
VeriSiMPL: Verification via biSimulations of MPL models

Dieky Adzkiya ⋆ and Alessandro Abate ⋆⋆

Abstract. VeriSiMPL (“very simple”) is a software tool to obtain fi-
nite abstractions of Max-Plus-Linear (MPL) models. MPL models (Sec.
2), specified in MATLAB, are abstracted to Labeled Transition Systems
(LTS). The LTS abstraction is formally put in relationship with the con-
crete MPL model via a (bi)simulation relation. The abstraction proce-
dure (Sec. 3) runs in MATLAB and leverages sparse representations, fast
manipulations based on vector calculus, and optimized data structures
such as Difference-Bound Matrices. LTS abstractions can be exported to
structures defined in the PROMELA language. This enables the verifi-
cation of MPL models against temporal specifications within the SPIN
model checker (Sec. 4). The toolbox is available at

http://sourceforge.net/projects/verisimpl/

1 Motivations and Goals
Max-Plus-Linear (MPL) models are discrete-event systems [1],[5] with continu-
ous variables that express the timing of the underlying sequential events. MPL
models are employed to describe the timing synchronization between interleaved
processes, and as such are widely employed in the analysis and scheduling of
infrastructure networks, such as communication and railway systems [2] and
production and manufacturing lines [1],[6]. They are related to a subclass of
Timed Petri Nets, namely Timed-Event Graphs [1]. MPL models are classically
analyzed by algebraic [7] or geometric techniques [8] over the max-plus algebra,
which allows investigating properties such as transient and periodic regimes [1],
or ultimate dynamical behavior [9]. They can be simulated via the max-plus
toolbox Scilab [3].

The recent work in [4] has explored a novel, alternative approach to analysis,
which is based on finite-state abstractions of MPL models. The objective of this
new approach is to allow a multitude of available tools that has been developed
for finite-state models to be employed over MPL systems. We are in particular
interested downstream in the Linear Temporal Logic (LTL) model checking of
MPL models via LTS abstractions. This article presents VeriSiMPL, a software
toolbox that implements and tests the abstraction technique in [4].

2 Nuts and bolts of Max-Plus-Linear models
Define IRε and ε respectively as IR ∪ {ε} and −∞. For a pair x, y ∈ IRε, we
define x ⊕ y = max{x, y} and x ⊗ y = x + y. Max-plus algebraic operations
are extended to matrices as follows: if A,B ∈ IRm×n

ε and C ∈ IRn×p
ε , then

[A ⊕ B](i, j) = A(i, j) ⊕ B(i, j) and [A ⊗ C](i, j) =
⊕n

k=1
A(i, k) ⊗ C(k, j), for

all i, j. An MPL model [1, Corollary 2.82] is defined as:

x(k) = A⊗ x(k − 1)⊕B ⊗ u(k),

⋆ The authors are with the Delft Center for Systems & Control, TU Delft.
⋆⋆ A. Abate is also with the Department of Computer Science, University of Oxford.



where A ∈ IRn×n
ε , B ∈ IRn×m

ε , x(k) ∈ IRn
ε , u(k) ∈ IRm

ε , for k ∈ IN. In this
work, the state and input spaces are taken to be IRn and IRm, respectively: the
independent variable k denotes an increasing discrete-event counter, whereas the
n-dimensional state variable x defines the (continuous) timing of the discrete
events and the m-dimensional input u characterizes external schedules. If the
input matrix B contains at least a finite (not equal to ε) element, the MPL
model is called nonautonomous, otherwise it is called autonomous since it evolves
under no external schedule. Nonautonomous models embed nondeterminism in
the form of a controller input.

Implementation: VeriSiMPL accepts MPLmodels written in MATLAB [10].
For practical reasons, the state matrix A is assumed to be row-finite, namely
characterized in each row with at least one element different from ε.

Example: Consider the following two-dimensional autonomous MPL model
from [1, p. 4], representing the scheduling of train departures from two connected
stations i = 1, 2 (event k denotes the k-th departure at time xi(k) for station i):

x(k) =

[

3 7
2 4

]

⊗ x(k − 1), i.e.

