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On the Value Functions of the Discrete-Time
Switched LQR Problem

Wei Zhang, Jianghai Hu, and Alessandro Abate

Abstract—In this paper, we derive some important properties for the fi-
nite-horizon and the infinite-horizon value functions associated with the
discrete-time switched LQR (DSLQR) problem. It is proved that any fi-
nite-horizon value function of the DSLQR problem is the pointwise min-
imum of a finite number of quadratic functions that can be obtained re-
cursively using the so-called switched Riccati mapping. It is also shown that
under some mild conditions, the family of the finite-horizon value functions
is homogeneous (of degree 2), is uniformly bounded over the unit ball, and
converges exponentially fast to the infinite-horizon value function. The ex-
ponential convergence rate of the value iterations is characterized analyti-
cally in terms of the subsystem matrices.

Index Terms—Discrete-time switched LQR (DSLQR).

I. INTRODUCTION

Optimal control of switched systems is a challenging problem that
has received much research attention in recent years [1]–[4]. Compared
with traditional optimal control problems [5], the distinctive feature
of the optimal control of switched systems lies in the possibility of
selecting the mode sequence and the switching instants. For a fixed
mode sequence, a variational approach can be applied to derive certain
gradient-based algorithms for optimizing the corresponding switching
instants [1], [2]. However, finding the best mode sequence is a dis-
crete optimization problem and is believed to be NP hard in general
[2]. Recent research attention ([3], [4], [6]) has been focused on the
optimal control problem of discrete-time switched linear systems with
quadratic cost functions, which contains most of the interesting proper-
ties of the optimal control problem for general switched systems, while
at the same time allows for efficient approaches to optimize the mode
sequences. This optimal control problem can be viewed as an exten-
sion of the classical discrete-time LQR problem to the context of the
switched linear systems, and are thus referred to as the discrete-time
switched LQR (DSLQR) problem.

This paper studies several interesting properties of the finite-horizon
and the infinite-horizon value functions associated with the DSLQR
problem. It is shown that any finite-horizon value function of the
DSLQR problem is the pointwise minimum of a finite number of
quadratic functions that can be obtained recursively using the so-called
switched Riccati mapping. Explicit expressions are also derived for
the optimal switching-control law and the optimal continuous-control
law, both of which are of state-feedback form and are homogeneous
over the state space. In addition, the optimal continuous-control law
is shown to be piecewise linear with different optimal feedback gains
within different homogeneous regions of the state space. Although
other researchers have also suggested a piecewise affine structure for
the optimal control law ([4], [7], [8]), the analytical expression of the
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optimal feedback gain and in particular its connection with the Riccati
equation of the classical LQR problem have not yet been explicitly
presented.

Furthermore, several other interesting properties of the value func-
tions are derived. It is proved that, under some mild conditions, the
family of the finite-horizon value functions of the DSLQR problem is
homogeneous (of degree 2), is uniformly bounded over the unit ball,
and converges exponentially fast to the infinite-horizon value function.
Finally, the exponential convergence rate of the value iteration is char-
acterized analytically in terms of the subsystem matrices. These proper-
ties are not only of theoretical importance, but also play a crucial role
in the design and analysis of various efficient algorithms for solving
the DSLQR problem. Some preliminary algorithms developed based
on the properties derived in this paper can be found in [9] and [10].

This paper is organized as follows. The DSLQR problem is formu-
lated in Section II. Its value function is characterized analytically in
Section III. Various interesting properties of the value function are de-
rived in Section IV. The concluding remarks are given in Section V.

Notation: In this paper, �, � and� are some arbitrary finite positive
integers, � denotes the set of nonnegative integers, ��� � � � ���
is a set of subsystem indices, �� is the � � � identity matrix, � � �
denotes the induced 2-norm in �,� denotes the set of all the positive
semidefinite (p.s.d.) matrices, ������� and ������� denote the smallest
and the largest eigenvalues, respectively, of a given p.s.d. matrix.

