 107 1.1× 108

DBN 1.2× 103 3.6× 103 6.0× 103 8.5× 103 1.1× 104 1.3× 104 1.6× 104 1.8× 104

# marginals
AKLP 1.5× 106 1.5× 1016 4.8× 1028 4.8× 1043 1.5× 1061 1.5× 1081 4.3× 10103 3.5× 10128

DBN 1.5× 106 4.8× 1010 4.4× 1011 1.8× 1012 5.2× 1012 1.2× 1013 2.3× 1013 4.2× 1013

# operations
AKLP 2.9× 107 3.1× 1017 1.0× 1030 1.1× 1045 3.7× 1062 3.7× 1082 1.1× 10105 9.5× 10129

DBN 2.9× 107 1.9× 1012 8.0× 1016 3.5× 1021 1.7× 1026 8.9× 1030 5.2× 1035 3.4× 1040

handle continuous domains of initial state as we do in this article. To address this,
one option would be to partition the set of initial states, verify the process for
representative points of the partition sets, and then perform a sensitivity analysis
to judge satisfaction of the specification for non-evaluated initial states. Such a
sensitivity analysis can be seen as a special case of our approach (i.e., using the
Lipschitz continuity of the density function to prove that the property is a smooth
function of the initial state). Finally, our approach can be as well extended to
models with non-determinism, which is a feature knowingly difficult for existing
SMC algorithms and tools.

6 Numerical Case Study

In this section we present a model for a metabolic network [1] based on a stochastic
process, and compute the invariance probability over the model. A metabolic reac-
tion network consists of a set of c metabolites and a related set of b fluxes between
the metabolites in pool c. The concentrations of the metabolites are represented
with a vector c ∈ (R≥0)c, and the set of fluxes is denoted by a vector v ∈ Rb. The
metabolic network considered in this section is adapted from [1] and displayed in
Figure 5.

The material fluxes in v depend on enzymatic reaction mechanisms (for in-
stance, Michaelis-Menten kinetics), substrate concentrations and allosteric effec-
tors (vector c), and parameters of the mechanisms (α, encompassing for instance
affinity constants, maximal conversion rates, etc.). The rates of change for concen-
trations in c are described by balancing the in- and out-fluxes for each metabolite
pool. These balances can be expresses via a stoichiometric matrix Nr ∈ Zc×b,
which relates the number of balanced metabolites to the reactions present in the
network, and via the flux functions in vector v. These fluxes depend on the metabo-
lite concentrations c, as well as on the physio-chemical parameters α (e.g. kinetic
parameters), and on additional parameters β encompassing operational variables
(e.g. substrate feed to the reactor, dilution rates, and other experimental settings),
as follows:

dc = Nrv(c,α,β)dt+ dwt,

where {wt, t ∈ R≥0} is a Wiener process that additively captures uncertainties
in the parameters and in the unmodeled dynamics of the metabolic network. A
discrete-time dynamical model can be obtained by time sampling via the known
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Aex

vupt

A
v1

B

E C

Eex

D

v2

v3v4

v5

v6

Cell

Fig. 5 Metabolic network considered for case study presented in Section 6. The network
presents two extracellular metabolites (Aex and Eex), and five intracellular ones (A to E).
Arrows are labeled with metabolic fluxes, affecting the metabolites concentrations dynamics
as per (18).

Euler-Maruyama scheme, which yields

c(t+ 1) = c(t) +Nrv(c(t),α,β)τ + ζ(t), (18)

where τ is the sample time and {ζ(t), t ∈ N} is an iid Gaussian random sequence.
The state vector denoting the concentrations of the metabolites in (18) is

c = [cA, cB , cC , cD, cE ]T ∈ R5. The stoichiometric matrix Nr can be written as

Nr =


1 −1 0 0 0 0 0
0 1 −1 0 0 −1 0
0 0 1 −1 0 0 0
0 0 0 1 −1 0 0
0 0 0 0 1 1 −1

 ,
and the fluxes vector v = [vupt, v1, v2, v3, v4, v5, v6]T , where vupt is assumed to be
a constant input flux. The structure and parameters of the kinetic equations are
reported in Tables 2 and 3, respectively.