[

x1(k)
x2(k)

]

=

[

max{3 + x1(k − 1), 7 + x2(k − 1)}
max{2 + x1(k − 1), 4 + x2(k − 1)}

]

.

In the Appendix the model is equivalently expressed as a Timed-Event Graph.

3 From MPL models to Labeled Transition Systems

We seek to construct a finite-state Labeled Transition System (LTS) as an ab-
straction of an (autonomous or nonautonomous) MPL model. An LTS is com-
prised of a finite set of states (Sec. 3.1), of a set of transitions relating pairs
of states (Sec. 3.2), and is further decorated with labels on either states or
transitions (Sec. 3.3). The obtained LTS is in general nondeterministic: its de-
terminization can be attempted by state refinement procedures [4].

3.1 LTS states: partitioning of MPL space

LTS states are obtained by partitioning the state space IRn based on the un-
derlying dynamics, that is based on the state matrix A [4, Algorithms 1,2]. The
partition can be further refined (in order to seek a bisimulation of the concrete
model) or otherwise coarsened by merging adjacent regions (in order to reduce
the cardinality of the set of abstract states).

Implementation: VeriSiMPL implements two approaches [4, Algorithms 1,2].
In order to improve the performance of the procedure, standard pruning tricks [11,
Sec. 3] are applied. Each generated region is shown to be a Difference-Bound Ma-
trix (DBM) [12, Sec. 4.1]: this allows a computationally efficient representation
based on the expression xi − xj ⊲⊳ αi,j , ⊲⊳∈ {<,≤}. VeriSiMPL represents a
DBM as a row cell with two elements: the first element is a real-valued ma-
trix representing the upper bound αi,j , whereas the second is a Boolean matrix
representing the value of ⊲⊳. A collection of DBM is also represented as a row
with two elements, where the corresponding matrices are stacked along the third
dimension. Quite importantly, DBM are closed under MPL operations.

Example: The partitioning regions generated for the MPL model in Sec. 2
are R1 = {x ∈ IR2 : x1 − x2 > 4}, R2 = {x ∈ IR2 : 2 < x1 − x2 ≤ 4}, and
R3 = {x ∈ IR2 : x1 − x2 ≤ 2}. They are shown in Fig. 1 (left).



3.2 LTS transitions: forward-reachability analysis

An LTS transition between any two abstract states R and R′ is generated based
on the relation between the two corresponding partitioning regions. At any given
event counter k, there is a transition from R to R′ if there exists an x(k−1) ∈ R
and possibly a u(k) ∈ U ⊆ IRm such that x(k) ∈ R′. Such a transition can
be determined by forward-reachability computation. We assume that the set of
allowed inputs U ⊆ IRm is characterized via a DBM: practically, this expresses
upper or lower bounds on the separation between input events (schedules). Under
no constraints on input events we instead define U = IRm, which is also a DBM.

Given a pair R,R′, the procedure comprises: 1) the computation of the image
of R and 2) the collection of the partitioning regions that intersect the image.
The image of R is defined as [A B] ⊗ (R × U), and in general is a finite union
of DBM. As a special instance, for an autonomous MPL system (trivial B or
U = ∅) the image is simply a DBM.

Implementation: VeriSiMPL performs forward-reachability by mapping and
manipulating DBM. It represents a transition in MATLAB as a sparse Boolean
matrix. As in a precedence graph [1, Definition 2.8], the (i, j)-th element equals
to 1 if there is a transition from j to i, else it is equal to 0.

Example: The transitions for the model in Sec. 2 are represented in Fig. 1
(right). In a nonautonomous version of the model, the finite-state structure in
Fig. 1 will simply present additional transitions.

