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Abstract. This paper describes the development of finite abstractions
of Max-Plus-Linear (MPL) systems using tropical operations. The idea
of tropical abstraction is inspired by the fact that an MPL system is a
discrete-event model updating its state with operations in the tropical
algebra. The abstract model is a finite-state transition system: we show
that the abstract states can be generated by operations on the tropical
algebra, and that the generation of transitions can be established by
tropical multiplications of matrices. The complexity of the algorithms
based on tropical algebra is discussed and their performance is tested
on a numerical benchmark against an existing alternative abstraction
approach.
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1 Introduction

Tropical mathematics has been a rapidly growing subject since it was firstly
introduced [15]. It has branches in mathematical fields such as tropical geometry
[11] and tropical algebra [15]. The latter denotes an algebraic structure that
uses max or min for addition and + for multiplication, respectively - hence, it
is well known as max-plus or min-plus algebra. In this paper, we use the former
operation to define the tropical algebra.

A class of discrete-event system (DES) based on tropical algebra is the Max-
Plus-Linear (MPL) one [5]. Models of MPL systems involve tropical operations,
namely max and +. The state space of these models represents the timing of
events that are synchronised over the max-plus algebra. This means that the
next event will occur right after the last of the previous events has finished.

The connections between max-plus algebra and timed systems have been
explored in the recent past. First, the dynamics of timed event graphs (a special
case of timed Petri nets where all places have exactly one upstream and one
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downstream transition) can be expressed via MPL systems [5,10]. Second, max-
plus polyhedra can be used as data structures in reachability analysis of timed
automata [12]: such data structures display a similarity with Difference-Bound
Matrices (DBMs) [7].

Finite abstractions of MPL system have been firstly introduced in [3]. These
abstraction procedures start by transforming a given MPL system into a Piece-
Wise Affine (PWA) model [9]. The PWA model is characterised by several do-
mains (PWA regions) and the corresponding affine dynamics. The resulting ab-
stract states are the partitions corresponding to the PWA regions. Finally, the
transition relation between pairs of abstract states depends on the trajectory
of the original MPL system. This abstraction technique enables one to perform
model checking over an MPL system; one of the applications is safety analysis [3].
Interested readers are referred to [1, 3, 4] and the VeriSiMPL toolbox [2].

This paper introduces the idea of Tropical Abstractions of MPL systems.
The approach is inspired by the fact that an MPL system is a DES that is
natively updated via tropical operations. We will show that the abstraction of
MPL systems can be established by tropical operations and with algorithms
exclusively based on tropical algebra. We argue by experiments that this has
clear computational benefits on existing abstraction techniques.

The paper is outlined as follows. Section 2 is divided into three parts. The
first part explains the basic of MPL systems including the properties of its state
matrix. We introduce the notion of region matrix and of its conjugate, which
play a significant role in the abstraction procedures. The notion of definite form
and its generalisation are explained in the second part. Finally, we introduce a
new definition of DBM as a tropical matrix.

Equipped with these notions, all algorithms of the tropical abstraction pro-
cedure are explained in Section 3, which contains the novel contributions of this
paper. The comparison of the algorithms performance against the state of the
art is presented in Section 4. The paper is concluded with Section 5. The proofs
of the propositions are contained in an extended version of this paper [13].

2 Models and Preliminaries

2.1 Max-Plus-Linear Systems

In tropical algebra, Rmax is defined as R∪{−∞}. This set is equipped with two
binary operations, ⊕ and ⊗, where

a⊕ b := max{a, b} and a⊗ b := a+ b,

for all a, b ∈ Rmax. The algebraic structure (Rmax,⊕,⊗) is a semiring with
ε := −∞ and e := 0 as the null and unit element, respectively [5].

The notation Rm×nmax represents the set of m × n tropical matrices whose
elements are in Rmax. Tropical operations can be extended to matrices as follows.
If A,B ∈ Rm×nmax , C ∈ Rn×pmax then

[A⊕B](i, j) = A(i, j)⊕B(i, j) and [A⊗ C](i, j) =

n⊕
k=1

A(i, k)⊗ C(k, j)
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for all i, j in the corresponding dimension.
Given a natural number m, the tropical power of A ∈ Rn×nmax is denoted by

A⊗m and corresponds to A⊗ . . .⊗A (m times). As we find in standard algebra,
the zero power A⊗0 is an n × n identity matrix In, where all diagonals and
non-diagonals are e and ε, respectively.

An (autonomous) MPL system is defined as

x(k + 1) = A⊗ x(k), (1)

where A ∈ Rn×nmax is the matrix system and x(k) = [x1(k) . . . xn(k)]> is the state
variables [5]. Traditionally, x represents the time stamps of the discrete-events,
while k corresponds to an event counter.

Definition 1 (Precedence Graph [5]). The precedence graph of A, denoted
by G(A), is a weighted directed graph with nodes 1, . . . , n and an edge from j to
i with weight A(i, j) if A(i, j) 6= ε.

Definition 2 (Regular (Row-Finite) Matrix [10]). A matrix A ∈ Rn×nmax is
called regular (or row-finite) if there is at least one finite element in each row.

