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Abstract. A model for discrete time stochastic hybrid systems whose
evolution can be influenced by some control input is proposed in this
paper. With reference to the introduced class of systems, a methodol-
ogy for probabilistic reachability analysis is developed that is relevant to
safety verification. This methodology is based on the interpretation of
the safety verification problem as an optimal control problem for a cer-
tain controlled Markov process. In particular, this allows to characterize
through some optimal cost function the set of initial conditions for the
system such that safety is guaranteed with sufficiently high probability.
The proposed methodology is applied to the problem of regulating the
average temperature in a room by a thermostat controlling a heater.

1 Introduction

Engineering systems like air traffic control systems or infrastructure networks,
and natural systems like biological networks exhibit complex behaviors which can
often be naturally described by hybrid dynamical models– systems with interact-
ing discrete and continuous dynamics. In many situations the system dynamics
are uncertain, and the evolution of the discrete and continuous dynamics as well
as the interactions between them are of stochastic nature.

An important problem in hybrid systems theory is that of reachability anal-
ysis. In general terms, a reachability analysis problem consists in evaluating if
a given system will reach a certain set during some time horizon, starting from
some set of initial conditions. This problem arises, for instance, in connection
with those safety verification problems where the unsafe conditions for the sys-
tem can be characterized in terms of its state entering some unsafe set: if the
state of the system cannot enter the unsafe set, then the system is declared to
be “safe”. In a stochastic setting, the safety verification problem can be formu-
lated as that of estimating the probability that the state of the system remains
outside the unsafe set for a given time horizon. If the evolution of the state can
be influenced by some control input, the problem becomes verifying if it is pos-
sible to keep the state of the system outside the unsafe set with sufficiently high
probability by selecting a suitable control input.
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Reachability analysis for stochastic hybrid systems has been a recent focus
of research, e.g., in [1, 2, 3, 4]. Most of the approaches consider the problem of
reachability analysis for continuous time stochastic hybrid systems (CTSHS),
wherein the effect of control actions is not directly taken into account. The the-
ory of CTSHS, developed for instance in [5, 6, 7], is used in [1] to address the
theoretical issues regarding measurability of the reachability events. On the com-
putational side, a stochastic approximation method is used in [2, 4] to compute
the probability of entering into the unsafe set (reach probability). More recently,
in [3], certain functions of the state of the system known as barrier certificates are
used to compute an upper bound on the reach probability. In the discrete time
framework, [8] computes the reach probability using randomized algorithms.

This study adopts the discrete time setting in order to gain a deeper under-
standing of the theoretical and computational issues associated with the reacha-
bility analysis of stochastic hybrid systems. The present work extends the above
mentioned approaches to controlled systems, by developing a methodology to
compute the maximum probability of remaining in a safe set for a discrete time
stochastic hybrid system (DTSHS) whose dynamics is affected by a control in-
put. The approach is based on formulating the reachability analysis problem as
an optimal control problem. The maximum probability of remaining in a safe set
for a certain time horizon can then be computed by dynamic programming. In
addition, the optimal value function obtained through the dynamic programming
approach directly enables one to compute the maximal safe set for a specified
threshold probability, which is the largest set of all initial conditions such that
the probability of remaining in the safe set during a certain time horizon is
greater than or equal to the threshold probability.

The paper is organized as follows: Section 2 introduces a model for a DTSHS.
This model is inspired by the stochastic hybrid systems models previously intro-
duced in [5, 6, 7] in continuous time. An equivalent representation of the DTSHS
in the form of a controlled Markov process is derived. In Section 3, the notion
of stochastic reachability for a DTSHS is introduced. The problem of determin-
ing probabilistic maximal safe sets for a DTSHS is formulated as a stochastic
reachability analysis problem, which can be solved by dynamic programming.
The representation of the DTSHS as a controlled Markov process is useful in
this respect. In Section 4 we apply the proposed methodology to the problem
of regulating the temperature of a room by a thermostat that controls a heater.
Concluding remarks are drawn in Section 5.

2 Discrete Time Stochastic Hybrid System

In this section, we introduce a definition of discrete time stochastic hybrid system
(DTSHS). This definition is inspired by the continuous time stochastic hybrid
system (CTSHS) model described in [9].

