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Abstract. This work presents a study of the frequency dynamics of the
electricity grid under significant presence of generation from renewable
sources. A safety requirement, namely ensuring that frequency does not
deviate excessively from a reference level, is formally studied by means
of probabilistic model checking of a finite-state abstraction of the grid
dynamics. The dynamics of the electric network comprise a model of
the frequency evolution, which is in a feedback connection with a model
of renewable power generation by a heterogeneous population of solar
panels. Each panel switches independently between two states (ON and
OFF) in response to frequency deviations, and the power generated by
the population of solar panels affects the network frequency response. A
power generation loss scenario is analysed and its consequences on the
overall network are formally quantified in terms of probabilistic safety.
We thus provide guarantees on the grid frequency dynamics under several
scenarios of solar penetration and population heterogeneity.

Keywords: Population models · Aggregated models ·
Formal abstractions · Quantitative model checking ·
Probabilistic safety

1 Introduction

Renewable energy sources have shown potential to revolutionise power systems,
not only on the generation side but also for demand-response programs [3], for
fast frequency response [4], and for ancillary services [5]. Energy generation from
a large population of photovoltaic (PV, or solar) panels, resulting from either an
industrial setting (e.g., large PV farms) or numerous single households, can have
economically and environmentally relevant consequences for energy providers
and consumers alike. In this work we focus on PV populations composed of
predominantly household devices. Such populations are naturally heterogeneous,
in view of diverse weather conditions, of different panel sizes, makes and ages,
and of the actual ratio between power generated and consumed.
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A rich literature on models of solar panels encompasses several features, such
as their electrical characteristics [22] (where a panel comprises its components
and their inter-connections), their power output generation [23], or their role in
the larger economy of renewable power production [18]. A discrete-time Markov
chain (dtMC) model for a population of PV panels is presented in [15], where an
analysis on the effect of heterogeneity (as different disconnection/reconnection
rules) is discussed as a function of the dynamics of the frequency in the electric
network. The relationship between the panels working interval (to be discussed
shortly) and the stability of the electric network is further addressed in [17]. In
particular, the consequences of generation- and load-loss incidents are studied,
under several scenarios of network load and of population dynamics. This paper
expands earlier results by newly employing techniques from formal verification:
we tailor a formal abstraction procedure [2] to generate finite probabilistic models
(i.e., Markov chains) from the population models above, which are then analysed
by means of probabilistic model checking.

Cognate to this work, [10] presents models of power grids with a significant
penetration of solar: these models are employed to investigate runtime control
algorithms, introducing control designs from randomised distributed algorithms,
for photovoltaic micro-generators to assess grid stability. In [11] the authors
study the German regulation framework exploiting ideas from communication
protocol design. These works study a 50.2-Hz-disconnect/reconnect mechanism
as well as the emergency switch-off procedure. A reachable set computation is
presented in [12] to assess the stability of networked micro-grids in the presence of
uncertainties induced by penetration of distributed energy resources: this results
in bounds for systems dynamics and in its stability margins.

Technically, the models in this work are partially-degenerate discrete-time
stochastic processes [19], for which formal abstractions can be computed. How-
ever, the abstraction procedure in this work is different from [19] and following
work, as detailed next. In [21] a Markov model is constructed as the aggregation
of the temperature dynamics of an inhomogeneous population of thermostati-
cally controlled loads (TCLs): the population model is based on Markov chains
obtained as abstractions of each TCL model. In this work, unlike [21], the formal
abstraction is applied after the aggregation procedure. As discussed in [20], the
aggregation of population models from earlier work [21] introduces two kinds of
errors: the abstraction error (over a single device) and a population heterogene-
ity error. Instead, in this work we directly abstract the model of a heterogeneous
population of PV panels, thus removing the second error term. Similar to [19–
21], refining the abstraction improves the accuracy: the error converges to zero
as the number of generated abstract states increases.

Models in this work (cf. Sect. 2.2) are derived from the following description
of the workings of a solar panel. An inverter-panel device is equipped with a
sensor to sample the network frequency, and with an internal counter. Two
quantities are key to model the panel behaviour: (1) If , the working interval for
the grid frequency (only when the frequency lies within If can a panel inject
power into the grid); and (2) τr, the time delay required for a safe connection
to the network (the network frequency needs to remain inside If long enough
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before the panel connects back to the grid). Each device, in principle, can have
different admissible frequency range and time delay. The behaviour of solar-
inverter devices affects the grid and can lead [7] to load-shedding. This is a process
activated to prevent frequency imbalance and subsequent blackouts, by means of
an engineered stop of electricity delivery in order to avoid a complete shut-down
of the electricity grid. In order to secure a network with no frequency imbalance,
power generation and consumption must be matched: this is attained by Load-
Frequency Control [6], which is distinguished in primary, secondary, and tertiary
control, each activated at different timescales and with different goals. This study
focusses on few instants after an incident, when primary control is relevant, which
is thus included within the network model. We leverage model abstractions to
formally quantify the absence of load-shedding, by probabilistic model checking
a safety specification. In the end, we are able to provide certificates on the safe
and reliable operation of the grid under penetration of solar generation.

