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Abstract We propose an optimal control framework to describe ingassnal
predator-prey interactions, which are characterized byragircuous-time dynam-
ical model comprising predator and prey density, as welhashergy budget of
the prey over the season length. The model includes a tipendient decision
variable for the prey, representing the portion of the prggyybation in time that is
active, as opposed to diapausing (a state of physiologésd).rThe predator fol-
lows autonomous dynamics and accordingly it remains adiiving the season.

The proposed model is a generalization of the classicald-btiterra predator-
prey model towards non-autonomous dynamics that furthexinclude the effect
of an energy variable. The model has been inspired by a spbmfogical system
of predatory mitesAcari: Phytoseiidagand prey mites (so-called fruit-tree red
spider mites)Acari: Tetranychidagthat feed on leaves of apple trees — its param-
eters have been instantiated based on field knowledge. Tdefjthe work is to
understand the decisions of the prey mites to enter diagausate of physiolog-
ical rest) given the dynamics of the predatory mites: thacisieved by solving an
optimization problem hinging on the maximization of theypp®pulation contri-
bution to the next season.
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The main features of the optimal strategy for the prey argvalto be that (1)
once in diapause, the prey does not become active agaimwiitbisame season
and hence diapause is an irreversible process; (2) for ttawajority of param-
eter space, the portion of prey individuals entering theaise within the season
does not decrase in time; (3) with an increased number oBpoes| the optimal
population strategy for the prey is to start diapause eaaliel to enter the dia-
pause more gradually. This optimal population strategyheilstudied for its ESS
properties in our future research.

Keywords Predator-prey problemdfruit-tree red spider mitesgame theory
optimal control- singular characteristics

Mathematics Subject Classification (2000)49L20- 92B05- 93C15

1 Introduction

Predator-prey interactions have traditionally been mediaither as continuous
time differential equations (Lotka-\olterra type modets)as difference equa-
tions (Nicholson-Bailey type models) (14; 21; 35; 36). Thtdr type of models
are of biological interest because they highlight that sotdractions proceed over
a fixed time horizon, namely with one or more discrete gefm@ratwithin a sea-
son that is favorable for growth (e.g. summer in temperaj®ns), whereas they
are interrupted during seasons that are critical for graetd. winter). Although
this feature adds to the biological realism of such modélsy ignore the con-
tinuous character of the interactions during the seasoerefare, it is of interest
to develop general models that can account both for contimir@teractions and
overlapping generations in summer seasons and discretelpavithout interac-
tions during winter seasons (28). Such general models beewan more essential
when the physiological decision variables depend on thdgboe and prey den-
sities reached during summer, rather than only on relisgdsan indicators, such
as night/day length and temperature (5; 33).

The motivation to consider model with these features comési$ work from
studies on the use of predatory mitéscéri: Phytoseiidag for biological pest
control of fruit-tree red spider miteé\¢ari: Tetranychidag as well as of the her-
bivores that feed on and damage leaves of apple trees (12n1Bis environment,
winters (covering 6-7 months) are usually harsh and as sud@rger the survival
of prey (12) and (even more so) that of predators (8; 12). ®oecnd prey den-
sities in the following summer season depend on their nusnéstering a state
of physiological rest (the so-called diapause state) duiliie previous year. The
decision to enter diapause promotes the survival of thevighaial during winter
and emerges from induction by a combination of sufficiendlyg night lengths
and low temperatures (34). However, using another simpates mite species
(more amenable to experimental treatment), it was showtrtlibadecision to en-
ter diapause also depends on predator density during sufigiet8; 19). From
the point of view of the prey mite this behavior makes intgitsense as it faces a
grim future with increasing predator densities and thusareiased risk of death:
it may then do better by giving up reproduction, moving awawf leaves to twigs
and branches (a refuge from predation, but without food)mrehtering diapause
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earlier than indicated by the predictors of season lenggih{mength and temper-
ature). However, if too many prey mites would make the sansesiba, this could
create a negative feedback on the predatory mite populatiotinat at some point
in time the prey mites would profit from the decreased predatisk by termi-
nating their diapause and returning to the leaves. Thissleado conclude that
the prey’s decision to enter diapause is part of a game whereredator is the
leader and the prey needs to find a best response to the preftadther compli-
cating factor is that an early diapause raises the demantisecenergy store of
the individual prey mite, which needs to cover a longer pkliefore terminating
diapause at the beginning of the next summer season — thgydeeel at diapause
termination will determine the reproductive capacity af firey mite (17). Thus,
the decision to enter diapause within a year will depend erctirent internal en-
ergy store of the prey mite, as this will have far-reachingsamuences for winter
survival and reproduction in the summer season of the next @ven the nega-
tive feedback between predator and prey and the complekithyealecisions that
prey mites are faced with making, it is virtually impossibdentuitively pinpoint
the most likely strategies that will emerge from naturaksgbn. In this article,
we will use an optimal control approach to find the strategjies are best for
the prey population as a whole. If there is an optimal sotyttben this may not
necessarily be the best solution for any given prey indzidhecause selection
acts on individuals being the vehicles of genes. This is vileydptimal solution
found in this article needs to be tested for its evolutiorsapility by studying its
resistance to invasions of mutant individuals with altéiugastrategies, once the
problem is extended to multiple seasons.

Historical background of our modelThe optimal control model that we propose
has been developed as an extension of classical predatprpdel defined by
Lotka-Volterra dynamics (21; 35; 36). The new model allosd control struc-
ture, in order to analyze behavioral strategies of the prigganThe parametriza-
tion of the model has been based on (12; 13). In the literatiweeclassical Lotka-
\olterra model gas been extended to a framework allowingnfdifferent inter-
acting populations (10), as well as to a input-dependenipggis), following the
first study of controlled predator-prey models in (9). Redility properties of
controlled Lotka-Volterra systems were studied in (6). Tikedimensional Lotka-
\olterra system was extended in (11), where a stabilizatisue was studied. A
simplification of the controlled Lotka-Volterra model ansl $Subsequent extension
was recently investigated in (1).