The hybrid state of the DTSHS is characterized by a discrete and a continuous
component. The discrete state component takes values in a finite set Q. In each
mode q ∈ Q, the continuous state component takes values in the Euclidean space
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R
n(q), whose dimension is determined by the map n : Q → N. Thus the hybrid

state space is S := ∪q∈Q{q} × R
n(q). Let B(S) be the σ-field generated by the

subsets of S of the form ∪q{q} × Aq, where Aq is a Borel set in R
n(q). It can be

shown (see [5, page 58]) that (S, B(S)) is a Borel space.
The continuous state evolves according to a probabilistic law that depends

on the discrete state. A transition from one discrete state to another may occur
during the continuous state evolution, according to some probabilistic law. This
will then cause a modification of the probabilistic law governing the continuous
state evolution. A control input can affect both the continuous and discrete
probabilistic evolutions. After a transition in the discrete state has occurred, the
continuous state is subject to a probabilistic reset that is also influenced by some
control input. Following the reference CTSHS model in [9], we distinguish this
latter input from the former one. We call them transition input and reset input,
respectively.

Definition 1 (DTSHS). A discrete time stochastic hybrid system (DTSHS) is
a tuple H = (Q, n, U , Σ, Tx, Tq, R), where

– Q := {q1, q2, . . . , qm}, for some m ∈ N, represents the discrete state space;
– n : Q → N assigns to each discrete state value q ∈ Q the dimension of

the continuous state space R
n(q). The hybrid state space is then given by

S := ∪q∈Q{q} × R
n(q);

– U is a compact Borel space representing the transition control space;
– Σ is a compact Borel space representing the reset control space;
– Tx : B(Rn(·))×S×U → [0, 1] is a Borel-measurable stochastic kernel on R

n(·)

given S × U , which assigns to each s = (q, x) ∈ S and u ∈ U a probability
measure on the Borel space (Rn(q), B(Rn(q))): Tx(dx|(q, x), u);

– Tq : Q × S × U → [0, 1] is a discrete stochastic kernel on Q given S × U ,
which assigns to each s ∈ S and u ∈ U , a probability distribution over Q:
Tq(q|s, u);

– R : B(Rn(·)) × S × Σ × Q → [0, 1] is a Borel-measurable stochastic kernel
on R

n(·) given S × Σ × Q, that assigns to each s = (q, x) ∈ S, σ ∈ Σ,
and q′ ∈ Q, a probability measure on the Borel space (Rn(q′), B(Rn(q′))):
R(dx|(q, x), σ, q′). ��

In order to define the semantics of a DTSHS, we need first to specify how the sys-
tem is initialized and how the reset and transition inputs are selected. The system
initialization can be specified through some probability measure π : B(S) → [0, 1]
on the Borel space (S, B(S)). When the initial state of the system is s ∈ S, then,
the probability measure π is concentrated at {s}. As for the choice of the reset
and transition inputs, we need to specify which is the rule to determine their
values at every time step during the DTSHS evolution (control policy). Here, we
consider a DTSHS evolving over a finite horizon [0, N ] (N < ∞). If the values
for the control inputs at each time k ∈ [0, N) are determined based on the values
taken by the past inputs and the state up to the current time k, then the policy
is said to be a feedback policy.
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Definition 2 (Feedback policy). Let H = (Q, n, U , Σ, Tx, Tq, R) be a DTSHS.
A feedback policy µ for H is a sequence µ = (µ0, µ1, . . . , µN−1) of universally
measurable maps µk : S × (S ×U ×Σ)k → U ×Σ, k = 0, 1, . . . , N −1. We denote
the set of feedback policies as M. ��

Definition 3 (Execution). Consider a DTSHS H = (Q, n, U , Σ, Tx, Tq, R).
A stochastic process {s(k) = (q(k),x(k)), k ∈ [0, N ]} with values in S =
∪q∈Q{q} × R

n(q) is an execution of H associated with a policy µ ∈ M and
an initial distribution π if its sample paths are obtained according to the follow-
ing algorithm, where all the random extractions involved are independent:

DTSHS algorithm:

Extract from S a value s0 = (q0, x0) for the random variable s(0) = (q(0),x(0))
according to π;

set k=0

while k < N do

set (uk, σk) = µk(sk, sk−1, uk−1, σk−1, . . . );

extract from Q a value qk+1 for the random variable q(k + 1) according
to Tq(· |(qk, xk), uk);

if qk+1 = qk, then
extract from R

n(qk+1) a value xk+1 for x(k + 1) according to
Tx(· |(qk, xk), uk)

else
extract from R

n(qk+1) a value xk+1 for x(k + 1) according to
R(· |(qk, xk), σk, qk+1)

set sk+1 = (qk+1, xk+1)

k → k + 1

end ��

If the values for the control inputs are determined only based on the value taken
by the state at the current time step, i.e., (uk, σk) = µk(sk), then the policy is
said to be a Markov policy.