3.3 LTS labels: fast manipulation of DBM

LTS labels are quantities associated with states or transitions and characterize
1) the difference between the timing of a single event (k) for any two variables

of the original MPL model, i.e. xi(k)− xj(k), where 1 ≤ i < j ≤ n; or
2) the time difference between consecutive events of the MPL model, i.e.

xi(k)− xi(k − 1), for 1 ≤ i ≤ n.
The first labels denote the difference of the timing of a single event k over two

variables xi, xj , are determined by the representation of the partitioning regions
(a DBM in IRn) and are quantities associated with each state of the LTS [4].

The second labels represent time difference between consecutive events (k−1
and k). They are quantities associated with transitions in the LTS. In order to
compute the labels of a transition from R to R′, first we calculate {[xT uT ]T ∈
R × U : [A B]⊗ [xT uT ]T ∈ R′} by employing a backward-reachability analysis
of R′ w.r.t. the system generated by [A B], which yields a finite union of DBM in
IRm+n. For each obtained DBM, we substitute its dynamics into xi(k)−xi(k−1),
for 1 ≤ i ≤ n, obtaining a finite union of vectors of real-valued intervals. As a
special case, for an autonomous MPL system we compute {x ∈ R : A⊗x ∈ R′},
which is a DBM: in this case each label is a vector of real-valued intervals.

Implementation: Practically, in both cases VeriSiMPL stores the labels as
(unions of) vectors of real-valued intervals in MATLAB. In the second case the
labels are computed by fast DBM manipulations.

Example: The obtained LTS can be expressed as a simple text file and
parsed by Graphviz [13] for plotting, as displayed in Fig. 1 (right).

4 Computational Benchmark and Case Study

We have computed the runtime required to abstract an autonomous MPL sys-
tem as a finite-state LTS, for increasing dimensions n of the MPL model, and



x1

x2 R3 R2

4

R1

2

[3, 4]
[5, 6]

[5,∞)
[4, 4]

[3, 3]
(6,∞)

(4, 5)
(4, 5)

R1

R3

R2

Fig. 1. LTS abstraction (right graph) of the MPL model in Sec. 2, inclusive of abstract
states (associated to the partitioning regions on the left plot), transitions, and labels.

kept track of the number of states and of transitions of the obtained LTS (mem-
ory requirement). Compared to partition-based abstraction procedures in the
literature for other classes of dynamical systems [14], the presented abstraction
procedure comfortably manages MPL models with significant size.

Implementation: For any given n, we have generated row-finite matrices A
with 2 finite elements (random integers taking values between 1 and 100) placed
randomly in each row. The algorithms have been implemented in MATLAB 7.13
(R2011b) and the experiments have been run on a 12-core Intel Xeon 3.47 GHz
PC with 24 GB of memory. For a 15-dimensional model, VeriSiMPL generates
an LTS with about 104 states and 106 transitions, with a runtime limited within
a few hours. The complete outcomes are reported in Table 1 in the Appendix.

Example: The obtained LTS can be exported to PROMELA (a PROcess
MEta LAnguage), to be later used by the SPIN model checker [15]. We employ
SPIN to modelcheck LTL properties over MPL models. Model checking can be
performed over both state and transition labels, which adapts to the LTS formats
we can generate with the abstraction.

As an example of verification of properties over transitions, consider the
specification Ψ : ∀k ∈ IN, ψ(k), where ψ(k) := {x2(k + 1) − x2(k) ≤ 6}. After
a proper finite labeling of the LTS, Ψ can be expressed as �ψ. We obtain the
satisfiability set Sat(Ψ) = {R2, R3}.

Bibliography

1. Baccelli, F., Cohen, G., Olsder, G., Quadrat, J.P.: Synchronization and Linearity,
An Algebra for Discrete Event Systems. John Wiley and Sons (1992)

2. Heidergott, B., Olsder, G., van der Woude, J.: Max Plus at Work–Modeling and
Analysis of Synchronized Systems: A Course on Max-Plus Algebra and Its Appli-
cations. Princeton University Press (2006)

3. Plus, M.: Max-plus toolbox of Scilab [Online] (1998) Available at
www.cmap.polytechnique.fr/∼gaubert/MaxplusToolbox.html.