This work is organised as follows. Section 2 introduces the solar panel
behaviour, its description as a dynamical system and the electric network model.
Section 3 discusses the formal abstraction techniques and computes the intro-
duced error. Section 4 presents the generation-loss incident scenario, and shows
experimental results in terms of probability of load-shedding under several
parameter configurations, ranging over population heterogeneity and solar pen-
etration level. Finally, conclusions are drawn in Sect. 5.

2 A Model of the Electricity Grid with Solar Generation

In this Section we present a description of the behaviour of a physical device, of
its corresponding Markov model, and a model of the electric network.

2.1 Operation of a PV Panel

We briefly describe the workings of a photovoltaic panel that is connected to the
electric network [15]. A panel-inverter device is connected to the electricity grid
and samples it with a fixed sampling time - we’ll work with discrete-time models
indexed by k ∈ N. The panel can be either ON (connected) or OFF (discon-
nected), and its activation/deactivation depends on two quantities: the network
frequency f(k) and a time delay τr. Table 1 summarises the behaviour of a PV
panel, considering the value of the network frequency and a requirement on the
time delay: regulations impose the panel to produce electricity, i.e. being in the
ON state, exclusively when the frequency f(k) belongs to a predefined interval
If , a neighbourhood of the nominal frequency f0 = 50 Hz. If the frequency exits
If , the panel must disconnect, i.e. switch to the OFF state.

Whilst we assume the ON-to-OFF transition to be instantaneous, this does
not hold for the OFF-to-ON transition. The reconnection happens if the fre-
quency remains within If for τr time steps: this requirement forces the network
frequency to be “stable” for a sufficient amount of time before allowing a safe
connection of the panel to the grid. The panel is thus equipped with an internal
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counter τ(k) that increases when f(k) ∈ If and is reset as soon as f(k) /∈ If .
When τ(k) ≥ τr the panel reconnects to the grid.

Note that the values of If and τr are not homogeneous across a population
of panels. Beyond the intrinsic differences due to the small panels size that we
have mentioned above, our network setting – a continental grid or part of it – is
geographically wide enough to comprise different norms from several countries,
across many years of installation. Moreover, digital systems are sensitive to noise
in the measurements and suffer from ageing of its components: these elements
make the system under consideration highly heterogeneous.

Table 1. Switching behaviour of a single PV panel. The network frequency is f(·), τ(·)
is the internal counter, τr the re-connection delay, and k the time index.

State s(k) Frequency measurement Delay State s(k + 1)

OFF f(k) ∈ If τ(k) ≥ τr ON

ON f(k) ∈ If − ON

ON f(k) /∈ If − OFF

OFF f(k) ∈ If τ(k) < τr OFF

2.2 Markov Model of a Heterogeneous Population of Solar Panels

We introduce a model of a heterogeneous population of solar panels, which is
originally developed in [15]. Heterogeneity stems from differences between solar
panels, and globally translates to the use of different If intervals and reconnec-
tion settings. In order to aggregate this heterogeneity at the population level, we
assume to know a distribution function describing the panel intervals If , and to
know how the delays are distributed across the population.

OFF ON

WAIT

b(k)

1− b(k)

b(k)ε(k)

a(k)

1− b(k) 1− a(k)

b(k)(1− ε(k))

Fig. 1. A (time-varying) Markov model for the aggregated dynamics of a heterogeneous
population of solar panels.
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At a population level, we describe the portion of panels engaged in either
of the following states: active (ON, for panels sampling f(k) ∈ If and τ ≥ τr);
inactive (OFF, for panels sampling f(k) /∈ If ); and in between these conditions
(WAIT, for panels sampling f(k) ∈ If but where τ < τr). The pictorial repre-
sentation of such model is shown in Fig. 1. The values attached to the transition
edges depend on the grid frequency: ideally, when f(k) = f0 every panel can
(eventually) connect (back) to the network, thus switching to the ON state,
whereas if f(k) is different than f0, then solar panels might disconnect. As seen
shortly, the transition values are probabilities, and characterise a Markov chain
model with the following dynamics:

{
x(k + 1) = (1 − a(k))x(k) + b(k)ε(k)y(k)
y(k + 1) = b(k)(1 − x(k) − ε(k)y(k)). (1)

Here x(k) and y(k) represent the probability (that is, the portion of panels) of
being in the ON and WAIT state at time k, respectively. Note that the proba-
bility of being OFF can be obtained as 1 − x(k) − y(k), ∀k. The function ε(k)
is a time-varying term accounting for the probabilistic description of the delay
[15]: in this work, we assume to know its value at any k. The quantities a(k) and
b(k) are functions of f(k) as

a(k) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∫ f(k)

−∞
pd

o(u)du if f(k) > f0

∫ +∞

f(k)

pd
u(u)du otherwise,

b(k) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∫ ∞

f(k)

pr
o(u)du if f(k) > f0

∫ f(k)

−∞
pr

u(u)du otherwise,

where pj
i , i = {u, o}, j = {d, r} are probability distributions encompassing the

population heterogeneity over the intervals If : indices u and o indicate the under-
frequency and over-frequency scenarios, respectively, whereas d and r indicate
the disconnection and reconnection distributions, respectively. As their variance
increases, panels disconnection and reconnection become more scattered over
the frequency range, whereas the opposite leads to the synchronisation of pan-
els switching their configuration. As such, a(·) and b(·) describe the population
heterogeneity over the interval If . Figure 2 represents function a(k) in underfre-
quency and overfrequency. Note that a(k) always denotes the part of the integral
that is closer to f0, and conversely for b(k). Finally, notice that a(·) and b(·) are
functions of the frequency signal f(k): to ease the notation we denote them as
a(k), instead of a(f(k)).

