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Abstract. We present a new framework for aggregated quantitative
modelling of a heterogeneous population of photovoltaic panels. We are
interested in the behaviour of photovoltaic panels as electric power sources,
and in an aggregated model that can capture how such a population be-
haves when connected to the power grid. After an initial analysis of the
characteristics and behaviour of a single device, we propose two Markov
chain models for the aggregation of a heterogeneous population of such
devices. We study the dynamical behaviours of the aggregated models,
embedded within the dynamics of the grid frequency. A simulation study
shows the effectiveness of the aggregated models when compared to the
physical system, and leads to conclude that population heterogeneity is
a desirable feature for the overall system dynamics.

1 Introduction

In recent years, both academia and industry have increased their interest and
attention on renewable energy sources. The growing trend toward environmen-
tal preservation, witnessed by the famous Kyoto protocol, the Paris Agreement
and the so called 2-degrees challenge, is leading scientists to focus on new tech-
nologies and their applications in power generation. Well known technologies are
e.g. wind power, solar energy and geothermal energy. Devices using these energy
sources are typically distributed over a large area rather than being concentrated
in a small production area, which leads to consider the issue of distributed gener-
ation. In the field of renewables, many studies are now focused on photovoltaics
(PV), which is nowadays the third most important renewable energy source, af-
ter hydro and wind power, in terms on total installed capacity [1]. PV panels
produce electrical current from solar irradiation by virtue of the photovoltaic
effect of semiconductor materials. In this work we will interchangeably denote
photovoltaic panels as PV or solar panels.

Although models for a single PV cell or panel are well known in literature [2],
up to the authors’ knowledge there has not been any model encompassing the
connection between panels and grid. Large PV farms have been modelled and
studied as a whole, but a model dealing with distributed generation of power in
a large city, or a country, from household applications is still missing. This can
be due to many reasons: first of all because photovoltaic application for a single
home has a limited power to inject into the grid and therefore can be neglected;



secondly because often the power produced is consumed at the source (the house
itself), hence the net contribution to the wider grid is nearly null.

Nevertheless, the growing population of PV panels justifies the study, mod-
elling and control of this energy source. The power network, at a regional or
state level, must be prepared to deal with the volatility and unpredictability
intrinsically related to the production of renewable energy. As an example, PV
generated power – distributed over 1.5 million PV setups – has provided for
approximately 7.5% of Germany’s electricity demand, with peaks of 50% dur-
ing weekends and holidays [3]. Often the power production of such devices do
not follow usual demand patterns: the power production of a panel, in a clear
day, follows the irradiance of the sun, with a maximum at around midday, when
the power is usually injected into the grid, due to a lack of consumption. This
unbalanced flow, if not handled correctly, could lead to network issues, such as
blackouts [4]. Great care has been taken to proactively cope with the eclipse
occurred in March 2015: it was anticipated that a reduction of around 30 GW
could have been caused by the sun occlusion [5], which is about 10 times the
size of a blackout accident that can be resiliently handled by the grid.

In this paper, we present a new framework for modelling and abstraction of
a large population of photovoltaic panels. We firstly analyse the behaviour of
a single physical device when connected to the grid. The PV panel is equipped
with a sensor, to sample the network frequency, and with an internal counter
in order to ensure that the network frequency remains inside a certain range of
admissible values for a defined amount of time, before an action is taken. Two
quantities seem to be key to model the PV behaviour: the working interval of
network frequencies, and the internal time delay required for a safe connection to
the network. Each device in principle can have a different admissible frequency
range and a different time delay. In order to model this heterogeneity we present
two discrete-time Markov chains, one closer to the physical description with
(n+ 2) states, and the other more abstract with 3 states. These models are then
connected to the dynamics of the network frequency, giving an extended model
for the whole system, for which stability properties are studied.

The remainder of the paper is organised as follows. In Section 2 we describe
the behaviour of a single photovoltaic panel in frequency. The Markov chains
models and the frequency evolution are explained in Section 3. The performance
comparisons between the two models and a realistic model taken as benchmark
in Section 4. Conclusions are drawn in Section 5.

2 Description of the physical system

In order to provide an aggregated model for a population of PV panels, we start
with the description of the behaviour of a single panel, as a function of the local
dynamics of the grid.

A panel has two working states, ON and OFF. It switches amongst these
two states according to two conditions: the local network frequency f(·) (whose
nominal value is taken as f0 = 50 Hz) and an internal time delay τr, usually



given in seconds (cf. Table 1). The panel is connected to the grid and senses it
by sampling its frequency discretely in time. It can be in the ON mode if the
network frequency lies within a given local frequency interval If , otherwise it
must disconnect and transition onto the OFF mode. It is sensible to assume that
the ON-to-OFF switch happens within a negligible time interval [6, 7], whereas
the OFF-to-ON switch cannot happen before a time delay τr, during which the
frequency f must dwell within If : this is in order to ensure that the network
frequency is stable enough to render the panel connection to the grid safe, and to
avoid chattering behaviours that can lead to overall network instability. During
this interval of time the panel keeps sampling the frequency and if it measures
it to be outside the working interval, the internal counter is reset. In order to
describe this functioning, one can imagine a PV panel as a device equipped with
an internal counter τ(k) at time k and a time threshold τr. This counter is set
off when the device is in the OFF state and the frequency enters the working
interval If . If the counter value reaches τr as f ∈ If , then the device can turn
to the ON state. If instead the frequency goes outside If while τ(k) < τr, then
the device resets its counter. As the PV panel senses the network frequency via
a digital sensor with a defined sampling rate, τr is a value given in number of
samples. In practice, the sampling time of a PV panel is in the order of 200 ms,
and τr is around 20 s. The internal clock τ can then be thought of as a counter,
and as such it will be modelled in this work.

