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Irreversible prey diapause as an optimal
strategy of a physiologically extended
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Abstract We propose an optimal control framework to describe intra-seasonal
predator-prey interactions, which are characterized by a continuous-time dynam-
ical model comprising predator and prey density, as well as the energy budget of
the prey over the season length. The model includes a time-dependent decision
variable for the prey, representing the portion of the prey population in time that is
active, as opposed to diapausing (a state of physiological rest). The predator fol-
lows autonomous dynamics and accordingly it remains activeduring the season.

The proposed model is a generalization of the classical Lotka-Volterra predator-
prey model towards non-autonomous dynamics that furthermore include the effect
of an energy variable. The model has been inspired by a specific biological system
of predatory mites (Acari: Phytoseiidae) and prey mites (so-called fruit-tree red
spider mites) (Acari: Tetranychidae) that feed on leaves of apple trees – its param-
eters have been instantiated based on field knowledge. The goal of the work is to
understand the decisions of the prey mites to enter diapause(a state of physiolog-
ical rest) given the dynamics of the predatory mites: this isachieved by solving an
optimization problem hinging on the maximization of the prey population contri-
bution to the next season.
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The main features of the optimal strategy for the prey are shown to be that (1)
once in diapause, the prey does not become active again within the same season
and hence diapause is an irreversible process; (2) for the vast majority of param-
eter space, the portion of prey individuals entering the diapause within the season
does not decrase in time; (3) with an increased number of predators, the optimal
population strategy for the prey is to start diapause earlier and to enter the dia-
pause more gradually. This optimal population strategy will be studied for its ESS
properties in our future research.

Keywords Predator-prey problems· fruit-tree red spider mites· game theory·
optimal control· singular characteristics

Mathematics Subject Classification (2000)49L20 · 92B05· 93C15

1 Introduction

Predator-prey interactions have traditionally been modeled either as continuous
time differential equations (Lotka-Volterra type models)or as difference equa-
tions (Nicholson-Bailey type models) (14; 21; 35; 36). The latter type of models
are of biological interest because they highlight that suchinteractions proceed over
a fixed time horizon, namely with one or more discrete generations within a sea-
son that is favorable for growth (e.g. summer in temperate regions), whereas they
are interrupted during seasons that are critical for growth(e.g. winter). Although
this feature adds to the biological realism of such models, they ignore the con-
tinuous character of the interactions during the season. Therefore, it is of interest
to develop general models that can account both for continuous interactions and
overlapping generations in summer seasons and discrete periods without interac-
tions during winter seasons (28). Such general models become even more essential
when the physiological decision variables depend on the predator and prey den-
sities reached during summer, rather than only on reliable season indicators, such
as night/day length and temperature (5; 33).

The motivation to consider model with these features comes in this work from
studies on the use of predatory mites (Acari: Phytoseiidae) for biological pest
control of fruit-tree red spider mites (Acari: Tetranychidae), as well as of the her-
bivores that feed on and damage leaves of apple trees (12; 13). In this environment,
winters (covering 6-7 months) are usually harsh and as such endanger the survival
of prey (12) and (even more so) that of predators (8; 12). Predator and prey den-
sities in the following summer season depend on their numbers entering a state
of physiological rest (the so-called diapause state) during the previous year. The
decision to enter diapause promotes the survival of the individual during winter
and emerges from induction by a combination of sufficiently long night lengths
and low temperatures (34). However, using another similar spider mite species
(more amenable to experimental treatment), it was shown that the decision to en-
ter diapause also depends on predator density during summer(16; 18; 19). From
the point of view of the prey mite this behavior makes intuitive sense as it faces a
grim future with increasing predator densities and thus an increased risk of death:
it may then do better by giving up reproduction, moving away from leaves to twigs
and branches (a refuge from predation, but without food) andby entering diapause
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earlier than indicated by the predictors of season length (night length and temper-
ature). However, if too many prey mites would make the same decision, this could
create a negative feedback on the predatory mite population, so that at some point
in time the prey mites would profit from the decreased predation risk by termi-
nating their diapause and returning to the leaves. This leads us to conclude that
the prey’s decision to enter diapause is part of a game where the predator is the
leader and the prey needs to find a best response to the predator. Another compli-
cating factor is that an early diapause raises the demands onthe energy store of
the individual prey mite, which needs to cover a longer period before terminating
diapause at the beginning of the next summer season – the energy level at diapause
termination will determine the reproductive capacity of the prey mite (17). Thus,
the decision to enter diapause within a year will depend on the current internal en-
ergy store of the prey mite, as this will have far-reaching consequences for winter
survival and reproduction in the summer season of the next year. Given the nega-
tive feedback between predator and prey and the complexity of the decisions that
prey mites are faced with making, it is virtually impossibleto intuitively pinpoint
the most likely strategies that will emerge from natural selection. In this article,
we will use an optimal control approach to find the strategiesthat are best for
the prey population as a whole. If there is an optimal solution, then this may not
necessarily be the best solution for any given prey individual, because selection
acts on individuals being the vehicles of genes. This is why the optimal solution
found in this article needs to be tested for its evolutionarystability by studying its
resistance to invasions of mutant individuals with alternative strategies, once the
problem is extended to multiple seasons.

Historical background of our model:The optimal control model that we propose
has been developed as an extension of classical predator-prey model defined by
Lotka-Volterra dynamics (21; 35; 36). The new model allows for a control struc-
ture, in order to analyze behavioral strategies of the prey mites. The parametriza-
tion of the model has been based on (12; 13). In the literature, the classical Lotka-
Volterra model gas been extended to a framework allowing forn different inter-
acting populations (10), as well as to a input-dependent setup (15), following the
first study of controlled predator-prey models in (9). Reachability properties of
controlled Lotka-Volterra systems were studied in (6). Then-dimensional Lotka-
Volterra system was extended in (11), where a stabilizationissue was studied. A
simplification of the controlled Lotka-Volterra model and its subsequent extension
was recently investigated in (1).

Notation: In the rest of this document, unless stated otherwise, the following no-
tation will be used:

n - season number
Tn - length of then-th summer season
Rn(t) - red spider mite population at timet ∈ [0,Tn], within then-th season
rn(t) - rescaled red spider mite population at timet ∈ [0,Tn], within then-th sum-

mer season
Pn(t) - predatory mite population at timet ∈ [0,Tn], within then-th summer season
pn(t) - rescaled predatory mite population att ∈ [0,Tn], within then-th summer

season
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En(t) - internal energy of the prey at timet ∈ [0,Tn], within the n-th summer
season

un(t) - decision variable (control) of the red fruit-tree spider mites (prey), within
then-th summer season

a(τ),b(τ),c(τ) - additional variables for the characteristic system in reverse time
S - singular surface (as used in the analysis of the optimal control problem)
C - singular surface for the simplified case with full energy
τ1 - time of the first event (optimal strategy of the prey becoming non-zero in

reverse timeτ)
τ2 - time of the second event (optimal strategy of the prey becoming 1 after being

lower than 1 in reverse timeτ)
τ3 - time of the third event (optimal strategy of the prey becoming lower than 1

after being equal to 1 in reverse timeτ)
Jn - intra-seasonal fitness function for the prey, within then-the season
JK - inter-seasonal fitness function for the prey overK years
V - cost function in reverse time
The subscriptn is dropped whenever the study focuses on a single season.