Remark 1 (On the modelling assumptions). [15] has shown that the introduced
three-state Markov model has an almost identical frequency response to that of a
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f0 ff(k)

pd
u(f)
a(k)

f0 ff(k)

pd
o(f)
a(k)

Fig. 2. Pictorial representation of a(k) in over-frequency, i.e. f(k) > f0 (right) and in
under-frequency, i.e. f(k) < f0 (left). The value of f(k) is indicated as a red vertical
line, which defines the upper or lower integration extrema in over- and under-frequency,
respectively. In general pu and po might not be symmetric nor belong to the same
distribution family.

population of devices modelled individually: in experiments, given threshold and
delay distributions, heterogeneous panels in the population are modelled with
values extracted from the distributions. The presented modelling framework is
tuneable to real data: the distributions can be interpolated from the behaviour
of real devices that are measured across the population under study. ��

2.3 Model of the Grid Dynamics

The electricity grid reference model is derived from the ENTSO-E report in
[6]. It consists of a discrete-time model of the electric network in the form of
a second-order transfer function, G(z, CP ) (z is the variable of the Z-transform
and denotes a one-step time difference in the signal), which depends on the
amount of conventional power (CP ) feeding the network, the total load of which
is denoted as S. Note that CP ≤ S, where CP = S in a network without
renewable energy sources. The model relates the photovoltaic power deviation,
ΔPPV (k) (its input) to the frequency deviation Δf(k) (output) as

Δf(k) = G(z, CP )[PPV (k) − PPV,0],

where Δf(k) = f(k)−f0, and ΔPPV = PPV (k)−PPV,0 represents the deviation
from PPV,0, the power output at the equilibrium. Finally, G(z, CP ) is the transfer
function

G(z, CP ) =
β1z + β2

z2 + α1(CP )z + α2(CP )
. (2)

Here α1(CP ), α2(CP ), β1, β2 are parameters that are selected to render the
transfer function stable around the equilibrium, in accordance with values in
[6]; in particular α1(CP ) and α2(CP ) depend on the conventional power CP in
the network [16]. Further, the structure of G(z, CP ) encompasses the network
primary control. Each scenario analysed in Sect. 4 includes a different network
transfer function, depending on the solar penetration considered.

The total power output of the solar population PPV (k) is directly propor-
tional to the portion of panels in the ON mode (variable x(k)), as PPV (k) ∼
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P̄Nx(k), where P̄ is assumed to be the constant power output of a single PV
panel, and N represents the total number of panels. This quantity couples the
network model with the population model: their feedback connection is discussed
in the following Section.

2.4 Feedback Model of the Grid with Solar Renewables

We now place in feedback the (time-varying) Markov chain modelling the solar
panels dynamics in Eq. (1), with the model of the electric network in Eq. (2),
expressing the transfer function G(z, CP ) as a difference equation, resulting in:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Δf(k + 1) = α1Δf(k) + α2Δf(k − 1)+
+ β1ΔPPV (k) + β2ΔPPV (k − 1) + ωf (k)

x(k + 1) = (1 − a(k))x(k) + b(k)ε(k)y(k)
y(k + 1) = b(k)(1 − x(k) − ε(k)y(k)),

(3)

where
PPV (k) = P̄Nx(k) + ωP (k).

Notice that we have added a frequency noise term ωf (k) ∈ N (0, σf ), which
represents the imperfect balance of the electric network; PPV (k) represents the
solar power injected in the grid at time k; and ωP (k) ∈ N (0, σP ) is the noise
over the solar power generation at time k. ωP represents the unpredictability
of solar panels: their power output depends on characteristics as weather condi-
tions, occlusions, temperature, that allow a stochastic description. The process
noises ωf (k) and ωP (k), are made up by i.i.d. random variables, characterised
by density functions tf (·) and tP (·), to be used below. We assume also that ωf (·)
and ωP (·) are independent of each other.

Note that the dynamics of ΔPPV (k + 1) can be formed simply by operating
a change of variable as PPV (k) = ΔPPV (k) + PPV,0. Note also that a(k), b(k),
x(k), y(k) by construction belong to the interval [0, 1] ∀k ∈ N.

The equations in (3) represent a so called partially-degenerate stochastic
model [19]. It comprises two stochastic equations (the dynamics of Δf(k + 1)
and PPV (k + 1)) and two deterministic equations (for the Markovian dynamics
of x(k+1) and y(k+1)). The stochastic nature of the reconnection is embedded
into the ε(k) term, so an additional noise is not necessary.