Current state q(k) Frequency Delay Next state q(k + 1)

OFF f(k) ∈ If τ(k) ≥ τr ON
ON f(k) ∈ If n.a. ON
ON f(k) /∈ If n.a. OFF
OFF f(k) ∈ If τ(k) < τr OFF

Table 1: Behaviour of single photovoltaic panel within the power network at
time k. Key quantities are: panel state q ∈ {ON,OFF}; network frequency f ;
operating frequency band I; clock/counter τ and re-connection delay τr.

The power injected into the grid by the population of panels has non negli-
gible dynamical effects to the network frequency, which directly influences the
behaviour of single panels in a feedback loop.

Our aim is to develop a model for a large population of photovoltaic panels.
This cannot be modelled considering N identical PV panels, simply because in
reality it is not the case: different regulations, manufacturers, makes and age,
all render the population highly heterogeneous [6–8]. As such, this work focuses
on parameters heterogeneity as a key aspect: we deal with network frequency
thresholds and time delays, to model the more realistic situation where each
panel has a different working interval as well as a different counter. Another
interesting part of the real system is its power output: the production of elec-
trical power is subject to many external factors, e.g. weather conditions, light
occlusions. However, here we will focus on a power production that is constant



in time. Time varying features can be added at a second stage, for example
modelling a power production as a stochastic process [9].

3 Markov chain model of a population of PV panels

Since the behaviour of each panel depends on a discrete sampling of the fre-
quency, we refer to a discrete-time framework and model the aggregation of
photovoltaic panels with a discrete-time Markov chain. Since the focus is on the
frequency thresholds and the delays of the panels, for simplicity we consider the
power production to be at its maximum nominal value whenever a panel is ON.

As an early simplifying assumption (to be shortly repealed in the next sub-
section), assume exact population homogeneity, meaning that every device shows
the same behaviour in time and is characterised by the same parameters. This
allows us to define a quantity P expressing the weighted power production as

P =
1

N

N∑
i=1

Pi,

where N is the total number of panels in the population, and Pi is the power
output of the single i-th panel. We can consider the normalised power production
R(k), at time k, as

R(k) =
1

NP

N∑
i=1

qi(k)Pi,

where qi(k) ∈ {0, 1} denotes whether the i-th device at time k is in the OFF or
ON state, respectively. Since we have assumed population homogeneity, all the
devices behave in accord, and R(k) ∈ {0, 1} at each time step k: we can then
consider R(k) as a Bernoulli random variable, and introduce

x(k) = E[R(k)] = P[R(k) = 1],

a variable defined as the expected value of R(k) at time k, which denotes the
probability of being in the ON state at that time. Furthermore, by the law of
total probability,

x(k + 1) = P[R(k + 1) = 1] = P[R(k + 1) = 1|R(k) = 1] · P[R(k) = 1]+

+ P[R(k + 1) = 1|R(k) = 0] · P[R(k) = 0].

Let us define a(k) = P[R(k + 1) = 0|R(k) = 1], so that P[R(k + 1) = 1|R(k) =
1] = (1 − a(k)), and let us introduce b(k) = P[R(k + 1) = 1|R(k) = 0]: the
previous equation can be rewritten as

x(k + 1) = P[R(k + 1) = 1] = (1− a(k))x(k) + b(k)(1− x(k)). (1)

This relation describes how the probability of being ON gets updated at time
k. In the framework that we have adopted, the transition probability ON-to-
OFF (a(k)) and OFF-to-ON (b(k)) are governed by the value of the network



frequency f(k), namely whether or not f(k) ∈ If . Since we assumed population
homogeneity, these values are binary: for instance, when f(k) ∈ If then a(k) = 0
whilst b(k) = 1. Since the power output is the sum of the PV devices turned
ON, it can be expressed as Pout(k) = NPx(k).

A Markov model without delays

Let us now introduce heterogeneity over the frequency behaviours of different
panels, as expected in reality. Let us suppose that each panel has different fre-
quency thresholds (which we take to be constant in time): each panel reacts to
the network frequency distinctively, namely it disconnects/reconnects at different
frequencies than other panels. We assume that these thresholds are distributed
continuously according to a known probability distribution - such continuous
statistics can be regressed from discrete population data. Similarly to the homo-
geneous case, we introduce b(k) and a(k) as the probability of turning to the ON
state or to the OFF state at the (k+ 1)-st time step, starting from the opposite
condition at the k-th time step, respectively. Unlike the homogeneous case where
a and b were binary, in order to encompass population heterogeneity we inte-
grate the probability distribution function comprising the frequency thresholds
using the current value of network frequency f(k) as one of the extrema: we thus
obtain the portion of panels that are enabled to change their state. Formally,

a(k) =

∫ f(k)

−∞
pdf0|1(u)du, b(k) =

∫ ∞
f(k)

pdf1|0(u)du,

where pdf0|1 is the probability density function of a random variable modelling
the transition from R(k) = 1 to R(k + 1) = 0, and analogously for pdf1|0.
Alternatively, a(k) and b(k) can be expressed via the cumulative distribution
function of the known probability distribution for the frequency thresholds.