Notation: In the rest of this document, unless stated otherwise, tl@vimg no-
tation will be used:

n - season number

T, - length of then-th summer season

Ry (t) - red spider mite population at tintes [0, Ty)], within then-th season

rn(t) - rescaled red spider mite population at titve [0, T,], within then-th sum-
mer season

Pa(t) - predatory mite population at tintes [0, Ty, within then-th summer season

pn(t) - rescaled predatory mite populationtat [0, T,], within the n-th summer
season
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En(t) - internal energy of the prey at tintec [0, T,], within the n-th summer
season

un(t) - decision variable (control) of the red fruit-tree spidetes (prey), within
then-th summer season

a(1),b(1),c(1) - additional variables for the characteristic system irerse time

. - singular surface (as used in the analysis of the optimatabproblem)

% - singular surface for the simplified case with full energy

11 - time of the first event (optimal strategy of the prey becanimon-zero in
reverse timer)

T, -time of the second event (optimal strategy of the prey béegrh after being
lower than 1 in reverse timg)

13 - time of the third event (optimal strategy of the prey beawgrliower than 1
after being equal to 1 in reverse timg

Jn - intra-seasonal fithess function for the prey, within mkthe season

JK - inter-seasonal fitness function for the prey oeyears

V - cost function in reverse time

The subscriph is dropped whenever the study focuses on a single season.

The article is structured as follows. Section 2 introducesrder-seasonal
(multiple seasons) model, discusses and motivates thetstelof its intra-seasonal
(single season) part, and hits at extensions toward a garitle fdus on a sin-
gle season, Section 3 formally studies the optimal strasegi the prey. Section
4 elaborates on the biological interpretation of the ol#diresults and Section 5
discusses possible extensions and sketches future work.

2 Model of the interaction between predatory and fruit-tree red spider mites

The model describes the interactions between predatoesifptedator) and fruit-
tree red spider mites (prey). We begin by formulating a adrdependent model
for the intra-seasonal (single season) dynamics (Sectijna®d then extending
it to the inter-seasonal (multiple seasons) dynamics {@e2t2). Section 2.3 dis-
cusses the biological relevance of the modeling choices.

The model allows characterizing the seasonal strategyeqiriély as a solution
of an optimal control problem. Each yearly season is diviaa two parts: the
summerandwinter season. The predator is assumed to be active during the entir
summer season. With regard to the interaction between fagdand fruit-tree
red spider mites, during the summer season both speciesedjréspectively by
predation and by feeding on leaves of apple trees, whichsleadeproduction.
Furthermore, prey can enter diapause, a quiescent statertit@cts from the en-
vironment and from predation — this in particular entails tiecoupling between
the species (whereas predation involves the interactitwd®n them). During the
winter season the species do not interact, and their popugaindependently de-
cline at a constant rate. The dynamics during winter are titivial and will be
simply modeled by a reset of the energy and population le¥@®er an entire
year, we model the summer season with continuous dynamtite thhe winter
season is described by discrete dynamics.

In the remainder of the text the terms “summer season” andtériseason”
are used interchangeably with the terms “summer” and “wintespectively.
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2.1 Summer interactions

In this section we focus on the dynamics of the prey (frigetred spider mites) in
the summer season, assuming the predator (predatory mitehues to forage
actively over the entire summer.

The (summer) fitness function for the préy models its survival capability,
and is related to the number of the individuals which entepduse during the
summer. The shape of the fitness is as follows:

'Tn
In(un) = /0 (1— Un(t'))En(t))Ru ()t 2.1)
In (2.1) the constant, denotes the length of theth summer. With the func-
tion up (no explicit time dependence) we denote the strategy foptbg namely
un(t),t € [0, Tn]. The decision variable,(t) indicates the portion of the prey pop-
ulation being active at timé& un(t) € [0,1], for t € [0, Tp]. Ra(t) represents the
prey population at timé. Accordingly, the quantityf1 — un(t))Ra(t) represents
the number of the prey individuals in diapause at tinfeurthermore, the variable
En(t) € [0,1] represents the (normalized) energy that is available tovarage
individual within the prey population: iE,(t) = 0, then the average individual is
dead, whereaB,(t) = 1 represents maximal fitness.

The system dynamics within theth summer season is modeled as follows
(hereP,(t) denotes the predator population in tib)e

TE0ll) (1 un(1) Enlt) + dun(t) — (1) En(t), =2
dpd”t<t) — —aPa(t) + B yUn(t) Pa(t) Ra(t), (2:3)
—dRSt(t) = —ARy(t) + yUn(t) En(t) Ra(t) = BUn(t) Ry R(t). (2.4

The quantitiesr, 8,y > 0 andm,d > 0 are given parameters. Both the number of
predatord?,(t) and that of preyR,(t) decrease at a rate. In equation (2.3) the
number of predatorB,(t) increases at a rate that is proportional to the predation,
represented by the product of the number of actual active pyé) Ry (t) and
the number of predatorg,(t) with feeding rateBy. Whenever active, the prey
population rate change in (2.4) decreases — due to predafpwaportionally to
the number of active prey and number of predators (ai3ptehereas it increases
— due to feeding and reproduction — proportionally to the benof prey and the
average internal energy (with raj®. The energy of the prey in (2.2) varies as
follows: whenever active (feeding), it increases propordily to the distance to
its maximum (1— E,(t)) with rated; on the other hand, whenever in diapause it
decreases proportionally to the actual average energyeqiréty (with ratem), as
individuals in diapause slowly utilize their energy.

Remark 1Let us analyze the equilibrium dynamics obtained for exgeral-
ues of the input. The point®; = R, = 0 are always equilibria. Whenevay =
0, they represent witk;; = O the only asymptotically stable equilibrium point.
Conversely, whenevar, = 1, the model admits two equilibria fdiE;, Py, R;):
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9 T7 m/
higher thanor (we will see below that a further requirement grio obtain quan-
tities larger than one will not be necessary). Moreover,iléggium (1,0,0) is

unstable, Whereaél, V%’, %) is marginally stable (namely, related to periodic
trajectories over the two populations). Selecting,& (0, 1) leads to the require-

mentd > m, which allows for values of'd% > 0. O

(1,0,0), and (1 y-a a ) To ensure nonnegativity of equilibrig, has to be

Remark 2The dynamical model in (2.2)-(2.3)-(2.4) is a straightfard/ gener-
alization of the known Lotka-Voltera, predator-prey mo@2l; 35; 36), which
is obtained wherkn(t) = 1,u,(t) = 1,Vt € [0, T,]. Notice that the energy value
E, = 1 is an equilibrium for the dynamics whenever the controlépticonstant
and equal to one. In other words, Lotka-Volterra dynamipsasent a special con-
figuration of the model, where the energy is at its maximund,\@here the prey
is always active (namely, feeding and breeding). a

The optimal behavior of the prey maximizes its fithess in)(aMe will denote
this optimal ratio byuj;(t), t € [0, Tn], which can be found by solving the following
optimal control problem:

{ U, = argsupy” (1— Un(t')) En(t") Ra(t')dt’,
subject tno: (2.2} (2.3)—(2.4).