The one-step conditional density function of the network is a multivariate
Gaussian ts(c̄|c) ∼ N (m(c), Σ), with a mean m(c) that depends on the state
vector c as follows:

m(c) =


m1(cA, cB)
m2(cA, cB , cE)
m3(cB , cC , cE)
m4(cC , cD)
m5(cB , cD, cE)

 =


cA + τ [vupt − v1(cA, cB)]
cB + τ [v1(cA, cB)− v2(cB , cE)− v5(cB , cE)]
cC + τ [v2(cB , cE)− v3(cC)]
cD + τ [v3(cC)− v4(cD)]
cE + τ [v4(cD) + v5(cB , cE)− v6(cE)]

 ,
and with a covariance matrix Σ of {ζ(t)}. The two-layered BN B→ associated
with the metabolic network (18) is presented in Figure 6.
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Table 2 Kinetic equations in the metabolic network of the case study in Section 6

flux mechanism kinetic equation

v1 reversible Michaelis-Menten
vmax

(
cA − cB

Keq

)
KmA

(
1 + cB

KmP

)
+ cA

v2 2 Substrate Hill-Kinetic
vmaxchAB chBE(

KmA + chAB
) (
KmB + chBE

)
v3 Michaelis-Menten

vmaxcC

KmA + cC

v4 Michaelis-Menten
vmaxcD

KmA + cD

v5 reversible Michaelis-Menten
vmax

(
cB − cE

Keq

)
KmA

(
1 + cE

KmP

)
+ cB

v6 Michaelis-Menten
vmaxcE

KmA + cE

cA cB cC cD cE

c̄A c̄B c̄C c̄D c̄E

Fig. 6 Two-layered BN B→ associated with the metabolic network of Figure 5, with dynamics
in (18).

We assume the noises affecting reaction equations in (18) are independent [14],
which makes the covariance matrix diagonal Σ = diag([σ2

1 , σ
2
2 , . . . , σ

2
5 ]). We use

Lemma 2 in the appendix to compute weights wij associated with the DAG of
B→. These weights can be written as wij = 2hij/(σi

√
2π), where hij is the Lip-

schitz constant of the mean mi(c) respect to the jth element of c. We consider
the safe set A = [0, 1]5, time step τ = 0.05, time horizon N = 8, input flux
vupt = 0.8, and standard deviations σi = 0.2. The number of bins per dimension
[55, 13, 8, 8, 9]×102 is required to guarantee the error threshold ε = 0.2. Solution of
the invariance problem is presented in Figure 7. Each plot represents the solution
as a function of two initial state variables where the other three initial states are
zero. These simulation results indicate that the concentrations of all metabolites
remain within the interval [0, 1] during the time horizon N = 8 with high proba-
bility for initial concentrations close to zero. The probability decreases for initial
concentrations close to one. In other words, the noise term in equation (18) forces
the concentrations to jump outside of the interval with a higher chance for initial
concentrations close to the upper limit of the interval.
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Table 3 Parameter values used for the metabolic network of the case study in Section 6
(all parameters vmax have unit [µmol/(gCDW.s)], KmA and KmB in the kinetic equation of
v2 respectively have units [(µmol/gCDW )hA] and [(µmol/gCDW )hB ], all other KmA,KmP
have the metabolite concentration unit [µmol/gCDW ]).

Reaction Parameter Value

v1 vmax 3
Keq 3
KmA 0.1
KmP 3

v3 vmax 2
KmA 2

v5 vmax 2
Keq 4
KmA 1
KmP 1

Reaction Parameter Value

v2 vmax 2.5
KmA 0.25
hA 2
KmB 2
hB 3

v4 vmax 3
KmA 2

v6 vmax 2
KmA 3

cA(0)
0 0.2 0.4 0.6 0.8 1

c B
(0

)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

Fig. 7 Solution of the probabilistic invariance problem for the case study of Section 6, as
a function of initial states of the process. Each plot represents the solution as a function of
two initial metabolite concentrations (with units [µmol/gCDW ]), where the other three initial
concentrations have been taken to be equal to zero.

7 Conclusions and Future Directions

While we have focused on probabilistic invariance, our abstraction approach can be
extended to more general properties expressed within the bounded-horizon frag-
ment of PCTL [27] or to bounded-horizon linear temporal properties [3,29], since
the model checking problem for these logics reduce to computations of value func-
tions similar to the Bellman recursion scheme. Our focus in this paper has been the
foundations of DBN-based abstraction for general Markov processes: factored rep-
resentations, error bounds, and algorithms. We are currently implementing these
algorithms in the FAUST2 tool [13], and scaling the algorithms using dimension-
dependent adaptive gridding [10] as well as implementations of the sum-product
algorithm on top of data structures such as algebraic decision diagrams (as in
probabilistic model checkers [21]).
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A Appendix