3 Formal Abstractions

The dynamics of variables x(k) and y(k) represent the portion of panels in the
population that are in state ON and in state WAIT at time k, respectively (cf.
Fig. 1). Both x(k) and y(k), as well as PPV (k), are continuous variables, which
makes their formal verification tricky.
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Further, the dynamics in (3) also include state variables with delays (i.e.
f(k − 1) and PPV (k − 1)). This issue is handled by variable renaming, namely
we introduce two new state variables

φ(k) = f(k − 1), ξ(k) = PPV (k − 1),

so that

Δφ(k) = f(k−1)−f0 = Δf(k−1), Δξ(k) = PPV (k−1)−PPV,0 = ΔPPV (k−1).

Recall that f0 and PPV,0 denote fixed quantities at the equilibrium points. The
model in (3) becomes

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Δf(k + 1) = α1Δf(k) + α2Δφ(k) + β1ΔPPV (k) + β2Δξ(k) + ωf (k)
Δφ(k + 1) = Δf(k)
x(k + 1) = (1 − a(k))x(k) + b(k)ε(k)y(k)
y(k + 1) = b(k)(1 − x(k) − ε(k)y(k))
PPV (k) = P̄Nx(k) + ωP (k)
ξ(k + 1) = PPV (k),

(4)

Let us focus on the domain of the six state-space variables: x(k), and y(k) belong
to the interval [0, 1], whereas by definition, Δf(k), Δφ(k), PPV (k) and ξ(k) range
over R. However, as mentioned above, whenever f(k) exits its operational range
(for instance, as shall be seen in the experiments, because of a generation loss),
primary control mechanisms act to restore the frequency to its nominal value.
As such, we can limit our models to values of frequency within the operational
range F = [fu, fo] = [−0.8,+0.8] Hz, which corresponds to the frequency interval
[49.2, 50.8] Hz. Similarly, we restrict dynamics of PPV (k) to belong to the interval
P = [0, P̄N ] to model the physical limitation of real devices. Finally, introduce
the interval X = [0, 1] for variables x, y.

The state space of the model is thus characterised by a vector variable q =
(Δf,Δφ, x, y, PPV , ξ) ∈ F

2×X
2×P

2 := Q, with six continuous components. Let
us also introduce a noise vector ω(k) = (ωf (k), ωP (k)).

We now discuss the one-step transition density kernel tω(·|q), a function that
defines the transition from state q to state q′, derived from the model in (4) as
per [2]. Conditional on point q ∈ Q, it can be written as

tω(q′|q) = tf (Δf ′ − α1Δf − α2Δφ − β1ΔPPV − β2Δξ)·
· δ(Δφ′ − Δf) · δ(x′ − (1 − a)x − bεy)·
· δ(y′ − b(1 − x − εy)) · tP (P ′

PV − P̄Nx) · δ(ξ′ − PPV ),
(5)

where primed variables indicate the next value in time, and δ(p) is the Dirac delta
function pointed at p (namely it assumes value 1 if p = 0, or value 0 otherwise)
that characterises the dynamics of deterministic vector fields for variables Δφ x,
y, ξ. Stochastic vector fields are instead characterised by the two densities tf (p)
and tP (p), centred at point p, which are decoupled in view of the independence
of the two corresponding noise processes.
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3.1 Finite Abstraction via State-Space Partitioning

We introduce a formal abstraction technique, proposed in [2], aimed at reduc-
ing a discrete-time, uncountable state-space Markov process to a discrete-time
finite-state Markov chain, for the purpose of probabilistic model checking. The
abstraction is based on a state-space partitioning procedure: consider an arbi-
trary and finite partition of the continuous domain F =

⋃n
i=1 Fi, where Fi

are non-overlapping, and a set of representative points within the partitions
{f̄i ∈ Fi, i = 1, . . . n}, which in practice are taken to be their middle points.
This partition intervals represent the values of Δf . Similarly, we introduce a par-
tition of the other variables and respective domains, and define representative
points {φ̄i ∈ Φi, i = 1, . . . n}, {x̄j ∈ Xj , j = 1, . . . m}, {ȳj ∈ Yj , j = 1, . . . m},
{p̄j ∈ Pj , j = 1, . . . m}, {ξ̄j ∈ Ξj , j = 1, . . . m}, for variables Δφ, x, y, ΔPPV

and Δξ, respectively1.

f1 . . . . . . fn
2 f0

fn+1
2

. . . . . . fn+1

νf

0 1

x1 xm+1

νP

Fig. 3. Partition intervals for frequency (top) and active panels (bottom).