(2.5)

2.2 Winter dynamics

As mentioned at the beginning of Section 2, the winter dycarig modeled by
discrete resets in the predator and prey population leasiwell as in the internal
energy of the prey. It is observed that only a portion of thedptors entering
winter survives. On the other hand, the prey has a chancevivewinter only if
it enters it in diapause, therefore a portion of the preyrémjehe diapause during
the summer will survive the winter that follows. Howeverisitobserved that the
survival rate of the diapaused prey is higher than the sakvate of the (active)
predator. Moreover, due to the winter, the energy level efgitey is supposed to
drop remarkably.

If we consider the dynamics ovérseasons, fon € {1,...,K — 1} the resets
of the state variables can be defined as follows:

Pn+1(0) - In Pn(Tn)7

Tn
Rn+1(0) = ’n/o (1- uﬂ(t/))Rn<t/) dtl’
En+1(0) = 0Onp En(Tn)>

where 1> 1y > |, > oy > 0. The reset constants can be functions of the (winter)
season length. The fitness function of the prey ¢vgears can be written as
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and it is a function of the strategy= (ug,...,un).

Investigating the optimal strategy for the prey over midtipeasons (years)
is an interesting goal, which is related to the evolutiorgapbility of the optimal
strategy found. Bifurcation analysis can be used in ordeietermine parameter
domains for which the proposed optimal strategy is evohatrg stable (7). Com-
parison of the outcome of our research with the researchidgfimder which
conditions evolution indeed leads to the optimal strategynél by maximizing
certain criteria (26; 27) can then be made.

As a first step for the study of the optimal behavior over nplétseasons, this
work focuses on the solution of the optimal control probleithim a single (-th)
summer season.

2.3 Discussion on the model

In the proposed model, prey have to trade-off between theébeumf active and
diapaused individuals, since diapaused individuals sszeheir number of de-
scendants in the next generation (season). The optimalrpait such a decision
depends on both the environment and the physiological state individual (22).
To determine the optimal life history of an individual it iseful to incorporate
physiological variables in the model (22; 31) — in this work have embedded a
dynamical energy variable. The prey individuals are thuscdbed by two vari-
ables: their energy (physiological variable) and theiryapon. Therefore, the
problem of maximizing the number of descendants can belatusinto a “dy-
namic model of energy allocation and investment” (29).

While the internal energy of the pré&(t) < [0, 1] is important for the system
behavior, the internal energy of the predator is not essettticharacterize the
optimal behavior of the prey, and one can assume that traenialtenergy is pro-
portional to the number of active prey, because these ang lpgedated once all
of its individuals are active.

Most existing energy allocation models appear to be focwsed single in-
dividual, not taking into account potential populatiorpdadent environmental
feedback (see the review (29) and (20; 30)). The model cersidin this pa-
per describes growth of a population size in interactiomhe growth of another
population, and thus accounts for the influence of the iddi&l population size as
well as for active-diapause strategy of individuals. Axdssed, in our model the
population-dependent environmental feedback in the sbpa energy variable
is explicit. This also allows embedding season-dependeiita@mental variabil-
ity into the model. We also provide a more formal argumené (&ppendix A)
on the necessity to include energy in the model in order tecéffely study the
diapause process.

We focus on the optimal strategy of the prey within one summéile the
predator is present and active. The main goal is to see wpatdf/ strategy the
prey employ in presence of the predator and whether thegriegt diapause is
reversible or not (i.e. whether once they enter the diapatey never become
active again). The study of the multi-seasonal dynamic$iefdystem (such as
the evolutionary stability, optimal behavior of the prey foultiple seasons) is a
future step of this research.
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While our objective is to find the optimal behavior of the preyhe summer
season, one can also focus on the situation in which the fongdianites decide
their active/diapause ratio during the summer season poree to external con-
ditions or food shortage. In such a case the problem forrdlat (2.5) can be
extended into a Stackelberg game (2; 32), with the predatorgaas a leader and
the prey as the follower. Games of Stackelberg kind are rikesilece the fitness
function of the predator would differ from that of the prehdtpredatory mites
have chance to survive the winter even if they are in the disg@at the end of the
season). This fact, together with the asymmetry of the roéé®een the predator
and prey is a motivation for defining the problem as a Sta@kglgame. As the
Stackelberg game is more general than a Nash game, theosobitthe Stack-
elberg game would coincide with the solution of the Nash gérttee hierarchy
between the predatory and prey mites would not play a roleAZJtackelberg
game formulation between the predator and prey represemtiieal extension of
our model.

3 Study of the structure of the optimal strategy of the prey wthin a summer
season

In this section we discuss the solution of the optimal cdnproblem in (2.5),
focusing on the optimal strategy of the prey within a singleser season. Recall
that the control structure of the predator is fixed, whicldget focusing on the
strategy of the prey. Following Bellman’s approach (3), wels the method of
singular characteristics (24; 25) to formalize the solutibthe problem.

Let us start with parameterizing the model. Using informatirom (12; 13)
regarding the average number the fruit-tree red spidersndggen by an adult
predatory mite per day and the average reproduction ant detas of both preda-
tory and fruit-tree red spider mites, we set the parameters andmin (2.5) to

the following values = 35,y = £, m= ;. Moreover, note that the following

substitution can be used in (2.5 = %pn, Ry = %rn. Consequently, the parame-

ter 3 does not play a role in (2.5) and can thus be disregardedentttat the new
population variableg, andr, have now arbitrary units, which will simplify the
dynamical analysis of the model.