Proof (Proof of Equation (17)) We utilize an inequality from [19], which provides bounds for
the maximum singular value of a matrix based on its sparsity pattern. In particular, for any
Φ = [aij ]i,j ∈ Rn×n,

‖Φ‖2 ≤ max
i,j:aij 6=0

[ri(Φ)cj(Φ)]1/2,

where ri(Φ) =
∑n
j=1 |aij | and cj(Φ) =

∑n
i=1 |aij |. The degree of connectivity of the DAG

of B→ for the linear system under study in this section is exactly the maximum number
of nonzero entries in the rows of the matrix Φ, which results in ri(Φ) ≤ rmaxi,j |aij | and
cj(Φ) ≤ nmaxi,j |aij |. Using the above inequality we obtain the first inequality in (17), namely

‖Φ‖2 ≤
[
rmax
i,j
|aij | × nmax

i,j
|aij |

]1/2

=
√
rnmax

i,j
|aij |.

For the second inequality in (17) we can write

‖Φ‖1 =

n∑
i=1

ri(Φ) ≤
n∑
i=1

rmax
i,j
|aij | = rnmax

i,j
|aij |.

ut

Lemma 2 The following inequality holds∫
R

∣∣φ(x;m,σ)− φ(x;m′, σ)
∣∣ dx ≤ 2

σ
√

2π
|m−m′|,

where φ(·;m,σ) is the Gaussian density function with mean m and standard deviation σ.

Proof Without loss of generality we assume m′ ≥ m.

I =

∫
R

1

σ
√

2π

∣∣∣∣exp

[
−

(x−m)2

2σ2

]
− exp

[
−

(x−m′)2

2σ2

]∣∣∣∣ dx =

∫ m+m′
2

−∞
. . .+

∫ ∞
m+m′

2

. . .

=

∫ m+m′
2

−∞

1

σ
√

2π

[
exp

[
−

(x−m)2

2σ2

]
− exp

[
−

(x−m′)2

2σ2

]]
dx

+

∫ ∞
m+m′

2

1

σ
√

2π

[
exp

[
−

(x−m′)2

2σ2

]
− exp

[
−

(x−m)2

2σ2

]]
dx.

Take ∆ = (m′ −m)/(2σ) and change the variables of the integration to get

I =

∫ ∆

−∞

1
√

2π
exp

[
−
u2

2

]
du−

∫ −∆
−∞

1
√

2π
exp

[
−
u2

2

]
du

+

∫ ∞
−∆

1
√

2π
exp

[
−
u2

2

]
du−

∫ ∞
∆

1
√

2π
exp

[
−
u2

2

]
du

= 2

∫ ∆

−∆

1
√

2π
exp

[
−
u2

2

]
du ≤ 2(2∆)

1
√

2π
=

2

σ
√

2π
(m′ −m).

ut



24 S. Esmaeil Zadeh Soudjani and A. Abate and R. Majumdar

B List of Symbols

Z = {0,±1,±2,±3, . . .} the set of integers
N = {0, 1, 2, 3, . . .} the set of non-negative integers
Nn = {1, 2, . . . , n} the finite set of positive integers
R≥0 non-negative real numbers
Rn n-dimensional Euclidean domain
Ms discrete-time Markov process
S state space of the Markov process
B Borel σ-algebra on the space S
Ts : S × B → [0, 1] stochastic kernel of Ms

B ∈ B any Borel set
Ω = SN the space of trajectories of Ms

F The product σ-algebra on Ω
P probability measure on (Ω,F) induced by the stochastic Kernel Ts
s0 ∈ S initial state of the process Ms

ts : S × S → R≥0 conditional density function of the process Ms

{ζ(t), t ∈ N} a sequence of iid random vectors taking values in Rn
Tζ distribution function of random variables ζ(t), t ∈ N
r.v. abbreviation for random variable
f : S × Rn → S a measurable map
s = [s1, . . . , sn]T entries of the state vector s
f = [f1, . . . , fn]T entries of the map f
ζ = [ζ1, . . . , ζn]T entries of random vector ζ
tk : Rn × R→ R≥0 density function obtained from the map fk and the distribution of ζk.
mi mass of block i in Example 2
ki of the ith spring in Example 2
bi coefficient of the ith damper in Example 2
Φ = [Φij ]i,j ∈ R2n×2n state transition matrix in Example 2
Nd number of heterogeneous LTI subsystems in Example 3
Φi state transition matrix of the ith subsystem in Example 3
Ni the set of subsystems to which system i is physically connected in Example 3
Gij coefficient matrix for the effect of subsystem j to i in Example 3
Bi input matrix in the ith subsystem of Example 3
A ∈ B bounded Borel set as the set of safe states
N finite time horizon of the invariance problem
pN (s0, A) solution of the probabilistic invariance problem
π : B → [0, 1] probability distribution of the initial state s(0)
Vk : S → [0, 1] value functions in the Bellman recursion for Ms