Let us now provide details on the selection of the intervals resulting in the
partitions of S. Let us select a partition size νf and quantity n = fo−fu

νf
, repre-

senting the number of partitions created in the frequency domain. Note that the
symmetry of the interval [fu, fo] with respect to f0 implies that f0 becomes the
reference point of the

n

2
-th partition, i.e. f̄n

2
= f0. Analogously, denote νP as

the second partition size and m = 1
νP

as the number of partitions in the active
panels domain. We denote the boundary points of the partitions as (Fig. 3)

fi+1 = fi + νf , i = 1, . . . n, Fi = [fi, fi+1), F =
⋃n

i=1 Fi,
xj+1 = xj + νP , j = 1, . . . m, Xj = [xj , xj+1), X =

⋃m
j=1 Xj ,

(6)

and analogously for Δφ, y, and PPV , ξ. Let us remark that interval F1 represents
frequency values just above fu: introduce the unsafe interval F0 = (−∞, f1)
and render F0 absorbing – this allows evaluating the cumulative load-shedding
probability over time (as further detailed shortly).

1 In principle, we could employ different partitioning intervals for different variables,
however to ease the notation we have used n intervals for frequency-related variables
and m intervals for x, y, PPV , ξ.
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Introduce now a discrete-time and finite-state Markov chain M, composed
by n2 × m4 abstract states s = (f̄i1, φ̄i2, x̄j1, ȳj2, p̄j3, ξ̄j4), where i1, i2 ∈ [1, n]
and j1, j2, j3, j4 ∈ [1,m]. Denote by S the finite state space of M and by
Si1,i2,j1,j2,j3,j4 ∈ S one of its states, which corresponds to a hyper-rectangle
centred at (f̄i1, φ̄i2, x̄j1, ȳj2, p̄j3, ξ̄j4) and with bounds (see Eq. (6)) defined by
the intervals Fi, Pj and Xj and corresponding copies. Denote μ : S → Q the
one-to-one mapping between the abstract state s and the corresponding region
of the state-space q.

The transition probability matrix of M comprises the probabilities obtained
by marginalising the kernel tω over the hyper-rectangular partitions, as

P (s, s′) =
∫

μ(Si1′,i2′,j1′,j2′,j3′,j4′ )
tω((df ′, dφ′, dx′, dy′, dP ′

PV , dξ′)|q). (7)

The abstraction procedure applied to the model in (4) carries a discretisation
error: in the following, we formally derive a bound for this error as a function
of the discretisation steps νf and νP . As argued in [2], a finer grid results in a
smaller abstraction error, however it generates a larger state space.

In view of the presence of non-probabilistic dynamics in the degenerate
stochastic model, the abstraction results in a Markov chain structured as the
following example.

Example 1. Consider, as an illustrative example, the following model:
{

r1(k + 1) = ζ1r1(k) + ζ2r2(k) + ωz(k)
r2(k + 1) = r1(k), (8)

where ζ1, ζ2 are constants and ωz(k) is a Gaussian noise term at time k ∈
N. These models are typical in control engineering, as they derive from auto-
regressive systems, such as

r1(k + 1) = ζ1r1(k) + ζ2r1(k − 1) + ωz(k),

where a new variable is introduced (r2(k)) to replace the delayed variable of
interest. Let us introduce a 2-set partition of R = A ∪ B with reference points
r̄1 = rA, r̄2 = rB . Both variables r1(·) and r2(·) can take value rA or rB . The
state-space of (8) is q = (r̄1, r̄2) ∈ {rA, rB}2 = {rArA, rArB , rBrA, rBrB}. The
dynamics of r2 allow only for deterministic transitions, as the next value of r2
must be the current value of r1. As an example, if the current state is q =
(rA, rA), the next state must be q′ = (∗, rA). Thus, adding a auxiliary variable
r2 expands the state-space while forbidding several transitions. ��

3.2 Quantification of Safety Probability and of Abstraction Error

Let us now formally characterise the load-shedding probability. Consider the
model in (4) with initial state q0 and select a discrete time horizon H. We
assume that the electric network activates the load-shedding procedure whenever
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f(k) ≤ 49.2 Hz, namely if q(k) ∈ L, where L := {Δf ≤ −0.8}2. The aim of this
work is the computation of

pq0(L) := Prob(q(i) ∈ L, i ∈ [1,H] | q0), (9)

where q0 is the initial state of the continuous model. This probability can be
formally characterised via value functions Vk : Q → [0, 1], k = 1, . . . H, which
can be computed recursively as

Vk(q) = 1L(q)
∫

Q
Vk+1(u)tω(u|q)du, with VH(q) = 1L(q), (10)

so the initial value function V1(q0) = pq0(L) is the quantity of interest. We recall
a procedure presented in [1] to approximate the model in Eq. (4) by a finite-
state dtMC. We therefore define the discrete version of Eq. (9), as ps0(Ls) :=
Prob(s(i) ∈ Ls, i ∈ [1,H] | s0) = V s

1 (s0), where Ls := {f̄ ∈ F0} (consider it the
dtMC-equivalent of L), V s

1 (·) is the value function computed over S similarly
to Eq. (10), and s0 represents the initial state of the dtMC according to the
procedure in Sect. 3.1.