The following notations deal with a row-finite matrix A ∈ Rn×nmax . The coeffi-
cient g = (g1, . . . , gn) ∈ {1, . . . , n}n is called finite coefficient iff A(i, gi) 6= ε for
all 1 ≤ i ≤ n. We define the region matrix of A w.r.t. the finite coefficient g as

Ag(i, j) =

{
A(i, j), if gi = j
ε, otherwise.

(2)

One can say that Ag is a matrix that keeps the finite elements of A indexed by
g. The conjugate of A is Ac, where

Ac(i, j) =

{
−A(j, i), if A(i, j) 6= ε

ε, otherwise.
(3)

2.2 Definite Forms of Tropical Matrices

The concept of definite form over a tropical matrix was firstly introduced in [17].
Consider a given A ∈ Rn×nmax and let α be one of the maximal permutations1 of
A. The definite form of A w.r.t. α is Aα, where

Aα(i, j) = A(i, α(j))⊗A(j, α(j))⊗−1 = A(i, α(j))−A(j, α(j)). (4)

In this paper, we allow for a generalisation of the notion of definite form.
We generate the definite form from the finite coefficients introduced above. No-
tice that the maximal permutation is a special case of finite coefficient g =
(g1, . . . , gn) when all gi are different. Intuitively, the definite form over a fi-
nite coefficient g is established by; 1) column arrangement of A using g i.e.

1 A permutation α is called maximal if
⊗n

i=1A(i, α(i)) = per(A), where per(A) is the
permanent of A [6, 17].
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B(·, j) = A(·, gj) and then 2) subtracting each column by the corresponding
diagonal element i.e. Ag(·, j) = B(·, j)−B(j, j) for all j ∈ {1, . . . , n}.

Furthermore, we define two types of definite forms. We call the definite form
introduced in [17] to be a column-definite form. We define as an additional form
the row-definite form gA. The latter form is similar to the former, except that
now the row arrangement is used, namely B(gi, ·) = A(i, ·) for all i ∈ {1, . . . , n}.
Notice that, in a row arrangement, one could find two or more different rows of
A are moved into the same row at B. As a consequence, some rows of B remain
empty. In these cases, ε is used to fill the empty rows. For rows with multiple
entries, we take the maximum point-wise after subtracting by the corresponding
diagonal element.

Example 1. Consider a tropical matrix

A =

 ε 1 3
5 ε 4
7 8 ε

 .
and a finite coefficient g = (2, 1, 1). The row-definite form for g is

A =

 ε 1 3
5 ε 4
7 8 ε

 99K


5 ε 4
7 8 ε
ε 1 3
ε ε ε

 99K


0 ε −1
0 1 ε
ε 0 2
ε ε ε

 99K gA =

0 1 −1
ε 0 2
ε ε ε

 .
On the other hand, the column-definite form w.r.t. g is

A =

 ε 1 3
5 ε 4
7 8 ε

 99K
1 ε ε
ε 5 5
8 7 7

 99K Ag =

0 ε ε
ε 0 −2
7 2 0

 .
Notice that, the elements at the 3rd row of gA are all ε. �

The generation of definite forms is formulated as tropical operations as follows:

Proposition 1. The column-definite and row-definite form of A ∈ Rn×nmax w.r.t.
a finite coefficient g are Ag = A⊗Ac

g and gA = Ac
g ⊗A, respectively. �

2.3 Difference Bound Matrices as Tropical Matrices

Definition 3 (Difference Bound Matrices). A DBM in Rn is the intersec-
tion of sets defined by xi−xj ∼i,j di,j, where ∼i,j∈ {>,≥} and di,j ∈ R∪{−∞}
for 0 ≤ i, j ≤ n. The variable x0 is set to be equal to 0. �

The dummy variable x0 is used to allow for the single-variable relation xi ∼ c,
which can be written as xi−x0 ∼ c. Definition 3 slightly differs from [7] as we use
operators {>,≥} instead of {<,≤}. The reason for this alteration is to transfer
DBMs into the tropical domain.
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A DBM in Rn can be expressed as a pair of matrices (D,S). The element
D(i, j) stores the bound variable di,j , while S represents the sign matrix of the
operator i.e. S(i, j) = 1 if ∼i,j = ≥ and 0 otherwise. In case of i = j, it is more
convenient to put D(i, i) = 0 and S(i, i) = 1, as it corresponds to xi − xi ≥ 0.

Under Definition 3, each DBM D in Rn is an (n + 1)-dimensional tropical
matrix. Throughout this paper, we may not include the sign matrix whenever
recalling a DBM. Operations and properties in tropical algebra can be used for
DBM operations such as intersection, computation of the canonical-form, and
emptiness checking. Such DBM operations are key for developing abstraction
procedures.

Proposition 2. The intersection of DBM D1 and D2 is equal to D1 ⊕D2. �

The sign matrix for D1 ⊕D2 is determined separately as it depends on the
operator of the tighter bound. More precisely, suppose that S1, S2 and S are the
sign matrices of D1, D2 and of D1 ⊕D2 respectively, then

S(i, j) =

S1(i, j), if D1(i, j) > D2(i, j)
S2(i, j), if D1(i, j) < D2(i, j)
min{S1(i, j), S2(i, j)}, if D1(i, j) = D2(i, j).

Any DBM admits a graphical representation, the potential graph, by inter-
preting the DBM as a weighted directed graph [14]. Because each DBM is also
a tropical matrix, the potential graph of D can be viewed as G(D).

