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Abstract. The goal of this work is to formally abstract a Markov pro-
cess evolving over a general state space as a finite state Markov chain,
with the objective of precisely approximating the state probability dis-
tribution of the Markov process in time. The approach uses a partition
of the state space and is based on the computation of the average tran-
sition probability between partition sets. In the case of unbounded state
spaces, a procedure for precisely truncating the state space within a com-
pact set is provided, together with an error bound that depends on the
asymptotic properties of the transition kernel of the Markov process. In
the case of compact state spaces, the work provides error bounds that
depend on the diameters of the partitions, and as such the errors can be
tuned. The method is applied to the problem of computing probabilistic
invariance of the model under study, and the result is compared to an
alternative approach in the literature.

1 Introduction

Verification techniques and tools for deterministic, discrete time, finite state sys-
tems have been available for many years [9]. Formal methods in the stochastic
context is typically limited to discrete state structures, either in continuous or
in discrete time [3, 12]. Stochastic processes evolving over continuous (uncount-
able) spaces are often related to undecidable problems (the exception being
when they admit analytical solutions). It is thus of interest to resort to formal
approximation techniques that allow solving corresponding problems over finite
discretizations of the original models. In order to relate the approximate solu-
tions to the original problems, it is of interest to come up with precise bounds on
the error introduced by the approximations. The use of formal approximations
techniques for such complex models can be looked at from the perspective of the
research on abstraction techniques, which are of wide use in formal verification.

Successful numerical schemes based on Markov chain approximations of sto-
chastic systems in continuous time have been introduced in the literature, e.g.
[10]. However, the finite abstractions are only related to the original models
asymptotically (at the limit), with no explicit error bounds. This approach has
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been applied to the approximate study of probabilistic reachability or safety of
stochastic hybrid models in [8, 15]. In [1] a technique has been introduced to
instead provide formal abstractions of discrete-time, continuous-space Markov
models [2], with the objective of investigating their probabilistic invariance (safety)
by employing probabilistic model checking over a finite Markov chain. In view
of scalability, the approach has been improved and optimized in [7].

In this work we show that the approach in [1, 7] can be successfully employed
to approximately compute the statistics in time of a stochastic process over
a continuous state space. This additionally leads to an alternative method for
probabilistic safety analysis of the process. We first provide a forward recursion
for the approximate computation of the state distribution of a Markov process
in time. The computation of the state distribution is based on a state-space
partitioning procedure, and on the abstraction of the Markov process as a finite-
state Markov chain. An upper bound on the error related to the approximation is
formally derived. Based on the information from the state distribution, we show
how the method can be used to approximately compute probabilistic invariance
(safety) for discrete-time stochastic systems over general state spaces.

Probabilistic safety is the dual problem to probabilistic reachability. Over
deterministic models reachability and safety have been vastly studied in the
literature, and computational algorithms and tools have been developed based
on both forward and backward reachability for these systems. Similarly, for the
probabilistic models under study, we compare the presented approach (based
on forward computations) with the existing approaches in the literature [1, 5–7]
(which hinge on backward computations), particularly in terms of the introduced
error.

The article is structured as follows. Section 2 introduces the model under
study and discusses some structural assumptions needed for the abstraction
procedure. The procedure comprises two separate parts: Section 3 describes
the truncation of the dynamics of the model, whereas Section 4 details the ab-
straction of the dynamics (approximation of the transition kernel) – both parts
formally assess the associated approximation error. Section 5 discusses the ap-
plication of the procedure to the computation of probabilistic invariance, and
compares it against an alternative approach in the literature.