In the remainder of the text we will focus on the optimal siggt of the prey
within one f-th) summer season, therefore we will drop the subsariptp,, rn,
ER, uR andT;,, defining the variablep, r, E, u, andT instead.

3.1 Formal statement of the optimal control problem

Problem (2.5) can be rewritten as

.
Ut = argsup/0 (L—ut"))EM)r(t)dt’, (3.2)
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subject to the following dynamics:

e 1

& = 351" WE+du—duE (3.2)
dp 1 1

o~ 20PT5"PE 49)
dr 1 1

o= 5" TUEr—upr (3.4)

with the control inputu(t) € [0,1], the energy of the pref(t) € [0,1], whereas
p(t) represents the (rescaled) concentration of the predatbr (anthat of the
prey, fort € [0, T], with summer lengtfT, expressed in days. The only parameter
left within the dynamical relations id € (z—éo, 1] , which affects the rate of change
of the energy level.

The two classical approaches to the solution of problem)(8ubject to (3.2)-
(3.3)-(3.4), are Pontryagin's maximum principle and Belhis dynamical pro-
gramming approach (3; 4). Here, we choose the latter appyaince Pontrya-
gin’s principle leads to candidate solutions only, and takdation of which of
these candidate solutions is optimal can be a difficult task.

As standard in Bellman’s approach, let us introduce a revéimse7 =T —t
and a corresponding value function

T
V(p,rE,t,u) — /T (1—u(t')r(t)E(t')dt. (3.5)
JT—t

The value function (3.5) is to be maximized for any [0,T] as the the prey
selects an optimal strategy denoteduyt) over [0, T]. Notice that, whenever
dealing with the new time variabhe we shall refer to the dynamics of the corre-
sponding variables along this “reverse time”. In order td fine optimal control,
the following Hamilton-Jacobi-Bellman (HJB) equation habe satisfied (3):

ov ov 1 ov 1 1
Al (- = (1-WE+du—duE) + 2 (- —p+=
0T+53p<aE( seg(1WE+du—du )+ap( 6P T 5UPY)
ov 1 1
—0—?(—2—0r+guEr—Upr)+(1—U)Er>0- (3.6)

. o o def def def .
Let us introduce the additional variabla$% 9, b= M.c = 9\, obtaining the

following characteristic system (24) (heeé= ‘fj—'?, and similarly for the remaining
variables):

E'=55(1-uE—du+duE,

p=ip—tiu pr,1
r'=ssr+upr—zukr,
20 > ’
a = —55(1—u)a—dua+ turc+(1—ur, &0
b = —%b+ turb—urc,

¢ = tupb- s5c—upct tuEc+ (1-u)E.
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3.2 Solution of the optimal control problem

As shown in (23), from equation (3.6) it can be seen that ttemap controlu*
maximizes the quantity.”, where

1 1 1
5”_250Ea+da dEa+5prb prc+ 5Erc Er, (3.8)
and where the quantity” is defined as¥ = dh/du, with h representing the
argument of the supremization in the HIB equation (3.6)idddhat the quantity
- is a function of the variables in (3.7) and of time — unlestestatherwise, we
shall not explicitly write out these dependencies.

The optimal control takes the following form (23):

1, if >0,
0, if <O

Furthermore, wheneve# (1) = 0, thenu*(1) € (0,1), which denotes a mixéd
strategy. On the other handuf(t) € (0,1) is optimal, thens (1) = 0 is invariant
with respect tar for u*(1), which implies that¥ (1) = 0, as well as¥’(1) = 0,
"(1) = 0 (and similarly for higher-order derivatives), which caa ¢hown by
application of the Jacobi brackets (23).

The transversal conditions (23; 24) follow from the equagio

a(T) =b(T) =¢(T) =0,

and from the assumption that the number of the players andrbryy level has
to be nonzero at the end of the summer season (if the enemgyisexqual to zero,
then the prey population did not survive; furthermore, ther population level is
at zero, both have gone extinct):

U = Heavy = { (3.9)

EM%E >0 pM%Ep >0 r(T)
Let us denote the value of for state variables evaluated at timedy .o/ (T). It
follows that.(T) = —E(T)r(T) < 0, and, therefore,

u(T) =Hea.”(T)) =0.

Remark 3Let us emphasize the result above as a first conclusion orh#peof
the strategy of the prey: the strategy ends up in a diapaaseatthe end of the
summer season. This conclusion can also be directly iddroan the shape of
the cost function in (3.1). O

It is possible to emit the characteristic field (24) in reetime, starting from
the terminal surface at time, with u*(7) = 0. This yields, forr > O:

def
“rfso.

p(t) =p'ed, (3.10)
r(t) =rfe;

a(1) = 5%rf (g% — e 7o),

b(t) = O, (3.11)

c(r) = 3LE' (eTEO—e‘TTO).

1 Mixed strategies are often referred to as singular or inteliate strategies.
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Note that the expressions in (3.11) contain constants fhengtiantities in (3.10),
as expected from (3.7). The presence of explicit solutidnthe characteristic
system allows a precise study of events related to the bahafithe optimal
strategies — this is further elaborated in the next section.

3.2.1 Study of the time of the event whé(riyi= 0 changes to t(1) € (0,1)

We investigate the time, related to the verification of the conditio#(11) = O,
which leads to the situation wheri(71) becomes positive (see pictorial represen-
tation in Fig. 1).

15— 1
u=0 -\"
T=T =T T=0

Fig. 1 Eventtimerty, corresponding to the optimal contwi(71) becoming positive. Recall that
the formulation is in reverse time.

The continuity of the characteristic trajectories (24) 310)-(3.11) implies
that equation”(11) = 0 can be rewritten as follows:

rf ( 2 El(e*%)—e%) —@d(e*%)—e%)

27 27

+ 5—OOdE1 (e‘zr_slo —e%) + 5—Oopf (eé%i)zEf (e‘% —ezr_510)
27 27
100 4 ¢, 0o ©o 10

_WE enE' (e 0 —ez0) —E em)zo,

where we have introduced the new quanEﬂyd:efE(rl).