The canonical-form of a DBM D, denoted as cf(D), is a DBM with the tight-
est possible bounds [7]. The advantage of the canonical-form representation is
that emptiness checking can be evaluated very efficiently. Indeed, for a canonical
DBM (D,S), if there exist 0 ≤ i ≤ n such that D(i, i) > 0 or S(i, i) = 0 then the
DBM corresponds to an empty set. Computing cf(D) is done by the all-pairs
shortest path (APSP) problem over the corresponding potential graph [7, 14].
(As we alter the definition of the DBM, it is now equal to all-pairs longest path
(APLP) problem). One of the prominent algorithms is Floyd-Warshall [8] which
has a cubic complexity w.r.t. its dimension.

On the other hand, in tropical algebra sense, [D⊗m](i, j) corresponds to the
maximal total weights of a path with length m from j to i in G(D). Furthermore,

[
⊕n+1

m=0D
⊗m](i, j) is equal to the maximal total weights of a path from j to

i. Thus,
⊕n+1

m=0D
⊗m is indeed the solution of APLP problem. Proposition 3

provides an alternative computation of the canonical form of a DBM D based
on tropical algebra. Proposition 4 relates non-empty canonical DBMs with the
notion of definite matrix. A tropical matrix A is called definite if per(A) = 0
and all diagonal elements of A are zero [6].

Proposition 3. Given a DBM D, the canonical form of D is cf(D) =
⊕n+1

m=0D
⊗m,

where n is the number of variables excluding x0. �

Proposition 4. Suppose D is a canonical DBM. If D is not empty then it is
definite. �
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3 MPL Abstractions Using Tropical Operations

3.1 Related Work

The notion of abstraction of an MPL system has been first discussed in [3]. The
procedure starts by transforming the MPL system characterised by A ∈ Rn×nmax

into a PWA system [3, Alg. 2], and then considering the partitions associated
to the obtained PWA system [3, Alg. 6]. The abstract states associated to the
partitions are represented by DBMs. The transitions are then generated using
one-step forward-reachability analysis [3]: first, the image of each abstract state
w.r.t. the MPL system is computed; then, each image is intersected with parti-
tions associated to other abstract states; finally, transition relations are defined
for each non-empty intersection. This procedure is summarised in [3, Alg. 7].

The computation of image and of inverse image of a DBM is described in [1].
These computations are used to perform forward and backward reachability anal-
ysis, respectively. The worst-case complexity of both procedures is O(n3), where
n is the number of variables in D excluding x0. A more detailed explanation
about image and inverse image computation of a DBM is in Section 3.3.

3.2 Generation of the Abstract States

We begin by recalling the PWA representation of an MPL system characterised
by a row-finite matrix A ∈ Rn×nmax . It is shown in [9] that each MPL system can be
expressed as a PWA system. The PWA system comprises of convex domains (or
PWA regions) and has correspondingly affine dynamics. The PWA regions are
generated from the coefficient g = (g1, . . . , gn) ∈ {1, . . . , n}n. As shown in [3],
the PWA region corresponding to coefficient g is

Rg =

n⋂
i=1

n⋂
j=1

{x ∈ Rn|xgi − xj ≥ A(i, j)−A(i, gi)} . (5)

Notice that, if g is not a finite coefficient, then Rg is empty. However, a finite
coefficient might lead to an empty set. Recall that the DBM Rg in (5) is not
always in canonical form.

Definition 4 (Adjacent Regions [3, Def. 3.10]). Two non-empty regions
generated by (5) Rg and Rg′ are called adjacent, denoted by Rg > Rg′ , if there
exists a single i ∈ {1, . . . , n} such that gi > g′i and gj = g′j for each j 6= i. �

The affine dynamic of a non-empty Rg is

xi(k + 1) = xgi(k) +A(i, gi), i = 1, . . . , n. (6)

Notice that Equation (6) can be expressed as x(k + 1) = Ag ⊗ x(k), where
Ag is a region matrix that corresponds to a finite coefficient g. As mentioned
before, a PWA region Rg is also a DBM. The DBM Rg has no dummy variable
x0. For simplicity, we are allowed to consider Rg as a matrix, that is Rg ∈ Rn×nmax .
We show that Rg is related to the row-definite form w.r.t. g.
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Proposition 5. For each finite coefficient g, Rg = gA⊕ In. �

Algorithm 1 provides a procedure to generate the PWA system from a row-
finite A ∈ Rn×nmax . It consists of: 1) generating region matrices (line 3) and their
conjugates (line 4), 2) computing the row-definite form (line 5), and 3) empti-
ness checking of DBM Rg (lines 6-7). The first two steps are based on tropical
operations while the last one is using the Floyd-Warshall algorithm.

Algorithm 1: Generation of the PWA system using tropical operations

Input : A ∈ Rn×n
max , a row-finite tropical matrix

Output: R,A, a PWA system over Rn

where R is a set of regions and A represent a set of affine dynamics
1 for g ∈ {1, . . . , n}n do
2 if g is a finite coefficient then
3 generate Ag according to (2)
4 generate Ac

g from Ag according to (3)
5 Rg := (Ac

g ⊗A)⊕ In
6 Rg := cf(Rg)
7 if Rg is not empty then
8 R := R ∪ {Rg},A := A ∪ {Ag}
9 end

10 end

11 end

The complexity of Algorithm 1 depends on line 6; that is O(n3). The worst-
case complexity of Algorithm 1 is O(nn+3) because there are nn possibilities at
line 1. However, we do not expect to incur this worst-case complexity, especially
when a row-finite A has several ε elements in each row.