The article is structured as follows. Section 2 introduces an inter-seasonal
(multiple seasons) model, discusses and motivates the structure of its intra-seasonal
(single season) part, and hits at extensions toward a game. With focus on a sin-
gle season, Section 3 formally studies the optimal strategies of the prey. Section
4 elaborates on the biological interpretation of the obtained results and Section 5
discusses possible extensions and sketches future work.

2 Model of the interaction between predatory and fruit-treered spider mites

The model describes the interactions between predatory mites (predator) and fruit-
tree red spider mites (prey). We begin by formulating a control-dependent model
for the intra-seasonal (single season) dynamics (Section 2.1) and then extending
it to the inter-seasonal (multiple seasons) dynamics (Section 2.2). Section 2.3 dis-
cusses the biological relevance of the modeling choices.

The model allows characterizing the seasonal strategy of the prey as a solution
of an optimal control problem. Each yearly season is dividedinto two parts: the
summerandwinter season. The predator is assumed to be active during the entire
summer season. With regard to the interaction between predatory and fruit-tree
red spider mites, during the summer season both species can feed, respectively by
predation and by feeding on leaves of apple trees, which leads to reproduction.
Furthermore, prey can enter diapause, a quiescent state that protects from the en-
vironment and from predation – this in particular entails the decoupling between
the species (whereas predation involves the interaction between them). During the
winter season the species do not interact, and their populations independently de-
cline at a constant rate. The dynamics during winter are thustrivial and will be
simply modeled by a reset of the energy and population levels. Over an entire
year, we model the summer season with continuous dynamics, while the winter
season is described by discrete dynamics.

In the remainder of the text the terms “summer season” and “winter season”
are used interchangeably with the terms “summer” and “winter”, respectively.
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2.1 Summer interactions

In this section we focus on the dynamics of the prey (fruit-tree red spider mites) in
the summer season, assuming the predator (predatory mites)continues to forage
actively over the entire summer.

The (summer) fitness function for the preyJn models its survival capability,
and is related to the number of the individuals which enter diapause during the
summer. The shape of the fitness is as follows:

Jn(un) =

∫ Tn

0
(1−un(t

′))En(t
′)Rn(t

′)dt ′. (2.1)

In (2.1) the constantTn denotes the length of then-th summer. With the func-
tion un (no explicit time dependence) we denote the strategy for theprey, namely
un(t), t ∈ [0,Tn]. The decision variableun(t) indicates the portion of the prey pop-
ulation being active at timet: un(t) ∈ [0,1], for t ∈ [0,Tn]. Rn(t) represents the
prey population at timet. Accordingly, the quantity(1− un(t))Rn(t) represents
the number of the prey individuals in diapause at timet. Furthermore, the variable
En(t) ∈ [0,1] represents the (normalized) energy that is available to an average
individual within the prey population: ifEn(t) = 0, then the average individual is
dead, whereasEn(t) = 1 represents maximal fitness.

The system dynamics within then-th summer season is modeled as follows
(herePn(t) denotes the predator population in timet):

dEn(t)
dt

=−m(1−un(t))En(t)+d un(t)−d un(t)En(t), (2.2)

dPn(t)
dt

=−α Pn(t)+β γ un(t)Pn(t)Rn(t), (2.3)

dRn(t)
dt

=−α Rn(t)+ γ un(t)En(t)Rn(t)−β un(t)Pn(t)Rn(t). (2.4)

The quantitiesα,β ,γ > 0 andm,d > 0 are given parameters. Both the number of
predatorsPn(t) and that of preyRn(t) decrease at a rateα. In equation (2.3) the
number of predatorsPn(t) increases at a rate that is proportional to the predation,
represented by the product of the number of actual active prey un(t)Rn(t) and
the number of predatorsPn(t) with feeding rateβγ . Whenever active, the prey
population rate change in (2.4) decreases – due to predation– proportionally to
the number of active prey and number of predators (at rateβ ), whereas it increases
– due to feeding and reproduction – proportionally to the number of prey and the
average internal energy (with rateγ). The energy of the prey in (2.2) varies as
follows: whenever active (feeding), it increases proportionally to the distance to
its maximum (1−En(t)) with rated; on the other hand, whenever in diapause it
decreases proportionally to the actual average energy of the prey (with ratem), as
individuals in diapause slowly utilize their energy.

Remark 1Let us analyze the equilibrium dynamics obtained for extreme val-
ues of the input. The pointsP∗

n = R∗
n = 0 are always equilibria. Wheneverun ≡

0, they represent withE∗
n = 0 the only asymptotically stable equilibrium point.

Conversely, wheneverun ≡ 1, the model admits two equilibria for(E∗
n ,P

∗
n ,R

∗
n):
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(1,0,0), and
(

1, γ−α
β , α

βγ

)

. To ensure nonnegativity of equilibria,γ has to be

higher thanα (we will see below that a further requirement onβ to obtain quan-
tities larger than one will not be necessary). Moreover, equilibrium (1,0,0) is

unstable, whereas
(

1, γ−α
β , α

βγ

)

is marginally stable (namely, related to periodic

trajectories over the two populations). Selecting aun ∈ (0,1) leads to the require-
mentd ≥ m, which allows for values ofdEn

dt ≥ 0. ⊓⊔

Remark 2The dynamical model in (2.2)-(2.3)-(2.4) is a straightforward gener-
alization of the known Lotka-Voltera, predator-prey model(21; 35; 36), which
is obtained whenEn(t) = 1,un(t) = 1,∀t ∈ [0,Tn]. Notice that the energy value
En = 1 is an equilibrium for the dynamics whenever the control is kept constant
and equal to one. In other words, Lotka-Volterra dynamics represent a special con-
figuration of the model, where the energy is at its maximum, and where the prey
is always active (namely, feeding and breeding). ⊓⊔

The optimal behavior of the prey maximizes its fitness in (2.1). We will denote
this optimal ratio byu∗n(t), t ∈ [0,Tn], which can be found by solving the following
optimal control problem:

{

u∗n = argsup
un

∫ Tn
0 (1−un(t ′))En(t ′)Rn(t ′)dt ′,

subject to: (2.2)− (2.3)− (2.4).
(2.5)

2.2 Winter dynamics

As mentioned at the beginning of Section 2, the winter dynamics is modeled by
discrete resets in the predator and prey population levels,as well as in the internal
energy of the prey. It is observed that only a portion of the predators entering
winter survives. On the other hand, the prey has a chance to survive winter only if
it enters it in diapause, therefore a portion of the prey entering the diapause during
the summer will survive the winter that follows. However, itis observed that the
survival rate of the diapaused prey is higher than the survival rate of the (active)
predator. Moreover, due to the winter, the energy level of the prey is supposed to
drop remarkably.