2 Model, Preliminaries, and Goal of this work

We consider a discrete time Markov process M defined over a general state
space, which is characterized by a pair (S, Ts), where S is the continuous state
space that we assume endowed with a metric and Borel measurable. We denote
by (S,B(S),P) the probability structure on S, with B(S) being the associated
sigma algebra and P a probability measure to be characterized shortly. Ts is
a conditional stochastic kernel that assigns to each point s ∈ S a probability
measure Ts(·|s), so that for any measurable set A ∈ B(S), P(s(1) ∈ A|s(0) =
s) =

∫

A
Ts(ds̄|s). We assume that the stochastic kernel Ts admits a density

function ts, namely Ts(ds̄|s) = ts(s̄|s)ds̄.
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Suppose that the initial state of the Markov process M is random and dis-
tributed according to the density function π0(s) : S → R

≥0. The state distri-
bution of M at time t ∈ N=̇{1, 2, 3, . . .} is characterized by a density function
πt(s) : S → R

≥0, which fully describes the statistics of the process at t and is in
particular such that, for all A ∈ B(S),

P(s(t) ∈ A) =

∫

A

πt(s)ds,

where the symbol P is loosely used to indicate the probability associated to
events over the product space St+1 with elements s = (s(0), s(1), . . . , s(t)). We
constantly use the bold typeset for vectors. The state density functions πt(·) can
be computed recursively, as follows:

πt+1(s̄) =

∫

S

ts(s̄|s)πt(s)ds ∀s̄ ∈ S. (1)

In practice the forward recursion in (1) rarely yields a closed form for the density
function πt+1(·). A special instance where this is the case is represented by a
linear dynamical system perturbed by Gaussian process noise: due to the closure
property of the Gaussian distribution with respect to addition and multiplication
by a constant, it is possible to explicitly write recursive formulas for the mean and
the variance of the distribution, and thus express in a closed form the distribution
in time of the solution of the model. In more general cases, it is necessary to
numerically (hence, approximately) compute the density function of the model
in time.

This article provides a numerical approximation of the density function of
M as the probability mass function (pmf) of a finite-state Markov chain Mf in
time. The Markov chainMf is obtained as an abstraction of the concrete Markov
process M. The abstraction is associated with a guaranteed and tunable error
bound, and algorithmically it leverages a state-space partitioning procedure. The
procedure is comprised of two steps:

1. since the state space S is generally unbounded, it is first properly truncated;
2. subsequently, a partition of the truncated dynamics is introduced.

Section 3 discusses the error generated by the state-space truncation, whereas
Section 4 describes the construction of the Markov chain by state-space parti-
tioning. We employ the following example throughout the article as a running
case study.

Example 1. Consider the one-dimensional stochastic dynamical system

s(t+ 1) = as(t) + b+ σw(t),

where the parameters a, σ > 0, whereas b ∈ R, and such that w(·) is a process
comprised of independent, identically distributed random variables with a stan-
dard normal distribution. The initial state of the process is selected uniformly in
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the bounded interval [β0, γ0] ⊂ R. The solution of the model is a Markov process,
evolving over the state space S = R, and fully characterized by the conditional
density function

ts(s̄|s) = φσ(s̄− as− b), φσ(u) =
1

σ
√
2π
e−u2/2σ2

. ⊓⊔

We raise the following assumptions in order to be able to later relate the
state density function of M to the probability mass function of Mf .

Assumption 1 For given sets Γ ⊂ S2 and Λ0 ⊂ S, there exist positive con-
stants ǫ and ε0, such that ts(s̄|s) and π0(s) satisfy the following conditions:

ts(s̄|s) ≤ ǫ ∀(s, s̄) ∈ S2\Γ, and π0(s) ≤ ε0 ∀s ∈ S\Λ0. (2)

Assumption 2 The density functions π0(s) and ts(s̄|s) are (globally) Lipschitz
continuous, namely there exist finite constants λ0, λf , such that the following
Lipschitz continuity conditions hold:

|π0(s)− π0(s
′)| ≤ λ0‖s− s′‖, ∀s, s′ ∈ Λ0, (3)

|ts(s̄|s)− ts(s̄
′|s)| ≤ λf‖s̄− s̄′‖, ∀s, s̄, s̄′ ∈ S. (4)

Moreover, there exists a finite constant Mf such that

Mf = sup

{∫

S

ts(s̄|s)ds
∣

∣

∣

∣

s̄ ∈ S
}

. (5)

The Lipschitz constants λ0, λf are effectively computed by taking partial deriva-
tives of the density functions π0(·), ts(·|s) and maximizing its norm. The sets Λ0

and Γ will be used to truncate the support of density functions π0(·) and ts(·|·),
respectively. Assumption 1 enables the precise study of the behavior of density
functions πt(·) over the truncated part of the state space. Further, the Lipschitz
continuity conditions in Assumption 2 are essential to derive error bounds re-
lated to the abstraction of the Markov process over the truncated state space.
In order to compute these error bounds, we assign the infinity norm to the space
of bounded measurable functions over the state space S, namely

‖f(s)‖∞ = sup
s∈S

|f(s)|, ∀f : S → R.