II. PROBLEM FORMULATION

Consider the discrete-time switched linear system described by

���� �� � 	�������� �
��������� � � �� (1)

where ���� � � is the continuous state, ��� � ��� � � � ���
is the switching control that determines the discrete mode, ���� � �

is the continuous control and �� ��� � � � � � � �� is the control
horizon with length � (possibly infinite). The sequence of pairs
������� �������	�
� is called the hybrid control sequence. For each
� � , 	�, and 
� are constant matrices of appropriate dimensions
and the pair �	�� 
�� is called a subsystem. This switched linear
system is time invariant in the sense that the set of available subsys-
tems ��	�� 
���

�
�
	 is independent of time �. At each time � � �� ,

denote by ���� ����� � ����� � � 	 � � the (state-feedback)
hybrid-control law of system (1), where ���� � � 	 � is called
the (state-feedback) continuous-control law and ���� � � 	
is called the (state-feedback) switching-control law. A sequence of
hybrid-control laws over the horizon �� constitutes an � -horizon
feedback policy: �� ����� � �	�� � � � � � ���	���. If system (1) is
driven by a feedback policy �� , then the closed-loop system is given
by

���� �� � 		 �
�������� �
	 �
�������� ������� (2)

For a given initial state ���� � � � �, the performance of the
feedback policy �� can be measured by the following cost functional:

�� ��� � ������� �

��	

�
�

������� ����������� �����������

where � � � 	 � and � � � � � � 	 � are the terminal
cost function and the running cost function, respectively, given by

���� � �
�
��� ���� �� � � �

�
���� �

�
���

where � � ��
 
 � is the terminal-state weighting matrix, and

�� � ��
� 
 � and �� � ��

� � � are the running weighting matrices
for the state and the control, respectively, for subsystem  � . When
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the control horizon� is infinite, the terminal cost will never be incurred
and the objective function, which might be unbounded, becomes

�� ��� �

�

���

������� ����������� 	����������
 (3)

Denote by �� the set of all admissible � -horizon policies. The dis-
crete-time switched LQR problem (DSLQR) is formulated below.

1) Problem 1 (DSLQR Problem): For a given initial state � � �

and a possibly infinite positive integer � , find the � -horizon policy
�� � �� that minimizes �� ��� subject to (2).

To solve Problem 1, for each time � � �� , we define the value
function ��� � � � as shown in (1)

��� ��� � ���
����� ������

�������

������� 	

���

���

������� ����� ����� �


����� �� ��
 ��� ���� ���� � �

The ������ so defined is the minimum cost-to-go starting from state �
at time �. The minimum cost for the DSLQR problem with initial state
���� � � is simply ������. Due to the time-invariant nature of the
switched system (1), its value function depends only on the number of
remaining time steps, i.e.,

������ � ��	���	���

for all � � � and all integers � � ��. In the rest of this paper, when
no ambiguity arises, we will denote by 
��� ��
����� and �

���
�� the value function and the hybrid-control law, respectively, at
time � � ���when there are � time steps left. With the new notations,
the � -horizon policy �� can also be written as �� � ��� � � � � � ���.
For any positive integer �, the control law �
 can be thought of as the
first step of a �-horizon policy.

By a standard result of Dynamic Programming [11], for any finite
integer � , the value function � can be obtained recursively using the
one-stage value iteration


����� � ���
���
����� �� �� 	 
���� 	������ � � � �

with initial condition ���� � ����, � � � �. Denote by ����
the pointwise limit (whenever it exists) of the sequence of functions
�
����

�

�� generated by the value iterations. It is well known [11, ch.

3] that even if ���� exists, it may not always coincide with the in-
finite-horizon value function. To emphasize its substantial difference
from the finite-horizon value function, the infinite-horizon value func-
tion is specially denoted by  ����, i.e.,  ���� � ���� �� �� ���.