In [3], the abstract states are generated via refinement of PWA regions. No-
tice that, for each pair of adjacent regions Rg and Rg′ , Rg ∩ Rg′ 6= ∅. The
intersection of adjacent regions is removed from the region with the lower index.
Mathematically, if Rg > Rg′ then Rg′ := Rg′ \Rg.

Instead of removing the intersection of adjacent regions, the partition of PWA
regions can be established by choosing the sign matrix for Rg i.e. Sg. As we can
see in (5), all operators are ≥. Thus, by (5), Sg(i, j) = 1 for all i, j ∈ {1, . . . , n}.
In this paper, we use a rule to decide the sign matrix of Rg as follows

Sg(i, j) =


1, if Rg(i, j) > 0 or

Rg(i, j) = 0 and i ≤ j,
0, if Rg(i, j) < 0 or

Rg(i, j) = 0 and i > j.

(7)

This rule guarantees empty intersection for each pair of region.
Algorithm 2 is a modification of Algorithm 1 by applying rule in (7) before

checking the emptiness of Rg. Notation Rg := (Rg, Sg) in line 7 is to emphasise
that DBM Rg is now associated with Sg. It generates the partitions of PWA
regions which represent the abstract states of an MPL system characterised by
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A ∈ Rn×nmax . The worst-case complexity of Algorithm 2 is similar to that of Algo-
rithm 1.

Algorithm 2: Generation of partition from region of PWA system by tropical

operations

Input : A ∈ Rn×n
max , a row-finite tropical matrix

Output: R,A, a PWA system over Rn

where R is a set of regions and A represent a set of affine dynamics
1 for g ∈ {1, . . . , n}n do
2 if g is a finite coefficient then
3 generate Ag according to (2)
4 generate Ac

g from Ag according to (3)
5 Rg := Ac

g ⊗A
6 generate sign matrix Sg from Rg according to (7)
7 Rg := (Rg, Sg)
8 Rg := cf(Rg)
9 if Rg is not empty then

10 R := R ∪ {Rg},A := A ∪ {Ag}
11 end

12 end

13 end

Remark 1. The resulting Rg in Algorithm 1 and Algorithm 2 is an n-dimensional
matrix which represents a DBM without dummy variable x0. This condition
violates Definition 3. To resolve this, the system matrix A ∈ Rn×nmax is extended
into (n+ 1)-dimensional matrix by adding the 0th row and column

A(0, ·) = [0 ε . . . ε], A(·, 0) = A(0, ·)>.

As a consequence, the finite coefficient g is now an (n + 1)-row vector g =
(g0, g1, . . . , gn) where g0 is always equal to 0. For the rest of this paper, all
matrices are indexed starting from zero. �

As explained in [3], each partition of PWA regions is treated as an abstract
state. Therefore, the number of abstract states is equivalent to the cardinality
of partitions. Suppose R̂ is the set of abstract states, then R̂ is a collection of
all non-empty Rg generated by Algorithm 2.

3.3 Computation of Image and Inverse Image of DBMs

This section describes a procedure to compute the image of DBMs w.r.t. affine
dynamics. First, we recall the procedures from [1]. Then, we develop new proce-
dures based on tropical operations.

The image of a DBM D is computed by constructing a DBM D consisting of
D and its corresponding affine dynamics. The DBM D corresponds to variables
x1, x2, . . . , and their primed version x′1, x

′
2, . . . ,. Then, the canonical-form DBM

cf(D) is computed. The image of D is established by removing all inequalities
with non-primed variables in cf(D). This procedure has complexity O(n3) [1].
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Example 2. Let us compute the image of D = {x ∈ R3|x1 − x2 ≥ 6, x1 − x3 >
−1, x2−x3 ≥ 2} w.r.t. its affine dynamics x′1 = x2 + 1, x′2 = x1 + 5, x′3 = x1 + 2.
The DBM generated from D and the affine dynamics is D = {[x> (x′)>]> ∈
R6|x1−x2 ≥ 6, x1−x3 > −1, x2−x3 ≥ 2, x′1−x2 = 1, x′2−x1 = 5, x′3−x1 = 2}.
The canonical-form representation of D is cf(D) = {[x> (x′)>]> ∈ R6|x1−x2 ≥
6, x1−x3 ≥ 8, x2−x3 ≥ 2, x′1−x1 ≤ −5, x′1−x2 = 1, x′1−x3 ≥ 3, x′2−x1 = 5, x′2−
x2 ≥ 11, x′2 − x3 ≥ 13, x′3 − x1 = 2, x′1 − x′2 ≤ −10, x′1 − x′3 ≤ −7, x′2 − x′3 = 3}.
The image of D over the given affine dynamics is generated by removing all
inequalities containing x1, x2 or x3, i.e. {x′ ∈ R3|x′1 − x′2 ≤ −10, x′1 − x′3 ≤
−7, x′2 − x′3 = 3}. �

The above procedure can be improved by manipulating DBM D directly from
the affine dynamics. By (6), one could write x′i = xgi +Ag(i, gi) where xi and x′i
represent the current and next variables, respectively. For each pair (i, j), we have
x′i − x′j = xgi − xgj +Ag(i, gi)−Ag(j, gj). This relation ensures that the bound
of x′i − x′j can be determined uniquely from xgi − xgj and Ag(i, gi)−Ag(j, gj).