The expression in (1) can be interpreted as a Markov chain with two states
and time varying transition probabilities, as depicted in Figure 1. Here the edges
representing the transitions between state ON and OFF are labelled with a(k)
and b(k), while the self loops are simply 1− a(k) and 1− b(k).

OFF ON

b(k)

a(k)

1− b(k) 1− a(k)

1

Fig. 1: A time inhomogeneous Markov chain model for the aggregated dynamics,
without delays.



A Markov model with delays

We now introduce a framework to encompass delays in the aggregate model
(cf. Figure 2): as observed in practice, panels cannot switch to the ON state
instantaneously. As stated above, each panel has an internal counter for the
OFF-to-ON transition. We assume to sample the delays with a coarse sampling
time of 1 s: in this way we can lump together the panels which show delays in
the same sampling time. We then obtain probability transition values τi, which
represent the probability of switching on after i seconds. In order to pin down
this idea, we utilise n states, defined as wi i = 1, . . . , n, representing the i-th
time step when the network frequency sampled by the panel is within the given
threshold, but when the panel has still to turn to the ON state. In other words,
the wi state describes a device that has been waiting to turn on for i time steps. In
view of the discussions in Section 2, we focus on the case n� 1. In the i-th delay
state, there are three outgoing transitions: one towards the ON state, a second
towards state i+ 1, and one back to the OFF state. The probability associated
with the third transition is 1 − b(k), which is the probability of sensing the
network frequency outside the working interval. The first outgoing probability
is τib(k): τi is the probability to have a time delay that permits the panel to go
from state wi to state ON, which can happen only if the frequency is within the
working interval (hence the multiplication by b(k)). We have tacitly assumed
that the probability distributions of the frequency thresholds and time delay are
independent. There can be, in reality, correlation between these two quantities,
in which case we need to compute integrals of joint probability distributions.

We assume that ∀i, τi ≥ τi+1 and that
∑
i τi = 1, so the terms resemble

a geometric distribution that can describe an arrival process or a waiting-time
random variable.

OFF ON

w1 w2 ... wn

b(k)
1− b(k)

1− b(k)

1− b(k) τ1b(k)

τ2b(k)

τnb(k)

(1− τ1)b(k) (1− τ2)b(k)

a(k)

1− a(k)1− b(k)

(1− τn)b(k)

1

Fig. 2: A Markovian model for the aggregated dynamics, with delays.



The dynamics of the Markov chain in Fig. 2 can be summarised as
x(k + 1) = (1− a(k))x(k) + b(k)

∑n
i=1 τiwi(k)

w1(k + 1) = b(k) [1− x(k)−∑n
i=1 wi(k)]

wi(k + 1) = b(k)(1− τi−1)wi−1(k)
wn(k + 1) = b(k)[(1− τn−1)wn−1(k) + (1− τn)wn(k)],

(2)

where x(k) represents the probability of being in the ON state at time k. We
use this value as the portion of panels ON at time k; similarly, wi(k) is the
portion of panels waiting to turn ON for i time steps at time k; and a(k), b(k)
are the cdf ’s of the distributions of frequency thresholds in the population of
panels. Let us further explain the details of the model in (2). To model real-life
applications, we deal with an interval of time in which no panel switches on and
a subsequent time interval in which panels switch on according to a geometric
probability distribution. The latter time interval is described above with the wi
states. In order to encompass the time interval in which panels do not switch on
(which is around 20 s in real-life applications) we must include new states that
are “pure waiting states”, denoted pwj(·). Their number depends on the desired
delay and on the given sampling time: e.g. if the sampling time is 1 s and the
minimum desired delay is 20 s we add 20 new states. These states are such that
τj = 0, so to prevent the possibility to switch on, which boils down to a time
delay, as desired. These new equations do not invalidate the previous analysis
and for simplicity we will continue our analysis without them.

Abstraction of the Markov model with delays

Towards a simplified and more insightful analysis of the dynamics of the model
with delays, we aggregate the n waiting states into a single location, which
thus represents the sum of the portion of devices that are waiting to turn ON
and is associated with a new variable y(k) =

∑
i wi(k). To express the overall

dynamics, we rewrite the term
∑
i τiwi(k) as a function of y(k), and introduce

a term εk ∈ [0, 1] ∀k, such that

n∑
i=1

τiwi(k) = εk

n∑
i=1

wi(k), thus εk =

∑n
i=1 τiwi(k)∑n
i=1 wi(k)

.