If we consider the dynamics overK seasons, forn∈ {1, . . . ,K −1} the resets
of the state variables can be defined as follows:

Pn+1(0) = lnPn(Tn),

Rn+1(0) = ιn

∫ Tn

0
(1−un(t

′))Rn(t
′)dt ′,

En+1(0) = onEn(Tn),

where 1> ιn > ln > on > 0. The reset constants can be functions of the (winter)
season length. The fitness function of the prey overK years can be written as

JK(u) =
K

∑
n=1

Jn(un),
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and it is a function of the strategyu= (u1, . . . ,un).

Investigating the optimal strategy for the prey over multiple seasons (years)
is an interesting goal, which is related to the evolutionarystability of the optimal
strategy found. Bifurcation analysis can be used in order todetermine parameter
domains for which the proposed optimal strategy is evolutionary stable (7). Com-
parison of the outcome of our research with the research defining under which
conditions evolution indeed leads to the optimal strategy found by maximizing
certain criteria (26; 27) can then be made.

As a first step for the study of the optimal behavior over multiple seasons, this
work focuses on the solution of the optimal control problem within a single (n-th)
summer season.

2.3 Discussion on the model

In the proposed model, prey have to trade-off between the number of active and
diapaused individuals, since diapaused individuals increase their number of de-
scendants in the next generation (season). The optimal pattern of such a decision
depends on both the environment and the physiological stateof an individual (22).
To determine the optimal life history of an individual it is useful to incorporate
physiological variables in the model (22; 31) – in this work we have embedded a
dynamical energy variable. The prey individuals are thus described by two vari-
ables: their energy (physiological variable) and their population. Therefore, the
problem of maximizing the number of descendants can be translated into a “dy-
namic model of energy allocation and investment” (29).

While the internal energy of the preyE(t) ∈ [0,1] is important for the system
behavior, the internal energy of the predator is not essential to characterize the
optimal behavior of the prey, and one can assume that this internal energy is pro-
portional to the number of active prey, because these are being predated once all
of its individuals are active.

Most existing energy allocation models appear to be focusedon a single in-
dividual, not taking into account potential population-dependent environmental
feedback (see the review (29) and (20; 30)). The model considered in this pa-
per describes growth of a population size in interaction with the growth of another
population, and thus accounts for the influence of the individual population size as
well as for active-diapause strategy of individuals. As discussed, in our model the
population-dependent environmental feedback in the shapeof an energy variable
is explicit. This also allows embedding season-dependent environmental variabil-
ity into the model. We also provide a more formal argument (see Appendix A)
on the necessity to include energy in the model in order to effectively study the
diapause process.

We focus on the optimal strategy of the prey within one summer, while the
predator is present and active. The main goal is to see what type of strategy the
prey employ in presence of the predator and whether their entering diapause is
reversible or not (i.e. whether once they enter the diapause, they never become
active again). The study of the multi-seasonal dynamics of the system (such as
the evolutionary stability, optimal behavior of the prey for multiple seasons) is a
future step of this research.
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While our objective is to find the optimal behavior of the preyin the summer
season, one can also focus on the situation in which the predatory mites decide
their active/diapause ratio during the summer season in response to external con-
ditions or food shortage. In such a case the problem formulated in (2.5) can be
extended into a Stackelberg game (2; 32), with the predator acting as a leader and
the prey as the follower. Games of Stackelberg kind are needed, since the fitness
function of the predator would differ from that of the prey (the predatory mites
have chance to survive the winter even if they are in the diapause at the end of the
season). This fact, together with the asymmetry of the rolesbetween the predator
and prey is a motivation for defining the problem as a Stackelberg game. As the
Stackelberg game is more general than a Nash game, the solution of the Stack-
elberg game would coincide with the solution of the Nash gameif the hierarchy
between the predatory and prey mites would not play a role (2). A Stackelberg
game formulation between the predator and prey represents anatural extension of
our model.

3 Study of the structure of the optimal strategy of the prey within a summer
season

In this section we discuss the solution of the optimal control problem in (2.5),
focusing on the optimal strategy of the prey within a single summer season. Recall
that the control structure of the predator is fixed, which leads to focusing on the
strategy of the prey. Following Bellman’s approach (3), we apply the method of
singular characteristics (24; 25) to formalize the solution of the problem.

Let us start with parameterizing the model. Using information from (12; 13)
regarding the average number the fruit-tree red spider mites eaten by an adult
predatory mite per day and the average reproduction and death rates of both preda-
tory and fruit-tree red spider mites, we set the parametersα, γ , andm in (2.5) to
the following values:α = 1

20,γ = 1
5,m= 1

250. Moreover, note that the following
substitution can be used in (2.5):Pn =

1
β pn, Rn =

1
β rn. Consequently, the parame-

terβ does not play a role in (2.5) and can thus be disregarded: notice that the new
population variablespn andrn have now arbitrary units, which will simplify the
dynamical analysis of the model.

In the remainder of the text we will focus on the optimal strategy of the prey
within one (n-th) summer season, therefore we will drop the subscriptn in pn, rn,
ER

n , uR
n , andTn, defining the variablesp, r, E, u, andT instead.

3.1 Formal statement of the optimal control problem

Problem (2.5) can be rewritten as

u∗ = argsup
u

∫ T

0
(1−u(t ′))E(t ′) r(t ′)dt ′, (3.1)
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subject to the following dynamics:

dE
dt

=−
1

250
(1−u)E+d u−d uE, (3.2)

dp
dt

=−
1
20

p+
1
5

u pr, (3.3)

dr
dt

=−
1
20

r +
1
5

uE r−u pr, (3.4)

with the control inputu(t) ∈ [0,1], the energy of the preyE(t) ∈ [0,1], whereas
p(t) represents the (rescaled) concentration of the predator and r(t) that of the
prey, fort ∈ [0,T], with summer lengthT, expressed in days. The only parameter
left within the dynamical relations isd∈

(

1
250,1

]

, which affects the rate of change
of the energy level.

The two classical approaches to the solution of problem (3.1), subject to (3.2)-
(3.3)-(3.4), are Pontryagin’s maximum principle and Bellman’s dynamical pro-
gramming approach (3; 4). Here, we choose the latter approach, since Pontrya-
gin’s principle leads to candidate solutions only, and the validation of which of
these candidate solutions is optimal can be a difficult task.