In the sequel the function IA(·) denotes the indicator function of set A ⊆ S,
namely IA(s) = 1, if s ∈ A; else IA(s) = 0.

Example 1 (Continued). Select the interval Λ0 = [β0, γ0] and define the set
Γ by the linear inequality

Γ = {(s, s̄) ∈ R
2
∣

∣|s̄− as− b| ≤ ασ}.
The initial density function π0 of the process can be represented by the function

ψ0(s) = I[β0,γ0](s)/(γ0 − β0).

Then Assumption 1 holds with ǫ = φ1(α)/σ and ε0 = 0. The constant Mf in
Assumption 2 is equal to 1/a. Lipschitz continuity, as per (3) and (4), holds for
constants λ0 = 0 and λf = 1/

(

σ2
√
2πe

)

. ⊓⊔
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3 State-Space Truncation Procedure, with Error

Quantification

We truncate the support of the density functions π0, ts to the sets Λ0, Γ respec-
tively, and recursively compute support sets Λt, as in (7) that are associated to
the density functions πt. Then we employ the quantities ǫ, ε0 in Assumption 1 to
compute error bounds εt, as in (6), on the value of the density functions πt out-
side the sets Λt. Finally we truncate the unbounded state space to Υ = ∪N

t=0Λt.

As intuitive, the error related to the spatial truncation depends on the be-
havior of the conditional density function ts over the eliminated regions of the
state space. Suppose that sets Γ,Λ0 are selected such that Assumption 1 is sat-
isfied with constants ǫ, ε0: then Theorem 2 provides an upper bound on the error
obtained from evaluating the density functions in time πt(·) over the truncated
regions of the state space.

Theorem 1. Under Assumption 1 the functions πt satisfy the bound

0 ≤ πt(s) ≤ εt, ∀s ∈ S\Λt,

where the quantities {εt}Nt=0 are defined recursively by

εt+1 = ǫ +Mfεt, (6)

whereas the support sets {Λt}Nt=0 are computed as

Λt+1 = Πs̄ (Γ ∩ (Λt × S)) , (7)

where Πs̄ denotes the projection map along the second set of coordinates3.

Remark 1. Notice that if the shape of the sets Γ and Λ0 is computationally
manageable (e.g., polytopes) then it is possible to implement the computation
of the recursion in (7) by available software tools, such as the MPT toolbox [11].

Further, notice that if for some t0, Λt0+1 ⊃ Λt0 , then for all t ≥ t0, Λt+1 ⊃ Λt.
Similarly, we have that

– if for some t0, Λt0+1 ⊂ Λt0 , then for all t ≥ t0, Λt+1 ⊂ Λt.

– if for some t0, Λt0+1 = Λt0 , then for all t ≥ t0, Λt = Λt0 .

To clarify the role of Γ in the computation of Λt, we emphasize that Λt+1 =
∪s∈Λt

Ξ(s), where Ξ depends only on Γ and is defined by the set-valued map

Ξ : S → 2S , Ξ(s) = {s̄ ∈ S|(s, s̄) ∈ Γ}.

Figure 1 provides a visual illustration of the recursion in (7). ⊓⊔
3 Recall that both Γ and Λ× S are defined over S2 = S × S .
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Let us introduce a quantity κ(t,Mf ), which plays a role in the solution of (6)
and will be frequently used shortly:

κ(t,Mf ) =

{

1−Mt
f

1−Mf
, Mf 6= 1

t, Mf = 1.
(8)

The following theorem provides a truncation procedure, valid over a finite
time horizon [0, . . . , N ], which reduces the state space S to the set Υ =

⋃N
t=0 Λt.

The theorem also formally quantifies the associated truncation error.