In the dtMC model, functions a(k) and b(k) are approximated and assume a
finite number of values (one for each of the f̄i). This introduces an error term:
let us define amax as

amax = max
i∈[1,n]
f∈Fi

∥∥∥∥∥
∫ f̄i

fi

pd(u)du

∥∥∥∥∥ ,

where pd represents the probability distribution for disconnection. This quantity
defines the maximum approximation error introduced with the discretisation in
the computation of a(k).

Note that the presence of δ(·) functions in Eq. (5) introduces discontinuities
within the domain of the kernel: continuity regions of the kernel (density) are
parts of the state space where the δ(·) functions are equal to one. Within such
regions (which are formally defined in Appendix A) the value functions are
continuous, and the following holds over pairs of points q, q̃ (cf. Appendix C):

|Vk(q) − Vk(q̃)| ≤ 2α1

σf

√
2π

|Δf − Δf̃ | +
2amax

σP

√
2π

|ΔPPV − ΔP̃PV |,

where α1 is a term introduced in Eq. (2).
We now abstract the aggregated population of solar panels as a Markov

chain based on the procedure of Sect. 3. Computing the solution of (10) over
the Markov chain, the overall approximation error can be upper-bounded [1] as
follows

|pq0(L) − ps0(Ls)| ≤ (H − 1)

[
2α1

σf

√
2π

νf +
2amax

σP

√
2π

νP

]
.

2 We argue in Appendix B that the delayed variables are not necessary for the char-
acterisation of the load-shedding probability.
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This error allows to refine the outcomes of the model checking procedure
(obtained from ps0(Ls)) over the concrete population model (corresponding to
the unknown quantity pq0(L)).

Remark 2 (On the population heterogeneity). The model in Sect. 3 allows for
a crisp expression of the population heterogeneity in terms of pd and pr distri-
butions: the working intervals are encapsulated by the integrals a(k) and b(k).
These quantities can easily be extended to encompass a population made up of
diverse parts: assume that a(k) is the sum of various integrals, each of them
encompassing a portion of the whole population, as

a(k) = λ1

∫ f(k)

−∞
pd
1(u)du + . . . λr

∫ f(k)

−∞
pd

r(u)du,

where λi ∈ (0, 1), i = 1, . . . r,
∑r

i=1 λi = 1, are weights representing the contribu-
tion of power production for the i-th portion with respect to the total population.
A similar setup can be made for b(k). ��

4 Experimental Results

In this section we use the abstract Markov chain to compute the load-shedding
probability after a sudden generation loss, under several scenarios.

In line with the ENTSO-E requirements [6], we assume an infeed loss of 3
GW in a global network with a demand of S = 220 GW. Power and frequency
values are normalised (per unit) relative to S and to 50 Hz. Power production
of a single panel P̄ is set to 3 kW. The variance σP is set to 1% of P̄ . The
variance σf is set to 0.05. Time delays are modelled in accordance with [13,14]:
the minimum reconnection delay is set to 20 seconds, whereas the maximum to
40 seconds. Whilst these two quantities are handled deterministically, the delays
are modelled via a geometric distribution. The probabilistic model checking tests
are implemented using the MATLAB software. Due to the large state space, νf

and νP are set to 0.01 and 0.05 respectively. The grid frequency is sampled
at a rate of 0.2 s, consistently with the requirements introduced in [8]. The
discussion is focused on the consequences of an incident after a few seconds: the
time interval considered is 20 s. After this time interval, we assume the frequency
control would stabilise f(·) around its nominal value. The discrete time horizon
is thus composed of 100 steps: results shown in the following Section carry an
abstraction error of 0.1, as quantified in Sect. 3.2. This error ought to be attached
to the certificates on safety probability derived in Sect. 4.2.

4.1 Study of Generation-Loss Incidents - Setup

As anticipated above, Transmission Systems Operators are tasked with ensuring
the safe operation of the grid, and are thus interested in formal guarantees on its
dynamics, and in reliable forecasting of potentially problematic situations, such
as issues related to frequency responses after a generation loss incident.
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Our study concerns the so-called normal incidents, classified as a loss of up to
2 GW of load, and as a loss of up to 3 GW of power generation. We assume the
initial condition to be f(0) = f0, with the population of panels in active (ON)
mode (x(0) = 1). The generation-loss incident is modelled as a negative step
injected into the dynamics in Eq. (2). Assuming that an incident of magnitude
M occurs at time k = k̄, the dynamics of f(k̄ + 1) become

f(k̄ + 1) = α1Δf(k̄) + α2Δφ(k̄) + β1(ΔPPV (k̄) − M) + β2Δξ(k̄) + ωf (k̄), (11)

and then evolve from time (k̄ + 2) on as

f(k̄ + 2) = α1Δf(k̄ + 1) + α2Δφ(k̄ + 1) + β1(ΔPPV (k̄ + 1) − M)+
+β2(Δξ(k̄ + 1) − M) + ωf (k̄ + 1). (12)

Equations (11) and (12) display two different deterministic drifts, which lead to
two different transition matrices P1 and P2 defined over the same state space.
We further assume that k̄ = 0, namely the incident occurs at the beginning
of the time horizon. This results in a time-varying safety verification problem:
given the initial probability distribution vector π0, the dynamics evolve as

π1 = π0 · P1, π2 = π1 · (P2)H−1,

where π2 is a vector with the probabilities of being in each state after H steps.