Proposition 6. The image of a DBM D w.r.t. affine dynamics x′i = xgi +
Ag(i, gi) for 1 ≤ i ≤ n is a set D′ =

⋂n
i=1

⋂n
j=1{x′ ∈ Rn|x′i − x′j = xgi − xgj +

Ag(i, gi)−Ag(j, gj)}, where the bound of xgi − xgj is taken from D. �

Example 3. We compute the image of D = {x ∈ R3|x1 − x2 ≥ 6, x1 − x3 >
−1, x2 − x3 ≥ 2} with the same affine dynamics x′1 = x2 + 1, x′2 = x1 + 5, x′3 =
x1 + 2. From the affine dynamics and D, we have x′1 − x′2 = x2 − x1 − 4 ≤
−10, x′1 − x′3 = x2 − x1 − 1 ≤ −7, and x′2 − x′3 = 3 which yields a set {x′ ∈
R3|x′1 − x′2 ≤ −10, x′1 − x′3 ≤ −7, x′2 − x′3 = 3}. �

Algorithm 3 shows a procedure to generate the image of (D,S) w.r.t. the
affine dynamics represented by x′ = Ag ⊗ x. It requires DBM (D,S) located in
a PWA region Rg. This means that there is exactly one finite coefficient g such
that (D,S) ⊆ Rg. The complexity of Algorithm 3 is in O(n2) as the addition
step at 4 line has complexity of O(1).

Algorithm 3: Computation of the image of DBM D w.r.t. x′ = Ag ⊗ x

Input : (D,S), a DBM in Rn

g, the corresponding finite coefficient such that (D,S) ⊆ Rg

Ag, a region matrix which represents the affine dynamics
Output: (D′, S′), image of D w.r.t. x′ = Ag ⊗ x

1 Initialize (D′, S′) with Rn

2 for i ∈ {0, . . . , n} do
3 for j ∈ {0, . . . , n} do
4 D′(i, j) := D(gi, gj) +Ag(i, gi)−Ag(j, gj)
5 S′(i, j) := S(gi, gj)

6 end

7 end

As an alternative, we also show that the image of a DBM can be computed
by tropical matrix multiplications with the corresponding region matrix Ag.
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Proposition 7. The image of DBM D in Rn w.r.t. the affine dynamics x′ =
Ag ⊗ x is D′ = Ag ⊗D ⊗Ac

g. �

The procedure to compute the image of DBM D w.r.t. MPL system can be
viewed as the extension of Algorithm 3. First, the DBM D is intersected with
each region of the PWA system. Then, for each nonempty intersection we apply
Algorithm 3. The worst-case complexity is O(|R̂|n2).

In [1], the procedure to compute the inverse image of D′ w.r.t. affine dynamics
involves: 1) constructing DBM D that consists of D′ and its corresponding affine
dynamics, 2) generating the canonical form of D and 3) removing all inequalities
with primed variables. The complexity of computing the inverse image using this
procedure is O(n3) as it involves the emptiness checking of a DBM [1].

Example 4. Let us compute the inverse image of D′ = {x′ ∈ R3|x′1 − x′2 ≤
−10, x′1 − x′3 ≤ −7, x′2 − x′3 = 3} w.r.t. affine dynamics x′1 = x2 + 1, x′2 =
x1 + 5, x′3 = x1 + 2. The DBM generated from D′ and the affine dynamic is
D′ = {[x> (x′)>]> ∈ R6|x′1 − x′2 ≤ −10, x′1 − x′3 ≤ −7, x′2 − x′3 = 3, x′1 − x2 =
1, x′2−x1 = 5, x′3−x1 = 2}. The canonical-form of D is cf(D) = {[x> (x′)>]> ∈
R6|x1 − x2 ≥ 6, x′1 − x1 ≤ −5, x′1 − x2 = 1, x′1 − x3 ≥ 3, x′2 − x1 = 5, x′2 − x2 ≥
11, x′3 − x1 = 2, x′3 − x2 ≥ 8, x′1 − x′2 ≤ −10, x′1 − x′3 ≤ −7, x′2 − x′3 = 3}. The
inverse image of D′ over the given affine dynamic is computed by removing all
inequalities containing x′1, x

′
2 or x′3, i.e. {x ∈ R3|x1 − x2 ≥ 6}. �

The inverse image ofD′ can be established by manipulatingD′ from the affine
dynamics. Notice that, from (6), we have xgi−xgj = x′i−x′j+Ag(j, gj)−Ag(i, gi).
Unlike the previous case, it is possible that xgi − xgj has multiple bounds. This
happens because there is a case gi1 = gi2 but i1 6= i2. In this case, the bound of
xgi − xgj is taken from the tightest bound among all possibilities.