Theorem 2. Suppose that the state space of the process M has been truncated
to the set Υ =

⋃N
t=0 Λt. Let us introduce the following recursion to compute

functions µt : S → R
≥0 as an approximation of the density functions πt:

µt+1(s̄) = IΥ (s̄)

∫

S

ts(s̄|s)µt(s)ds, µ0(s) = IΛ0
(s)π0(s), ∀s̄ ∈ S. (9)

Then the introduced approximation error is ‖πt − µt‖∞ ≤ εt, for all t ∈ [0, N ].

To recapitulate, Theorem 2 leads to the following procedure to approximate the
density functions πt of M over an unbounded state space S:

1. truncate π0 in such a way that µ0 has a bounded support Λ0;
2. truncate the conditional density function ts(·|s) over a bounded set for all
s ∈ S, then quantify Γ ⊂ S2 as the support of the truncated density function;

3. leverage the recursion in (7) to compute the support sets Λt;
4. use the recursion in (9) to compute the approximate density functions µt over

the set Υ = ∪N
t=0Λt. Note that the recursion in (9) is effectively computed

over the set Υ , since µt(s) = 0 for all s ∈ S\Υ .

Note that we could as well deal with the support of µt(·) over the time-varying
sets Λt by adapting recursion (9) with IΛt+1

instead of IΥ . While employing the
(larger) set Υ may lead to a memory increase at each stage, it will considerably
simplify the computations of the state-space partitioning and the abstraction as
a Markov chain: indeed, employing time-varying sets Λt would render the parti-
tioning procedure also time-dependent, and the obtained Markov chain would be
time-inhomogeneous. We opt to work directly with Υ to avoid these difficulties.

Example 1 (Continued). We can easily obtain a closed form for the sets
Λt = [βt, γt], via

βt+1 = aβt + b− ασ, γt+1 = aγt + b+ ασ.

The set Υ is the union of intervals [βt, γt]. The error of the state-space truncation
over set Υ is

‖πt − µt‖∞ ≤ εt = κ(t,Mf)
φ1(α)

σ
, Mf =

1

a
.

⊓⊔
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s̄

s

b− ασ

b+ ασ

Γ

Λt

Λ
t
+
1

Fig. 1. Graphical representation of the recursion in (7) for Λt.

4 State-Space Partitioning Procedure, with Error

Quantification

In this section we assume that the sets Γ,Λ0 have been properly selected so that
Υ = ∪N

t=0Λt is bounded. In order to formally abstract process M as a finite
Markov chain Mf and to approximate its state density functions, we select a
finite partition of the bounded set Υ as Υ = ∪n

i=1Ai, where the sets Ai have
non-trivial measure. We then complete the partition over the whole state space
S = ∪n+1

i=1 Ai by considering the set An+1 = S\Υ . This results in a finite Markov
chain Mf with n+1 discrete abstract states in the set Nn+1=̇{1, 2, · · · , n, n+1},
and characterized by the transition probability matrix P = [Pij ] ∈ R

(n+1)2 ,
where the probability of jumping from any pair of states i to j (Pij) is computed
as

Pij =
1

L(Ai)

∫

Aj

∫

Ai
ts(s̄|s)dsds̄, ∀i ∈ Nn,

P(n+1)j = δ(n+1)j ,
(10)

for all j ∈ Nn+1, and where δ(n+1)j is the Kronecker delta function (the abstract
state n + 1 of Mf is absorbing), and L(·) denotes the Lebesgue measure of a
set. The quantities in (10) are well-defined since the set Υ is bounded and the
measures L(Ai), i ∈ Nn, are finite and non-trivial.

Notice that matrix P for the Markov chain Mf is stochastic, namely

n+1
∑

j=1

Pij =

n+1
∑

j=1

1

L(Ai)

∫

Aj

∫

Ai

ts(s̄|s)dsds̄ =
1

L(Ai)

∫

Ai





n+1
∑

j=1

∫

Aj

ts(s̄|s)ds̄



 ds

=
1

L(Ai)

∫

Ai

∫

S

ts(s̄|s)ds̄ds =
1

L(Ai)

∫

Ai

ds = 1.