III. ANALYTICAL CHARACTERIZATION OF THE

FINITE-HORIZON VALUE FUNCTION

When � � �, the DSLQR problem reduces to the classical LQR
problem. Denote by ��������� the system and weighting matrices
associated with this simple instance. It is well known that when � is
finite, the value functions of this LQR problem are of the following
quadratic form:


��� � �
�
�
�� � � �� � � � � � (4)

where ��
��
�� is a sequence of positive semidefinite (p.s.d.) matrices
satisfying the difference Riccati equation (DRE) ([12])

�
�� � �	 �
�
�
� ��

�
�
� �	�

�
�
�

��

�
�
�
� (5)

with initial condition �� � �� . Some results of the classical LQR
problem are summarized in the following lemma.

Lemma 1 ([13],[14]): Let ��
��
�� be generated by the DRE (5),
then:

1) for each � � �� � � � � � � �, if �
 � 	, then �
�� � 	;
2) if ����� is stabilizable, then 
��� �  ���� for all � � � as

� � 
;
3) let � � ��� . If ����� stabilizable and ����� detectable, then

the optimal trajectory of the LQR problem is exponentially stable.
In general, when � � �, the value function 
��� is no longer

of a simple quadratic form as in (4). Nevertheless, the notion of the
DRE can be generalized to the Switched LQR problem. The DRE (5)
can be viewed as a mapping from 	 to 	 depending on the matrices
���������. We call this mapping the Riccati Mapping and denote
by � � 	 � 	 the Riccati Mapping of subsystem � � , i.e.,

��� � � � 	 �
�
 �� ��

�
 �� � 	�

�
 ��

��
�
�
 ��


Definition 1: Let �� be the power set of 	. The mapping � �
�� � �� defined by

� ��� � ���� � � � � ��� � � ��� � � � ��

is called the Switched Riccati Mapping (SRM) associated with Problem
1.

In words, the SRM maps a set of p.s.d. matrices to another set of
p.s.d. matrices and each matrix in � ��� is obtained by taking the
classical Riccati mapping of some matrix in� through some subsystem
� � .

Definition 2: The sequence of sets ��
�
�

�� generated iteratively

by �
�� � � ��
� with initial condition �� � ���� is called the
Switched Riccati Sets (SRSs) of Problem 1.

The SRSs always start from a singleton set ���� and evolve ac-
cording to the SRM. For any finite � , the set �� consists of at most
�� p.s.d. matrices. An important fact about the DSLQR problem is
that its value functions are completely characterized by the SRSs.

Theorem 1: For � � �� � � � � � , the value function for the DSLQR
problem at time � � �, i.e., with � time steps left, is


��� � ���
���

�
�
��
 (6)

Furthermore, for � � � and � � �� � � � � � , if we define

�� �
 ���� �
�

���� � ������

���� �� �

�
�
��� �� (7)

then the optimal hybrid-control law at state � and time � � � � �

is ��
��� � ���
���� 	
�

����, where ��
��� � �� ��� ��

�

 ����� and

	�
��� � ��
���. Here, ��� � is the optimal-feedback gain for sub-
system � with matrix � , i.e.,

��� � � 	�
�
 ��

��

�
�
 ��
 (8)

Proof: The theorem is proved by induction. It is obvious that for
� � � the value function is ���� � �����, satisfying (6). Now sup-
pose (6) holds for some � � ���, i.e.,
��� � ������ ����. We
shall show that it is also true for �	�. By the principle of dynamic pro-
gramming and noting that 
��� represents the value function at time
� ��, the value function at time � � ��	�� can be recursively com-
puted as (9), shown at the bottom of the next page. Since the quantity
inside the bracket is quadratic in �, the optimal �� can be easily found
to be

�
� � � � 	�

�
 ��

��

�
�
 ��� � ���� �� (10)
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Fig. 1. Typical optimal decision regions of a two-switched system, where mode
1 is optimal within the white region and mode 2 is optimal within the gray region.
The optimal mode region is divided into smaller homogeneous regions, each of
which corresponds to a different optimal-feedback gain.

