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Abstract. Obtaining complete and accurate models for the formal ver-
ification of systems is often hard or impossible. We present a data-based
verification approach that addresses incomplete model knowledge. We
obtain experimental data from a system that can be modelled as a para-
metric Markov chain, and the desired system properties are expressed
in a probabilistic logic. We propose a novel verification algorithm that
quantifies the confidence that the underlying system satisfies a given
property of interest, exploiting partial knowledge of the system to min-
imise the amount of sampled data required. Given a parameterised model
of the system, the procedure first generates a feasible set of parameters
corresponding to model instances satisfying a given probabilistic prop-
erty. Simultaneously, we use Bayesian inference to obtain a probability
distribution over the model parameter set from data sampled from the
underlying system. The results of both steps are combined to compute
a confidence that the underlying system satisfies the property. Our ap-
proach offers a framework to integrate Bayesian inference and formal
verification, and in our experiments our new approach requires one or-
der of magnitude less data than standard statistical model checking to
achieve the same confidence.

1 Introduction

Complex engineering systems, such as autonomous vehicles and robots, are often
safety-critical and demand high guarantees of correctness. Given a model of the
system of interest, these guarantees can be obtained through formal methods,
such as model checking [1]. However, the outcomes of these formal proofs are
bound to models of the system of interest. Probabilistic logics such as PCTL [16]
allow us to specify desired behaviours, which can be checked over probabilistic
models. The uncertain stochastic dynamics of these models can be captured via
parameterised Markov chains.

In this work we integrate the use of model checking techniques (for parameter
synthesis over the model) with data-based approaches (for parametric Bayesian
inference), in order to compute a confidence, based on observed data collected
from the system, that a system satisfies a given specification. The proposed ap-
proach is distinctively different from statistical model checking (SMC) [31], a
known data-based technique for model verification, and has a distinct set-up
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and addresses a different objective: The original SMC algorithms target systems
with fully known models that are too large for conventional model checking,
and use the known models to generate simulated data; SMC has also been ap-
plied in a model-free setting where system-generated data is directly employed
towards statistical validation of properties of interest; our technique instead tar-
gets partially known systems, captured as a parameterised model class that can
be accessed, and still uses data collected from the original system.

In this work the parameterised model class is a parameterised Markov chain,
and we propose a new model-based method to verify probabilistic properties
over the system, which exploits this partial knowledge and computes a confi-
dence guarantee via inference based on data generated by the underlying sys-
tem. Whilst in general SMC requires a large amount of high-quality sample data
covering the entire system behaviour to obtain good confidence results, we show
that this method requires much less sample data, and that it can accommodate
data with only partial coverage.

Our method can be elucidated in three phases. In the first phase, having a
parameterised model of our partially known system, we use parameter synthesis
to determine a set of feasible parameters over the given model class, namely
those parameters corresponding to models of the system satisfying the given
specification. Among a number of alternatives, we use an existing parameter
synthesis method implemented in PRISM [19]. The second phase, which can be
executed in parallel with the first, involves the use of Bayesian statistics to infer
a distribution over the likely values of the parameters of the model class, given
sample data collected from the underlying system. Finally, in the third phase we
combine the outputs from the previous two phases to compute the confidence
attached to the system satisfying the given specification.

Alongside the new methodology introduced in this work (first presented over
different model class and properties in [12]), the key technical contribution re-
sides in phase two: our algorithm introduces expansions of states and transitions
of the parameterised Markov chain, which guarantees that the posterior proba-
bility distributions over the parameters can be obtained analytically, and can be
integrated easily. The work discusses a case study, demonstrating the implemen-
tation of the algorithm, and a comparison with a standard SMC procedure. We
argue that our approach requires smaller amounts of data than SMC to verify
whether the system satisfies a given property up to a given confidence level; and
further that our approach is more robust than SMC in situations where only
limited data and a partial model is available.

Related Work Statistical Model Checking (SMC) [21] replaces numerical model-
based procedures with empirical testing of formalised properties. SMC is limited
to fully observable stochastic systems with little or no non-determinism, and
may require the gathering a large set of measurements, or the generation of large
numbers of sample trajectories from a complete system model. SMC techniques
have been utilised to tackle verification of black box probabilistic systems [28],
with no model of the system available, but this approach requires large amounts
of data. Extensions towards the inclusion of non-determinism have been studied
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in [17, 22], with preliminary steps towards Markov decision processes. Related to
SMC techniques, [7, 24, 28] assume that the system is encompassed by a finite-
state Markov chain and efficiently use data to learn and verify the corresponding
model. Similarly, [2, 5] employ machine learning techniques to infer finite-state
Markov models from data over given logical formulae.

Bayesian inference uses Bayes theorem to update the probability distribution
of a set of hypotheses based on observed data [4]. Bayesian Inference for learning
transition probabilities in Markov Processes is presented in [25], and the tech-
nique is widely used in planning in POMDP by [27] – in this work we do not
consider models with actions or with the planning goals studied in this area.

2 Background

2.1 Parametrised Markov chains – syntax and semantics

Let S be a finite, non-empty set of states representing all possible configura-
tions of the system being modelled. A discrete-time Markov chain (DTMC) is a
stochastic time-homogeneous process over this set of states [1], as follows.