Definition 4 (Markov Policy). Consider a DTSHS H = (Q, n, U , Σ, Tx,
Tq, R). A Markov policy µ for H is a sequence µ = (µ0, µ1, . . . , µN−1) of univer-
sally measurable maps µk : S → U × Σ, k = 0, 1, . . . , N − 1. We denote the set
of Markov policies as Mm.

Note that Markov policies are a subset of the feedback policies: Mm ⊆ M.

Remark 1. It is worth noticing that the map Tq can model both the sponta-
neous transitions that might occur during the continuous state evolution, and
the forced transitions that must occur when the continuous state exits some
prescribed set.
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As for spontaneous transitions, if at some hybrid state (q, x) ∈ S a transition
to the discrete state q′ is allowed by the control input u ∈ U , then this is modeled
by Tq(q′|(q, x), u) > 0. Tq also encodes a possible delay in the actual occurrence
of a transition: if Tq(q′|(q, x), u) = 1, then the transition must occur, the smaller
is Tq(q′|(q, x), u), the more likely is that the transition will be postponed to a
later time.

The invariant set Dom(q) of a discrete state q ∈ Q, namely the set of all
the admissible values for the continuous state within mode q, can be expressed
in terms of Tq by forcing Tq(q|(q, x), u) to be zero irrespectively of the value of
the control input u in U , for all the continuous state values x ∈ R

n(q) outside
Dom(q). Thus Dom(q) := R

n(q) \ {x ∈ R
n(q) : Tq(q|(q, x), u) = 0, ∀u ∈ U}. ��

Define the stochastic kernel τx : B(Rn(·))×S ×U ×Σ ×Q → [0, 1] on R
n(·) given

S × U × Σ × Q, which assigns to each s = (q, x) ∈ S, u ∈ U , σ ∈ Σ and q′ ∈ Q
a probability measure on the Borel space (Rn(q′), B(Rn(q′))) as follows:

τx(dx′ |(q, x), u, σ, q′) =

{
Tx(dx′|(q, x), u), if q′ = q

R(dx′|(q, x), σ, q′), if q′ 	= q.

In the DTSHS algorithm, τx is used to extract a value for the continuous state
at time k + 1 given the values taken by the hybrid state and the control inputs
at time k, and the value extracted for the discrete state at time k + 1.

Based on τx we can define the Borel-measurable stochastic kernel Ts : B(S)×
S × U × Σ → [0, 1] on S given S × U × Σ, which assigns to each s = (q, x) ∈ S,
(u, σ) ∈ U × Σ a probability measure on the Borel space (S, B(S)) as follows:

Ts(ds′ |s, (u, σ)) = τx(dx′ |s, u, σ, q′)Tq(q′|s, u), (1)

s, s′ = (q′, x′) ∈ S, (u, σ) ∈ U ×Σ. Then, the DTSHS algorithm can be rewritten
in a more compact form as:

extract from S a value s0 for the random variable s(0) according to π;

set k=0

while k < N do

set (uk, σk) = µk(sk, sk−1, uk−1, σk−1, . . . );

extract from S a value sk+1 for s(k + 1) according to Ts(· |sk, (uk, σk));

k → k + 1

end ��

This shows that a DTSHS H = (Q, n, U , Σ, Tx, Tq, R) can be described as a con-
trolled Markov process with state space S = ∪q∈Q{q}×R

n(q), control space A :=
U × Σ, and controlled transition probability function Ts : B(S) × S × A → [0, 1]
defined in (1). This will be referred to in the following as “embedded controlled
Markov process” (see, e.g., [10] for an extensive treatment on controlled Markov
processes).
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As a consequence of this representation of H, the execution {s(k) = (q(k),
x(k)), k ∈ [0, N ]} associated with µ ∈ M and π is a stochastic process defined on
the canonical sample space Ω = SN , endowed with its product topology B(Ω),
with probability measure Pµ

π uniquely defined by the transition kernel Ts, the pol-
icy µ ∈ M, and the initial probability measure π (see [11, Proposition 7.45]).
When π is concentrated at {s}, s ∈ S, we shall write simply Pµ

s . From the embed-
ded Markov process representation of a DTSHS it also follows that the execution
of a DTSHS associated with a Markov policy µ and an initial condition π is a
Markov process. In the sequel, only Markovian policies will be considered.