The initial distribution of Mf is the pmf p0 = [p0(1), p0(2), . . . , p0(n+1)], and it
is obtained from π0 as p0(i) =

∫

Ai
π0(s)ds, ∀i ∈ Nn+1. Then the pmf associated

to the state distribution of Mf at time t can be computed as pt = p0P
t.
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It is intuitive that the discrete pmf pt of the Markov chain Mf approximates
the continuous density function πt of the Markov process M. In the rest of the
section we show how to formalize this relationship: pt is used to construct an
approximation function, denoted by ψt, of the density function πt. Theorem 3
shows that ψt is a piece-wise constant approximation (with values that are the
entries of the pmf pt normalized by the Lebesgue measure of the associated
partition set) of the original density function πt. Moreover, under the continuity
assumption in (4) (ref. Lemma 1) we can establish the Lipschitz continuity of
πt, which enables the quantification in Theorem 3 of the error of its piece-wise
constant approximation.

Lemma 1. Suppose that the inequality in (4) holds. Then the state density func-
tions πt(·) are globally Lipschitz continuous with constant λf for all t ∈ N:

|πt(s)− πt(s
′)| ≤ λf‖s− s′‖, ∀s, s′ ∈ S.

Theorem 3. Under Assumptions 1 and 2, the functions πt(·) can be approxi-
mated by piece-wise constant functions ψt(·), defined as

ψt(s) =

n
∑

i=1

pt(i)

L(Ai)
IAi

(s), ∀t ∈ N, (11)

where IB(·) is the indicator function of a set B ⊂ S. The approximation error
is upper-bounded by the quantity

‖πt − ψt‖∞ ≤ εt + Et, ∀t ∈ N, (12)

where Et can be recursively computed as

Et+1 =MfEt + λf δ, E0 = λ0δ, (13)

and δ is an upper bound on the diameters of the partition sets {Ai}ni=1, namely
δ = sup {‖s− s′‖, s, s′ ∈ Ai, i ∈ Nn}.
Note that the functions ψt are defined over the whole state space S, but (11)
implies that they are equal to zero outside the set Υ .

Corollary 1. The recursion in (13) admits the explicit solution

Et =
[

κ(t,Mf)λf +M t
fλ0

]

δ,

where κ(t,Mf ) is introduced in (8).

Underlying Theorem 3 is the fact that ψt(·) are in general sub-stochastic
density functions:

∫

S

ψt(s)ds =

∫

S

n
∑

i=1

pt(i)

L(Ai)
IAi

(s)ds =

n
∑

i=1

pt(i)

L(Ai)

∫

S

IAi
(s)ds

=
n
∑

i=1

pt(i)

L(Ai)
L(Ai) =

n
∑

i=1

pt(i) = 1− pt(n+ 1) ≤ 1.
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This is clearly due to the fact that we are operating on the dynamics of M
truncated over the set Υ . It is thus intuitive that the approximation procedure
and the derived error bounds are also valid for the case of sub-stochastic density
functions, namely

∫

S

ts(s̄|s)ds̄ ≤ 1, ∀s ∈ S,
∫

S

π0(s)ds ≤ 1,

the only difference being that the obtained Markov chain Mf is as well sub-
stochastic.

Further, whenever the Lipschitz continuity requirement on the initial density
function, as per (3) in Assumption 2, does not hold, (for instance, this is the
case when the initial state of the process is deterministic) we can relax this
continuity assumption on the initial distribution of the process by starting the
discrete computation from the time step t = 1. In this case we define the pmf
p1 = [p1(1), p1(2), . . . , p1(n+ 1)], where

p1(i) =

∫

Ai

∫

S

ts(s̄|s)π0(s)dsds̄, i ∈ Nn+1,

and derive pt = p1P
t−1 for all t ∈ N. Theorem 3 follows along similar lines,

except for eqn. (13), where the initial error is set to E0 = 0 and the time-
dependent terms Et can be derived as Et = κ(t,Mf )λfδ.

It is important to emphasize the computability of the derived errors and
the fact that they can be tuned. Further, in order to attain abstractions that
are practically useful, it imperative to seek improvements on the derived error
bounds: in particular, the approximation errors can be computed locally (under
corresponding local Lipschitz continuity assumptions), following the procedures
discussed in [7].