Proposition 8. The inverse image of DBM D′ w.r.t. affine dynamics x′i =
xgi + Ag(i, gi) for i ∈ {1, . . . , n} is a set D =

⋂n
i=1

⋂n
j=1{x′ ∈ Rn|xgi − xgj =

x′i − x′j +Ag(j, gj)−Ag(i, gi)} where the bound of x′i − x′j is taken from D′. �

Algorithm 4 shows the steps to compute the inverse image of DBM D′ over
the affine dynamics x′ = Ag ⊗ x. It has similarity with Algorithm 3 except it
updates the value of D(gi, gj) and S(gi, gj) for all i, j ∈ {0, . . . , n}. The variables
b and s in lines 4-5 represent the new bound of xgi − xgj ; that is, xgi − xgj ≥ b
if s = 1 and xgi − xgj > b if s = 0. If the new bound is larger then it replaces
the old one. In case of they are equal, we only need to update the operator.

Similar to Algorithm 3, Algorithm 4 has complexity in O(n2). In tropical
algebra, the procedure of Algorithm 4 can be expressed as tropical matrix mul-
tiplications using a region matrix and its conjugate.

Proposition 9. The inverse image of DBM D′ in Rn w.r.t. affine dynamic
x′ = Ag ⊗ x is D = (Ac

g ⊗D′ ⊗Ag)⊕ In+1. �

The procedure to compute the inverse image of DBM D′ w.r.t. MPL system
can be viewed as the extension of Algorithm 4. First, we compute the inverse im-
age of DBM D′ w.r.t. all affine dynamics. Then each inverse image is intersected
with the corresponding PWA region. The worst-case complexity is O(|R̂|n2).
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Algorithm 4: Computation of the inverse image of DBM D′ w.r.t. x′ = Ag⊗x

Input : (D′, S′), a DBM in Rn

g, the corresponding finite coefficient such that (D,S) ⊆ Rg

Ag, a region matrix which represents the affine dynamics
Output: (D,S), inverse image of D w.r.t. x′ = Ag ⊗ x

1 Initialize (D,S) with Rn

2 for i ∈ {0, . . . , n} do
3 for j ∈ {0, . . . , n} do
4 b := D′(i, j) +Ag(j, gj)−Ag(i, gi)
5 s := S′(i, j)
6 if b > D(gi, gj) then
7 D(gi, gj) := b
8 S(gi, gj) := s

9 else if b = D(gi, gj) then
10 S(gi, gj) := min{s, S(gi, gj)}
11 end

12 end

13 end

3.4 Generation of the Abstract Transitions

As we mentioned before, the transition relations are generated by one-step
forward-reachability analysis, and involve the image computation of each ab-
stract state. Suppose R̂ = {r̂1, . . . , r̂|R̂|}2 is the set of abstract states generated

by Algorithm 2. There is a transition from r̂i to r̂j if Im(r̂i) ∩ r̂j 6= ∅, where
Im(r̂i) = {A ⊗ x|x ∈ r̂i} which can be computed by Algorithm 3. Notice that,
each abstract state corresponds to an unique affine dynamics.

The procedure to generate the transitions is summarized in Algorithm 5. It
spends most time for emptiness checking at line 5. Therefore, the worst-case
complexity is in O(n3|R̂|2), where n is the dimension of A in Algorithm 2.

Example 5. Matrix A in Example 1 has 8 finite coefficients. The abstract states
generated by Algorithm 2 are r̂1 = {x ∈ R3|x1 − x2 ≥ 1, x1 − x3 ≥ 3, x2 − x3 ≥
2}, r̂2 = {x ∈ R3|x1 − x2 < 1, x1 − x3 > −1, x2 − x3 ≥ 2}, r̂3 = {x ∈ R3|x1 −
x2 ≤ −3, x1 − x3 ≤ −1, x2 − x3 ≥ 2}, r̂4 = {x ∈ R3|x1 − x2 ≥ 1, x1 − x3 >
−1, x2 − x3 < 2}, r̂5 = {x ∈ R3| − 3 < x1 − x2 < 1,−1 < x1 − x3 < 3,−2 <
x2 − x3 < 2}, r̂6 = {x ∈ R3|x1 − x2 ≥ 1, x1 − x3 ≤ −1, x2 − x3 ≤ −2}, and
r̂7 = {x ∈ R3|x1 − x2 < 1, x1 − x3 ≤ −1, x2 − x3 < 2}, which correspond to
finite coefficients (2, 1, 1), (2, 1, 2), (2, 3, 2), (3, 1, 1), (3, 1, 2), (3, 3, 1), and (3, 3, 2),
respectively. The only finite coefficient that leads to an empty set is (2, 3, 1).
Figure 1 shows the illustrations of abstract states and transition relations. �

2 R̂ is the collection of non-empty Rg. We use small letter r̂i for sake of simplicity.



12 M. S. Mufid, D. Adzkiya, A. Abate

Algorithm 5: Generation of the transitions via one-step forward reachability.

Input : R̂ = {r̂1, . . . , r̂|R̂|}, the set of abstract states generated by Algorithm 2

Output: T ⊆ R̂× R̂, a transition relation
1 Initialize T with an empty set

2 for i ∈ {1, . . . , |R̂|} do
3 for j ∈ {1, . . . , |R̂|} do
4 compute Im(r̂i) by Algorithm 3
5 if Im(r̂i) ∩ r̂j 6= ∅ then
6 T := T ∪ {(r̂i, r̂j)}
7 end

8 end

9 end

3

3
r̂3

r̂4

r̂5

r̂6

r̂7

x1

x2

r̂1r̂2

(a)

r̂4r̂1

r̂2r̂7

r̂6r̂5

r̂3

(b)

Fig. 1: (a) Plot of partitions (and corresponding abstract states), projected on
the plane x3 = 0. The solid and dashed lines represent ≥ and >, respectively.
(b) Transition relations among abstract states.