Example 1 (The thermostat). Consider the problem of regulating the tempera-
ture of a room by a thermostat that can switch a heater on and off.

The state of the controlled system is naturally described as a hybrid state.
The discrete state component is represented by the heater being in either the
“on” or the “off” condition. The continuous state component is represented by
the average temperature of the room.

We next show how the controlled system can be described through a DTSHS
model H = (Q, n, U , Σ, Tx, Tq, R). We then formulate the temperature regulation
problem with reference to this model.

Concerning the state space of the DTSHS, the discrete component of the hy-
brid state space is Q = {ON, OFF}, whereas n : Q → N defining the dimension of
the continuous component of the hybrid state space is the constant map n(q) =
1, ∀q ∈ Q. We assume that the heater can be turned on or off, and that this is
the only available control on the system. We then define Σ = ∅ and U = {0, 1}
with the understanding that “1” means that a switching command is issued, “0”
that no switching command is issued. Regarding the continuous state evolution,
in the stochastic model proposed in [12], the average temperature of the room
evolves according to the following stochastic differential equations (SDEs)

dx(t) =

{
− a

C (x(t) − xa)dt + 1
C dw(t), if the heater is off

− a
C (x(t) − xa)dt + r

C dt + 1
C dw(t), if the heater is on,

(2)

where a is the average heat loss rate; C is the average thermal capacity of the
room; xa is the ambient temperature (assumed to be constant); r is the rate
of heat gain supplied by the heater; w(t) is a standard Wiener process model-
ing the noise affecting the temperature evolution. By applying the constant-step
Euler-Maruyama discretization scheme [13] to the SDEs in (2), with time step
∆t, we obtain the stochastic difference equation

x(k + 1) =

{
x(k) − a

C (x(k) − xa)∆t + n(k), if the heater is off
x(k) − a

C (x(k) − xa)∆t + r
C ∆t + n(k) if the heater is on,

(3)

where {n(k), k ≥ 0} is a sequence of i.i.d. Gaussian random variables with zero
mean and variance ν2 := 1

C2 ∆t.
Let N (·; m, σ2) denote the probability measure over (R, B(R)) associated with

a Gaussian density function with mean m and variance σ2. Then, the continuous
transition kernel Tx implicitly defined in (3) can be expressed as follows:
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Tx(· |(q, x), u) =

{
N (·; x − a

C (x − xa)∆t, ν2), q = OFF

N (·; x − a
C (x − xa)∆t + r

C ∆t, ν2), q = ON
(4)

Note that the evolution of the temperature within each mode is uncontrolled
and so the continuous transition kernel Tx does not depend on the value u of
the transition control input.

We assume that it takes some (random) time for the heater to actually switch
between its two operating conditions, after a switching command has been is-
sued. This is modeled by defining the discrete transition kernel Tq as follows

Tq(q′|(q, x), 0) =

{
1, q′ = q

0, q′ 	= q

Tq(q′|(q, x), 1) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

α, q′ = OFF, q = ON

1 − α, q′ = q = ON

β, q′ = ON, q = OFF

1 − β, q′ = q = OFF

(5)

∀x ∈ R, where α ∈ [0, 1] represents the probability of switching from the ON to
the OFF mode in one time-step. Similarly for β ∈ [0, 1].

We assume that the actual switching between the two operating conditions
of the heater takes a time step. During this time step the temperature keeps
evolving according to the dynamics referring to the starting condition. This is
modeled by defining the reset kernel as follows

R(· |(q, x), q′) =

{
N (·; x − a

C (x − xa)∆t, ν2), q = OFF

N (·; x − a
C (x − xa)∆t + r

C ∆t, ν2), q = ON.
(6)

Let x̄−, x̄+ ∈ R, with x̄− < x̄+. Consider the (stationary) Markov policy
µk : S → U defined by

µk((q, x)) =

{
1, q = ON, x ≥ x̄+ or q = OFF, x ≤ x̄−

0, q = ON, x < x̄+ or q = OFF, x > x̄−

that switches the heater on when the temperature drops below x̄− and off when
the temperature goes beyond x̄+.