Remark 4Note that the above equation is satisfied independentlyeofétiue of

rf, the final prey density. This leads to claim that the timeof the first event
depends exclusively on the number of predators at the errgeafitmmerg’), on

the final energy of the preye(), and is furthermore parameterized by the constant
d. This observation is interesting from a biological viewqisince it seems to
indicate that the event related to having the whole prey [atioun in diapause is
independent of the concentration of the same populatioicfwdan be associated
to the absence of a form of quorum sensing). O

From (3.10), let us substitute! = Ef evb. Assuming as essential a nonzero
value forr{, itis possible to express the time of the first evenas follows:

71 = 500 Inw,
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Fig. 2 Graph of the dependence of with respect tal andE", for the case wherp’ = 0.

with w being the smallest real-valued root of the following higldex polynomial:

625- 10 (W — w?)E" —w?" 4 1)d + 625- 10° (w** —w?")E p'
+((1-125 10w 4 (125- 10F + 1) w) (ET)?
+ (3125 10°w? + 25 10’ W) E". (3.12)

As discussed above, note tlmtdepends on the energy of the prey at the end of
the summeE", the number of individuals of the predator at the end of therser
p', and on parametat. However, it is independent of the number of individuals
of the prey at the end of the sumnmér

The dependence of the time of the first switglon the parameteEf andd,
for the case whep® = 0, is illustrated in Figure 2. It can be shown that values of
T, decrease with increasimg (see Section 3.4 for more details).

3.2.2 Investigation of the existence of a second eveRt,if> 1 : U*(12) =1,
does therélts > 1, and ad > 0:V1 € (13,734 0],u*(T) € [0,1)?

We have so far investigated the existenca ¢of 11 (in reverse time), which are
such that¥ (1) = 0 andu* (1) € (0,1). We will study of the properties af*(1)
over .7(1) = 0 in the next section. Assume that there is a titpe> 71 which

is associated to the conditiogf' (1) > 0: we investigate whether the condition
(1) =0,T > T2, can be met again (see Fig. 3 for a pictorial representation)
More precisely, we look for a time&s > 1, and ad > 0 such that, for any €

(T3> 3+ 6}7 U*(T) € [Oa l)



Optimality of irreversible prey diapause in an extendedkbetolterra model 13

U =1"t-------:1-

u =0 : :
=T T=13 T=T T=T =0

Fig. 3 Study of the existence of a second event in reverse time heaoptimal strategy* again
admit values within the interva0, 1), after being equal to 1?

Wheneveu* (1) = 1 the characteristic system takes the following form (again
in reverse time):

——d+dE
rf %op 5pr
r'=g5r +pr—
a :—da+ })rc (3.13)
b= b+ rb—

System (3.13) is not explicitly integrable. However, frof113) (top equation)
with an initial conditionE? € (0,1), we can get an explicit expression farif
u“=1andr > 14:

E(1) =1+ (B2 - 1)e? (™), (3.14)
which is monotonically decreasing wittand lead to the following non-negativity

condition: .
T<m-gin(l- E2) 27 nax

whereE? = E(12) € (0,1). The valuery'® represents an (possibly infinite) upper
bound on the length of time during which the prey is physiaatly active.

Proposition 31 (Nonexistence of a second event) The optimal control pnolihe
the reverse time, defined by the system of characteristicé3ry), admits at most
one event in u, namely if(u) takes the valud, then 1'),7" > T never enters
again the interval0,1).

Proof. See Appendix B. O

3.3 Properties of the optimal control over the singular euoptimal mixed
strategies

So far it has been shown that the optimal contrir) starts (at the end of the
summer, in reverse time) at a value equal to 0, that may ergigralar state at
time 11 (possibly switching discontinuously to the value 1), andttwhenever
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it takes the value 1, it remains equal to that value thergaftdil T = T (which
corresponds to the start of the summer season in real tintigynatively, it may
happen that either* (1) remains equal to 0 for alt (i.e., (1) <O forall T €
[0,T]), or thatu*(T) will move away from the value 0, while remaining bounded
within (0, 1) (namely, within the surface”’(t) = 0), thus never reaching the value
1 (this would be related to the conditiori(1) <O for all T € [0, T}]).

In the following we study the behavior of the optimal contublon the singu-
lar surface = 0. We are especially interested in “regularity” properfi@su®,
and particularly in possible ranges of the parameter valt@ which u*(7) is a
nondecreasing function (in reverse time) whenevr) = 0: this would allow
ruling out the biologically inconsistent behavior depttte Figure 4.

u =0
T=T =0

Fig. 4 We investigate the properties mixed strategies in time:risr@monotonic profile of*
possible, or i%i; nondecreasing (in reverse time) withifi = 0?

The optimal controu* on the singular surface is denoted by and recall
that we focus on the casé < 1. The characteristics on the singular surface are
obtained by solving the following system of equations:

E 50(1 u%)E —du’+ du’E,
_Ip Lispr,
% S SE
: AL < (3.15)
a = —55(1—u)a—dura+ tusrc+ (1—u)r,
b = —55b+ 5usrb usre,

c = 5uspb— c—uSpe+ guSEc+ (1— u9)E.

The initial conditions for the dynamics above can be derfvenh (3.11) by setting
T = 11 (recall again that the characteristics are continuoug(24)

~
=

E(r) €'EL=E'ez,

p(m) = pt = pf €3, (3.16)
r(1y) Er1 = rfezb;

a(ry) £'ay = 5011 (e —e‘zr_slo),

b(t1) £'b, =0, (3.17)
o(11) E'cy = SVET (e — e ).
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Fig. 5 Numerical simulations suggest that if the number of pregaitaccreases, then the prey
individuals begin to enter diapause earlier but more grikdua

From the relations” = 0, ./ = 0, " = 0, and from the set of equations (3.15),
a, b, and‘ﬂ,—“rS can be expressed in termsuf ¢, E, p, andr. While the expression

of ‘fj—‘f can be expressed as a function of the system variables ritsdoes not
allow for an easy analysis. We are particularly interestethe values ofi for
which ‘é—‘f is non-negative: this would relate to an optimal strategytli@ prey
that is non-increasing in real time. We have observed thistilependent profile
for the mixed strategies consistently in simulations.