Definition 1 A discrete-time Markov chain M is a tuple (S,T, ιinit,AP, L),
where S is a finite, non-empty set of states, T : S × S → [0, 1] is the transition
probability function such that for ∀s ∈ S :

∑
s′∈S T(s, s′) = 1. The function

ιinit : S → [0, 1] denotes an initial probability distribution over the states S,
such that

∑
s∈S ιinit(s) = 1. The states in S are labelled with atomic propositions

a ∈ AP via the labelling function L : S → 2AP.

Consider the evolution of a Markov chain over a time horizon t = 0, 1, . . . , Nt,
with Nt ∈ N. Then an execution of the process is characterised by a state
trajectory given as {st|t = 0, 1, . . . , Nt}. The transition function T(s, s′) specifies
for each state s the probability of moving to s′ in one step, and hinges on the
Markov Property, which states that the conditional probability distribution of
the future possible states depends only on the current state, namely P(s′ = st+1 |
st, ...s0) = P(s′ = st+1 | st). Furthermore, the definition of M requires that T is
time homogeneous, that is P(s′ = st+1 | st = s) = P(s′ = st | st−1 = s),∀t ∈ N.
The model is extended with (internal) non-determinism in order to express lack
of complete knowledge of the underlying system.

Definition 2 A discrete-time Parametric Markov chain is defined as a tuple
MΘ = (S,Tθ, ιinit,AP, L,Θ) where S, ιinit,AP, L are as in Definition 1. The
entries in Tθ are specified in terms of parameters, collected in a parameter vector
θ ∈ Θ, where Θ is the set of all possible evaluations of θ. Each evaluation gives
rise to an induced Markov chain M(θ).

Note that we require a certain type of well-posedness of the parameterisation,
in that we demand that ∀s ∈ S,∀θ ∈ Θ :

∑
s′∈S Tθ(s, s′) = 1. More precisely, for

any given θ ∈ Θ the parameterised transition function Tθ reduces to a stochastic
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Fig. 1: Two parameterised Markov chains. The nodes of the graph represent
states. The labels over the edges provide the probability of taking a transition.
The left graph gives parameterised MC with a basic parameterisation, where
the parameters θ1, θ2 are encompassed in the vector θ = (θ1, θ2) ∈ Θ = [0, 1]2.
The right graph has a linear parameterisation, characterised by affine functions
g1,2 : θ 7→ [0, 1].

matrix, and the parametric Markov chain reduces to a Markov chain denoted as
M(θ) with a probability measure PM(θ).

In the remainder we considered two types of parameterised Markov chain.
We use the first, simpler type, as a base case to build the method for the more
complex linearly parameterised Markov chains.

1. basic parameterised Markov chains with independently parameterised tran-
sition probabilities. Consider MΘ = (S,Tθ, ιinit,AP, L,Θ) with Θ ⊆ [0, 1]n

and parameter vector θ := (θ1, . . . , θn) ∈ Θ build up based on individual
parameters θi ∈ [0, 1]. Then the parameterised MC is considered basic if
transition probabilities between states are either known and considered con-
stant with a value in [0, 1], or have a single parameter θi (or 1−θi) associated
to them and ∀s ∈ S, ∀θ ∈ Θ :

∑
s′∈S Tθ(s, s′) = 1 (cf. Fig. 1, left).

2. linearly parameterised Markov chains, where unknown transition probabil-
ities can be linearly related. Given Θ ⊆ [0, 1]n and parameter vector θ :=
(θ1, . . . , θn) ∈ Θ with θi ∈ [0, 1], the parameterised MC is considered lin-
early parameterised if there exists a set of affine functions gl(θ) := k0 +
k1θ1 + ... + knθn with ki ∈ [0, 1] and

∑
ki ≤ 1, denoted gl(θ)l∈L. All

outgoing transition probabilities of states (or, graphically labels of out-
going edges of a node, cf. Fig.1) have probability gl(θ) or 1 − gl(θ) and
∀s ∈ S, ∀θ ∈ Θ :

∑
s′∈S Tθ(s, s′) = 1 .

The basic case leads to simple procedures, and in Section 5 we develop the
linear structure for Bayesian verification. Parameterisations beyond these two
categories, such as nonlinear ones, are out of the scope of this paper.

2.2 Properties – Probabilistic Computation Tree Logic

We consider system requirements specified in probabilistic logics. As we leverage
PRISM’s parametric model checking tool [13] for synthesis, we may consider the
same set of properties that the synthesis tool supports. In the case of PRISM,
this is non-nested Probabilistic Computational Tree Logic (PCTL) [16] formulae,
and so in our work we focus on these properties. For instance, P≥0.5(stay U get)
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expresses the property that “the probability of remaining in a state labelled
with atomic proposition ‘stay’ until we reach a state labelled as ‘get’, is bigger
or equal to 0.5”. PRISM also supports nested PCTL with some restrictions, and
a planned extension to this work is to use PROPHESY [10] for parameter syn-
thesis, which supports conditional probabilities and unbounded-time properties.
We next define PCTL in nexus to finite discrete-time Markov chains:

Definition 3 Let a discrete-time Markov chain be given. Let φ be a formula
that is interpreted over states s ∈ S, and ϕ be a formula that is interpreted on
paths of the DTMC. Also, let ./∈ {<, ≤, ≥, >}, n ∈ N, p ∈ [0, 1], c ∈ AP . The
syntax of PCTL is given by:

φ := True | c | φ ∧ φ | ¬φ | P./p(ϕ), ϕ :=©φ | φ U φ.