Suppose that initially the heater is off and the temperature is uniformly dis-
tributed in the interval between x̄− and x̄+, independently of the noise process
affecting its evolution. In Figure 1, we report some sample paths of the execution
of the DTSHS associated with this policy and initial condition. We plot only the
continuous state realizations. The temperature is measured in Fahrenheit de-
grees (◦F ) and the time in minutes (min). The time horizon N is taken to be
600 min. The discretization time step ∆t is chosen to be 1 min. The param-
eters in equations (4) and (6) are assigned the following values: xa = 10.5◦F ,
a/C = 0.1 min−1, r/C = 10◦F/min, and ν = 1◦F . The switching probabilities
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Fig. 1. Sample paths of the temperature for the execution corresponding to a Markov
policy switching the heater on/off when the temperature drops below 70◦F/goes above
80◦F , starting with heater off and temperature uniformly distributed on [70, 80]◦F

α and β in equation (5) are both chosen to be equal to 0.8. Finally, x̄− and x̄+

are set equal to 70◦F and 80◦F , respectively.
Note that some of the sample paths exit the set [70, 80]◦F . This is due partly

to the delay in turning the heater on/off and partly to the noise entering the
system. If the objective is keeping the temperature within the set [70, 80]◦F,
more effective control policies can be found. In the following section we consider
the problem of determining those initial conditions for the system such that it
is possible to keep the temperature of the room within prescribed limits over a
certain time horizon [0, N ], by appropriately acting on the only available con-
trol input. Due to the stochastic nature of the controlled system, we relax our
requirement to that of keeping the temperature within prescribed limits over
[0, N ] with sufficiently high probability. We shall see how this problem can be
formulated as a stochastic reachability analysis problem. ��

3 Stochastic Reachability

We consider the issue of verifying if it is possible to maintain the state of a
stochastic hybrid system outside some unsafe set with sufficiently high probabil-
ity, by choosing an appropriate control policy. This problem can be reinterpreted
as a stochastic reachability analysis problem.

With reference to the introduced stochastic hybrid model H, for a given
Markov policy µ ∈ Mm and initial state distribution π, a reachability analysis
problem consists in determining the probability that the execution associated
with the policy µ and initialization π will enter a Borel set A ∈ B(S) during the
time horizon [0, N ]:

Pµ
π (A) := Pµ

π (s(k) ∈ A for some k ∈ [0, N ]). (7)

If π is concentrated at {s}, s ∈ S, then this is the probability of entering A
starting from s, which we denote by Pµ

s (A).
Suppose that A represents an unsafe set for H. Different initial conditions are

characterized by a different probability of entering A: if the system starts from
an initial condition that corresponds to a probability ε ∈ (0, 1) of entering the
unsafe set A, then the system is said to be “safe with probability 1 − ε”. It is
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then possible to define sets of initial conditions corresponding to different safety
levels, that is sets of states such that the value for the probability of entering
the unsafe set starting from them is smaller than or equal to a given value ε.

The set of initial conditions that guarantees a safety level 1 − ε, when the
control policy µ ∈ Mm is assigned,

Sµ(ε) = {s ∈ S : Pµ
s (A) ≤ ε} (8)

is referred to as probabilistic safe set with safety level 1 − ε. If the control policy
can be selected so as to minimize the probability of entering A, then

S�(ε) = {s ∈ S : inf
µ∈Mm

Pµ
s (A) ≤ ε}. (9)

is the maximal probabilistic safe set with safety level 1 − ε. By comparing the
expressions for Sµ(ε) and S�(ε), it is in fact clear that Sµ(ε) ⊆ S�(ε), for each
µ ∈ Mm, ε ∈ (0, 1).

In the rest of the section, we show that (i) the problem of computing Pµ
s (A)

and Sµ(ε) for µ ∈ Mm can be solved by using a backward iterative procedure;
and (ii) the problem of computing S�(ε) can be reduced to an optimal control
problem. This, in turn, can be solved by dynamic programming. These results are
obtained based on the representation of Pµ

π (A) as a multiplicative cost function.
The probability Pµ

π (A) defined in (7) can be expressed as Pµ
π (A) = 1−pµ

π(Ā),
where Ā denotes the complement of A in S and pµ

π(Ā) := Pµ
π (s(k) ∈ Ā for all k ∈

[0, N ]). Let 1C : S → {0, 1} denote the indicator function of a set C ⊆ S:
1C(s) = 1, if s ∈ C, and 0, if s 	∈ C. Observe that

N∏
k=0

1Ā(sk) =

{
1, if sk ∈ Ā for all k ∈ [0, N ]
0, otherwise,

where sk ∈ S, k ∈ [0, N ]. Then,

pµ
π(Ā) = Pµ

π (
N∏

k=0

1Ā(s(k)) = 1) = Eµ
π [

N∏
k=0

1Ā(s(k))]. (10)

From this expression it follows that

pµ
π(Ā) =

∫
S

Eµ
π

[ N∏
k=0

1Ā(s(k))| s(0) = s
]
π(ds), (11)

where the conditional mean Eµ
π [

∏N
k=0 1Ā(s(k))| s(0) = s] is well defined over the

support of the probability measure π representing the distribution of s(0).