4 Computational Benchmarks

We compare the run-time of abstraction algorithms in this paper with the pro-
cedures in VeriSiMPL 1.4 [2]. For increasing n, we generate matrices A ∈ Rn×nmax

with two finite elements in each row, with value ranging between 1 and 100. The
location and value of the finite elements are chosen randomly. The computational
benchmark has been implemented on the Oxford University ARC server [16].

We run the experiments for both procedures (VeriSiMPL 1.4 and Tropical)
using MATLAB R2017a with parallel computing. Over 10 different MPL systems
for each dimension, Table 1 shows the running time to generate the abstract
states and transitions. Each entry represents the average and maximal values.

With regards to the generation of abstract states, the tropical algebra based
algorithm is much faster than VeriSiMPL 1.4. As the dimension increases, we see
an increasing gap of the running time. For a 12-dimensional MPL system over
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Table 1: Generation of abstract states and transitions.
VeriSiMPL 1.4. Tropical

time for time for time for time for
n generating generating generating generating

abstract states transitions abstract states transitions
3 {7.51, 9.82}[ms] {0.13, 0.21}[sec] {4.04, 8.39}[ms] {0.12, 0.17}[sec]
4 {11.29, 15.58}[ms] {0.20, 0.29}[sec] {5.23, 16.10}[ms] {0.17, 0.22}[sec]
5 {18.51, 28.19}[ms] {0.20, 0.21}[sec] {5.16, 6.89}[ms] {0.19, 0.20}[sec]
6 {49.22, 55.10}[ms] {0.21, 0.22}[sec] {9.99, 11.44}[ms] {0.20, 0.21}[sec]
7 {90.88, 118.94}[ms] {0.24, 0.26}[sec] {15.88, 20.67}[ms] {0.22, 0.24}[sec]
8 {0.21, 0.28}[sec] {0.32, 0.44}[sec] {0.04, 0.04}[sec] {0.27, 0.38}[sec]
9 {0.52, 0.69}[sec] {0.72, 1.07}[sec] {0.07, 0.10}[sec] {0.60, 0.91}[sec]
10 {1.25, 1.88}[sec] {2.62, 4.48}[sec] {0.14, 0.17}[sec] {2.38, 4.22}[sec]
11 {3.87, 5.14}[sec] {17.62, 29.44}[sec] {0.35, 0.39}[sec] {17.17, 28.88}[sec]
12 {8.34, 14.22}[sec] {1.20, 2.24}[min] {0.61, 0.71}[sec] {1.10, 2.19}[min]
13 {26.17, 45.17}[sec] {5.05, 10.45}[min] {1.21, 1.37}[sec] {4.98, 10.40}[min]
14 {1.81, 4.24}[min] {41.14, 112.09}[min] {0.06, 0.07}[min] {40.61, 110.06}[min]
15 {10.29, 23.18}[min] {2.63, 7.57}[hr] {0.11, 0.17}[min] {2.57, 7.65}[hr]

10 independent experiments, the time needed to compute abstract states using
tropical based algorithm is less than 1 second. In comparison, average running
time using VeriSiMPL 1.4 for the same dimension is 8.34 seconds.

For the generation of transitions, the running time of tropical algebra-based
algorithm is slightly faster than that of VeriSiMPL 1.4. We remind that the pro-
cedure to generate transitions involves the image computation of each abstract
state. In comparison to the 2nd and 4th columns of Table 1, Table 2 shows the
running time to compute the image of abstract states. Each entry represents the
average and maximum of running time. It shows that our proposed algorithm
for computing the image of abstract states is faster than VeriSiMPL 1.4.

Table 2: Computation of the image of abstract states.
n VeriSiMPL 1.4. Tropical
3 {0.84, 1.13}[ms] {0.16, 0.23}[ms]
4 {1.13, 1.76}[ms] {0.13, 0.20}[ms]
5 {1.53, 2.40}[ms] {0.14, 0.16}[ms]
6 {5.32, 6.68}[ms] {0.18, 0.20}[ms]
7 {11.22, 15.19}[ms] {0.31, 0.44}[ms]
8 {26.05, 46.94}[ms] {0.71, 1.19}[ms]
9 {70.31, 92.87}[ms] {2.37, 3.37}[ms]
10 {153.07, 183.08}[ms] {4.06, 6.57}[ms]
11 {380.01, 477.94}[ms] {5.58, 8.19}[ms]
12 {0.79, 1.13}[sec] {0.02, 0.03}[sec]
13 {1.96, 3.13}[sec] {0.03, 0.04}[sec]
14 {5.51, 9.60}[sec] {0.06, 0.16}[sec]
15 {14.33, 23.82}[sec] {0.49, 0.87}[sec]

We also compare the running time algorithms when applying forward- and
backward-reachability analysis. We generate the forward reach set [3, Def 4.1]
and backward reach set [3, Def 4.3] from an initial and a final set, respectively. In
more detail, suppose X0 is the set of initial conditions; the forward reach set Xk
is defined recursively as the image of Xk−1, namely Xk = {A⊗x | x ∈ Xk−1}. On
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the other hand, suppose Y0 is a set of final conditions. The backward reach set
Y−k is defined via the inverse image of Y−k+1, Y−k = {y ∈ Rn | A⊗y ∈ Y−k+1},
where n is the dimension of A.