Definition 4 Let M(θ) be an induced Markov chain of the parametric Markov
chain MΘ indexed by parameter θ ∈ Θ, and let φ be a formula in PCTL. The
satisfaction function fφ : Θ → {0, 1} where fφ(θ) = 1 if M(θ) |= φ, and 0
otherwise.

Let us assume that the satisfaction function fφ is measurable and entails a de-
cidable verification problem for all θ ∈ Θ. The computation of the satisfaction
function, or equivalently the exploration of a parameter set over a formal prop-
erty, has been studied for various reactive models in [3, 11, 18].

2.3 Bayesian inference

Our method uses Bayesian inference to learn the probability distribution of pa-
rameters in our model class as more evidence or data becomes available. Bayesian
inference derives the posterior probability distribution from a prior probability
and a likelihood function derived from a statistical model for the observed data.
Bayes’ law states that, given observed data D the posterior probability of a hy-
pothesis p(H | D), is proportional to the likelihood p(D | H), multiplied by the
prior p(H), as

p(H | D) =
p(D | H)p(H)

p(D)
. (1)

In our work data D comprises batches of traces of specific length generated by
Markov chains instantiated over Θ. The term at the denominator in (1) entails
an integral over the parameter set Θ, which in general requires numerical approx-
imation. It is of interest to seek a conjugate prior p(H) resulting in a closed-form
expression for the posterior p(H | D): in this work we make use of the Dirichlet
distribution, which is conjugate to the multinomial one [30]. However, when in-
sufficient initial knowledge is available, we choose a non-informative prior, which
has minimal influence on the posterior, such as a uniform prior.
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3 Problem statement and overview of the approach

Consider a partly unknown dynamical system S, and suppose that we can gather
a limited amount of sample trajectories from this system as data. Assume that
the knowledge about the system is encompassed within a parametric model class,
describing the behaviour of S up to the unknown parameterisation of some of
its transitions. We plan to investigate the following goal: can we efficiently use
the gathered data and the model knowledge of S to formally verify given PCTL
properties over S, quantifying a confidence in our assertions?

The three phases of our work are as follows. In the first phase, Sec. 4, we
use parameter synthesis to determine a set of feasible parameters for which
the system satisfies the given property. The second phase, Sec. 5, executed in
parallel, uses Bayesian Inference to infer a distribution over the likely value of
the parameters given sample data from the system. In the final phase, Sec. 6,
the combination of parametric inference and parameter synthesis to quantify the
confidence that the system verifies a PCTL property of interest.

Bayesian probability calculus [23] leads to express the confidence in a prop-
erty as a measure of the uncertainty distribution over the synthesised parameter
sets. Uncertainty distributions are handled as probability distributions of ran-
dom variables. Given a specification φ and a data set D, the confidence that
S |= φ can be quantified via inference as P (S |= φ | D) =

∫
Θ
fφ(θ)p (θ | D) dθ,

where P (·) is a probability measure obtained integrating the distribution p (·)
of the uncertainty parameter over MΘ, expressed as the a-posteriori p (θ | D)
given the data set D and the uncertainty distribution p (θ) over the parameter
set Θ.

The computation in the third phase is a key challenge in the case of Markov
chains that are parameterised non trivially due to the required complex manip-
ulation of Dirichlet posterior distributions. This motivates the introduction of
a Markov chain expansion algorithm in Sec. 5.2, which enables us to analyti-
cally obtain samples of complex posterior distributions for the final step of the
approach.

4 Parameter synthesis

The first phase of our method uses parameter synthesis and, given a property
and a parameterised Markov chain, synthesises the feasible set of parameters
corresponding to models satisfying the given PCTL property. This corresponds
to the set of parameters for which the binary satisfaction function, fφ(θ) =
P (M(θ) |= φ), is equal to 1. We denote this set Θφ, namely

Θφ = {θ ∈ Θ : M(θ) |= φ}.

We leverage PRISM’s parametric model checking functionality based on [14, 15]
to perform this synthesis. [14, 15] expresses quantitative specifications as ratio-
nal functions that are later manipulated. PRISM’s parameteric model checking
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approach can be applied to unbounded until, steady-state probabilities, reach-
ability reward and steady-state reward properties for parametric DTMCs. The
result is a mapping from hyper-rectangles (subsets of parameter valuations) to
functions over the parameters.

Alternatives to these techniques have not shown to be scalable or sufficiently
general. [6] explores the parameter space with the objective of model verifica-
tion. [20] employs an analytical approach to parameter synthesis for probabilis-
tic transition systems and is bound to at most two parameters. [9] employs a
language-theoretical approach based on regular expressions, which however does
not scale as the number of transitions of the Markov model increases. [29] syn-
thesise single-parameter Markov models via accurate interval propagation.

5 Bayesian inference in parameterised Markov chains

In this section we consider the application of Bayesian inference to parameterised
Markov chains, in order to infer unknown parameter probabilities based on ob-
served data. We will first present the technique for basic parameterised Markov
chains, and the method is then detailed for linearly related parameterisations
in Sec. 5.2, where we show that data obtained from a linearly parameterised
Markov chain can equally be represented by data complemented with a set of
hidden (or unobserved) data of a basic Markov chain.We use P (·) to denote
probability measures, and p (·) to denote probability distributions.