3.1 Backward Reachability Computations

We next show how it is possible to compute pµ
π(Ā) through a backward iterative

procedure for a given Markov policy µ = (µ0, µ1, . . . , µN−1) ∈ Mm, with µk :
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S → U × Σ, k = 0, 1, . . . , N − 1. For each k ∈ [0, N ], define the map V µ
k : S →

[0, 1] as follows

V µ
k (s) := 1Ā(s)

∫
SN−k

N∏
l=k+1

1Ā(sl)
N−1∏

h=k+1

Ts(dsh+1|sh, µh(sh))Ts(dsk+1|s, µk(s)),

(12)

∀s ∈ S, where Ts is the controlled transition function of the embedded con-
trolled Markov process, and

∫
S0(. . . ) = 1. If s belongs to the support of π, then,

Eµ
π

[ ∏N
l=k 1Ā(s(l))| s(k) = s

]
is well-defined and equal to the right-hand-side of

(12), so that

V µ
k (s) = Eµ

π

[ N∏
l=k

1Ā(s(l))| s(k) = s
]

(13)

denotes the probability of remaining outside A during the (residual) time horizon
[k, N ] starting from s at time k, under policy µ applied from π.

By (11) and (13), pµ
π(Ā) can be expressed as pµ

π(Ā) =
∫
S V µ

0 (s)π(ds). If π
is concentrated at {s}, pµ

s (Ā) = V µ
0 (s). Since Pµ

s (A) = 1 − pµ
s (Ā), then the

probabilistic safe set with safety level 1 − ε, ε ∈ (0, 1), defined in (8) can be
computed as Sµ(ε) = {s ∈ S : V µ

0 (s) ≥ 1 − ε}.
By a reasoning similar to [14] for additive costs, we prove the following lemma.

Lemma 1. Fix a Markov policy µ. The maps V µ
k : S → [0, 1], k = 0, 1 . . . , N ,

can be computed by the backward recursion:

V µ
k (s) = 1Ā(s)

[
Tq(q|s, uµ

k(s))
∫

Rn(q)
V µ

k+1((q, x
′))Tx(dx′|s, uµ

k(s))

+
∑
q′ �=q

Tq(q′|s, uµ
k(s))

∫
Rn(q′)

V µ
k+1((q

′, x′))R(dx′|s, σµ
k (s), q′)

]
, s = (q, x) ∈ S,

where µk = (uµ
k , σµ

k ) : S → U × Σ, initialized with V µ
N (s) = 1Ā(s), s ∈ S.

Proof. From definition (12) of V µ
k , we get that V µ

N (s) = 1Ā(s), s ∈ S. For k < N ,

V µ
k (s) = 1Ā(s)

∫
SN−k

N∏
l=k+1

1Ā(sl)
N−1∏

h=k+1

Ts(dsh+1|sh, µh(sh))Ts(dsk+1|s, µk(s))

= 1Ā(s)
∫
S
1Ā(sk+1)

( ∫
SN−k−1

N∏
l=k+2

1Ā(sl)
N−1∏

h=k+2

Ts(dsh+1|sh, µh(sh))

Ts(dsk+2|sk+1, µk+1(sk+1))
)
Ts(dsk+1|s, µk(s))

= 1Ā(s)
∫
S

V µ
k+1(sk+1)Ts(dsk+1|s, µk(s)).

Recalling the definition of Ts the thesis immediately follows. ��
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3.2 Maximal Probabilistic Safe Set Computation

The calculation of the maximal probabilistic safe set S�(ε) defined in (9) amounts
to finding the infimum over the Markov policies of the probability Pµ

s (A) of
entering the unsafe set A starting from s, for all s outside A ( the probability of
entering A starting from s ∈ A is 1 for any policy). A policy that achieves this
infimum is said to be maximally safe.