where ���� � is the matrix defined in (8). Substituting �� into
(9), we obtain ������� � ����� ���� �� ���� ��. Observing
that ����� � � � � � � � ��� � � ���� � ����, we have
������� � ������ ����. In addition, let � �� ��� and ������ be
defined as in (7). Then it can easily be seen from the above derivation
that ��� ��� ��

�
������� �� �

�
������ is the optimal decision at

time 	 � �
 � 	� that achieves the minimum cost �������.
Remark 1: Theorem 1 is not a trivial variation of the results in [4]

and [15], which deal with piecewise affine systems, where the mode
sequence ���� is determined by the evolution of the continuous state
instead of being a decision variable independent of the continuous state
as in the present DSLQR problem.

Remark 2: The piecewise quadratic structure of the value function
has also been suggested in [3] for the infinite-horizon DSLQR problem.
Compared with [3], the contribution of Theorem 1 lies in the explicit
characterization of the value function in terms of the SRM and its con-
nection to the optimal-feedback gain and the Riccati equation of the
classical LQR problem.

Compared with the classical LQR problem, the value function of the
DSLQR problem is no longer a single quadratic function; it becomes
the pointwise minimum of a finite number of quadratic functions. At
each time step, instead of having a single optimal-feedback gain for
the entire state space, the optimal state feedback gain becomes state
dependent. Furthermore, the minimizer �� �� ���� �

�
����� of (7) is radi-

ally invariant, indicating that at each time step all the points along the
same radial direction have the same optimal hybrid-control law. These
properties are illustrated in Fig. 1 using an example in � with two sub-
systems: at each time step, the state space is decomposed into several
homogeneous decision regions, each of which corresponds to a pair
of optimal mode and optimal-feedback gain. In addition, all the gray
homogeneous regions have the same optimal mode, say mode 2. It is
worth mentioning that in a higher dimensional state space, the homo-
geneous decision regions may become nonconvex and rather compli-
cated. A salient feature of the DSLQR problem is that all these complex
decision regions are completely encoded in a finite number of matrices
in the SRSs.

IV. PROPERTIES OF THE VALUE FUNCTIONS

In this section, we will derive various important properties for the
family of the finite-horizon value functions ��� �������� and the in-
finite-horizon value function � ����. These properties are crucial in
the design and analysis of efficient algorithms for solving the DSLQR
problems [9].

We first introduce some notations. Define �� �

����� ���	�����, and �	 � �
���	�. Denote by
�������� for 
 � � � 	 an optimal trajectory originating from � at
time 0 and denote by ����� ���� �������� the corresponding optimal
hybrid-control sequence.

A. Homogeneity and Boundedness

Lemma 2 (Homogeneity): For any � � 
,  � and 	 � �,
we have � ���� � �� ���� and �� ��� � ��� ���.

The homogeneity of �� is clear from Theorem 1. The homogeneity
of � � follows from the linearity of the subsystems and the quadratic
nature of the objective function (3).

The properties of the value functions presented in the rest of this
section are based on the following stabilizability assumption:

��	� �� ���� ��� ��������� �� �����������

Lemma 3 (Boundedness): Under assumption (A1), there exists a
finite constant � such that ����� � �����, for all 
 � � and � � 
.
Furthermore, if the stabilizable subsystem is ���� ��� and � is any
feedback gain for which ��� �� � ��� is stable, then one possible
choice of � is given by

� � ��	�� �� � �
�
��� �

�

���

���
�

�

�	� (11)

Proof: Suppose subsystem ���� ��� is stabilizable. Let

�
���
�

�

���
be the sequence of matrices generated by the Riccati

mapping using only subsystem �, i.e., � ���
��� � �� �

���
� with

�
���
� � �	 . Since the switched system (1) can stay in subsystem

���� ��� all the time, the value function of the DSLQR problem
must be no greater than the value function of the LQR problem for
subsystem ���� ���, i.e., ����� � ���

���
� � for all 
 � � and

� � 
. Thus, it suffices to show that the � given in (11) is an upper
bound for the Euclidean norm of all the matrices in �

���
�

�

���
. Let

� be a feedback gain for which ��� � �� � ��� is stable. Define
��
���
�

�

���
iteratively by

��
���
��� � �� � ���

�
��
���
�

��� � �
�
���� ���� ��

���
� � �	 � (12)

In the above equation, if � � ��
��
���
� for each 
, where �����

is defined in (8), then ��
���
� would coincide with � ���

� . In other words,
��
���
� defines the quadratic energy cost of using the stabilizing feed-

back gain � instead of the time-dependent optimal-feedback gain of

������� � ���
�� ���

�
�
��� � �

�
���� ������ �����

� ���
�� ���� ���

�
� ��� � �

�
� ����� � �

�
�� ��

�
� ��� �� �����

� ���� (9)
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the �-horizon LQR problem. By a standard result of the Riccati equa-
tion theory ([13, Theor. 2.1]), we have� ���

� � ��
���
� for all � � �. Thus,

it suffices to show ��
���
� � � for each � � �. By (12), we have

��
���
� � ��

���
� �

�

���

��
���
� � ��

���
���

� ��
���
� �

���

���

���
�

�
��
���
� � ��

���
� � ����

�

��� �

���

���

���
�

���

��� ����
���

�

���

���

���
�

�

�� ��� � � ���� � ����
�

� ���
�

�

��� ����
� �

�

���

���
�

�

�� � � ���� � ����
� �

Thus

�
���
� � ��

���
�

� ����� �� � � ����

�

���

���
�

�

�

Note that the formula of the geometric series does not directly apply
here, as the 2-norm of a stable matrix may not be strictly less than 1 in
general. However, it is shown in [16, ch. 5] that �	
���

���
�

���
�

	� ���� 
 �, where 	��� denotes the spectral radius of a given matrix.
This guarantees that ���

� 
 �� � ��� for some small � � � and all

large . Therefore, �

���
���
�

�

 � and the proposition is proven.

B. Exponential Stability of the Optimal Trajectory

In view of part 3) of Lemma 1, to ensure the stability of the optimal
trajectory, it is natural to assume that each subsystem is stabilizable and
detectable. Unfortunately, such a natural extension does not hold in the
DSLQR case. As an example, consider the following DSLQR problem:

�� �
� �

� �
� �� �

� ��

�� �

�� �
��� �

� �
� �� �

� �

� ���

�� �
�

�
� �� � �� ��� �� � �

�� ��� � � �� �� (13)

Let the horizon � be arbitrary (possibly infinite) and let ����� be
the optimal trajectory of this DSLQR problem with initial condition
����� � ��. Notice that each subsystem is stabilizable and detectable.
However, it can be easily verified that ����� � ��� ��� if � is even and
����� � ��� ��� otherwise. Thus, to ensure the stability of the optimal
trajectory, we introduce the following assumption:

���� �� � �� 	 � 
 �

Theorem 2: Under assumptions (A1) and (A2), the � -horizon op-
timal trajectory originating from � at time � � �, namely, ����	���,
satisfies the following inequalities:

����	 ���
�
�

�

��

������� ��� � � �� � � � � � � �

��� ����	 ���
�
�
���

��

�	������ (14)

where � is defined in Lemma 3

� �
�

� �
�




 � ��� � � 
��
��

��� ����������� (15)

In other words, the optimal trajectory is exponentially stable with a
decay rate �.

Proof: For simplicity, for � � �� �� � � � � � , define �����
����	��� and ��	�� �	����

�

��	 ����. Denote by ������� ������
the optimal hybrid control sequence corresponding to �����. For
� � �� � � � � � , we have

��	������ � ��	�� �������� ��� ����� ��� ����� ���

� ����� ���������������� ��

���
������ ����

�
��

�

��	������ �
��

�

��	���

Hence, we have ��	�� � ��� � ��
��
��	������ for � � �� � � � � � .