The model now presents only three states, as depicted in Figure 3, whose
transition equations are{

x(k + 1) = (1− a(k))x(k) + b(k)εky(k)
y(k + 1) = b(k)(1− x(k))− b(k)εky(k)

. (3)

The new model is smaller and easier to analyse. However, in general we do
not know the exact value of εk, so we seek a value for it that ensures that the
error between the two models decreases to zero with time. Define the abstraction
error e(k) as the difference between the element x(k) of each model: e(k) =



OFF ON

WTBON

b(k)

1− b(k)

b(k)εk

a(k)

1− b(k)

1− a(k)

b(k)(1− εk)

1

Fig. 3: Abstraction of the Markov model with delays for aggregated dynamics.

xn−s(k)− x3−s(k), where xn−s and x3−s denote the x component of the model
with n delay states and that with 3 states, respectively. We obtain

|e(k + 1)| = |xn−s(k + 1)− x3−s(k + 1)|

= |(1− a(k))x(k)n−s − b(k)

n∑
i=1

τiwi(k)− (1− a(k))x(k)3−s + b(k)εky(k)|

= |(1− a(k))e(k) + b(k)d(k)| ≤ (1− a(k))|e(k)|+ b(k)|d(k)|,

where d(k) = ε(k)y(k) −∑n
i=1 τiwi(k) Notice that (1 − a(k)) ∈ [0, 1] ∀k, by

definition, which results in a term that does not increase with time. We study
the evolution of the second term, d(k): whilst d(k) ∈ [−1, 1] by definition, we
do not know its sign, which could change at each time step k. It can be shown
that |d(k)| is a contracting map if we select the value εk = τ1. This result
can be interpreted recalling the meaning of εk: it represents a weighted convex
combination of the wi; considering ε = τ1 results in the worst-case scenario,
where we utilise the maximum value among the τi.

In other words, choosing εk to be the constant value τ1 asymptotically de-
creases the error e(k) between the two models to zero. Note that, knowing the
values τi, we could estimate εk by estimating the states wi(k). The estimation
of the states wi(k) can be attained, as will be discussed in Appendix A.

We now illustrate more clearly how the frequency value affects the Markov
chains: a(k) can be written formally as

1− a(k) =

∫ ∞
f(k)

pdf0|1(u)du = 1− cdf0|1(f(k)),



and similarly for the term b(k). In order to simplify this nonlinear term, let us
linearise it as

1− a(k) = 1− cdf0|1(f(k)) ' 1− (k1f(k)− k′2) = −k1f(k) + k2,

b(k) = 1− cdf1|0(f(k)) ' −k3f(k) + k4,

where k2 = k′2 + 1. We then obtain terms that are easier to study, which allows
us to derive conditions to guarantee the stability of the whole system. Note that
this approximation will require saturation within the interval [0, 1], and that this
is the exact form of the cdf in case of a uniform distribution. Model (3) then
becomes {

x(k + 1) = (−k1f(k) + k2)x(k) + (−k3f(k) + k4)εky(k)
y(k + 1) = (−k3f(k) + k4)(1− x(k)− εky(k))

. (4)

Overall closed-loop model

As previously mentioned, the overall dynamical system under study comprises
both the population of panels and the network frequency. So far, we have built
aggregated models only for the population of solar panels: we are interested in
studying how the network frequency is influenced by the power production of PV
panels. We focus on an approximate version of frequency dynamics, proposing a
more realistic extension in a remark below. Consider

∆f(k + 1) = α1∆f(k) + β′1∆P (k),

where ∆f(k) = f(k) − f0, and f0 represents the nominal value of the network
frequency, and f(k) the value of the frequency at time k, and where

∆P (k) = PNx(k)− P0 = PN(x(k)− x0),

with P0 representing the power output of the population at time k = 0. We
obtain

f(k + 1)− f0 = α1(f(k)− f0) + β′1PN(x(k)− x0).

Introducing terms β1 = β′1PN , γ = (1− α1)f0 − β1x0, we get

f(k + 1) = α1f(k) + β1x(k) + γ. (5)

Embedding the frequency description in Equation (5) within the dynamics
of the Markov chain with n waiting states (2) results in

f(k + 1) = α1f(k) + β1x(k) + γ
x(k + 1) = (1− a(k))x(k) + b(k)

∑n
i=1 τiwi(k)

w1(k + 1) = b(k) [1− x(k)−∑n
i=1 wi(k)]

wi(k + 1) = b(k)(1− τi−1)wi−1(k)
wn(k + 1) = b(k)[(1− τn−1)wn−1(k) + (1− τn)wn(k)],

(6)

and into the Markov chain with 3 states (4) to obtainf(k + 1) = α1f(k) + β1x(k) + γ
x(k + 1) = (−k1f(k) + k2)x(k) + (−k3f(k) + k4)εky(k)
y(k + 1) = (−k3f(k) + k4)(1− x(k)− εky(k))

. (7)



Dynamical analysis of closed-loop model

We study the stability of the model in (7) with techniques that come from control
theory [10], [11]. We are interested in the stability of the model, in the sense that
we want to understand the asymptotics of the model, and under which conditions
the network frequency will remain within certain (safe) operational bounds. In
particular, from Lyapunov stability theory we know that if the Jacobian of a
nonlinear system has stable eigenvalues (i.e. absolute value less than 1), then we
can deduce the asymptotic stability of the system.