Definition 5 (Maximally safe policy). Let H = (Q, n, U , Σ, Tx, Tq, R) be a
DTSHS, and A ∈ B(S) an unsafe set. A policy µ∗ ∈ Mm is maximally safe if
Pµ∗

s (A) = infµ∈Mm Pµ
s (A), ∀s ∈ Ā.

Given that Pµ
s (A) = 1 − pµ

s (Ā), finding the infimum of the probability Pµ
s (A)

is equivalent to computing the supremum of the probability pµ
s (Ā) of remaining

within the safe set Ā. In the following theorem, we describe an algorithm to
compute supµ∈Mm

pµ
s (Ā) and give a condition for the existence of a maximally

safe policy. The proof is based on [11, Proposition 11.7].

Theorem 1. Define the maps V ∗
k : S → [0, 1], k = 0, 1, . . . , N , by the backward

recursion:

V ∗
k (s) = sup

(u,σ)∈U×Σ

1Ā(s)
∫
S

V ∗
k+1(sk+1)Ts(dsk+1|s, (u, σ)), s ∈ S,

initialized with V ∗
N (s) = 1Ā(s), s ∈ S.

Then, V ∗
0 (s) = supµ∈Mm

pµ
s (Ā) for all s∈S. Moreover, if Uk(s, λ)={(u, σ) ∈

U × Σ|1Ā(s)
∫
S V ∗

k+1(sk+1)Ts(dsk+1|s, (u, σ)) ≤ λ} is compact for all s ∈ S, λ ∈
R, k ∈ [0, N − 1], then there exists a maximally safe policy µ∗ = (µ∗

0, . . . , µ
∗
N−1),

with µ∗
k : S → U × Σ, k ∈ [0, N − 1], given by

µ∗
k(s) = arg sup

(u,σ)∈U×Σ

1Ā(s)
∫
S

V ∗
k+1(sk+1)Ts(dsk+1|s, (u, σ)), ∀s ∈ S. (14)

Proof. Note that we deal with Borel spaces and with Borel measurable
stochastic kernels. The one-stage cost function 1Ā(s) is Borel measurable, non
negative and bounded for all s ∈ S. In particular, V ∗

N (s) = 1Ā(s) is Borel measur-
able, hence universally measurable. It can be directly checked that the mapping
H : S×U×Σ×V → R defined as H(s, (u, σ), V ) = 1Ā(s)

∫
S V (s′)Ts(ds′|s, (u, σ))

satisfies the monotonicity assumption when applied to universally measurable
functions V (cf. [11, Section 6.1]). Then V ∗

k (s) = sup(u,σ)∈U×Σ H(s, (u, σ), V ∗
k+1)

is universally measurable for every k ∈ [0, N − 1]. The functions V ∗
k (s) are also

lower semi-analytic. This holds because the product of a lower semi-analytic func-
tion by a positive Borel measurable function is lower semi-analytic; furthermore,
the integration of a lower semi-analytic function with respect to a stochastic ker-
nel and its supremization with respect to one of its arguments (in this specific
instance, the control input) is lower semi-analytic (cf. [11, Propositions 7.30,
7.47 and 7.48]). The preceding measurability arguments provide a solid ground
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for the exact selection assumption to hold ([11, Section 6.2]), which finally leads
to the statement of the theorem by the application of [11, Proposition 11.7]. ��

Remark 2. When U and Σ are finite sets, then the compactness assumption
required in the theorem is trivially satisfied.

The maximal probabilistic safe set S�(ε) with safety level 1 − ε defined in (9)
can be determined as S�(ε) = {s ∈ S : V ∗

0 (s) ≥ 1 − ε}.

4 The Thermostat Example

In this section we apply the proposed methodology to the problem of regulating
the temperature of a room by a thermostat controlling a heater. We refer to the
DTSHS description of the system given in Example 1 of Section 2. The system
parameters and time horizon are set equal to the values reported at the end of
Example 1. Three safe sets are considered: Ā1 = (70, 80)◦F , Ā2 = (72, 78)◦F ,
and Ā3 = (74, 76)◦F . The dynamic programming recursion described in Section
3.2 is used to compute maximally safe policies and maximal probabilistic safe
sets. The implementation is done in MATLAB. The temperature is discretized
into 100 equally spaced values within the safe set.