Therefore, ��	�� � ��� � ��
��
� ��	 . Obviously, for � � � � �,

��	�� � ����������������� � ��
�������
�. Thus

�������� �
�

��


��	�� �
�

��


�

� �
�



�

��	

�
�

��


�

� �
�



�

���� �
�

��

������� (16)

For � � � , by Theorem 1, we have that ����� � ��� ���������� �
���� � �� for some � 
 . Therefore, �������� � ������� � ����,
where � is defined in (15), and then the desired result follows from (16).

Remark 3: It is worth pointing out that the decay rate � given in (15)
could be conservative.

C. Exponential Convergence of Value Iteration

Some classical results on the convergence of the value iteration of
general DP problem can be found in [11]. Most of these results re-
quire either a discount factor with magnitude strictly less than 1 or
that ���� � � ���� for all � 
 �. Neither is true for the general
DSLQR problem with a nontrivial terminal cost. A more recent con-
vergence result is given in [3] and [6], where the aforementioned as-
sumptions are replaced with some other conditions on � ����. Since
the infinite-horizon value function � ���� of the DSLQR problem is
usually unknown, the conditions in [3], [6] are not easy to check. In
view of these limitations, a further study on the convergence of the
value iteration of the DSLQR problem is necessary.

By part 2) of Lemma 1, for the classical LQR problem, if the system
is stabilizable, then the value iteration converges to the infinite-horizon
value function. For the DSLQR problem, however, Assumption (A1)
alone is not enough to ensure the convergence of the value functions.
For example, consider the DSLQR problem with matrices defined by
(13) except that �� � ��. Although each subsystem is stable, it can be
easily seen that �	 ���� is 2 if � is an odd number and is 1 otherwise.
Thus, the limit of �	 ���� as � � � does not exist.

In the following we shall show that the value iteration will converge
exponentially fast if both (A1) and (A2) are satisfied. The following
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lemma provides a bound for the difference between two value functions
with different horizons and is the key in proving the convergence result.

Lemma 4: Let �� and �� be positive integers such that �� � ��.
For any � � �, the difference between the ��-horizon value function
and the ��-horizon value function can be bounded as follows:

�� �� ����� ���� � � ����� ����

� �� ���� �� ���

� �� �� ����� ���� � � ����� ���� � (17)

Proof: Let �� � ����� ����. Define a new ��-horizon trajectory
����� as

����� �
����� ���	 � � ��

��� �� �� ������	 �� 
 � � ��.
(18)

As shown in Fig. 2 (the dashdot line), ����� is obtained by first following
the ��-horizon optimal trajectory and then the �������-horizon op-
timal trajectory. Let ������	 ������ be the hybrid controls corresponding
to ��. Then by the definition of the value function, we have

�� ��� �

� ��

���

������	 �����	 ������ � ���������

�

� ��

���

 ����� ���	 ����� ���	 ����� ���

�

� �� ��

���

 ��� �� �� ���	 ��� �� �� ���

��� �� �� ���

� � ��� �� �� ��� ����

��� ���� � ����� ����

� �� �� ����� ���� � (19)

Equation (19) describes exactly the second inequality in (17). To prove
the first one, define an ��-horizon trajectory ����� as the solid line in
Fig. 2 by taking the first �� steps of ����� , i.e., ����� � ����� ��� for
� � � � �� and let ������	 ������ be the corresponding hybrid control
sequence. Then

�� ��� �

� ��

���

������	 �����	 ������ � ���������

�

� ��

���

������ ���	 ����� ���	 ����� ����

� � ����� ����

��� ���� �� �� ����� ����

� � ����� ���� (20)

where the last step follows from the Bellman’s principle of optimality,
namely, any segment of an optimal trajectory must be the optimal tra-
jectory joining the two end points of the segment. The desired result
follows from (19) and (20).

With a nontrivial terminal cost, the� -horizon value function �� ���
may not be monotone as � increases. Nevertheless, by Lemma 4,
the difference between �� ��� and �� ��� can be bounded by the
quadratic functions of ����� ���� and ����� ����. By Theorem 2, we
know both quantities converge to zero as �� and �� grow to infinity.
This will guarantee that by choosing �� and �� large enough, the
upper and lower bounds in (17) can be made arbitrarily small. The
convergence of the value iteration can thus be established.