Example 1 (Continued). The error of proposed Markov chain abstraction can
be expressed as

‖πt − ψt‖∞ ≤ κ(t,Mf )

[

δ

σ2
√
2πe

+
φ1(α)

σ

]

, Mf =
1

a
.

The error can be tuned in two distinct ways:

1. by selecting larger values for α, which on the one hand leads to a less conser-
vative truncation, but on the other requires the partition of a larger interval;

2. by reducing partitions diameter δ, which of course results in a larger cardi-
nality of the partition sets.

Let us select values b = 0, β0 = 0, γ0 = 1, σ = 0.1, and time horizon N = 5.
For a = 1.2 we need to partition the interval Υ = [−0.75α, 2.49 + 0.75α], which
results in the error ‖πt−ψt‖∞ ≤ 86.8δ+35.9φ1(α) for all t ≤ N . For a = 0.8 we
need to partition the smaller interval Υ = [−0.34α, 0.33+ 0.34α], which results
in the error ‖πt−ψt‖∞ ≤ 198.6δ+82.1φ1(α) for all t ≤ N . In the case of a = 1.2,
we partition a larger interval and obtain a smaller error, while for a = 0.8 we
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partition a smaller interval with correspondingly a larger error. It is obvious that
the parameters δ, α can be chosen properly to ensure that a certain error precision
is met. This simple model admits a solution in closed form, and its state density
functions can be obtained as the convolution of a uniform distribution (the
contribution of initial state) and a zero-mean Gaussian distribution with time-
dependent variance (the contributions of the process noise). Figure 2 displays the
original and the approximated state density functions for the set of parameters
α = 2.4, δ = 0.05. ⊓⊔
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Fig. 2. Piece-wise constant approximation of the state density function ψt(·), compared
to the actual function πt(·) (derived analytically) for a = 1.2 (left) and a = 0.8 (right).

5 Application of the Formal Approximation Procedure

to the Probabilistic Invariance Problem

The problem of probabilistic invariance (safety) for general Markov processes has
been theoretically characterized in [2] and further investigated computationally
in [1, 4–6]. With reference to a discrete-time Markov processM over a continuous
state space S, and a safe set A ∈ B(S), the goal is to quantify the probability

pNs (A) = P{s(k) ∈ A, for all k ∈ [0, N ]|s(0) = s}.
More generally, it is of interest to quantify the probability pNπ0

(A), where the
initial condition of the process s(0) is a random variable characterized by the
density function π0(·). We present a forward computation of probabilistic in-
variance by application of the approximation procedure above in Section 5.1,
then review results on backward computation [1, 4–6] in Section 5.2. Section 5.3
compares the two approaches.

5.1 Forward Computation of Probabilistic Invariance

The approach for approximating the density function of a process in time can
be easily employed for the approximate computation of probabilistic invariance.
Define sub-density functions Wt : S → [0,+∞), characterized by

Wt+1(s̄) = IA(s̄)

∫

S

Wt(s)ts(s̄|s)ds, W0(s̄) = IA(s̄)π0(s̄), ∀s̄ ∈ S. (14)
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Then the solution of the problem is obtained as pNπ0
(A) =

∫

S
WN (s)ds. A com-

parison of the recursions in (14) and in (9) reveals how probabilistic invariance
can be computed as a special case of the approximation procedure. In apply-
ing the procedure, the only difference consists in replacing set Υ by A, and in
restricting Assumption 2 to hold over the safe set (the solution over the com-
plement of this set is trivially known) – in this case the error related to the
truncation of the state space can be disregarded. The procedure consists in par-
titioning the safe set, in constructing the Markov chain Mf as per (10), and in
computing ψt(·) as an approximation of Wt(·) based on (11). The error of this
approximation is ‖Wt − ψt‖∞ ≤ Et, which results in the following:

∣

∣

∣

∣

pNπ0
(A)−

∫

A

ψt(s)ds

∣

∣

∣

∣

≤ ENL(A) =
1−MN

f

1−Mf
λf δL(A)=̇Ef .

Note that these sub-density functions satisfy the inequalities

1 ≥
∫

S

W0(s)ds ≥
∫

S

W1(s)ds ≥ · · · ≥
∫

S

WN (s)ds ≥ 0.