5.1 Basic parameterised Markov chains

Let us consider a basic parameterised Markov chain MΘ = (S,Tθ, ιinit,AP, L,Θ)
(cf. Definition 2). In this basic parameterised Markov chain, every individual
parameter θi of vector θ = (θ1, θ2, . . . , θn) ∈ Θ is exclusively used to assign
the outgoing transition probabilities of a single state. We can decompose our
parameter vector θ into sub-vectors θsi , giving the parameters for the outgoing
transitions of the corresponding state si. The concatenation of these sub-vectors
gives us again θ.

Consider the parameter vector composed of one parameter, θsk = θj , and
the corresponding state sk ∈ S, with outgoing transitions θj and 1− θj to states
(say) s1 and s2, respectively. We denote by p(θj) the prior over θj , which fully
defines the transition probabilities Tθ(sk, ·) at state sk. Denote a data set D
giving transition counts for sample trajectories generated from the real system
S. For any pair (sk, sl) ∈ S×S the number of transitions sk → sl in D is denoted
as Dsl

sk
. The posterior density p(θj | D) over θj based on D is

p(θj | D) =
P(D | θj)p(θj)

P(D)
=
p(θj)

∏
s′∈S Tθ(sk, s′)

Ds
′
sk

P(Dsk)
(2)

and depends only on Dsk = {Ds′

sk
}s′∈S , i.e., the counts of transitions leaving

state sk. Note that the likelihood function
∏
s′∈S(Tθ(sk, s′))D

s′
sk takes the form
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of a multinomial distribution.3 In the case of two outgoing transitions, this is
a 2-dimensional multinomial distribution, or a binomial distribution. A closed-
form expression for the posterior is obtained by taking a conjugate prior, which,
for the class of multinomial distributions, is a Dirichlet distribution with the
same number of dimensions as the likelihood function. For the pair (θj , 1 − θj)
the Dirichlet distribution with hyperparameters α = (α1, α2) has a probability
density function given by

Dir(θj | α) = 1
B(α)θ

α1−1
j (1− θj)α2−1

on the open simplex defined by 0 < θj < 1. The normalising constant, B(α), is
a multinomial beta function, and can be written in terms of gamma functions
as B(α) = Γ (α1)Γ (α2)/Γ (α1 +α2) [8]. Hence, for a prior p(θj) = Dir(θj | α) we
obtain the posterior distribution for θj ∼ p(θj | D) = Dir(θj | Dsk + α), namely

p(θj | D) ∝ p(θj)
∏
s′∈S Tθ(sk, s′)

Ds
′
sk ∝ θα1−1

j (1− θj)α2−1θ
Ds1sk
j (1− θj)D

s2
sk (3)

where the normalisation constant of the obtained Dirichlet distribution is B(α+
Dsk) = Γ (α1 + Ds1

sk
)Γ (α2 + Ds2

sk
)/Γ (α1 + Ds1

sk
+ α2 + Ds2

sk
). In other words, as

data is gathered, we analytically update the posterior probability distribution
p(θj | D) by updating the parameters of a Dirichlet distribution.

This result can be extended to the case of a state sl with m > 2 outgo-
ing transitions. We parameterise the outgoing transitions with the sub-vector
θsl = (θ1, ..., θm−1) and 1− θ1− ...− θm−1, and obtain the posterior for the sub-
vector, p(θsl | D). The likelihood function takes the form of an m-dimensional
multinomial distribution, and we express the prior as an m-dimensional Dirich-
let.4 This yields a posterior distribution as an m-dimensional Dirichlet distribu-
tion, p(θsl |D) = Dir(θsl | Dsl + α).

The posterior distribution for the entire parameter vector p(θ | D) is equal to
the product of the posterior distributions for the sub-vectors of θ. This holds due
to the stated independence of the parameters in a basic parameterised Markov
chain, which results in independent priors and independent likelihood functions.
Hence p(θ | D) =

∏
si

Dir(θsi | Dsi + α).

Transition grouping. For simplicity, given a state with multiple outgoing
transitions we may obtain the distribution for each parameter using marginal
distributions. Consider state sl with m > 2 outgoing transitions, parameterised
with the sub-vector θsl = (θ1, ..., θm−1) and 1− θ1 − ...− θm−1 We have shown
earlier that, if the parameters are independent, the joint posterior distribution

3 A multinomial is defined by its density function f(· | p,N) ∝
∏k
i=1 p

ni
i , for ni ∈

{0, 1, ..., N} and such that
∑k
i=1 ni = N , where N ∈ N is a parameter and p is a

discrete distribution over k outcomes.
4 An m-dimensional Dirichlet distribution is given by f(x1, ....xm;α1, ..., αm) =

1
B(α)

∏m
i=1 x

αi−1
i on the open (m− 1) dimensional simplex defined by x1, ..., xm−1 >

0, x1 + ...+ xm−1 < 1 and xm = 1− x1 − ...− xm−1.
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over the transition probabilities for this state is an m-dimensional Dirichlet:
p(θsl |D) = Dir(θsl | Dsl +α). The marginal distribution of θi is a 2-dimensional
Dirichlet, or a beta distribution, θi ∼ Dir(αi, (

∑m
i=1 αi)−1). We can hence obtain

a posterior distribution for each parameter, and we note that we are effectively
grouping the training data together for all transitions except the one we obtain
the posterior distribution for.