Fig. 2. Illustrating the proof of Lemma 4, where the dashdot line represents
the trajectory �����, the solid line represents the trajectory ����� and the solid line
together with the dashed line represents the trajectory � ���.

Theorem 3: Under assumptions (A1) and (A2), for any �� � ��,
we have

��� ���� �� ���� � ��� ���� (21)

where � � �	
��	 ����� � �� � ��� ����
�

�, with �, � 
 � and �
defined in (11) and (15).

Proof: By Theorem 2, for any � � �, we have ����� ����
�
�

���������
� ���� and ����� ����

�
� ������

� ����. Hence

�� �� ������ ����� �� ����� ����
�
�

����

����
�� ����

������� ����� ���� ����� ����
�

�
��� �

��

����
�� ����

�� �� ����� ���� �� ����� ����
�
�

��

���
�� ����

� ����� ���� ���� ����� ����
�
�

��� �

���
�� �����

Thus, by Lemma 4 we have

��� ���� �� ���� � �	
 �	
��

�
�
�� � ��� ��

���
�� �����

By Theorem 3, assumptions (A1) and (A2) together imply the ex-
ponential convergence of the value iteration. In general, the limiting
function ����� may not coincide with the infinite-horizon value func-
tion � ����. The following Theorem shows that the two functions agree
for the DSLQR problem.

Theorem 4: Under assumptions (A1) and (A2), ����� � � ����
for each � � �.

Proof: For any finite � , we know that

�� ��� �

���

���

���������	 �
�

��� ���	 �
�

������� � ������� �����

By the optimality of � ����, we have

� ���� �

���

���

���������	 �
�

��� ���	 �
�

������� � � �����������

� �� ���� ������� ���� � � ������������

By Theorem 3 and Theorem 2, as � 	 
, �� ��� 	 �����,
������� ���� 	 � and � ����������� 	 �. Therefore, � ���� �
�����. We now prove the other direction. Notice that by (A2) we must
have � ���� � ��� �� �� ���, where �	

� denotes the set of all
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the infinite-horizon stabilizing policies. Let �� be an arbitrary policy
in ��

�
and let ����� and ������� ������ be the corresponding trajectory and

the hybrid control sequence, respectively. Since ������ � as � � �,
for any � � �, there always exists an 	� such that 
������� � � for
all � � 	�. Hence, for all 	 � 	�

�� ��� �

���

���

������� ������ ������ � 
����	��

�

���

���

������� ������ ������ � � � �� ��� � ��

Let 	 � �, we have ����� � �� ��� � �, � �� � ��

�
. Thus,

����� � � ���� � � and the theorem is proved as � is arbitrary.
Remark 4: Compared with the previous work [3], [11], our con-

vergence result derived specially for the DSLQR problem has several
distinctions. First, it allows general terminal cost, which is especially
important for the finite-horizon DSLQR problems. In addition, the con-
vergence conditions are expressed in terms of the subsystem matrices
rather than the infinite-horizon value function [3], and thus become
much easier to verify. Finally, by Theorem 3, for a given tolerance on
the optimal cost, the required number of iterations can be computed
before the actual computation starts. This provides an efficient means
to stop the value iteration with guaranteed suboptimal performance.

V. CONCLUSION

A number of important properties of the value functions of the
DSLQR problem are derived. In particular, we have proved that any
finite-horizon value function is the pointwise minimum of a finite
number of quadratic functions that can be obtained recursively using
the SRM. It has also been shown that under some mild conditions, the
family of the finite-horizon value functions is homogeneous of degree
2, is uniformly bounded over the unit ball and converges exponentially
fast to the corresponding infinite-horizon value function. Future
research will focus on employing these properties to efficiently solve
the DLQRS problem with guaranteed suboptimal performance.
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