As a partial result, we try to find explicit values fdy for which ‘é—‘f > Ofor all
possibler, E, andc, in the special instance of the absence of predators.

Proposition 32 (Non-negativity O%_u: in the absence of predators) In the absence
of predators, there exists™' such that for any E€ (0,1), u® € (0,1), and r, the
inequality‘i'j—urS > 0 holds for all d> d™".

Proof. See Appendix C. ad

3.4 Dependence of the optimal strategy on the predatortgensi

Biological evidence suggests that a higher predator deimsihe environment in-
duces an earlier diapause (Sabelis and Overmeer, unpedldta). Results of
our analysis are aligned with this observation, althoughcaudd not prove this
claim for the entire domain of initial parameters. Based onreverse-time study,
numerical analysis of the roots of equation (3.12) have showdecreases ip’
(predator population level at the end of the summer seasomgases. This leads
us to claim that once the predator concentration level aszs, the prey mites
should enter diapause earlier but more gradually than & peedatory individ-
uals were present, which would lead to a later complete depatate than if
less predatory mites were present. Recall that we have shotive model that
once prey individuals start entering diapause, they nexeoine active again. The
overall behavior is depicted in Figure 5.

Model simulations suggest the following:

— In the real time prey individuals start entering diapauséiexaf the number
of predatory individuals increases.

— The moment when all prey individuals enter diapause oceies in the season
if there are more predators at the end of the summer season.
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— Itis observed that in the cage# 0, % < 0, and that the number of predators
decreases as the prey start entering diapause.

4 Biological interpretation and recapitulation of the outcomes of the study

The inspiration for the development of the model has conm feanpirical obser-
vations on the interaction between predatory mites antHireé red spider mites
on apple trees. The spider mites feed on leaves during surantemay move
away from leaves to lay winter eggs (the diapausing stagejvags, branches,
and trunks of the tree where they cannot feed but are freecofgpory mites. Set-
ting model parameters to realistic values for this systethsindying the model
either analytically or numerically has lead to concludé the following behavior
of the fruit-tree red spider mites is optimal:

1. In the beginning of the summer season the prey can be intatgy(all active,
all in diapause, or anything inbetween), whereas at the éritdeosummer
season all prey individuals are in diapause.

2. If all prey individuals are active in early summer, theypvéll start entering
diapause at a certain point in time and the proportion ofaliapd individuals
increases monotonically. Similarly, if only part of the pgopulation is active
in early summer, then all prey end up being in diapause at oire m time
and stay in diapause until next year. Yet, if all prey indiats are in diapause
in early summer, then they continue to stay in diapause nexi year.

3. The time (in real time) of diapause onset state dependieopriergy of the
prey, on predator population size and on the rate of eneiltigation (param-
eter d), but it is independent of prey population size (irairtg of diapause
does not require quorum sensing).

4. If predators are absent in the environment, all prey iddizis are in diapause
later than if present. Empirical observations on diapatifeid-tree red spider
mites on apple trees in the field (Sabelis and Overmeer, Uispeld data)
reveal that virtually all individuals become active in gagmmer and starting
from a certain point in time the population gradually entBepause, definitely
not instantly. Moreover, experimental manipulation of pinedator population
in the field showed that the fruit-tree red spider mites ediapause earlier
in the presence of predatory mites and once in diapause thgynsdiapause.
However, the density of fruit-tree red spider mites had decefon the time
at which diapause was initiated, suggesting that some fégmarum sensing
(possibly via spider-mite induced plant volatile) takesqa.

Figure 6 summarizes possible optimal strategy profii¢s), 7 € [0, T], for the
prey. Note that while we could not prove yet that the optintidtegy of the prey
is non-increasing with for all possibled, but could show that it is indeed non-
increasing in the special case that 0 for all but a small range of the parameter
d. This expected behavior has however been always obsengthitation.

5 Conclusion and research outlook

A dynamical model of the summer and winter predator-pregrations between
mites has been put forward. This model is an extension ofitssic Lotka-Voltera



Optimality of irreversible prey diapause in an extendedkheVolterra model 17

[ R ] S EE———
u =0

=T T=T1 =0
ut =1-
u* =0

T=T T=0
U = Aol
u =0

T:T T:Tj_ ‘[:0
U = .
u=0

T? T=0

Fig. 6 Scheme of possible optimal strategi€sfor the prey. Based on the proposed dynamics
and optimization problem, we have shown irreversibility dlargely) the monotonicity of the
strategy profile. Notice that the optimal strategies do resdchto be continuous corresponding
to the singular events in the outcome of the optimizatiorbfam.

models in that it includes not only the dynamics of predatat jprey populations,
but also the dynamics of their energy level and an input ferghey. We have
considered the case where predators do not enter diapatilsaften the summer
season, but prey have the option to give up reproductiomgwiimmer and enter
a refuge from predation where they also stay during winter.ofitimal control
problem formulation based on a population fitness functifingd by the number
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of diapausing individuals has allowed the study of the optibvehavior for the
prey in the summer season.

While the correspondence between theoretical predictmigsempirical ob-
servations on mites is encouraging, there are also limitat{mostly analytical)
that should spawn new work. Moreover, it is still to be shohat bptimal summer
behavior of the prey population, as derived in this studyesstant against inva-
sion by mutant strategies and robust against structuralfivations, such as the
inclusion of predator decisions to enter diapause or naimdtely, we hope to ex-
plain winter dynamics of predatory mites and fruit-tree spéler mites based on
optimal timing of diapause induction in summer. The use &frbation analysis
can help determining for which parameter domains the pegpaptimal strate-
gies are evolutionary stable.

An extension of the optimal control problem to a game-thecakproblem
is not out of reach as long as the predator is either active drapause, without
having an option to choose a mixed strategy. The more ges@lglion is topic of
further research.
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Appendix A: Why energy has to be included in the model (quantiative argu-
ment from Section 2.3)

Letus consider the instantiated model in (3.2)—(3.4), asdime that the population-
dependent environmental feedback is not explicit, nanigly = 1,t € [0, T].
Then the optimization problem (3.1)—(3.4) simplifies to

u* :argsup/T(l—u)rdt’;
u JO

% — <}ur_ i) p

dt 5 20) "

dr 1 1

a: <§U—2—0—Up> r.