5.2 Linearly parameterised Markov chains

In this section we build on the Bayesian inference for basic parameterisations
and tackle linearly parameterised Markov chains. As defined before, in a linear
parameterised Markov chain, the transition probabilities will be expressed in
the form g(θ) = k0 + k1θ1 + ... + knθn. For a given data set D and a linearly
parameterised Markov chain we want to use Bayesian inference to get the poste-
rior distribution p (θ|D) over the parameter set Θ. In order to work with linear
parameters we introduce two types of transformations of the Markov chain. In
the first we show that by introducing additional, non-observed states, into the
Markov chain and the data, the linear parameterised Markov chain can be trans-
formed to a basic Markov chain with unobserved states (and hidden data). Next
to that, we consider a compression of the data. When two states of the DTMC
have “similar” transitions, what can be learned is equivalent. These states are
referred to as being parameter similar and will be introduced more precisely in
the following. After these transformations we can apply the Bayes rule over the
expanded Markov chain and hidden data.

Parameter similar states. If we have the same parameter appearing mul-
tiple times in our Markov chain, we must combine the data obtained from all
these transitions to obtain a sole posterior distribution for the parameter to be
inputted into our confidence computation. This technique, referred to as “pa-
rameter tying”, is used in [26]. We can perform this step analytically for Dirichlet
distributions over parameter similar states, by which we denote states with out-
going transitions having identical parameterisations.

Manipulating posterior Dirichlet distributions is mathematically complex be-
cause of the dependence between the variables. However, if states are parameter
similar, we can use the result in (3). Consider two parameter similar states,
s1 and s2, with outgoing transition probabilities θj and 1 − θj , and observed
data over the transitions. We combine the data to give one posterior Dirichlet
distribution for the parameter, p(θj) = Dir(Ds1 +Ds2 + αs1).

Parameterised Markov chain state expansions. Consider a parameterised
DTMC MΘ = (S,T, ιinit,AP, L,Θ). We wish to define a new parameterised
DTMC M∗

Θ that produces the same output for our method, but which has a
simpler parameterisation. Our method hinges on obtaining a distribution for
θ based on collected training data D, and so if M∗

Θ is equivalent to MΘ, the
probabilities of reaching a set of states in MΘ must be the same as reaching
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the equivalent states in M∗
Θ, but we may disregard the length of associated

paths. Before introducing the definition of state expansion, we first need to
define hidden data. Suppose the two Markov chains have states S and S∗, such
that S ⊂ S∗: all states of S∗ not in S are defined as hidden, i.e., S∗ \ S are
hidden states. Ω denotes the set of finite paths ω in MΘ, and Ω∗ denotes the
set of finite paths ω∗ in M∗

Θ. Then any observed state sequence consists only of
states in S, whereas the states in S∗ \ S remain hidden from the observations.
The data set D over the states S consists of transition counts Dsl

sk
for pairs

sk, sl ∈ S. Observe that for the set of states S∗ the data is incomplete, namely
it does not represent the actual state transitions but only the observed ones.
For an observed transition count Dsl

sk
, we introduce the extended set Dsl

sk
∗ as

the collection of counts over all hidden paths from sk to sl. For hidden states s∗1
and s∗2 (labeled for convenience with ∗), hidden paths over sk, sl ∈ S can be of
the form {sk, sl}, {sk, s∗1, sl}, {sk, s∗1, s∗2, sl}, {sk, s∗2, sl} ∈ Ω∗, with the associated

extended data count Dsl
sk
∗ := {Ds∗1

sk , D
s∗2
sk , D

s∗2
s∗1
, . . .}. The set of possible extended

transition counts is denoted as Dslsk
∗ for the pair (sk, sl), and D∗ for all transitions

– note that they are set-valued mappings of Dsl
sk

and D, respectively.

Definition 5 Consider parameterised Markov chains MΘ = (S,T, ιinit,AP, L,Θ)
and M∗

Θ = (S∗,T∗, ι∗init,AP, L∗, Θ), both over set Θ. We say that M∗
Θ is an ex-

pansion of MΘ if, for all D and for all θ ∈ Θ,

PM(θ)(D) = PM∗(θ)(D∗),

and if ιinit = ι∗init. The extended labelling map L∗ is a trivial extension of L,
assigning labels L(s) for s ∈ S and an empty label to S∗ \ S.

Theorem 1. The expansion relation is transitive; if MΘ,1,MΘ,2,MΘ,3 are all
parameterised with Θ, MΘ,3 is an expansion of MΘ,2 and MΘ,2 is an expansion
of MΘ,1, then MΘ,3 is an expansion of MΘ,1.

Case I: Transition splitting. We split a transition probability parameterised
with k0 +

∑
i kiθi into transitions to hidden states with probabilities kiθi, and

refer to this operation as transition splitting. As a basic example, consider Fig. 2
where state s0 in M has two outgoing transition probabilities expressed as func-
tions of the parameter vector, g(θ) and 1− g(θ), where g(θ) = k0 + k1α + k2β.
We expand MΘ into M∗

Θ by splitting state s1 into a set of states, and splitting
the transition from s0 → s1 into the monomials concerning each parameter in θ,
as shown in Fig. 2. M∗

Θ is an expansion of MΘ as per Def. 5.

Lemma 1. Transition splitting of MΘ (Case I) generates an expansion of MΘ.