4. Adzkiya, D., De Schutter, B., Abate, A.: Abstraction and verifica-
tion of autonomous max-plus-linear systems. In: Proc. 31st Amer-
ican Control Conf., Montreal, CA (Jun. 2012) 721–726 Available at
www.dcsc.tudelft.nl/∼aabate/publications/AdzkiyaDeSchutterAbateACC12.pdf.



Appendix

Testing VeriSiMPL

The toolbox is available at

http://sourceforge.net/projects/verisimpl/

The most updated version is the 1.2 (dated Jan 14, 2013). This toolbox has
been successfully tested with Matlab R2009b, R2010b, R2011a, R2011b, R2012b.
Please open the README file with your favorite text editor to proceed with the
main instructions.

In order to ease the job of reviewers, we suggest testing a run of VeriSiMPL by
executing the following commands, which correspond to the numerical example
presented in the article.

1. Define the system matrix

Ampl = [3 7;2 4]

2. Generate the LTS states (D) and the dynamical system associated to the
MPL model and characterized via A,B,sysD

[A,B,D] = maxpl2pwa(Ampl)

[A,B,D] = maxpl2pwa refine(Ampl,A,B,D)

sysD = 1:size(A,2)

3. Determine the LTS transitions

adj = maxpl2ts trans(A,B,D,sysD)

4. Compute the (transition) LTS labels

L = maxpl2ts label(A,B,D,sysD,adj)

The computation of state labels is similar. The obtained TS can be plotted
in Graphviz by first generating a text file in dot format (ts.dot) by running

ts2graphviz(adj,’ts’,’graph’)

where graph is a name selected for the TS.

The LTS can be exported into PROMELA for verification over transition
labels by running the following commands.

1. Define the set of atomic propositions

AP = [-Inf 0 0 Inf;-Inf 0 1 6]

2. Define the transition from R1 to R3 as the initial transition

t0 = 1

3. Generate a text file (ts1.pml) in PROMELA

ts2spin trans(L,adj,’ts1’,AP,t0)



The export aimed at verification over state labels is similar. Finally, the
PROMELA code can be fed to SPIN in order to check whether the LTS model
satisfies an LTL formula made up of AP, as follows.

1. Generate a C code (pan.c) by feeding the negation of the LTL formula to
SPIN

spin -a -f ’![] p1’ ts1.pml

2. Compile the C code with GCC

gcc -o pan pan.c

3. Run the executable binary file

./pan

MPL Models as Timed-Event Graphs

Consider the following two-dimensional autonomous MPL model from [1, p. 4]:

x(k) =

[

3 7
2 4

]

⊗ x(k − 1), i.e.

[

x1(k)
x2(k)

]

=

[

max{3 + x1(k − 1), 7 + x2(k − 1)}
max{2 + x1(k − 1), 4 + x2(k − 1)}

]

.

As discussed in [1, Sec. 2.5], the MPL model can be equivalently expressed as a
Timed-Event Graph as follows:

2

7

q2q13 4

Fig. 2. Timed-Event Graph representation of the autonomous MPL model in in Sec. 2.

Complete Output of the Computational Benchmark

Table 1 reports the mean and maximum values, obtained over 10 independent
experiments. Similar outcomes have been generated for nonautonomous MPL
models (with non-trivial matrix B and input set U) and for models with full
matrix A and have displayed similar trends. The computational bottlenecks in
Table 1 conform to a complexity analysis of the abstraction steps in Section 3
and are guiding current upgrades.

Downstream Applications and Outlook

With focus on case studies over the short term, we plan to exploit the capabilities
of VeriSiMPL in applications spanning biology and communication systems.

Computationally, VeriSiMPL will be further optimized by employing symbolic
structures and by developing a full implementation in C language.