Besides stability, we investigate what characteristics the panels population
distributions of the frequency working thresholds must have to lead to distur-
bances rejection. More precisely, in an actual setup, if the grid frequency goes
below a certain safety threshold, a black out is forced by the network operator in
order to avoid severe damage to the network itself. The intuition leads to believe
that robustness is associated with high variance of population distributions: in
particular, dispersed values of disconnection thresholds mean that less panels
will disconnect from a given external disturbance.

Let us compute the Jacobian of the vector field in (7), which is a matrix
formed by its partial derivatives, as

J(f, x, y) =

 α1 β1 0
−k1x− k3εky −k1f + k2 εk(−k3f + k4)
−k3(1− x− εky) k3f − k4 εk(k3f − k4)

 . (8)

Its determinant and characteristic polynomial may be computed analytically,
however with a nontrivial algebraic expression. As such, in order to obtain in-
sight, we consider an identical distribution for a(k) and b(k), which leads to
parameters k1 = k3 and k2 = k4. This is a reasonable assumption if we consider
the semantics of these distributions: they describe the probability to switch ON
or OFF, which happens whenever the network frequency is greater or less than
a threshold. In practical terms, this means that the threshold related to the ON
switch on is the same as that of the OFF switch. The overall model becomesf(k + 1) = α1f(k) + β1x(k) + γ

x(k + 1) = (−k1f(k) + k2)(x(k) + εky(k))
y(k + 1) = (−k1f(k) + k2)(1− x(k)− εky(k))

,

which admits two equilibrium points (fE1,2, x
E
1,2, y

E
1,2). The Jacobian is

J(f, x, y) =

 α1 β1 0
−k1(x− εy) −k1f + k2 (−k1f + k2)ε
−k1(1− x− εy) k1f − k2 (k1f − k2)ε

 , (9)

and its associated characteristic 3-rd order polynomial is

z3 + ((k1f
∗ + k2)(1− ε)− α1)z2+

+ [β1k1(x∗ + εy∗) + α1(k1f
∗ + k2)(ε− 1)]z − β1εk1(k1f

∗ − k2).



We now set conditions on parameters k1 and k2 to study the attractivity of the
equilibria. Leveraging Rouché arguments [12], we can synthesise the following
sufficient condition on the values of k1 and k2 where asymptotic stability is
guaranteed:

|(k1f∗ + k2)(1− ε)− α1|+ |β1k1(x∗ + εy∗) + α1(k1f
∗ + k2)(ε− 1)|+

+ | − β1εk1(k1f
∗ − k2)| < 1.

In order to practically reason on this condition, we need to define at least some
of the numerical values of its unknowns: in the following section we provide ap-
proximate values to the unknowns, and accordingly manage to draw conclusions
on the stability of the characteristic polynomial.

Remark 1. A more realistic transfer function for the grid frequency would be a
second order model, namely

f(k) = a1f(k − 1) + a2f(k − 2) + b1x(k − 1) + b2x(k − 2).

In order to obtain this second-order model, we have referred to [13], and devel-
oped a simple model reproduce the frequency response, taking into account the
inertia of the system, the self-regulation of the load, and the primary regulation.
This was then discretised in time in order to be compatible with the current
framework. The stability structure and the following extended dynamical analy-
sis can be carried out in a similar way. For the sake of brevity and clarity we will
stick to the first order model in the following analysis, while in the simulation
we will use the second-order dynamics. ut

Extension of dynamical analysis to the entire state space

The analysis above holds as long as the frequency remains within certain bounds,
namely where the linear approximation of the cdf holds; we need also to take
into account other configurations of the system, when the frequency is outside
the interval and the evolution of the system changes. Given the switching nature
of the system, a hybrid system setup is a rather natural framework. The lineari-
sation of the cdf is in fact defined within an interval of frequencies, outside of
which a(k) and b(k) have a steady value of 0 or 1. We study those cases in the
following.

We focus our attention on the system with five configurations. Under the
assumption of the distributions of a(k) and b(k) to be identical, we argue that
we model a hybrid system with 5 different configurations; in case of different
distributions, the number of configurations may increase, so we do not study
them in full in this paper for brevity. Figure 4 shows the divisions into the five
different configurations.

Our interest is to analyse the connection between the various configurations
of the system and to understand the conditions to keep the frequency close to
the nominal value and to avoid its drift to zero.
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1

Fig. 4: Schematic diagram of the 5 frequency configurations, indicated as circled
numbers.

1. Configuration 1: this configuration describes the case where the network
frequency belongs to the set of values closest to the nominal value. Our
system becomes an LTV system, given the conditions 1 − a(k) ≡ 1 ≡ b(k),
f(k) ∈ [−ν, ν] :  f(k + 1) = α1fk + β1x(k) + γ

x(k + 1) = 1 · (x(k) + εky(k))
y(k + 1) = 1 · (1− x(k)− εky(k))

(10)

There is only one equilibrium point, pE =
(

β1

1−α1
(1− x0) + f0, 1, 0

)
. From

the analysis of the evolution matrix, the equilibrium is asymptotically stable.
If the contribution coming from β1

1−α1
(1−x0) is small enough, the equilibrium

remains inside the interval [f0− ν, f0 + ν], whereas if the contribution is too
large the system will switch to Configuration 2.