Case II: State splitting. We present a second case, state splitting, for a pa-
rameter θi multiplied by a constant, kiθi. Consider the simple DTMC in Fig.3a,
and the state s0 in MΘ with two outgoing transition probabilities expressed as a
constant multiplied by one parameter, k1θ1 and 1− k1θ1, where 0 ≤ k1 ≤ 1. We
expand MΘ to give M∗

Θ by splitting state s0 into two states, and compute the
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Fig. 3: Case II: state splitting (two examples)

transition probabilities that the imposed expansion demands. As an additional
example, notice that the transitions studied in Case I are all of the form kiθi.
Applying the state splitting to this expanded DTMC we obtain Fig. 3b. The
subsequent application of both state splitting cases (cf. Fig. 3b) induces again
an expanded parameterised Markov chain as per Def. 5.

Lemma 2. State splitting of MΘ (Case II) generates an expansion of MΘ.

We are led to the following result.

Theorem 2. Any linearly parameterised Markov chain can be expanded into a
basic parameterised Markov chain by application of Lemma 1 and 2.

Bayesian inference with missing data We now consider Bayesian inference
on the newly expanded Markov chain M∗

Θ. The data set D, which is sampled
from our system, corresponds to a state trajectory or set of trajectories over the
model MΘ. This set further comprises only part of the corresponding trajectories
in the expanded model M∗

Θ. For a given trajectory in D, we refer to D∗ as the
completed trajectory, and to D∗ as the set of all possible completions D∗. Note
that the expanded parametric Markov chain has a basic parameterisation, hence
for a given completed data set D∗ the Bayes rule as elaborated in (1) can be
applied to obtain p(θ|D∗). For M∗

Θ Bayes rule can be applied over the hidden
data as follows:

p (θ|D) =

∑
D∗∈D∗ p (θ,D∗, D)

P(D)
=

∑
D∗∈D∗ p (θ | D∗, D)P(D∗ | D)P(D)

P(D)

=
∑

D∗∈D∗
p (θ|D∗)P(D∗|D).
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Completed data sets have a multinomial distribution dependent on the parame-
terisation, hence the distribution of D∗ is given as P(D∗) =

∫
Θ
P(D∗|θ)p (θ) dθ.

For a given D the conditional distribution P(D∗|D) is P(D∗|D) = P(D∗)/P(D),
with D∗ ∈ D∗ and P(D) =

∑
D∗

∫
Θ
P(D∗|θ)p (θ) dθ.

Remark 1. Realisations of the posterior can be obtained without computing the
entire integral as follows. A set of realisations θi for i ∈ {1, . . . ,N} with proba-
bility density function p (θ|D) can be obtained by generating samples D∗i with
distribution P(D∗|D) and subsequently generating samples θi with distribution
p (θ|D∗i ) for all i ∈ {1, . . . ,N}. These samples can then directly be used to per-
form the confidence calculation as in Sec. 6. ut

Algorithm 1 presents the state expansion procedure, and Algorithm 2 in the
next section summarises how to obtain a realisation of the posterior p(θ | D∗),
and to integrate it with the confidence computation.

Algorithm 1 Markov chain expansion (MΘ)

M∗Θ ←MΘ

for all si ∈ S∗ do . Case I: transition splitting
for all T∗θ(si, sj) = k0 +

∑
l∈L klθl do

S∗ ← {s∗ij,l}l∈L ∪ sij,0
T∗θ(si, sj) := 0
T∗θ(si, s∗ij,0) := k0 and T∗θ(s∗ij,0, sj) := 1
for all l ∈ L do

T∗θ(si, s∗ij,l) := klθl and T∗θ(s∗ij,l, sj) := 1

for all si ∈ S∗ do . Case II: state splitting
if ∃sk ∈ S∗ : T∗θ(si, sk) = 1− k0 −

∑
l∈L klθl then

T∗θ(si, sk) := 1− k0 −
∑
l∈L kl

for all T∗θ(si, sm) = klθl do
S∗ ← s∗m′
T∗θ(si, sm) := 0 , T∗θ(si, s∗m′) := kl and T∗θ(s∗m′ , sk) := 1− θl
T∗θ(s∗m′ , sm) := θl

return M∗Θ . return expanded DTMC

6 Bayesian verification: computation of confidence

In this section we detail the final phase of our method: a quick procedure com-
putes a confidence estimate for the satisfaction of a PCTL specification formula
φ by a system S of interest, namely S |= φ. Our method takes as input a poste-
rior distribution over Θ, obtained using Bayesian inference in Sec. 5.2, and the
feasible set for the parameters, obtained by parameter synthesis in Sec. 4.

Definition 6. Given a PCTL specification φ, a complete trace (sample trajec-
tory) D of the system S up to time t, and a transition function T, the confidence
that S |= φ can be quantified by Bayesian Inference as

P(S |= φ | D) =
∫
Θ
fφ(θ)p(θ | D)dθ. (4)
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As we only consider the satisfaction of a property S |= φ as a binary-valued
mapping from the space of parameters, the satisfaction function in (4), fφ :
Θ → {0, 1}, (4) can be reformulated as:

P(S |= φ |D) =
∫
Θφ
p(θ | D)dθ, (5)

where Θφ denotes the set of parameters corresponding to models verifying the
property φ (as generated by PRISM). Further, given the independent posterior
distributions for each parameter in θ resulting from Sec. 5.2, the confidence
can be computed as P(S |= φ |D) =

∫
Θφ

∏
θi∈θ p(θi | D)dΘ. The integral of a

Dirichlet distribution can be obtained by iterative or numerical methods: here we
use a simple Monte-Carlo approach, which depends on samples of the posterior
distribution as clarified in Algorithm 2.