5.2 Backward Computation of Probabilistic Invariance

The contributions in [1, 4–6] have characterized specifications in PCTL with a
formulation based on backward recursions. In particular, the computation of
probabilistic invariance is obtained via the value functions Vt : S → [0, 1], which
are characterized as

Vt(s) = IA(s)

∫

S

Vt+1(s̄)ts(s̄|s)ds̄, VN (s) = IA(s), ∀s ∈ S. (15)

The desired probabilistic invariance is expressed as pNπ0
(A) =

∫

S
V0(s)π0(s)ds.

The value functions always map the state space to the interval [0, 1] and they
are non-increasing, Vt(s) ≤ Vt+1(s) for any fixed s ∈ S. [1, 4–6] discuss efficient
algorithms for the approximate computation of the quantity pNπ0

(A), relying on
different assumptions on the model under study. The easiest and most straight-
forward procedure is based on the following assumption [1].

Assumption 3 The conditional density function of the process is globally Lips-
chitz continuous within the safe set with respect to the conditional state. Namely,
there exists a finite constant λb, such that

|t(s̄|s)− t(s̄|s′)| ≤ λb‖s− s′‖, ∀s, s′, s̄ ∈ A.

A finite constant Mb is introduced as Mb = sups∈A

∫

A
ts(s̄|s)ds̄ ≤ 1.

The procedure introduces a partition of the safe set A = ∪n
i=1Ai and extends

it to S = ∪n+1
i=1 Ai, with An+1 = S\A. Then it selects arbitrary representative

points si ∈ Ai and constructs a finite-state Markov chain Mb over the finite
state space {s1, s2, . . . , sn+1}, endowed with transition probabilities

P (si, sj) =
∫

Aj
ts(s̄|si)ds̄, P (sn+1, sj) = δ(n+1)j , (16)
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for all i ∈ Nn, j ∈ Nn+1. The error of such an approximation is [5]:

Eb = κ(N,Mb)λbδL(A),

where δ is the max partitions diameter, L(A) is the Lebesgue measure of set A.

5.3 Comparison of the Two Approaches

We first compare the two constructed Markov chains. The Markov chain in the
forward approach Mf is a special case of Markov chain of backward approach
Mb, where the representative points can be selected intelligently to determine
the average probability of jumping from one partition set to another. More specif-
ically, the quantities (10) are a special case of those in (16) (based on mean value
theorem for integration). We claim that this leads to a less conservative (smaller)
error bound for the approximation.

The forward computation is in general more informative than the backward
computation since it provides not only the solution of the safety problem in time,
but also the state distribution over the safe set. Further the forward approach
may provide some insight to the solution of the infinite horizon safety problem
[16,?], for a given initial distribution. Finally, the forward approach can be used
to approximate the solution of safety problem over unbounded safe sets, while
boundedness of the safe set is required in all the results in the literature that
are based on backward computations.

Next, we compare errors and related assumptions. The error computations
rely on different assumptions: the Lipschitz continuity of the conditional density
function with respect to the current or to the next states, respectively. Further,
the constants Mf and Mb are generally different and play an important role in
the error. Mb represents the maximum probability of remaining inside the safe
set, while Mf is an indication of the maximum concentration at one point over
a single time-step of the process evolution. Mb is always less than or equal to
one, while Mf could be any finite positive number.

Example 1 (Continued) The constants λf ,Mf and λb,Mb for the one dimen-
sional dynamical system of Example 1 are

λf =
1

σ2
√
2πe

, λb = aλf , Mf =
1

a
, Mb ≤ 1.

If 0 < a < 1 the system trajectories converge to an equilibrium point (in ex-
pected value). In this case the system state gets higher chances of being in the
neighborhood of the equilibrium in time and the backward recursion provides a
better error bound. If a > 1 the system trajectories tend to diverge with time. In
this case the forward recursion provides a much better error bound, compared
to the backward recursion.