1A(s) indicator function of the set A
B = (V, E, T ) a Bayesian network (BN)
(V, E) a directed Acyclic Graph (DAG) representing the structure of B
V nodes of the DAG representing r.v. of B
E arcs of the DAG representing the dependence relationships among the r.v. in B
T a set containing the conditional probability distributions (CPD)
Xi ∈ V random variables in V
Pa(Y ) the parent set of the variable Y ∈ V: Pa(Y ) = {X ∈ V|(X,Y ) ∈ E}
P(Xi|Pa(Xi)) ∈ T conditional probability distribution of Xi ∈ V
V1,V2 subsets of nodes in a two-layered BN
X(0), X(1), X(2), . . . random variables indexed by time in a dynamic Bayesian network (DBN)
(B0,B→) a DBN
B0 a BN which defining the distribution of X(0)
B→ a two-layered BN defining the probability distribution for (X(t+ 1)|X(t))
V1 = {X1, X2, . . . , Xn} first set of random variables in the two-layered BN
V2 = {X̄1, X̄2, . . . , X̄n} second set of random variables in the two-layered BN
s(0) = s0 = [s01, s02, . . . , s0n]T entries of the initial state s(0)
Φ = [aij ]i,j ∈ Rn×n state matrix in the stochastic linear dynamical system
N (m,Σ) multivariate Gaussian distribution with mean m and covariance matrix Σ
Σ = diag([σ2

1 , σ
2
2 , . . . , σ

2
n]) a diagonal covariance matrix
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Πi : Rn → R the projection operator defined as Πi(s) = si for any s = [s1, . . . , sn]T

Di
.
= Πi(A) projection of the safe set A over the ith dimension

{Dij}ni
j=1 a partition for set Di

zij ∈ Dij representative point of the set Dij
Zi = {zi1, . . . , zini} collection of the representative points in the ith dimension
φi absorbing state of the ith dimension
Ωi = Zi ∪ {φi} finite state space of two r.v. Xi and X̄i
φ = {φ1, . . . , φn} the set of all absorbing states
Ξi : Zi → 2Di the refinement map that associates to any point zij ∈ Zi the corresponding

partition set Dij ⊂ Di
ξi : Di → Zi abstraction map that associates to any point si ∈ Di the corresponding discrete

state in Zi
Ti(X̄i|Pa(X̄i)) the discrete CPD related to the node X̄i
v(·) function that acts on a set of random variables and provides their instantiation
z = (X1, X2, . . . , Xn) the discrete r.v. defined over

∏
iΩi

Za ⊂
∏
iΩi the discrete safe set

P probability measure on the event in the discrete domain
pN (z0, Za) the probabilistic invariance problem in the discrete domain
V dk :

∏
iΩi → [0, 1] value functions for computation of pN (z0, Za)

V dN (z) = 1Za (z) indicator function of the set Za

P(z̄|z) conditional probability distribution in the discrete domain
j = (j1, j2, . . . , jn) a vector of indices
Dj

.
= D1j1 ×D2j2 × . . .×Dnjn a box in the n−dimensional space

Ā ⊂ Rn modified safe set in the continuous domain
Wk(s) value functions for computation of the invariance probability over Ā
L(B) the Lebesgue measure of any set B ∈ B
A∆Ā

.
= (A\Ā) ∪ (Ā\A) symmetric difference of two sets

M supremum of ts(s̄|s) over A∆Ā
dij Lipschitz constant of tj(s̄j |s) along the ith dimension
wij = dijL(Dj) weights associated to the graph of the DBN
Ij =

∑n
i=1 wij in-weight of node X̄j

Oi =
∑n
j=1 wij out-weight of node Xi

Hj global Lipschitz constant of tj(s̄j |s)
κ =

∑n
j=1 Ij Lipschitz constant of value functions Wk

δ diameter of the partition for the set Ā
δi diameter of the partition for the set Di
ε error threshold
e Euler’s constant
‖Φ‖1 entry-wise one-norm of matrix Φ
‖Φ‖2 induced two-norm of matrix Φ
r the degree of connectivity of the DAG of B→