As standard in Bellman’s approach, let us introduce a reverse timeτ = T − t
and a corresponding value function

V(p, r,E, t,u) =
∫ T

T−t
(1−u(t ′))r(t ′)E(t ′)dt′. (3.5)

The value function (3.5) is to be maximized for anyτ ∈ [0,T] as the the prey
selects an optimal strategy denoted byu∗(τ) over [0,T]. Notice that, whenever
dealing with the new time variableτ, we shall refer to the dynamics of the corre-
sponding variables along this “reverse time”. In order to find the optimal control,
the following Hamilton-Jacobi-Bellman (HJB) equation hasto be satisfied (3):

−
∂V
∂ τ

+sup
u

(

∂V
∂E

(

−
1

250
(1−u)E+d u−d uE

)

+
∂V
∂ p

(

−
1
20

p+
1
5

u pr
)

+
∂V
∂ r

(

−
1
20

r +
1
5

uE r−u pr
)

+(1−u)E r

)

= 0. (3.6)

Let us introduce the additional variablesa
def
= ∂V

∂E , b
def
= ∂V

∂ p , c
def
= ∂V

∂ r , obtaining the

following characteristic system (24) (hereE′ = dE
dτ , and similarly for the remaining

variables):






























E′ = 1
250(1−u)E−d u+d uE,

p′ = 1
20p− 1

5u pr,
r ′ = 1

20r +u pr− 1
5uE r,

a′ =− 1
250(1−u)a−dua+ 1

5urc+(1−u)r,
b′ =− 1

20b+ 1
5urb−urc,

c′ = 1
5u pb− 1

20c−u pc+ 1
5uE c+(1−u)E.

(3.7)
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3.2 Solution of the optimal control problem

As shown in (23), from equation (3.6) it can be seen that the optimal controlu∗

maximizes the quantityuS , where

S =
1

250
Ea+da−dEa+

1
5

prb− prc+
1
5

E rc−E r, (3.8)

and where the quantityS is defined asS = ∂h/∂u, with h representing the
argument of the supremization in the HJB equation (3.6). Notice that the quantity
S is a function of the variables in (3.7) and of time – unless stated otherwise, we
shall not explicitly write out these dependencies.

The optimal control takes the following form (23):

u∗ = HeavS =

{

1, if S > 0,
0, if S < 0. (3.9)

Furthermore, wheneverS (τ) = 0, thenu∗(τ) ∈ (0,1), which denotes a mixed1

strategy. On the other hand, ifu∗(τ)∈ (0,1) is optimal, thenS (τ) = 0 is invariant
with respect toτ for u∗(τ), which implies thatS (τ) = 0, as well asS ′(τ) = 0,
S ′′(τ) = 0 (and similarly for higher-order derivatives), which can be shown by
application of the Jacobi brackets (23).

The transversal conditions (23; 24) follow from the equations:

a(T) = b(T) = c(T) = 0,

and from the assumption that the number of the players and theenergy level has
to be nonzero at the end of the summer season (if the energy level is equal to zero,
then the prey population did not survive; furthermore, if either population level is
at zero, both have gone extinct):

E(T)
def
= E f > 0, p(T)

def
= pf > 0, r(T)

def
= r f > 0.

Let us denote the value ofS for state variables evaluated at timeT by S (T). It
follows thatS (T) =−E(T) r(T)< 0, and, therefore,

u(T) = Heav(S (T)) = 0.

Remark 3Let us emphasize the result above as a first conclusion on the shape of
the strategy of the prey: the strategy ends up in a diapause state at the end of the
summer season. This conclusion can also be directly inferred from the shape of
the cost function in (3.1). ⊓⊔

It is possible to emit the characteristic field (24) in reverse time, starting from
the terminal surface at timeT, with u∗(τ) = 0. This yields, forτ ≥ 0:







E(τ) = E f e
τ

250,

p(τ) = pf e
τ
20 ,

r(τ) = r f e
τ
20 ;

(3.10)







a(τ) = 500
27 r f

(

e
τ
20 −e−

τ
250
)

,
b(τ) = 0,
c(τ) = 500

27 E f
(

e
τ

250 −e−
τ
20
)

.

(3.11)

1 Mixed strategies are often referred to as singular or intermediate strategies.
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Note that the expressions in (3.11) contain constants from the quantities in (3.10),
as expected from (3.7). The presence of explicit solutions of the characteristic
system allows a precise study of events related to the behavior of the optimal
strategies – this is further elaborated in the next section.

3.2.1 Study of the time of the event when u∗(τ) = 0 changes to u∗(τ) ∈ (0,1)

We investigate the timeτ1 related to the verification of the conditionS (τ1) = 0,
which leads to the situation whenu∗(τ1) becomes positive (see pictorial represen-
tation in Fig. 1).

τ = 0τ = τ1τ = T

u∗ = 1

u∗ = 0

Fig. 1 Event timeτ1, corresponding to the optimal controlu∗(τ1) becoming positive. Recall that
the formulation is in reverse time.

The continuity of the characteristic trajectories (24) in (3.10)-(3.11) implies
that equationS (τ1) = 0 can be rewritten as follows:

r f
(

−
2
27

E1(e−
τ1
250 −e

τ1
20
)

−
500
27

d
(

e−
τ1
250 −e

τ1
20
)

+
500
27

dE1 (e−
τ1
250 −e

τ1
20
)

+
500
27

pf (e
τ1
20
)2

E f (e−
τ1
20 −e

τ1
250
)

−
100
27

E1e
τ1
20E f (e−

τ1
20 −e

τ1
250
)

−E1 e
τ1
20

)

= 0,

where we have introduced the new quantityE1 def
= E(τ1).

Remark 4Note that the above equation is satisfied independently of the value of
r f , the final prey density. This leads to claim that the timeτ1 of the first event
depends exclusively on the number of predators at the end of the summer (pf ), on
the final energy of the prey (E f ), and is furthermore parameterized by the constant
d. This observation is interesting from a biological viewpoint, since it seems to
indicate that the event related to having the whole prey population in diapause is
independent of the concentration of the same population (which can be associated
to the absence of a form of quorum sensing). ⊓⊔

From (3.10), let us substituteE1 = E f e
τ1
250. Assuming as essential a nonzero

value forr f , it is possible to express the time of the first eventτ1 as follows:

τ1 = 500 lnw,
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Fig. 2 Graph of the dependence ofτ1 with respect tod andE f , for the case wherepf = 0.

with w being the smallest real-valued root of the following high-order polynomial:

625·108((w29− w2)E f −w27+1
)

d+625·108(w54−w27)E f pf

+
(

(1−125·108)w31+(125·108+1)w4)(E f )2

+
(

3125·106 w29+25·107w2)E f . (3.12)

As discussed above, note thatτ1 depends on the energy of the prey at the end of
the summerE f , the number of individuals of the predator at the end of the summer
pf , and on parameterd. However, it is independent of the number of individuals
of the prey at the end of the summerr f .

The dependence of the time of the first switchτ1 on the parametersE f andd,
for the case whenpf = 0, is illustrated in Figure 2. It can be shown that values of
τ1 decrease with increasingpf (see Section 3.4 for more details).

3.2.2 Investigation of the existence of a second event: if∃τ2 > τ1 : u∗(τ2) = 1,
does there∃τ3 > τ2 and aδ > 0 : ∀τ ∈ (τ3,τ3+δ ],u∗(τ) ∈ [0,1)?

We have so far investigated the existence ofτ ≥ τ1 (in reverse time), which are
such thatS (τ) = 0 andu∗(τ) ∈ (0,1). We will study of the properties ofu∗(τ)
over S (τ) = 0 in the next section. Assume that there is a timeτ2 > τ1 which
is associated to the conditionS (τ) > 0: we investigate whether the condition
S (τ) = 0,τ > τ2, can be met again (see Fig. 3 for a pictorial representation).
More precisely, we look for a timeτ3 > τ2 and aδ > 0 such that, for anyτ ∈
(τ3,τ3+δ ],u∗(τ) ∈ [0,1).
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?