4.2 Computation of Load-Shedding Probability

Our tests encompass several scenarios, in which we vary: (a.) the choice of the
distributions pd and pr; (b.) the associated variance of pd and pr; and (c.) the
total solar penetration in the network. Recall from Sect. 2.3 that the solar pen-
etration modifies the network transfer function.

We obtain results with solar penetration from 10% to 40% of the network load
(for brevity we show only the results with a 10% load) which represents current
values for solar power contribution (e.g. Germany’s 2017 average production is
around 7%, reaching peaks of 60% in Summer [9]). The threshold distributions
for If are either Gaussian or χ2: these are notably dissimilar and are here used
to model different panel dynamics. The use of different distributions denotes
different modelling choices: a Gaussian distribution models the inverter mea-
surement noise, whereas a χ2 can be used to define a minimum performance
setting, namely a minimum working interval. Whilst the Gaussian distribution
results in a more realistic choice, the χ2 offers interesting outlooks on how distri-
butions affect the safety property. In practice, the selection of a distribution must
depend on data measurements coming from real devices. Ultimately, increasing
variance of pd and pr reflects a more heterogeneous population (more diverse
thresholds characterising If ). As discussed shortly, a larger variance can have
opposite consequences on stability, depending on which threshold distribution is
used.
(1) If thresholds distributed as a Gaussian. Figure 4 depicts the load-shedding
probability in presence of 10% solar penetration, varying values of the mean and
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variance of pd. A Gaussian distribution has a symmetric shape around its mean:
when its variance increases, the tails on both sides spread out. As such, increas-
ing their variance cause a higher number of panels (represented by the tails of
the distribution) to have thresholds closer to f0. Consequently, we observe more
panels with a narrow working interval around the nominal frequency. There-
fore, a greater portion of the population is likely to disconnect under frequency
deviations, causing the network frequency to decrease.

Fig. 4. Load-shedding probability with
10% solar penetration, with Gaus-
sian distribution of thresholds. Vari-
ance within [0.01, 0.20] and mean within
[49.3, 49.8] Hz.

Fig. 5. Load-shedding probability with
10% solar penetration, with χ2 distribu-
tion of thresholds. Variance within [1, 8]
and initial point within [49.3, 49.8] Hz.

(2) If thresholds distributed as a χ2. Figure 5 depicts the load-shedding proba-
bility under 10% solar penetration, with varying values of the initial point of the
support and of the variance of pd. Note that, due to the nature of the χ2 distri-
bution, instead of the average value we denote an initial point of the support.
Unlike the Gaussian case, increasing the variance of a χ2 distribution results in
larger thresholds. As expected, the experiments show that, in this scenario, an
increased heterogeneity guarantees a more reliable network.

Experiments with a higher penetration of solar contributions (20%, 30%, 40%
of the total), under either Gaussian or χ2 scenarios, indicate that the probability
of load-shedding increases when a larger PV population is connected to the grid.

5 Conclusions

We have introduced a formal procedure to abstract the dynamics of a hetero-
geneous population of solar panels, embedded within the frequency dynamics
of the grid. The computation of error bounds on the abstraction guarantees
the correctness of the outcomes of a formal verification procedure run on the
obtained abstract model. The focus of the verification procedure has been on
a grid safety property, under significant energy generation from renewables via
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formal abstractions: we have assessed the load-shedding probability of the net-
work, under several scenarios of population heterogeneity. Operators can use
these certificates to monitor the distribution of solar panels over the grid and to
assess its reliability in case of incidents.

A Definition of Kernel Continuous Regions

We want to underline the discontinuity of the kernel density tω(·|q) caused by the
presence of the δ(·) functions. Let us define g(Δf) = −α1Δf − α2Δφ − β1Δx −
β2Δξ, h1(x) = −(1 − a)x − bεy, h2(y) = −b(1 − x − εy) and l(PPV ) = −P̄Nx.
The transition kernel density can be written as

tω(q′|q) =

⎧⎪⎨
⎪⎩

tf (Δf ′ − g(Δf))· if Δφ′ = Δf ∧ x′ = h1(x)
· tP (P ′

PV − l(PPV )) ∧ y′ = h2(y) ∧ ξ′ = PPV

0 otherwise

defining the continuous regions C = {Δφ′ = Δf ∧ x = h1(x) ∧ y′ = h2(y) ∧ ξ′ =
PPV }. Note that in the abstraction framework, regions C assume the discretised
form Cd = {Δφ̄′ = Δf̄i ∧ x̄ = h1(x̄) ∧ ȳ′ = h2(ȳ) ∧ ξ̄′ = P̄j}.