Introducing a value functioW/(p,r,t,u) = fTT_t(l —u)rdt’ and the new variables

def gw def gw
b= YD) andc = T

u* = Heav¢, where

it is possible to show that the optimal control takes thenfor

€ = (épb— pc+ éc— 1) r,

which, as in the more general case, implies that the optirladtior of the prey
is again fully independent of the prey population level, #ratu* = 0 at the end
of the season. The characteristic system can be exprestabhas:

/ 1 1
P =5P—sUpr
r'=Lr4+upr—2tur
=20 pr—sur,
1 1 _
b = —z5b+ zurb—urc,
_1 1 1
¢ = zupb— zc—upc+zuct+1—u.

With reference to the reverse timeselecting au = 0 and transversal conditions
b(0) = ¢(0) = 0 yields:

L

1
p = 5P = P(T) = p(0)em,

8~

1
= o' =1r(1)=r(0)ew,

1
(— = ~20 —

b 2ob:> b(t) =b(0)e 0,

d=1- %)c:> c(T) = 20+ & % (c(0) — 20) = 20— 20e 2.

Hence, the conditiof’ = 0, related to mixed optimal strategies autde (0, 1),
can take place at timg if the following condition holds:

I

—p(0) (e2)?r(0) (20— 20e ) + %r(O)e% (20— 20e ) —r(0)e? =

r(0) (—20p(0) eth +20p(0) e + 3ezb —4) 2
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Fig. 7 If p(0) andty are situated above the red curve, thén= 0 for the entire summer. (The
variablet; has to be higher thanZOIn% ~ 5.75 as displayed in the left plot.)

Assuming that (0) > 0, the equality in (5.1) is satisfiedji{0) = ﬂ.
20e210 (—1+e723)
Assuming thatp(0) > 0, a timeT; such thatu(ty) # 0 exists ifty > —20In§l ~
5.75. Furthermore, pairgr1, p(0)) related to possible non-zero optimal strategies
for the prey are those corresponding to the curve depictdegare 7. For all

the values of(11, p(0)), such thatp(0) < —24€ 2 __ (below the curve in
20620 (~1+e 20

Figure 7) the optimal strategy of the prey is to switch to ativacstate, namely
u*(1) = 1Vt > 11. For all the remaining values dfr1, p(0)), which in practice
means fop(0) > 0.05 and anyr, the optimal strategy of the prey is to remain in
diapause for the entire summer season: this in practiceddrplete the energy
of the prey and therefore would lead to its death. This leadlsé conclusion that
modeling the interactions of the considered system witlvweltiding the energy
variable leads to inconsistent outcomes.

The argument can be generalized to models that are parareetes in (3.3)-
(3.4), that is wherex and y have not been fixed to the valueg2D and 15,
respectively. It can be algebraically shown that the makivatue of he curve
p(0) is upper bounded by the quantity— o) which, given the ranges of interest,
is again a very small quantity.



Optimality of irreversible prey diapause in an extendedkbetolterra model 23

Appendix B: Proof of Proposition 31

u*:l ,,,,,,,,,,,

u =0 ‘ ;
=T T=13 T=07 T=T1 =0

Fig. 8 Study of the existence of a second event in reverse time heaogtimal strategy™ again
admit values within the interva0, 1), after being equal to 1?

As portrayed in Figure 8, let us assume that there existsamimu*(13) = 1

and there existsa > 0:V1 € (13, 13+ 0] : u*(T) € [0,1). Let variableE d:efE(rz).
Settingu* = 1 for T > 17, the energyE(T) satisfies

E(1T) =1+ (E;—1)e? (%),

thereforeEs 2'E(13) = 1+ (E, — 1)e*(B3-%2). Moreover, let us introduce the fol-

. . def def def def
lowing variablesag = a(13),c3 = a(13), ps = p(T3), andrz = r(13).

Attime T = 13, the condition” = 0 has to be satisfied. Substituting expression
for E3 into equations = 0 leads to

2—]5'0(1—0— ed(rs—rz)(Ez— 1))a3+da3_d(1+ed(r3—rz)(E2_ 1))33+ é parabs

— ParaCa+ é (1+€B ) (B — 1) )racs — (1+ €4 2 (E; — 1))r3 = 0.

From this equation we can expressas:

az + 50psrazbs — 250p3rscs + 50r3c3 — 250r3

Ep=1+ ,
? €94 (250 ag — ag — 50r3C3 + 250r3)

(5.2)

where we have s&t = 13— 1 > 0. Sincek; € (0, 1], the inequality (5.2) is satis-
fied only if

1> 250p3rac3 — azg — 50p3rzbs —50r3c3 + 250r3 >0, (5.3)
ed4(250d ag — ag — 50r3c3 + 250r3)

Recall that if there is a second event at time then.”(13) = O, but also
S (13) = " (13) = ... = 0. From the equatior’ = 0 the parameteaiz can be
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expressed in terms of the other variables:

_ s
~ 10d
+ 25006 p3 + 25p3 bz + 50094 (Ez)% — 1000894 E; 4 2¢3692

— 250082 E; psag + 2500de?43 — 2500de”? E;
+500&% —875¢4). (5.4)

ag (203 —2c3e™ + 8752 E, — 2500p; + 375 125p3 C3

Furthermore oz can be expressed from the equatigff = 0 (after substituting
(5.4) into this same equation), and likewigecan be expressed from the condition
" = 0 (after substituting expressions f@y andbs into this equation) — we omit
reporting the expressions fbg andcs, as their computation is straightforward.

Denoting the nominator and denominator of the fraction ind&wpn (5.3) as
“Nom” and “Den”, respectively, there are two cases char&itey the necessary
conditions in (5.3), for the existence ofa> 12 such thau(t) = 1 for 1 € [12, T3]
andofad > 0:V1 € (13,134 0],u(1) € (0,1):

Case 1l
0 < Nom, (5.5)
0 < Den (5.6)
0 < Den— Nom. (5.7)
Case 2
0> Nom, (5.8)
0> Den (5.9
0 > Den— Nom. (5.10)

The quantities Den and Nom can be then written vidshexpressed by (5.2). In
the following, the two cases are considered in detail.