We select X0 = {x ∈ Rn | 0 ≤ x1, . . . , xn ≤ 1} and Y0 = {y ∈ Rn | 90 ≤
y1, . . . , yn ≤ 100} as the sets of initial and final conditions, respectively. The
experiments have been implemented to compute X1, . . . ,XN and Y−1, . . . ,Y−N
for N = 10. Notice that it is possible that the inverse image of Y−k+1 results in
an empty set: in this case, the computation of backward reach sets is terminated,
since Y−k = . . . = Y−N = ∅. (If this termination happens, it applies for both
VeriSiMPL 1.4 and the algorithms based on tropical algebra.)

Table 3 reports the average computation of PWA system and reach sets over
10 independent experiments for each dimension. In general, algorithms based on
tropical algebra outperform those of VeriSiMPL 1.4. For a 15-dimensional MPL
system, the average time to generate PWA system using VeriSiMPL 1.4 is just
over 20 seconds. In comparison, the computation time for tropical algorithm is
under 5 seconds.

Table 3: Reachability analysis.
VeriSiMPL 1.4. Tropical

time for time for time for time for time for time for
n generating generating generating generating generating generating

PWA forward backward PWA forward backward
system reach sets reach sets system reach sets sets

3 2.55[ms] 11.37[ms] 5.73[ms] 1.70[ms] 8.33[ms] 5.63[ms]
4 4.31[ms] 9.87[ms] 27.00[ms] 1.37[ms] 7.72[ms] 28.48[ms]
5 9.23[ms] 11.77[ms] 3.62[ms] 1.88[ms] 9.25[ms] 2.89[ms]
6 23.44[ms] 18.49[ms] 9.76[ms] 3.80[ms] 13.81[ms] 7.35[ms]
7 49.59[ms] 35.68[ms] 21.53[ms] 7.84[ms] 32.02[ms] 17.92[ms]
8 108.75[ms] 85.27[ms] 34.05[ms] 16.84[ms] 73.63[ms] 28.62[ms]
9 0.25[sec] 0.18[sec] 0.09[sec] 0.03[sec] 0.17[sec] 0.07[sec]
10 0.48[sec] 0.28[sec] 0.17[sec] 0.08[sec] 0.25[sec] 0.14[sec]
11 1.19[sec] 0.77[sec] 1.35[sec] 0.18[sec] 0.76[sec] 1.13[sec]
12 2.52[sec] 1.14[sec] 0.88[sec] 0.38[sec] 1.01[sec] 0.70[sec]
13 7.02[sec] 3.96[sec] 2.78[sec] 1.09[sec] 3.56[sec] 1.95[sec]
14 8.15[sec] 5.54[sec] 4.61[sec] 1.54[sec] 5.24[sec] 2.98[sec]
15 20.60[sec] 19.23[sec] 12.39[sec] 4.21[sec] 18.37[sec] 7.16[sec]
16 46.92[sec] 60.19[sec] 36.00[sec] 9.62[sec] 58.70[sec] 20.41[sec]
18 2.98[min] 3.91[min] 2.61[min] 0.83[min] 3.83[min] 1.35[min]
20 15.74[min] 21.03[min] 15.21[min] 4.84[min] 20.86[min] 7.51[min]

Tropical algorithms also show advantages to compute reach sets. As shown
in Table 3, the average computation time for forward and backward-reachability
analysis is slightly faster when using tropical procedures. There is evidence that
the average time to compute the backward reach sets decreases as the dimension
increases. This happens because the computation is terminated earlier once there
is a k ≤ N such that Y−k = ∅. Notice that, this condition occurs for both
VeriSiMPL 1.4 and the new algorithms based on tropical algebra.

We summarise the worst-complexity of abstraction procedures via VeriSiMPL
1.4 and our proposed algorithms in Table 4 – recall that in VeriSiMPL 1.4 the
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generation of abstract states involves two procedures: the generation of PWA
systems and the refinement of PWA regions.

Table 4: The worst-case complexity of abstraction procedures.

Procedures VeriSiMPL 1.4 Tropical

Generating the PWA systems O(nn+3) O(nn+3)

Generating the abstract states O(nn+3) and O(n2n+1) O(nn+3)

Computing the image of DBMs O(n3) O(n2)

Computing the inverse image of DBMs O(n3) O(n2)

Generating the abstract transitions O(n3|R̂|2) O(n3|R̂|2)

5 Conclusions

This paper has introduced the concept of MPL abstractions using tropical op-
erations. We have shown that the generation of abstract states is related to the
row-definite form of the given matrix. The computation of image and inverse im-
age of DBMs over the affine dynamics has also been improved based on tropical
algebra operations.

The procedure has been implemented on a numerical benchmark and com-
pared with VeriSiMPL 1.4. Algorithm 2 has shown a strong advantage to generate
the abstract states especially for high-dimensional MPL systems. Algorithms
(Algorithm 3, 4, and 5) for the generation of transitions and for reachability
analysis also display an improvement.

For future research, the authors are interested to extend the tropical abstrac-
tions for non-autonomous MPL systems [5], with dynamics that are characterised
by non-square tropical matrices.
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