For the numerical simulation we select a safety set A = [0, 1], a noise level
σ = 0.1, and a time horizon N = 10. The solution of the safety problem for the
two cases a = 1.2 and a = 0.8 is plotted in Figure 3. We have computed constants
λf = 24.20,Mb = 1 in both cases, while λb = 29.03,Mf = 0.83 for the first case,
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and λb = 19.36,Mf = 1.25 for the second case. We have selected the center
of the partition sets (distributed uniformly over the set A) as representative
points for Markov chain Mb. In order to compare the two approaches, we have
assumed the same computational effort (related to the same partition size of
δ = 0.7 × 10−4), and have obtained an error Ef = 0.008, Eb = 0.020 for a =
1.2 and Ef = 0.056, Eb = 0.014 for a = 0.8. The simulations show that the
forward approach works better for a = 1.2, while the backward approach is
better suitable for a = 0.8. Note that the approximate solutions provided by
the two approaches are very close: the difference of the transition probabilities
computed via the Markov chains Mf ,Mb are in the order of 10−8, and the
difference in the approximate solutions (black curve in Figure 3) is in the order
of 10−6. This has been due to the selection of very fine partition sets that have
resulted in small abstraction errors. ⊓⊔
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Fig. 3. Approximate solution of the probabilistic invariance problem (black line), to-
gether with error intervals of forward (red band) and backward (blue band) approaches,
for a = 1.2 (left) and a = 0.8 (right).

Remark 2. Over deterministic models, [13] compares forward and backward reach-
ability analysis and provides insights on their differences: the claim is that for
systems with significant contraction, forward reachability is more effective than
backward reachability because of numerical stability issues. On the other hand,
for the probabilistic models under study, the result indicates that under Lips-
chitz continuity of the transition kernel the backward approach is more effective
in systems with convergence in the state distribution. If we treat deterministic
systems as special (limiting) instances of stochastic systems, our result is not
contradicting with [13] since the Lipschitz continuity assumption on the transi-
tion kernels of probabilistic models does not hold over deterministic ones. ⊓⊔

Motivated by the previous case study we study how convergence properties of a
Markov process are related to the constant Mf .

Theorem 4. Assume that the initial density function π0(s) is bounded and that
the constant Mf is finite and Mf < 1. If the state space is unbounded, the
sequence of density functions {πt(s)|t ≥ 0} uniformly exponentially converges to
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zero. The sequence of probabilities P{s(t) ∈ A} and the corresponding solution
of the safety problem for any compact safe set A exponentially converge to zero.

Theorem 4 indicates that under the invoked assumptions the probability “spreads
out” over the unbounded state space as time progresses. Moreover, the theorem
ensures the absence of absorbing sets [16,?], which are indeed known to char-
acterize the solution of infinite-horizon properties. Example 2 studies the rela-
tionship between constant Mf and the stability of linear stochastic difference
equations.

Example 2. Consider the stochastic linear difference equations

x(t+ 1) = Ax(t) + w(t), x(·), w(·) ∈ R
n,

where w(·) are i.i.d. random vectors with known distributions. For such systems
Mf = 1/| detA|, then the condition Mf < 1 implies instability of the system in
expected value. Equivalently, mean-stability of the system implies Mf ≥ 1. Note
that for this class of systems Mf > 1 does not generally imply stability, since
detA is only the product of the eigenvalues of the system. ⊓⊔
The Lipschitz constants λf and λb have a different nature. Example 3 clarifies
this point.

Example 3. Consider the dynamical system

s(k + 1) = f(s(k), w(k)),

where w(·) are iid with known distribution tw(·). Suppose that the vector field f :
R

n×R
n → R

n is continuously differentiable and that the matrix ∂f
∂w is invertible.

Then the implicit function theorem guarantees the existence and uniqueness of
a function g : Rn×R

n → R
n such that w(k) = g(s(k+1), s(k)). The conditional

density function of the system in this case is [14]:

ts(s̄|s) =
∣

∣

∣

∣

det

[

∂g

∂s̄
(s̄, s)

]∣

∣

∣

∣

tw(g(s̄, s)).

The Lipschitz constants λf , λb are specified by the dependence of function g(s̄, s)

from the variables s̄, s, respectively. As a special case the invertability of ∂f
∂w is

guaranteed for systems with additive process noise, namely f(s, w) = fa(s)+w.
Then g(s̄, s) = s̄ − fa(s), λf is the Lipschitz constant of tw(·), while λb is the
multiplication of Lipschitz constant of tw(·) and of fa(·). ⊓⊔
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