τ = 0τ = τ1τ = τ3 τ = τ2τ = T

u∗ = 1

u∗ = 0

Fig. 3 Study of the existence of a second event in reverse time: can the optimal strategyu∗ again
admit values within the interval[0,1), after being equal to 1?

Wheneveru∗(τ) = 1 the characteristic system takes the following form (again
in reverse time):































E′ =−d+dE,
p′ = 1

20p− 1
5 pr,

r ′ = 1
20r + pr− 1

5E r,
a′ =−da+ 1

5r c,
b′ =− 1

20b+ 1
5rb− rc,

c′ = 1
5 pb− 1

20c− pc+ 1
5Ec.

(3.13)

System (3.13) is not explicitly integrable. However, from (3.13) (top equation)
with an initial conditionE2 ∈ (0,1), we can get an explicit expression forE if
u∗ = 1 andτ ≥ τ1:

E(τ) = 1+(E2−1)ed(τ−τ1), (3.14)

which is monotonically decreasing withτ and lead to the following non-negativity
condition:

τ ≤ τ1−
1
d

ln(1−E2)
def
= τmax

2 ,

whereE2 = E(τ2) ∈ (0,1). The valueτmax
2 represents an (possibly infinite) upper

bound on the length of time during which the prey is physiologically active.

Proposition 31 (Nonexistence of a second event) The optimal control problem in
the reverse timeτ, defined by the system of characteristics in(3.7), admits at most
one event in u, namely if u(τ) takes the value1, then u(τ ′),τ ′ ≥ τ never enters
again the interval[0,1).

Proof.See Appendix B. ⊓⊔

3.3 Properties of the optimal control over the singular curve: optimal mixed
strategies

So far it has been shown that the optimal controlu∗(τ) starts (at the end of the
summer, in reverse time) at a value equal to 0, that may enter asingular state at
time τ1 (possibly switching discontinuously to the value 1), and that whenever
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it takes the value 1, it remains equal to that value thereafter, until τ = T (which
corresponds to the start of the summer season in real time). Alternatively, it may
happen that eitheru∗(τ) remains equal to 0 for allτ (i.e., S (τ) < 0 for all τ ∈
[0,T]), or thatu∗(τ) will move away from the value 0, while remaining bounded
within (0,1) (namely, within the surfaceS (τ) = 0), thus never reaching the value
1 (this would be related to the conditionS (τ)≤ 0 for all τ ∈ [0,T]).

In the following we study the behavior of the optimal controlu∗ on the singu-
lar surfaceS = 0. We are especially interested in “regularity” propertiesfor u∗,
and particularly in possible ranges of the parameter valued for which u∗(τ) is a
nondecreasing function (in reverse time) wheneverS (τ) = 0: this would allow
ruling out the biologically inconsistent behavior depicted in Figure 4.

?
τ = 0τ = T

u∗ = 1

u∗ = 0

Fig. 4 We investigate the properties mixed strategies in time: is anon-monotonic profile ofu∗

possible, or isdu∗
dτ nondecreasing (in reverse time) withinS = 0?

The optimal controlu∗ on the singular surface is denoted byus, and recall
that we focus on the caseus < 1. The characteristics on the singular surface are
obtained by solving the following system of equations:































E′ = 1
250(1−us)E−dus+dusE,

p′ = 1
20p− 1

5uspr,
r ′ = 1

20r +uspr− 1
5usEr,

a′ =− 1
250(1−us)a−dusa+ 1

5usr c+(1−us)r,
b′ =− 1

20b+ 1
5usrb−usrc,

c′ = 1
5uspb− 1

20c−uspc+ 1
5usEc+(1−us)E.

(3.15)

The initial conditions for the dynamics above can be derivedfrom (3.11) by setting
τ = τ1 (recall again that the characteristics are continuous (24)):











E(τ1)
def
= E1 = E f e

τ1
250,

p(τ1)
def
= p1 = pf e

τ1
20 ,

r(τ1)
def
= r1 = r f e

τ1
20 ;

(3.16)











a(τ1)
def
= a1 =

500
27 r f

(

e
τ1
20 −e−

τ1
250
)

,

b(τ1)
def
= b1 = 0,

c(τ1)
def
= c1 =

500
27 E f

(

e
τ1
250 −e−

τ1
20
)

.

(3.17)
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more predators

less predators

τ = 0τ = T
u∗ = 0

u∗ = 1

Fig. 5 Numerical simulations suggest that if the number of predators increases, then the prey
individuals begin to enter diapause earlier but more gradually.

From the relationsS = 0, S ′ = 0, S ′′ = 0, and from the set of equations (3.15),
a, b, and dus

dτ can be expressed in terms ofus, c, E, p, andr. While the expression
of dus

dτ can be expressed as a function of the system variables, its form does not
allow for an easy analysis. We are particularly interested in the values ofd for
which dus

dτ is non-negative: this would relate to an optimal strategy for the prey
that is non-increasing in real time. We have observed this time-dependent profile
for the mixed strategies consistently in simulations.

As a partial result, we try to find explicit values ford, for which dus

dτ ≥ 0 for all
possibler, E, andc, in the special instance of the absence of predators.

Proposition 32 (Non-negativity ofdus

dτ in the absence of predators) In the absence
of predators, there exists dmin such that for any E∈ (0,1), us ∈ (0,1), and r, the
inequality dus

dτ ≥ 0 holds for all d> dmin.

Proof.See Appendix C. ⊓⊔

3.4 Dependence of the optimal strategy on the predator density

Biological evidence suggests that a higher predator density in the environment in-
duces an earlier diapause (Sabelis and Overmeer, unpublished data). Results of
our analysis are aligned with this observation, although wecould not prove this
claim for the entire domain of initial parameters. Based on our reverse-time study,
numerical analysis of the roots of equation (3.12) have shown τ1 decreases ifpf

(predator population level at the end of the summer season) increases. This leads
us to claim that once the predator concentration level increases, the prey mites
should enter diapause earlier but more gradually than if less predatory individ-
uals were present, which would lead to a later complete diapause state than if
less predatory mites were present. Recall that we have shownin the model that
once prey individuals start entering diapause, they never become active again. The
overall behavior is depicted in Figure 5.

Model simulations suggest the following:

– In the real time prey individuals start entering diapause earlier if the number
of predatory individuals increases.

– The moment when all prey individuals enter diapause occurs later in the season
if there are more predators at the end of the summer season.
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– It is observed that in the casep 6= 0, du
dt ≤ 0, and that the number of predators

decreases as the prey start entering diapause.

4 Biological interpretation and recapitulation of the outcomes of the study

The inspiration for the development of the model has come from empirical obser-
vations on the interaction between predatory mites and fruit-tree red spider mites
on apple trees. The spider mites feed on leaves during summerand may move
away from leaves to lay winter eggs (the diapausing stage) ontwigs, branches,
and trunks of the tree where they cannot feed but are free of predatory mites. Set-
ting model parameters to realistic values for this system and studying the model
either analytically or numerically has lead to conclude that the following behavior
of the fruit-tree red spider mites is optimal:
1. In the beginning of the summer season the prey can be in any state (all active,

all in diapause, or anything inbetween), whereas at the end of the summer
season all prey individuals are in diapause.