Algorithm 2 Monte-Carlo Integration for linearly parameterised DTMC

N := number of Monte-Carlo samples
{D∗i }i∈{1,...,N} ∼ p(D∗|D) . hidden data samples
for all i ∈ {1, ...,N} do

Compute p(θ|D∗i ) . Bayesian inference
θi ∼ p(θ|D∗i ) . posterior samples
j# ← j# + Boolean[θi ∈ Θφ]

P̂(S |= φ) :=
j#
N

return P̂(S |= φ) . estimate of P(S |= φ)

7 Experiment results

We show that our approach requires smaller amounts of data than standard
statistical model checking (SMC) to verify the system satisfies a given quantita-
tive specification up to a prescribed confidence level. We further claim that our
approach is more robust than standard SMC in situations where only data of
limited trace length is available.

Experiment setup We focus our experimental discussion on the basic parame-
terised Markov chain MΘ in Figure 1 and the PCTL property φ = P>0.5[¬s3 U s2],
where we have employed identity labels to decorate states.

We note that the ground truth for S = M(θ), namely Ytrue, is a step function
over the parameter θ, namely

Ytrue =

{
0 if θ ≤ 0.5

1 if θ > 0.5,
(6)

so that the feasible set is Θφ = [0.5, 1]. We choose a uniform prior for both
methods: for our approach p(θ | D) = Dir(1, 1), which, for property φ, means
p(M(θ) |= φ) = Dir(1, 1); for SMC we set p(M(θ) |= φ) = Dir(1, 1). We run
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both methods over empirical data obtained from M(θ) for varying values of θ,
and compare the outcomes with the ground truth.

The core idea of the SMC of interest for this work is to collect sample tra-
jectories from the system, to then determine whether the trajectories satisfy a
given property, and to apply statistical techniques (such as hypothesis testing)
to decide whether the system satisfies the property or not, with some degree of
confidence. Our approach collects data from the system, uses the data to deter-
mine a distribution over parameter values in the parameterised model class and
applies statistical techniques (in this case, a Bayesian confidence calculation) to
decide whether the system satisfies the property or not, with some degree of con-
fidence. We could then additionally apply hypothesis testing to our approach.
However, as we do not do this, for a meaningful comparison with our approach
we implement the early steps of the SMC procedure from [32], and omitting the
hypothesis testing we compute a Bayesian confidence by integrating the poste-
rior distribution given over the [0,1] interval, representing the probability of a
trace satisfying the property. The trace generation and trace verification stages
of SMC are implemented in the same way in the four statistical model checking
methods in PRISM.

We collect training data from our original system in the form of a history of
states visited up until time t, denoted again as D. We use 100 ≤ |D| ≤ 200, 000
state transitions in finite traces, e.g., D contains traces of length 100, e.g., when
|D| = 1000 we have 10 traces of length 100. We run both methods with the same
data.We test robustness to trace length, e.g., when |D| = 1000, we may have
100 traces of length 10, or 10 traces of length 100.

We compute the mean squared error (MSE) between the confidence outcome
and the ground truth from Equation (6), namely MSE = 1

n

∑n
i=1(Ytrue − Yi)2,

where n is the number of experiments run and Yi is the result P(Mθ |= φ) for
the i-th run.

We disregard the numerical error in the Monte Carlo approximate integra-
tion, which is the same for both techniques. We cover the parameter range
0.3 ≤ θ ≤ 0.7, selected at intervals of 0.05.

Results and Discussion The first point to note is that the confidence is low, and
the MSE high for the parameter values close to θ = 0.5 for both approaches. This
is due to θ = 0.5 being on the edge of the feasible set and is consistent with the
information we wish to obtain from the confidence calculation: if the parameter
value is near the edge of the feasible set, we need to know its value precisely to be
sure it falls in the feasible set. Consider that in order to compute the confidence
of satisfaction of the property φ, we integrate the posterior distribution over the
feasible set Θφ = {θ > 0.5}. The posterior distribution obtained for θ = 0.5
should have a peak centred at 0.5 and half of the area under the peak should
fall in the feasible set, leading to P(M(θ) |= φ) = 0.5. The height and width of
the distribution p(θ | D) are characterised by the amount of data available, as
well as by the consistency of the data, and so we expect the MSE to be higher
for parameter values close to the threshold.
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The key result is that the mean squared error reduces as |D| increases and the
variance decreases in both approaches, but our approach consistently produces a
smaller error and variance than SMC for any parameter values excluding θ = 0.5
(where both approaches perform comparably). Our approach requires an order
of magnitude less data than SMC and above |D| = 2000, the error for our
approach is smaller than the error in the Monte Carlo integration, whereas SMC
does not reach this precision threshold in our experiments, which we perform up
to |D| = 200000.

We ascribe both the reduced error and reduced variance to the data efficiency
of our approach: SMC receives the training data in the form of short traces, and
discerns whether a trace is a counter example or witness for the property. A trace
can, however, be neither, in which case it is discarded, even if that trace contains
parameterised transitions. Our approach counts each parameterised transition in
the training data, and so SMC uses less of the data available than our approach.
It is unsurprising that accuracy and variance improve when more data is used.