Figure 2 show the plots of 100 temperature sample paths resulting from sam-
pling the initial temperature from the uniform distribution over the safe sets,
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Fig. 2. Sample paths of the temperature for the execution corresponding to maximally
safe policies, when the safe set is: Ā1 (top), Ā2 (middle), and Ā3 (bottom)
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and using the corresponding maximally safe policy. The initial operating mode
is chosen at random between the equiprobable ON and OFF values.

It can be observed from each of the plots that the maximally safe policy
computed by the dynamic programming recursion leads to an optimal behavior
in the following sense: regardless of the initial state, most of the temperature
sample paths tend toward the middle of the corresponding safe set. As for the
Ā1 and Ā2 safe sets, the temperature actually remain confined within the safe
set in almost all the sample paths, whereas this is not the case for Ā3. The
set Ā3 is too small to enable the control input to counteract the drifts and
the randomness in the execution in order to maintain the temperature within
the safe set. The maximal probability of remaining in the safe set pµ∗

π (Āi) for π
uniform over Q × Āi, i = 1, 2, 3, is computed. The value is 0.991 for Ā1, 0.978
for Ā2 and 0.802 for Ā3.

The maximal probabilistic safe sets S�(ε) corresponding to different safety
levels 1 − ε are also calculated. The results obtained are reported in Figure 3
with reference to the heater initially off (plot on the left) and on (plot on the
right). In all cases, as expected, the maximal probabilistic safe sets get smaller
as the required safety level 1 − ε grows. When the safe set is Ā3, there is no
policy that can guarantee a safety probability greater than about 0.86.

The maximally safe policies at some time instances k ∈ [0, 600] µ∗
k : S → U are

shown in Figure 4, as a function of the continuous state and discrete state (the
red crossed line refers to the OFF mode, whereas the blue circled line refers to the
ON mode). The obtained result is quite intuitive. For example, at time k = 599,
close to the end of the time horizon, and in the OFF mode, the maximally safe
policy prescribes to stay in same mode for most of the continuos state values
except near the lower boundary of the safe set, in which case it prescribes to
change the mode to ON since there is a possibility of entering the unsafe set
in the residual one-step time horizon. However, at earlier times (for instance,
time k = 1), the maximally safe policy prescribes to change the mode even for
states that are distant from the safe set boundary. Similar comments apply to
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Fig. 3. Maximal probabilistic safe sets: heater initially off (left) and on (right). Blue,
black, and red colors refer to cases when the safe sets are Ā1, Ā2, and Ā3, respectively.
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Fig. 4. Maximally safe policy as a function of the temperature at times k = 1, 250,
500, 575, 580, 585, 590, 595, and 599 (from top to bottom) for the safe sets Ā1 , Ā2,
and Ā3 (from left to right). The darker (blue) circled line corresponds to the OFF mode
and the lighter (red) crossed line corresponds to the ON mode.

the ON mode. This shows that a maximally safe policy is not stationary. By
observing from top to bottom each column of Figure 4, one can see that this
non-stationary behavior appears limited to a time interval at the end of the
time horizon. Also, by comparing the columns of Figure 4, this time interval
gets progressively smaller moving from Ā1 to Ā2 and Ā3.

It is interesting to note the behavior of the maximally safe policy correspond-
ing to the safe set Ā1 at k = 575 and k = 580. For example, for k = 580,
the maximally safe policy for the OFF mode fluctuates between actions 0 and 1
when the temperature is around 75◦F . This is because the corresponding val-
ues taken by the function to be optimized in (14) are almost equal for the two
control actions. The results obtained refer to the case of switching probabilities
α = β = 0.8. Different choices of switching probabilities may yield qualitatively
different maximally safe policies.

5 Final Remarks

In this paper we proposed a model for controlled discrete time stochastic hybrid
systems. With reference to such a model, we described the notion of stochas-
tic reachability, and discussed how the problem of safety verification can be
reinterpreted in terms of the introduced stochastic reachability notion. By an
appropriate reformulation of the safety verification problem for the stochastic
hybrid system as that of determining a feedback policy that optimizes some mul-
tiplicative cost function for a certain controlled Markov process, we were able to
suggest a solution based on dynamic programming. Temperature regulation of a
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room by a heater that can be repeatedly switched on and off was presented as a
simple example to illustrate the model capabilities and the reachability analysis
methodology.

Further work is needed to extend the current approach to the infinite horizon
and partial information cases. The more challenging problem of stochastic reach-
ability analysis for continuous time stochastic hybrid systems is an interesting
subject of future research.
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