Case 1: Condition (5.5) implies
250r3 —50p3r3bs 4+ 250p3rzc3 — 50r3c3 < as, (5.11)

whereas condition (5.6) implies

50r3 (Cs — 5)
_ 12
250d — 1 (6.12)
and condition (5.7) implies
50r3(e4 c3 — 56 — b 5p3c3—C3+5
ag < 3( 3 303 +oP3C3 — C3+ ) (5.13)

—edd 1 25068d +1
Note that inequalities (5.11) and (5.12) imply either

0 < —50r3bg + 250r3cs (5.14)
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and
250d(c3 —5)
Pe = " T250d — 1) (bs — 5¢3)’ (-15)
or
—50rzbs+250r3¢c3 < 0 (5.16)
and
—-250d(cz3—5
(=8 Ps. (5.17)

(250d — 1) (bg — 5C3)

We have substituted the expressions dgr bz, and c3 into inequalities (5.14),
(5.15), and (5.16), (5.17), respectively. Assuming it 0,r3 > 0,E" € (0, 1],
andd > 2_&130’ in both cases it can be shown that

50[‘3((9(‘m03—5é:m —bsps+5p3cs— 03+5)
&= "1 25084d 1 1 ’
which contradicts equation (5.13) and therefore also équ#b.7).

Case 2: Condition (5.8) implies

250r3 — 50p3r3bs+250p3rzcz — 50rzcs > as, (5.18)
whereas condition (5.9) implies
% (5.19)
and condition (5.10) implies
e i b
Note that the inequalities in (5.18) and (5.19) imply either
0 < —50rzhs + 250r3c3 (5.21)
and
—250d(c3 —5)
P> 1 250d) (bs — 563)” (5:22)
or
—50rzbhz +250r3c3 < 0 (5.23)
and
200 =8) (5.24)

( -1+ 250d) (bs — 503)
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We have substituted expressions &gr bs, andcs into inequalities (5.21), (5.22),
and (5.23), (5.24), respectively. Assuming thmt> 0,r3 > 0,Ef < (0,1], and
d> 2A5o’ in both cases it can be shown that
a 50r3(edA03—5éM—b3p3+5p3C3—03+5)
3= — el 1 25088d + 1 ’

which contradicts equation (5.20) and therefore also égu#b.10). |
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Appendix C: Proof of Proposition 32

If p=0, the characteristic system takes the following form in regdime:

(1—u)E—du+duE,

= f5o .
r'= s — LuEr,

5 ’ 5.25
a= 2150(1 uja—dua+ turc+(1-ur, (5.25)

¢ =—2%C+ tuEc+ (1-u)E.

Furthermore, the surfac# can be expressed as

1 1

¥ =—Ea+da—dEa+ -Erc—Er, (5.26)

250 5

It is again easy to check that(0) = 0 in reverse time, and that = 500Inw, with
w being the smallest root of the following polynomial

100(E")2w! 4 (—25E" — 500dE") w?® -+ 500dw?’
—100(E")?w* + (—2E" + 500d Ef) w? — 500d.

From (5.25), the energy level of the prey entering d|apauseE$rl) Efesd,
Figure 2 represents the valuesmfas functions ofi andE’. Notice thatE! > 1
for Ef > 0.9775, therefore in the following we will assume tiit € (0,0.9775).
(Moreover, recall thadl > 1/250.)

Equations.” =0, ./ = 0, and . = 0 allow expressin@(1), c(1), and
u3(1) in terms ofr(t1) and E(1), respectively. Of interest to this proof, the ex-
pression for the mixed strategy(7) reads as the ratio of two polynomial&( —
25E2 - 29.10°dE® + 125- 10°d?E2 + 116E3 — 13- 10°d E + 230- 10°d? + 67750d E2 — 375
10°d?E))/(4(—125d E? - 5-10°d?E — 21E* — 1250 10°d*+ 100E® — 9- 10° d E® + 54250d E* +
53125M%E? — 875- 10°d’E® + 1250 10°d°E + 250- 10°d°E* — 25- 1C* E>d)).

Remarkably, the expression is independent,oithich aligns to earlier out-
comes on the independence of the prey population density.

Sinceu® cannot by definition take values that are lower than 0 or greban 1,
we denote the values f¢d, E) for whichu® € [0, 1] as “feasible” and we will call
those for whichu® #£ [0, 1] “unfeasible.” Figure 9 represents the feasibility regions
for (d,E), assumingl € (%50,1] andE € (0,0.9775. The feasible region for the
given parameters corresponds to possible trajectoriehéve@ mixed strategies,
whereas the unfeasible region relates to trajectoriessthgtalways in diapause
mode (° = 0), or discontinuously switch to® = 1. In either case, trajectories for
the optimal strategy will be non-decreasing in reverse time

From.#” = 0 we can derive the expression %f Figure 10 plots the parts
of the feasibility region for whichs® is increasing and decreasing, respectively.

With focus on the feasible region, the following observasiean be made:

— Ford > 0.15, no mixed strategy takes place, since the parameter spaee
sponds to the unfeasible region.
— For 515 < d < 0.15, either
— no mixed strategy takes placetfis small, else
— a mixed strategy® takes place.
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Fig. 9 Regions ofd andE for which u® € (0, 1]. The purple bold line corresponds doand E
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Fig. 10 Regions ofd andE for which ‘fj—“: > 0 (denoted with &) and for Which‘fj—urS < 0 (denoted
by a—). The green dashed line corresponds to(thé€) values for which‘fj—‘f =0.
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Let us further elaborate on the latter case (presence ofdhsirategies) with the
help of Figure 10. Recall that

E = 2£50(1—u)—du(1—E),

and assume the dynamics at timdand in a region where® has negative deriva-
tive. It can be numerically shown that the valuesoére quite smallin this region.
Because of the values Bf > 0.5 and ¥250< d < 0.15,E’ > 0 persistently, given
thatdu®/dt < 0. This regime will be sustained unil = 1, which will forceu® to
switch tou* = 1. Given the values of the quantities of interest, this wéppen
for a short interval — id = 2—]3,0, the interval will be approximately less tharbD
whereas id ~ 0.15, the interval will be even smaller. O