We investigate robustness in a situation where it is only possible to collect
short trajectories from the system, whilst verifying an unbounded property. Fig-
ure 4a and Figure 4b show the performance of SMC with |D| made up of trace
lengths of 10 and 100 transitions respectively. We show a part of our data set,
discarding data above |D| = 20, 000 where our approach produces no measurable
error. The mean squared error in Figure 4b is 50% lower than in Figure 4a over
the entire parameter range, but the run with trace lengths of 10 performs better
for values of θ > 0.55.

We explain this because, computed using PRISM, the expected length of a
witness for our property and Markov Chain ranges between 4.33, for θ = 0.3
and 2.42 for θ = 0.7 (due to the symmetrical structure of our Markov Chain,
the lengths of counter-examples are also expected to be the same). Thus a large
proportion of the traces of length 10 are discarded, and so SMC has less data to
use, explaining the increased error across the parameter range. However, when
θ > 0.55, the expected counter-example length is higher, and so the number of
traces of length 10 that are useful begins to exceed the total number of traces
of length 100 received.

In contrast, the performance of our approach, shown in Figure 4c and Fig-
ure 4d,yields approximately the same outcomes for both trace lengths, as we
consider each transition in the training data individually and only discard non-
parameterised transitions. Admittedly it is not always the case that the perfor-
mance of our method is independent of the length of the traces: consider for
example the case of a large Markov chain where a parameterised transition is
only reachable after a large number of steps. In this case the performance of our
approach would be comparable to SMC.

We run experiments on linearly parameterised Markov chains of a similar
scale and obtain comparable results.
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Fig. 4: Outcomes of SMC are given in (a) and (b), outcomes of our approach
are given in (c) and (d). The comparison is done over a data set D composed
of traces of 10 and 100 transitions. On the x-axis, 1000 ≤ |Dt| ≤ 20000. On
the y-axis, 0.3 ≤ θ ≤ 0.7. The darker (purple) colour indicates a higher mean
squared error.

8 Conclusions and future work

We have presented a data-based verification approach that addresses incomplete
model knowledge. The method offers a framework to integrate Bayesian inference
and formal verification, and in comparison to standard statistical model checking
promises to be more parsimonious with the required data.

We plan to investigate extensions in the following directions: performing pa-
rameter synthesis with alternative available techniques, such as [10], which builds
on the work of [14, 15] using graph topological properties and fixed points); work-
ing with non-linearly parameterised Markov chains; inspired by [12], integrating
external non-determinism in the form of actions, thus leading to parameterised
Markov decision processes [13]. Finally, we are interested in the use of Bayesian
hypothesis testing, which will further solidify this method as a provable veri-
fication technique even when the prior probability distribution is not reliably
known.
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A Proofs

A.1 Proof of Theorem 1

Proof. This follows by showing that

PM1(θ)(D) = PM∗2(θ)
(D∗)

is transitive, since transitions generated at a certain state are only dependent on
the parameterisation. ut

A.2 Proof of Lemma 1

Proof. To show this, consider the paths in Ω ∈ M and Ω∗ ∈ M∗ that pass
through the same states in S in the same order. The probability of the path
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{s0s2} in M is trivially the same as the probability of the path {s0s2} in M∗.
Thus for all Ds2

s0 , Ds2s0 = Ds2
s0 . The probability of the path {s0s1} is equal to the

sum of the probabilities of the paths {s0s∗1′ , s1}, {s0s∗1′′s1}, {s0s∗1′′′s1}. Hence
also the probability requirement for Ds1s0 = Ds2

s0 holds and M∗
Θ is an expansion

for MΘ. Moreover this can be shown to hold for any parameterised transition
probability k0 +

∑
i kiθi. ut

A.3 Proof of Lemma 2

Proof. To show this, consider the paths in Ω ∈ M and Ω∗ ∈ M∗ that pass
through the same states in S in the same order. The probability of the path
{s0s1} in M is trivially the same as the probability of the path {s0s1} in M∗.
Thus for all Ds1

s0 : Ds1s0 = Ds1
s0 . The probability of the path {s0s2} is equal

to the sum of the probabilities of the paths {s0s∗0′ , s2}, {s0s2}. Hence also the
probability requirement for Ds2s0 = Ds2

s0 holds and M∗
Θ is an expansion for MΘ.

Moreover this can be shown to hold for any parameterised transition probability
k0 +

∑
i kiθi. We observe that the expansion holds when MΘ is part of a bigger

Markov chain, MΘ ⊂ Mfull , as paths in MΘ affected by the expansion will be
paths that contain the path fragment {s0s1} or {s0s2}. The path fragments are
equal to the set of paths Ω ∈M, and we have shown that these are equivalent
to the set of paths Ω∗ ∈ M∗. Thus the path probabilities in M∗

Θ are equal to
the path probabilities in MΘ and the equivalence holds. ut

A.4 Proof of Theorem 2

Proof. Consider a linearly parameterised Markov chain MΘ, with n states. Each
state has m outgoing transitions, parameterised with linear functions of sub-
vectors θsi = θ1, ..., θk. We apply transition splitting, Case I, to every transition
in the Markov chain. By Lemma 1, we generate an expansion of MΘ, with n
states, nk hidden states and transition probabilities expressed as kiθi or con-
stants. We apply state splitting, Case II, to every state in the new MΘ with
outgoing transitions probabilities expressed as kiθi. By Lemma 1, this generates
an expansion of MΘ, with transition probabilities expressed as constants, or pa-
rameters; a basic Markov chain as defined in 2. ut