2. Configuration 2: This is the case where the evolution matrix of the system
becomes non linear and time varying, with f(k) ∈ [ν, ν+η]. The system may
be written as  f(k + 1) = α1f(k) + β1x(k) + γ

x(k + 1) = (1− a(k))x(k) + b(k)εky(k)
y(k + 1) = b(k)(1− x(k))− b(k)εky(k)

and as we stated, we assume the same distribution for a(k) and b(k), which
we explicit 1 − a(k) = −k1f(k) + k2 = b(k) where k1, k2 > 0. To find the
equilibria we set that

f =
β1

1− α1
x+

γ

1− α1
, x+ y = −k1f + k2,

and from these two equations we obtain

y =

(−k1β1
1− α1

− 1

)
x− k1

1− α1
γ + k2.

Substituting this value into the previous equation, we have

−k1β1
1− α1

(
1 + ε

(−k1β1
1− α1

− 1

))
x2+

+

[(
− k1

1− α1
γ + k2

)(
1− ε+ 2ε

(−k1β1
1− α1

))
− 1

]
x+ ε(− k1

1− α1
γ + k2)2.



The solution of this 2-nd order equation can be found symbolically, how-
ever in order to garner insight on its solutions, we set some indicative (and
practically meaningful) values for the variables ranges:

k1 ∼ 10, k2 ∼ 102, α1 ∼ 1− α1 ∼ 10−1, ε ∼ 10−1, β1 ∼ N,

where N represents the number of solar panels, assumed to be N � 1. This
results in equation 103N2x2 − 2 · 103Nx + 103, which is endowed with two
coincident solutions, xE1,2 = 1

N . This results in the following approximated
equilibrium point:

pE1,2 '
(

1 + γ

1− α1
, xE1,2, 0

)
,

where the value of x is less than 1, giving a frequency to be less than the
value we found in Configuration 1. The equilibrium could, in this case, be
inside the thresholds of Configuration 1 or remain inside Configuration 2
depending on the numerical values of the several parameters; we will discuss
this in Appendix B.
We state that the equilibrium is attractive because we argue that the system
in Configuration 1 presents variables f, x, y which are always greater than or
equal to the ones in this configuration: a(k) and b(k) ∈ [0, 1] ∀k. Since the
stability is asymptotic in the first case, we conclude the asymptotic stability
also in this configuration.

3. Configuration 3: this configuration describes the behaviour of the system
when it is completely outside the range of the frequency thresholds, i.e.
1 − a(k) = 0 = b(k). The system becomes null, namely x(k + 1) = 0,
y(k + 1) = 0, the frequency only evolves with a decreasing exponential, i.e.
the frequency will move towards the cases discussed above.

4. Configuration 4: the analysis is similar to the one of Configuration 2. In
this case it is important to notice that, since the frequency at the equilibrium
point is less than the nominal value, the system could move towards Config-
uration 1, remain in the current configuration or slide towards a decreasing
frequency: this depends on the numerical value of the parameters.

5. Configuration 5: the analysis is analogous to Configuration 3. The fre-
quency will drop to zero.

4 Experimental evaluation of the aggregated models

In order to show the precision of the aggregated models, we set up rounds of
simulations comparing the two alternative models (that with n waiting states in
Fig. 2 and the one with three locations in Fig. 3) with the ground truth obtained
from an explicit simulation of the entire population of PV panels within the
power network (which we denote as the explicit model).

For the explicit model, each of the N panels has been given four different fre-
quency thresholds (disconnection and reconnection in over- and under-frequency)
and a time delay (number of time steps the devices need to wait before turning to



ON). These parameters have been generated according to set probability distri-
butions (see below) for the population, which are then used in the computations
for the abstract models. We have set up the distributions of frequency thresh-
olds as uniform, and that for the time delay as geometric, and we set N = 106.
The assumption of a uniform pdf allows us to exactly define the variables ν,
η mentioned in the previous section, where more generally we utilised a linear
approximation of the cdf, e.g. b(k) = cdf1|0(f(k)) ' −k1f(k)+k2. For simplicity,
Pi was set to be constant and equal to p̄ = 3 kW for each device. With reference
to the discussion in Remark 1, the frequency dynamics have been described by
a second-order difference equation, as

f(k + 1) = α1f(k) + α2f(k − 2) + β1x(k) + β2x(k − 1),

where the constants α1, α2, β1, β2 are set to make the transfer function stable.
Our two aggregated models are derived from the following simplifications:

1. Frequency thresholds: we have an exact description of the frequency thresh-
olds and a linear dependency from f(k) in the extended system;

2. Time delays: we have introduced 1 s time delays and defined waiting states
accordingly. We have defined a maximum possible delay as n, and in order
to cope with delays longer than n, we have set a self loop on the n-th state;

3. Lumped delays: we have lumped together the n waiting states, introducing
an approximation encoded in εk.

As motivated in the Introduction to this work, we have set up two specific
simulation scenarios:

1. panels disconnecting in view of an external disturbance;
2. effect of the distribution of frequency disconnection/reconnection thresholds,

in response to an external disturbance.