2. If all prey individuals are active in early summer, the prey will start entering
diapause at a certain point in time and the proportion of diapaused individuals
increases monotonically. Similarly, if only part of the prey population is active
in early summer, then all prey end up being in diapause at one point in time
and stay in diapause until next year. Yet, if all prey individuals are in diapause
in early summer, then they continue to stay in diapause untilnext year.

3. The time (in real time) of diapause onset state depends on the energy of the
prey, on predator population size and on the rate of energy utilization (param-
eter d), but it is independent of prey population size (i.e. timing of diapause
does not require quorum sensing).

4. If predators are absent in the environment, all prey individuals are in diapause
later than if present. Empirical observations on diapause of fruit-tree red spider
mites on apple trees in the field (Sabelis and Overmeer, unpublished data)
reveal that virtually all individuals become active in early summer and starting
from a certain point in time the population gradually entersdiapause, definitely
not instantly. Moreover, experimental manipulation of thepredator population
in the field showed that the fruit-tree red spider mites enterdiapause earlier
in the presence of predatory mites and once in diapause they stay in diapause.
However, the density of fruit-tree red spider mites had an effect on the time
at which diapause was initiated, suggesting that some form of quorum sensing
(possibly via spider-mite induced plant volatile) takes place.

Figure 6 summarizes possible optimal strategy profilesu∗(τ),τ ∈ [0,T], for the
prey. Note that while we could not prove yet that the optimal strategy of the prey
is non-increasing witht for all possibled, but could show that it is indeed non-
increasing in the special case thatp= 0 for all but a small range of the parameter
d. This expected behavior has however been always observed insimulation.

5 Conclusion and research outlook

A dynamical model of the summer and winter predator-prey interactions between
mites has been put forward. This model is an extension of the classic Lotka-Voltera
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τ = 0τ = τ1τ = T

u∗ = 1

u∗ = 0

τ = 0τ = τ1τ = τ2τ = T

u∗ = 1

u∗ = 0

τ = 0τ = τ1τ = T

u∗ = 1

u∗ = 0

τ = 0τ = T

u∗ = 1

u∗ = 0

Fig. 6 Scheme of possible optimal strategiesu∗ for the prey. Based on the proposed dynamics
and optimization problem, we have shown irreversibility and (largely) the monotonicity of the
strategy profile. Notice that the optimal strategies do not need to be continuous corresponding
to the singular events in the outcome of the optimization problem.

models in that it includes not only the dynamics of predator and prey populations,
but also the dynamics of their energy level and an input for the prey. We have
considered the case where predators do not enter diapause until after the summer
season, but prey have the option to give up reproduction during summer and enter
a refuge from predation where they also stay during winter. An optimal control
problem formulation based on a population fitness function defined by the number
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of diapausing individuals has allowed the study of the optimal behavior for the
prey in the summer season.

While the correspondence between theoretical predictionsand empirical ob-
servations on mites is encouraging, there are also limitations (mostly analytical)
that should spawn new work. Moreover, it is still to be shown that optimal summer
behavior of the prey population, as derived in this study, isresistant against inva-
sion by mutant strategies and robust against structural modifications, such as the
inclusion of predator decisions to enter diapause or not. Ultimately, we hope to ex-
plain winter dynamics of predatory mites and fruit-tree redspider mites based on
optimal timing of diapause induction in summer. The use of bifurcation analysis
can help determining for which parameter domains the proposed optimal strate-
gies are evolutionary stable.

An extension of the optimal control problem to a game-theoretical problem
is not out of reach as long as the predator is either active or in diapause, without
having an option to choose a mixed strategy. The more generalsolution is topic of
further research.
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11. Gouzé, J.: Global stabilization of n-dimensional population models by a posi-
tive control. In: Proceedings of the 33rd IEEE Conf. on Decision and Control,
pp. 1335–1336. Orlando, USA (1994)



Optimality of irreversible prey diapause in an extended Lotka-Volterra model 19

12. Helle, W., Sabelis, M.W.: Spider Mites: Their Biology, Natural Enemies and
Control,World Crop Pests, vol. 1A. Elsevier (1985)

13. Helle, W., Sabelis, M.W.: Spider Mites: Their Biology, Natural Enemies and
Control,World Crop Pests, vol. 1B. Elsevier (1985)

14. Hopper, J.L.: Opportunities and handicaps of antipodean scientists: A. J.
Nicholson and V. A. Bailey on the balance of animal populations. Histori-
cal Records of Australian Science7(2), 179–188 (1987)

15. Kolmanovskii, V., Koroleva, N.: Control of a predator-prey system with in-
traspecies competition. Journal of Applied Mathematics and Mechanics55,
588–595 (1991)

16. Kroon, A., Veenendaal, R., Bruin, J., Egas, M., Sabelis,M.W.: Predation risk
affects diapause induction in the spider miteTetranychus urticae. Experimen-
tal and Applied Acarology34, 307–314 (2004)

17. Kroon, A., Veenendaal, R.L.: Trade-off between diapause and other life-
history traits in the spider miteTetranychus urticae. Ecological Entomology
23(3), 298–304 (2005)

18. Kroon, A., Veenendaal, R.L., Bruin, J., Egas, M., Sabelis, M.W.: “Sleeping
with the enemy”– predator-induced diapause in mite. Naturwissenschaften
95, 1195–1198 (2008)

19. Kroon, A., Veenendaal, R.L., Egas, M., Bruin, J., Sabelis, M.W.: Diapause
incidence in the two-spotted spider mite increases due to predator presence,
not due to selective predation. Experimental and Applied Acarology35(1-2),
73–81 (2005)

20. Lika, K., Kooijman, S.A.L.M.: Life history implications of allocation to
growth versus reproduction in dynamic energy budgets. Bulletin Of Math-
ematical Biology65, 809–834 (2003)

21. Lotka, A.J.: Undamped oscillations derived from the lawof mass action. Jour-
nal of the American Chemical Society42, 1595–1599 (1920)

22. McNamara, J., Houston, A.I.: State-dependent life histories. Nature
380(6571), 215–221 (1996)

23. Melikyan, A.: Necessary optimality conditions for a singular surface in the
form of synthesis. Journal of Optimization Theory and Applications82(2),
203–217 (1994)

24. Melikyan, A.: Generalized Characteristics of First Order PDEs: Applications
in Optimal Control and Differential Games. Birkhäuser, Boston (1998)
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Appendix A: Why energy has to be included in the model (quantitative argu-
ment from Section 2.3)

Let us consider the instantiated model in (3.2)–(3.4), and assume that the population-
dependent environmental feedback is not explicit, namelyE(t) = 1, t ∈ [0,T].
Then the optimization problem (3.1)–(3.4) simplifies to

u∗ = argsup
u

∫ T

0
(1−u)rdt ′;

dp
dt

=

(

1
5

ur−
1
20

)

p,

dr
dt

=

(

1
5

u−
1
20

−u p

)

r.