B Probabilistic Safety for Partially Degenerate Models

Let us show that for a partially degenerate stochastic model the safety proba-
bility computation depends only on the stochastic state. Consider the model{

x(k + 1) = f(z(k)) + ω(k)
y(k + 1) = x(k),

where ω(k) ∼ N (0, σ) and where z = (x, y)T denotes the complete state vec-
tor. Let us denote with tω(·) the density of the Gaussian kernel. The one-step
transition probability kernel can be split as follows:

P (x(k + 1)|z(k)) = tω(f(z(k))),
P (y(k + 1)|z(k)) = P (y(k + 1)|x(k)) = δ(y(k + 1) − x(k)),

where δ(z−p) represent the Dirac delta function of variable z, centred at point p.
Let us consider a safe set A = Ax × Ay, where Ax and Ay denote its projections
on variables x and y, respectively. Define the value function at time step H as
VH(z) = 1A(z) and compute the one-step backward recursion:

VH−1(z) =
∫

A

VH(z′)P (z′|z)dz′ =
∫

A

P (z′|z)dz′ =

=
∫

Ay

∫
Ax

tω(dx′|f(z))δ(dy′ − x) = 1Ay
(z)

∫
Ax

tω(dx′|f(z)) =

=
∫

Ax

tω(dx′|f(z)),

showing that the computation of the safety probability depends solely on the
stochastic kernel affecting the dynamics of variable x.
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C Value Function Continuity for Probabilistic Safety

In the following, we consider a generation-loss incident scenario; the load-loss
case can be derived analogously. Recall the value function definition from Sect. 3
and compute the backward Bellman equation as

Vk(q) = 1L(q)
∫

Q
Vk+1(q̃)ts(q̃|q)dq̃, with VH(q) = 1L(q).

We show that the value functions are continuous within the continuity regions
of the state space, thus there must exist a constant γ so that

|Vk(q) − Vk(q̃)| ≤ γ ‖q − q̃‖. (13)

To enhance the readability let us define g(Δf) = −α1Δf −α2Δφ−β1Δx−β2Δξ,
h(PPV ) = −P̄Nx and Δf = ρ, PPV = ψ. We now show the validity of Equation
(13) by finding a value for γ. From the definition of Vk(q), we obtain:

∣∣∣∣
∫

Q
Vk+1(q)tf (ρ − g(ρ))tP (ψ − h(ψ))d(ρ)d(ψ)

−
∫

Q
Vk+1(q̃)tf (ρ − g(ρ̃))tP (ψ − h(ψ̃))d(ρ)d(ψ)

∣∣∣∣ ≤
∣∣∣∣
∫

F
Vk+1(q)tf (ρ − g(ρ))d(ρ) ·

∫
P

Vk+1(q)tP (ψ − h(ψ))d(ψ)

−
∫

F
Vk+1(q̃)tf (ρ − g(ρ̃))d(ρ) ·

∫
P

Vk+1(q̃)tP (ψ − h(ψ̃))d(ψ)
∣∣∣∣ ,

where F and P denote the domain of frequency and power, respectively. In order
to continue, we introduce a useful lemma.

Lemma 1. Assume A,B,C,D ∈ [0, 1], then |AB − CD| ≤ |A − C| + |B − D|.
Proof. Assume A > C, then
if AB − CD > 0,
|AB − CD| ≤ |CB − CD| = C|B − D| ≤ |B − D| ≤ |B − D| + |A − C|.
if AB − CD < 0,
|AB − CD| ≤ |AB − AD| = A|B − D| ≤ |B − D| ≤ |B − D| + |A − C|.
Analogously for A ≤ C. ��
Thanks to this Lemma, we can write∣∣∫F Vk+1(q)tf (ρ − g(ρ))d(ρ) · ∫

P Vk+1(q)tP (ψ − h(ψ))d(ψ)

− ∫
F Vk+1(q̃)tf (ρ − g(ρ̃))d(ρ) · ∫

P Vk+1(q̃)tP (ψ − h(ψ̃))d(ψ)
∣∣∣ ≤∣∣∫F tf (ρ − g(ρ))d(ρ) · ∫

P tP (ψ − h(ψ))d(ψ)

− ∫
F tf (ρ − g(ρ̃))d(ρ) · ∫

P tP (ψ − h(ψ̃))d(ψ)
∣∣∣ ≤∫

F
∣∣tf (ρ − g(ρ)) − tf (ρ − g(ρ̃))

∣∣ d(ρ)+

+
∫

P
∣∣∣tP (ψ − h(ψ)) − tP (ψ − h(ψ̃))

∣∣∣ d(ψ).
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Let us focus on the first integral:

∫
F |tf (ρ − g(ρ)) − tf (ρ − g(ρ̃))|d(ρ) = 1

σf

∫
F

∣∣∣Φ(
ρ−g(ρ)

σf

)
− Φ

(
ρ−g(ρ̃)

σf

)∣∣∣ dρ

=
∫

F
∣∣∣Φ(

u − α1(ρ−ρ̃)
2σf

)
− Φ

(
u + α1(ρ−ρ̃)

2σf

)∣∣∣ dρ ≤ 2α1√
2πσf

|ρ − ρ̃|,

and similarly for the second integral. Therefore,

|Vk(q) − Vk(q̃)| ≤ 2α1√
2πσf

|ρ − ρ̃| +
2amax√
2πσP

|ψ − ψ̃|.
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