First scenario We set up a stable network with N devices initially in the
ON mode, when the grid relies on their power production to be stable and to
guarantee a reliable service to the load. The initial condition is set to x0 = 1,
and the grid frequency is set to the stable value, f0 = 50 Hz. At time t = 10s we
inject an external disturbance, in order to create a frequency peak of 50.16 Hz,
and to observe the ensuing dynamics in the network.

The comparison among the three models is in Figure 5 and in Figure 6, in
terms of network frequency response and portion of ON panels. On the one hand,
we observe from Figure 5 that both the two abstract models seem to be a low-
pass filtered signal of the explicit one. The model with n delay states follows the
dynamics of the explicit one, and the model with one delay state follows that with
n states, thanks to the estimation of the quantity εk (as discussed in Appendix
A). On the other hand, looking at Figure 5 we note that the difference in terms
of percentage of active panels is always less than 2%. This difference is due to
the low-pass action of the abstract models, which leads to slower convergence to
the same equilibrium point as the explicit model. These figures show that our
abstract models can reflect the evolution of the explicit model in a reliable way.



Fig. 5: Comparison of network frequency behaviour (left) and of ON population
(right) for the explicit model (blue, circles), the abstract model with n delay
states (red, crosses) and the abstract model with 3 states (green, triangles).

Second scenario We run simulations to test if more variance in the reconnec-
tion/disconnection thresholds brings a more stable system, as intuition suggests.
Figure 6 shows that, as expected, a higher variance is desirable for the model
under consideration. In the explicit system, at time t = 10 s an external distur-
bance was injected in order to make the frequency jump to 50.16 Hz, value for
which a portion of devices will disconnect. Simulations run with 10 different val-
ues of variance (υ) for the uniform distributions, resulting in bigger oscillations
and longer time to get frequency back to the nominal value for small υ; values
of υ close to 5 makes the system almost insensible to the disturbance.

Fig. 6: Comparison of network frequency behaviour with different degrees of vari-
ance in the frequency thresholds: smaller variance produces bigger oscillations.
Simulations run with the explicit model.

We have finally run simulations to display the effect of several frequency evo-
lution parameters in the Appendix B, where we show how the different position
of the equilibria, as discussed in Section 3, affect the response of the system.



5 Conclusions

We have presented a modelling framework for the aggregation of a population of
photovoltaic panels, and studied its dynamics when interacting within the elec-
tric grid and its frequency behaviour. We have provided experiments comparing
two models against a ground truth, where N photovoltaic panels were singularly
simulated: a scenario has shown how reliably the models behave in presence of
a massive network failure, another how population heterogeneity influences the
performances of the system.

Current research emphasis concerns variable power outputs, (modelling un-
certainties such as weather, occlusions), and novel global control schemes.
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A Observability and observer design

In a practical instance, whilst it is in principle possible to have real-time infor-
mation about every photovoltaic panel in the network, economic reasons and the
sheer size of the modelling problem would make this impractical. We thus con-
sider a more realistic scenario, where the only observable output is the frequency
of the network.

Model observability

Let us prove the systems, both the one with 3 states in the Markov Chain and
the one with n waiting states are in fact observable when the only output signal
is f(k). This means, in practical terms, that we can infer the value of the other
variables of the system, reconstructing them solely from the value of f(k). We
focus on the abstract one firstly.

The output matrix is simply the constant

C(k) ≡ C = [1 0 0]

and consider the matrix of the linearized system

A =

 α1 β1 0
−k1x− k3εy −k1f + k2 ε(−k3f + k4)
−k3(1− x− εy) k3f − k4 ε(k3f − k4)


To simplify the computations consider k1 = k3 := k and k2 = 0 = k4. This gives
an observability matrix

O =

 1 0 0
α1 β1 0

α2
1 − k1β1(x+ εy) β1(α1 − k1f + k2) β1ε(−k1f + k2)

 .
The rank is full as long as f 6= k2/k1: this condition holds within the range
where the linear approximation holds.

A similar conclusion can be drawn for the bigger system, in which each wi(k)
is dependent from wi−1(k − 1). This can be thought as a chain of substitutions
that guarantees the observability in n steps.

Observer design

An observer can in fact be built for both models. We start with the observer for
the smaller one. Assume the output is just the frequency of the network, namely
f(k) and we want to obtain the state x(k). In this case we may think about
εk = τ1 ∀k to make computation straightforward, or to think to know how the
value of εk is computed at each time step. From the dynamical equations one
easily obtains



f̂(k − 2)
x̂(k − 2)
ŷ(k − 2)

 =


0 0 1
0 1/β1 −α1/β1
1

β1b(k − 2)εk−2
− (α1 + 1− a(k − 2))

β1b(k − 2)εk−2

α1(1− a(k − 2))

β1b(k − 2)εk−2

×
×

 f(k)
f(k − 1)
f(k − 2)

 .
Our estimation is two steps behind the current time instant. We then set up a
two-steps predictor following the dynamical equations of the system, after some
algebraic calculi, asf̂(k)

x̂(k)
ŷ(k)