Introducing a value functionW(p, r, t,u) =
∫ T

T−t(1−u)rdt′ and the new variables

b
def
= ∂W

∂ p andc
def
= ∂W

∂ r , it is possible to show that the optimal control takes the form
u∗ = HeavC , where

C =

(

1
5

pb− pc+
1
5

c−1

)

r,

which, as in the more general case, implies that the optimal behavior of the prey
is again fully independent of the prey population level, andthatu∗ = 0 at the end
of the season. The characteristic system can be expressed asfollows:























p′ = 1
20p− 1

5u pr,

r ′ = 1
20r +u pr− 1

5ur,

b′ =− 1
20b+ 1

5urb−urc,

c′ = 1
5u pb− 1

20c−u pc+ 1
5uc+1−u.

With reference to the reverse timeτ, selecting au= 0 and transversal conditions
b(0) = c(0) = 0 yields:

p′ =
1
20

p⇒ p(τ) = p(0)e
τ
20 ,

r ′ =
1
20

r ⇒ r(τ) = r(0)e
τ
20 ,

b′ =−
1
20

b⇒ b(τ) = b(0)e−
τ
20 = 0,

c′ = 1−
1
20

c⇒ c(τ) = 20+e−
τ
20
(

c(0)−20
)

= 20−20e−
τ
20 .

Hence, the conditionC = 0, related to mixed optimal strategies andus ∈ (0,1),
can take place at timeτ1 if the following condition holds:

−p(0)
(

e
τ1
20
)2

r(0)
(

20−20e−
τ1
20
)

+
1
5

r(0)e
τ1
20
(

20−20e−
τ1
20
)

− r(0)e
τ1
20 =

r(0)
(

−20p(0)e
τ1
10 +20p(0)e

τ1
20 +3e

τ1
20 −4

)

= 0
(5.1)
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Fig. 7 If p(0) andτ1 are situated above the red curve, thenu∗ = 0 for the entire summer. (The
variableτ1 has to be higher than−20ln 3

4 ≈ 5.75 as displayed in the left plot.)

Assuming thatr(0)> 0, the equality in (5.1) is satisfied ifp(0) = −3+4e−
τ1
20

20e
τ1
20
(

−1+e−
τ
20
)

.

Assuming thatp(0) ≥ 0, a timeτ1 such thatu(τ1) 6= 0 exists ifτ1 ≥ −20ln3
4 ≈

5.75. Furthermore, pairs(τ1, p(0)) related to possible non-zero optimal strategies
for the prey are those corresponding to the curve depicted inFigure 7. For all

the values of(τ1, p(0)), such thatp(0) < −3+4e−
τ1
20

20e
τ1
20
(

−1+e−
τ
20
)

(below the curve in

Figure 7) the optimal strategy of the prey is to switch to an active state, namely
u∗(τ) = 1∀τ ≥ τ1. For all the remaining values of(τ1, p(0)), which in practice
means forp(0) > 0.05 and anyτ1, the optimal strategy of the prey is to remain in
diapause for the entire summer season: this in practice would deplete the energy
of the prey and therefore would lead to its death. This leads to the conclusion that
modeling the interactions of the considered system withoutincluding the energy
variable leads to inconsistent outcomes.

The argument can be generalized to models that are parameterized as in (3.3)-
(3.4), that is whereα and γ have not been fixed to the values 1/20 and 1/5,
respectively. It can be algebraically shown that the maximal value of he curve
p(0) is upper bounded by the quantity(γ −α) which, given the ranges of interest,
is again a very small quantity.
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Appendix B: Proof of Proposition 31

?

τ = 0τ = τ1τ = τ3 τ = τ2τ = T

u∗ = 1

u∗ = 0

Fig. 8 Study of the existence of a second event in reverse time: can the optimal strategyu∗ again
admit values within the interval[0,1), after being equal to 1?

As portrayed in Figure 8, let us assume that there exists a time τ3 : u∗(τ3) = 1

and there exists aδ > 0 :∀τ ∈ (τ3,τ3+δ ] : u∗(τ)∈ [0,1). Let variableE2
def
= E(τ2).

Settingu∗ = 1 for τ > τ2, the energyE(τ) satisfies

E(τ) = 1+(E2−1)ed(τ−τ2),

thereforeE3
def
= E(τ3) = 1+(E2−1)ed(τ3−τ2). Moreover, let us introduce the fol-

lowing variables:a3
def
= a(τ3),c3

def
= a(τ3), p3

def
= p(τ3), andr3

def
= r(τ3).

At timeτ = τ3, the conditionS = 0 has to be satisfied. Substituting expression
for E3 into equationS = 0 leads to

1
250

(

1+ed(τ3−τ2)
(

E2−1
))

a3+d a3−d
(

1+ed(τ3−τ2)
(

E2−1
))

a3+
1
5

p3 r3b3

− p3r3c3+
1
5

(

1+ed(τ3−τ2)
(

E2−1
))

r3c3−
(

1+ed(τ3−τ2)
(

E2−1
))

r3 = 0.

From this equation we can expressE2 as:

E2 = 1+
a3+50p3r3b3−250p3r3c3+50r3 c3−250r3

ed∆
(

250d a3− a3−50r3c3+250r3
) , (5.2)

where we have set∆ = τ3− τ2 > 0. SinceE2 ∈ (0,1], the inequality (5.2) is satis-
fied only if

1>
250p3r3c3−a3−50p3r3b3−50r3 c3+250r3

ed∆
(

250d a3− a3−50r3c3+250r3
) ≥ 0. (5.3)

Recall that if there is a second event at timeτ3, thenS (τ3) = 0, but also
S ′(τ3) = S ′′(τ3) = . . . = 0. From the equationS ′ = 0 the parametera3 can be
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expressed in terms of the other variables:

a3 =
r3

10d

(

2c3−2c3ed∆ +875ed∆ E2−2500p3+375−125p3 c3

+2500ed∆ p3+25p3 b3+500e2d∆ (E2)
2−1000e2d∆ E2+2c3ed∆ E2

−2500ed∆ E2 p3 a3+2500ded∆3 −2500ded∆ E2

+500e2d∆ −875ed∆ ). (5.4)

Furthermore,b3 can be expressed from the equationS ′′ = 0 (after substituting
(5.4) into this same equation), and likewisec3 can be expressed from the condition
S ′′′ = 0 (after substituting expressions fora3 andb3 into this equation) – we omit
reporting the expressions forb3 andc3, as their computation is straightforward.

Denoting the nominator and denominator of the fraction in Equation (5.3) as
“Nom” and “Den”, respectively, there are two cases characterizing the necessary
conditions in (5.3), for the existence of aτ3 > τ2 such thatu(τ) = 1 for τ ∈ [τ2,τ3]
and of aδ > 0 :∀τ ∈ (τ3,τ3+δ ],u(τ) ∈ (0,1):

Case 1

0≤ Nom, (5.5)

0< Den, (5.6)

0< Den−Nom. (5.7)

Case 2

0≥ Nom, (5.8)

0> Den, (5.9)

0> Den−Nom. (5.10)

The quantities Den and Nom can be then written withE2 expressed by (5.2). In
the following, the two cases are considered in detail.