Table 1. Computational benchmark for autonomous MPL model – {mean;max} values

MPL generation generation of generation of number of number of
size of states transitions labels states transitions
3 {0.1;0.2} [s] {0.4;0.9} [s] {0.1;0.1} [s] {3.6;6.0} {4.3;13.0}
4 {0.2;0.3} [s] {0.5;0.9} [s] {0.1;0.2} [s] {6.2;12.0} {11.4;35.0}
5 {0.2;0.3} [s] {0.4;1.0} [s] {0.1;0.2} [s] {8.6;24.0} {13.8;90.0}
6 {0.4;0.5} [s] {0.4;0.9} [s] {0.1;0.2} [s] {19.4;36.0} {68.5;191.0}
7 {0.9;1.0} [s] {0.5;0.9} [s] {0.3;0.8} [s] {37.2;84.0} {289.3;1278.0}
8 {1.5;1.8} [s] {0.5;0.9} [s] {0.6;1.7} [s] {58.0;160.0} {512.3;1927.0}
9 {4.1;4.8} [s] {0.8;1.4} [s] {1.6;3.1} [s] {120.0;208.0} {1.7;4.3}·103

10 {9.5;12.8} [s] {3.1;15.4} [s] {7.8;39.3} [s] {283.6;768.0} {1.3;8.3}·104

11 {24.8;32.1} [s] {15.2;46.6} [s] {16.1;33.6} [s] {613.2;1104.0} {1.9;4.8}·104

12 {1.2;1.9} [m] {1.5;3.6} [m] {42.9;106.1} [s] {1.2;2.0}·103 {4.7;14.1}·104

13 {3.5;5.0} [m] {5.5;15.5} [m] {2.8;11.0} [m] {1.9;3.8}·103 {1.9;8.5}·105

14 {12.0;29.6} [m] {28.2;86.3} [m] {12.6;54.7} [m] {4.1;8.1}·103 {7.8;34.5}·105

15 {53.6;78.3} [m] {2.0;9.4} [h] {39.4;219.6} [m] {7.4;19.7}·103 {2.0;11.6}·106

Additional Bibliography

5. Hillion, H., Proth, J.: Performance evaluation of job-shop systems using timed
event-graphs. IEEE Trans. Autom. Control 34(1) (January 1989) 3–9

6. Roset, B., Nijmeijer, H., van Eekelen, J., Lefeber, E., Rooda, J.: Event driven
manufacturing systems as time domain control systems. In: Proc. 44th IEEE
Conf. Decision and Control. (December 2005) 446–451

7. Gaubert, S., Katz, R.: Reachability and invariance problems in max-plus algebra.
In Benvenuti, L., De Santis, A., Farina, L., eds.: Positive Systems. Volume 294
of Lecture Notes in Control and Information Sciences. Berlin: Springer (2003)
791–793

8. Katz, R.: Max-plus (A,B)-invariant spaces and control of timed discrete-event
systems. IEEE Trans. Autom. Control 52(2) (February 2007) 229–241

9. De Schutter, B.: On the ultimate behavior of the sequence of consecutive powers
of a matrix in the max-plus algebra. Linear Algebra and Its Applications 307(1-3)
(2000) 103–117

10. MATLAB: version 7.13.0 (R2011b). The MathWorks Inc., Natick, Massachusetts
(2011)

11. Land, A., Doig, A.: An automatic method of solving discrete programming prob-
lems. Econometrica 28(3) (July 1960) 497–520

12. Dill, D.: Timing assumptions and verification of finite-state concurrent systems. In
Sifakis, J., ed.: Automatic Verification Methods for Finite State Systems. Volume
407 of Lecture Notes in Computer Science. Berlin: Springer (1990) 197–212

13. Ellson, J., Gansner, E., Koutsofios, L., North, S., Woodhull, G.: Graphviz open
source graph drawing tools. In Mutzel, P., Jnger, M., Leipert, S., eds.: Graph
Drawing. Volume 2265 of Lecture Notes in Computer Science. Springer Berlin
Heidelberg (2002) 483–484

14. Yordanov, B., Belta, C.: Formal analysis of discrete-time piecewise affine systems.
IEEE Trans. Autom. Control 55(12) (December 2010) 2834–2840

15. Holzmann, G.: The SPIN Model Checker: Primer and Reference Manual. Addison-
Wesley (2003)