 =

 1 0 0
obs2,1 obs2,2 obs2,3
obs3,1 obs3,2 obs3,3

 f(k)
f(k − 1)
f(k − 2)

+

+

 0
b(k − 1)εk−2b(k − 2)

b(k − 1)(1− εk−2b(k − 2))

 ,
where

obs2,1 =
1− a(k − 1)− bk−1εk−1

β1
,

obs2,2 =
b(k − 1)εk−1(1− ak−2 − bk−2 + α1)− α1(1− ak−2)

β1
,

obs2,3 =
b(k − 1)εk−1α1(bk−2 − (1− ak−2))

β1
,

obs3,1 = −b(k − 1)

β1
(1 + εk−1),

obs3,2 =
b(k − 1)

β1
(α1 − εk−1(α1 + 1− ak−2 − bk−2)),

obs3,3 =
b(k − 1)

β1
εk−1α1(bk−2 + ak−2 − 1).

For the system with n waiting states a similar situation is expected. In fact,
for the dynamical equation we need an n + 2 steps predictor. The key part is
how to connect the estimation of x(k) to w1(k). We note that

x(k + 1) +
∑
i

wi(k + 1) = (1− a(k))x(k) + b(k)(1− x(k)),

so that∑
i

wi(k) = (1− a(k − 1))x(k − 1) + b(k − 1)(1− x(k − 1))− x(k).



We can substitute this into the estimator of w1(k), giving

ŵ1(k) = b(k − 1)[1− b(k − 1)(1− x̂(k − 1))− (1− a(k − 1))x̂(k − 1)].

The observer can be built in a recursive way, as

f̂(k) = f(k)

x̂(k − 1) =
f(k)− α1f(k − 1)

β1
x̂(k) = (1− a(k − 1))x̂(k − 1) + b(k − 1)

∑
i τiŵi(k − 1)

ŵ1(k) = b(k)[1− b(k − 2)(1− x̂(k − 2))− (1− a(k − 2))x̂(k − 2)]
ŵi(k) = b(k − 1)(1− τi−1)ŵi−1(k − 1) for i = 2, . . . n− 1
ŵn(k) = b(k − 1)[(1− τn−1)ŵn−1(k − 1) + (1− τn)ŵn(k − 1)]

.

With this technique we proved that we are able to build an observer for the
system, estimate the wi(k) and compute the ε̂k value at each time step as

ε̂k =

∑
i τiŵi(k)∑
i ŵi(k)

,

where ŵi(k) is the estimate of wi(k). The observer has a transitory of (n + 2)
step, necessary to compute all the wi initially.

B Simulations for stability analysis

We have developed more experiments in order to show the importance of the
initial conditions for the overall dynamics. In Section 2 we have divided the be-
haviour of the model into five configurations, in order to study its steady state
and to understand whether the network is stable or if it admits unstable equilib-
ria. We have defined Configuration 1 as the one where the network frequency is
around its nominal value, namely f(·) ∈ [f0− ν, f0 + ν], and such that a(k) = 0,
b(k) = 1, forcing all panels to be turned to the ON state in the long run. We
have found that the equilibrium for the frequency is

f =
β1

1− α1
(1− x0) + f0,

where f0 is the nominal value of the frequency, x0 is the initial portion of panels
turned ON, and β1

1−α1
depends on the evolution equation of the frequency. If

β1

1−α1
(1− x0) ≤ ν, the equilibrium point is inside Configuration 1, otherwise the

equilibrium is inside the interval for Configuration 2. This translates into the
situation where the network can or cannot handle the global population of PV,
leading to a stable or an unstable situation, respectively. In order to be able to
understand the effect of the frequency evolution on the overall closed-loop model,
we set up additional rounds of simulations. For simplicity of notation let us define
γ′ := β1

1−α1
. We imagine a null portion of panels in the ON state initially, namely

x0 = 0, an initial frequency at f0 and different values for the term γ′: the latter



choice allows one to to move the equilibrium point of Configuration 1 inside or
outside the range [f0 − ν, f0 + ν]. We keep constant values for ν and η. Three
situation are tested, with γ′ = 1, γ′ = 0.5 and γ′ = 0.1. In the first two cases,
the equilibrium resides outside the limits of Configuration 1, while in the last
case the equilibrium is inside this interval. As shown in Figure 7, we obtain three
different equilibria corresponding to different portions of the ON population.

The first instance, γ′ = 1, is the more unstable one. PV panels, after the
delay of around 20 s try to turn ON. This causes a jump in frequency that
moves the system into Configuration 2, where we see an oscillatory behaviour
before reaching the stable point at x = 0.27 with a frequency f = 50.27 Hz (not
shown). The equilibrium is in fact inside the limits of Configuration 2.

The second case, with γ′ = 0.5, shows a less oscillatory behaviour while the
system slides from Configuration 1 to Configuration 2. In this case the stable
point is set at x = 0.47 and f = 50.24 Hz (not shown).

The last instance, when γ′ = 0.1, shows an equilibrium inside Configuration
1. The system is free to turn to ON the whole population of PV panels with a
smooth evolution in frequency (not shown). The equilibrium in this case is x = 1
and f = 50.1 Hz.
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Fig. 7: Portion of panels ON under different frequency evolutions.