Case 1: Condition (5.5) implies

250r3−50p3 r3b3+250p3 r3c3−50r3 c3 ≤ a3, (5.11)

whereas condition (5.6) implies

a3 <
50r3

(

c3−5
)

250d−1
(5.12)

and condition (5.7) implies

a3 <
50r3

(

ed∆ c3−5ed∆ − b3 p3+5p3 c3−c3+5
)

−ed∆ +250ed∆ d+1
. (5.13)

Note that inequalities (5.11) and (5.12) imply either

0<−50r3 b3+250r3 c3 (5.14)
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and

p3 <−
250d

(

c3−5
)

(

250d−1
)(

b3−5c3
) , (5.15)

or

−50r3 b3+250r3 c3 < 0 (5.16)

and

−250d
(

c3−5
)

(

250d−1
)(

b3−5c3
) < p3. (5.17)

We have substituted the expressions fora3, b3, and c3 into inequalities (5.14),
(5.15), and (5.16), (5.17), respectively. Assuming thatp3 > 0, r3 > 0,E f ∈ (0,1],
andd > 1

250, in both cases it can be shown that

a3 >
50r3

(

ed∆ c3−5ed∆ −b3 p3+5p3 c3−c3+5
)

−ed∆ +250ed∆ d+1
,

which contradicts equation (5.13) and therefore also equation (5.7).

Case 2: Condition (5.8) implies

250r3−50p3 r3b3+250p3 r3c3−50r3c3 ≥ a3, (5.18)

whereas condition (5.9) implies

a3 >
50r3

(

c3−5
)

250d−1
(5.19)

and condition (5.10) implies

a3 >
50r3

(

ed∆ c3−5ed∆ − b3 p3+5p3 c3−c3+5
)

−ed∆ +250ed∆ d+1
. (5.20)

Note that the inequalities in (5.18) and (5.19) imply either

0<−50r3b3+250r3c3 (5.21)

and

p3 >
−250d

(

c3−5
)

(

−1+250d
)(

b3−5c3
) , (5.22)

or

−50r3b3+250r3c3 < 0 (5.23)

and

−250d
(

c3−5
)

(

−1+250d
)(

b3−5c3
) > p3. (5.24)
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We have substituted expressions fora3, b3, andc3 into inequalities (5.21), (5.22),
and (5.23), (5.24), respectively. Assuming thatp3 > 0, r3 > 0,E f ∈ (0,1], and
d > 1

250, in both cases it can be shown that

a3 <
50r3

(

ed∆ c3−5ed∆ − b3 p3+5p3 c3−c3+5
)

−ed∆ +250ed∆ d+1
,

which contradicts equation (5.20) and therefore also equation (5.10). 2
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Appendix C: Proof of Proposition 32

If p= 0, the characteristic system takes the following form in reverse time:














E′ = 1
250(1−u)E−d u+d uE,

r ′ = 1
20r − 1

5uE r,
a′ =− 1

250(1−u)a−dua+ 1
5urc+(1−u)r,

c′ =− 1
20c+ 1

5uE c+(1−u)E.

(5.25)

Furthermore, the surfaceS can be expressed as

S =
1

250
Ea+da−dEa+

1
5

E rc−E r, (5.26)

It is again easy to check thatus(0) = 0 in reverse time, and thatτ1 = 500lnw, with
w being the smallest root of the following polynomial

100(E f )2w31+
(

−25E f −500dE f )w29+500dw27

−100(E f )2w4+
(

−2E f +500dEf
)

w2−500d.

From (5.25), the energy levelE1 of the prey entering diapause isE(τ1) = E f e
τ1
250.

Figure 2 represents the values ofτ1 as functions ofd andE f . Notice thatE1 ≥ 1
for E f ≥ 0.9775, therefore in the following we will assume thatE f ∈ (0,0.9775).
(Moreover, recall thatd > 1/250.)

EquationsS = 0, S ′ = 0, and S ′′ = 0 allow expressinga(τ), c(τ), and
us(τ) in terms ofr(τ) andE(τ), respectively. Of interest to this proof, the ex-
pression for the mixed strategyus(τ) reads as the ratio of two polynomials:(E

(

−

25E2−29·103 dE3+125·103 d2E2+116E3−13·103 d E+230·103d2+67750dE2−375·
103 d2E

)

)/
(

4(−125d E2−5·103 d2E−21E4−1250·103 d3+100E5−9·103 dE3+54250dE4+

531250d2E2−875·103 d2E3+1250·103 d3E+250·103 d2E4−25·103 E5d)
)

.
Remarkably, the expression is independent ofr, which aligns to earlier out-

comes on the independence of the prey population density.
Sinceus cannot by definition take values that are lower than 0 or greater than 1,

we denote the values for(d,E) for whichus ∈ [0,1] as “feasible” and we will call
those for whichus 6= [0,1] “unfeasible.” Figure 9 represents the feasibility regions
for (d,E), assumingd ∈ ( 1

250,1] andE ∈ (0,0.9775]. The feasible region for the
given parameters corresponds to possible trajectories that have mixed strategies,
whereas the unfeasible region relates to trajectories thatstay always in diapause
mode (us = 0), or discontinuously switch tous = 1. In either case, trajectories for
the optimal strategy will be non-decreasing in reverse time.

FromS ′′′ = 0 we can derive the expression ofdus

dτ . Figure 10 plots the parts
of the feasibility region for whichus is increasing and decreasing, respectively.

With focus on the feasible region, the following observations can be made:

– For d > 0.15, no mixed strategy takes place, since the parameter spacecorre-
sponds to the unfeasible region.

– For 1
250 < d < 0.15, either

– no mixed strategy takes place ifE is small, else
– a mixed strategyus takes place.
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Fig. 9 Regions ofd andE for which us ∈ (0,1]. The purple bold line corresponds tod andE
for which us = 1 and coincides with the boundary of the feasibility region.

Fig. 10 Regions ofd andE for which dus

dτ > 0 (denoted with a+) and for whichdus

dτ < 0 (denoted

by a−). The green dashed line corresponds to the(d,E) values for whichdus

dτ = 0.
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Let us further elaborate on the latter case (presence of mixed strategies) with the
help of Figure 10. Recall that

E′ =
E

250
(1−u)−d u(1−E),

and assume the dynamics at timeτ1 land in a region whereus has negative deriva-
tive. It can be numerically shown that the values ofus are quite small in this region.
Because of the values ofE > 0.5 and 1/250< d< 0.15,E′ > 0 persistently, given
thatdus/dt < 0. This regime will be sustained untilE = 1, which will forceus to
switch tou∗ = 1. Given the values of the quantities of interest, this will happen
for a short interval – ifd = 1

250, the interval will be approximately less than 0.5,
whereas ifd ∼ 0.15, the interval will be even smaller. ⊓⊔


