
Bayes-Adaptive Planning
for Data-Efficient Verification

of Uncertain Markov Decision Processes

Viraj Brian Wijesuriya(B) and Alessandro Abate

Department of Computer Science, University of Oxford, Oxford, UK
viraj.wijesuriya@cs.ox.ac.uk

Abstract. This work concerns discrete-time parametric Markov deci-
sion processes. These models encompass the uncertainty in the transi-
tions of partially unknown probabilistic systems with input actions, by
parameterising some of the entries in the stochastic matrix. Given a
property expressed as a PCTL formula, we pursue a data-based verifi-
cation approach that capitalises on the partial knowledge of the model
and on experimental data obtained from the underlying system: after
finding the set of parameters corresponding to model instances that sat-
isfy the property, we quantify from data a measure (a confidence) on
whether the system satisfies the property. The contribution of this work
is a novel Bayes-Adaptive planning algorithm, which synthesises finite-
memory strategies from the model allowing Bayes-Optimal selection of
actions. Actions are selected for collecting data, with the goal of increas-
ing its information content that is pertinent to the property of interest:
this active learning goal aims at increasing the confidence on whether or
not the system satisfies the given property.

1 Introduction

Markov Decision Processes (MDPs) [23] have been successfully employed to solve
many demanding decision making problems in complex environments. A fully-
specified MDP can be leveraged to provide quantitative guarantees for correct
behaviour of intricate engineering systems. Formal methods provide mathemat-
ically rigorous machinery to obtain such guarantees [3], but their applicability
might fall short in the case of incomplete knowledge of the underlying system.
Available knowledge of a partially unknown system can be encompassed by a
parametric MDP (pMDP) [13], where a set of parameters is used to account for
imperfect knowledge.

We are interested in performing data-efficient verification of partially
unknown systems with input actions, which can be modelled using pMDPs.
Input actions represent nondeterministic choices available for planning. We rea-
son about system properties expressed in probabilistic computational tree logic
(PCTL [15]). In this paper, we assume that full data can be gathered from the
system to reason about these properties.
c© Springer Nature Switzerland AG 2019
D. Parker and V. Wolf (Eds.): QEST 2019, LNCS 11785, pp. 91–108, 2019.
https://doi.org/10.1007/978-3-030-30281-8_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-30281-8_6&domain=pdf
https://doi.org/10.1007/978-3-030-30281-8_6

92 V. B. Wijesuriya and A. Abate

Our verification approach is both model-based and data-driven [20,21]: on
the one hand, we classify the pMDP model into those MDPs satisfying the given
property and those that do not; on the other, we augment the knowledge about
the pMDP with the information content derived from limited amount of data
actively gathered from the system; we finally quantify a confidence on whether
the system satisfies the property.

In this work, we perform active learning [1] by seeking optimal strategies to
gather data from the system, with the objective of performing verification with
the greatest degree of accuracy. The novelty of our contribution is to extend [21],
where memoryless strategies were synthesised towards this task, which are highly
sub-optimal for maximising the confidence estimate [23]. Here we tackle the
requirement of memory dependency by formalising the verification problem as
a model-based reinforcement learning task, which is cast into a framework that
augments the pMDP with the information acquired through histories of inter-
actions with the system: this results in a model formulation known as Bayes-
Adaptive MDP (BAMDP) [8]. We also introduce a new algorithm called Bayes-
Adaptive Temporal Difference Search for planning with BAMDPs. A reward
function, related to the confidence estimate, is introduced over the BAMDP to
set up an optimisation task. Optimal strategies help to steer the interaction
with the underlying system to ultimately attain the most accurate confidence
estimate.

1.1 Related Work

The parameter synthesis problem [13] aims at formulating a range of possible
valuations for a set of parameters corresponding to the satisfaction of a prop-
erty of interest. Recent works [6,13,24] perform synthesis utilising increasingly
efficient techniques that scale well on larger state and parameter spaces. Param-
eter synthesis alone does not answer the question whether the underlying, partly
known system satisfies the property. Instead, some information about the param-
eters also needs to be inferred from the system. We not only perform param-
eter synthesis but also parameter inference, which draws valuations for model
parameters from measurement data from the system. When measurement data is
readily available (i.e. need not gather from the underlying system as part of the
planning process), approaches such as [2] proceed to find parameter-independent
strategies where the expected reachability probability is optimised.

Depending entirely on data, [5,18] attempt to learn a completely determinis-
tic representation of an MDP model from the system and to subsequently verify
properties over the learnt model. Unlike our approach, they do not take into
account prior knowledge available to the learner through the incomplete model
at hand and the property given, leading to a single model fitting the underlying
system. Characterising the transition model of an MDP, [1,25] aim at learn-
ing representations from sequences of data using Bayesian learning. The lack
of information from a partial model and without the ability to exploit known
relationships between parameters themselves, renders these approaches data-
inefficient.

Bayes-Adaptive Planning for Data-Efficient Verification of Uncertain MDPs 93

In this work we incorporate Bayesian inference [25] when planning over
pMDPs. Simplicity and analytical behaviour of Bayesian inference has motivated
its use herein. Statistical Model Checking (SMC) techniques [26] perform verifi-
cation over fully-specified models by generating simulation data, or by gathering
data from the underlying system if no model is specified. While we do not solve
the same problem as SMC techniques do, our work strikes a balance between the
two mentioned alternatives, allowing for a substantial reduction in data gath-
ered owing to the knowledge encompassed in the partially known model (i.e.,
the pMDP). Notice that SMC techniques for MDPs solve nondeterminism via
memoryless strategies [16], or employ history-dependent strategies from only a
subset of possible strategies [17]. On the other hand, in this work, we have the
ability to construct memory-efficient strategies that are focused on the specific
objective of asserting whether or not the system satisfies the property.

Computing confidence estimates in formal verification is seen as a meaning-
ful approach in the presence of uncertainty in models. Cognate to this work,
[21] utilises ideas from experiment design to calculate memoryless schedulers
for pMDPs to ultimately compute a confidence estimate for the satisfaction of
properties. Similarly, [20] computes confidence estimates for parametric Markov
chains (PMCs) and [12] performs data-driven verification over linear, time-
invariant dynamical systems encompassing measurement uncertainty.

2 Rudiments

2.1 Markov Decision Processes

Let P(H) denote a probability measure over an event H while E[X] denote
the expectation for any given random variable X. We use P (·) to denote a
discrete probability distribution over a finite set S where P : S → [0, 1] and∑

s∈S P (s) = 1.
We consider a discrete-time Markov decision process (MDP), represented as

a tuple M = (S,A, T , ι), where S is the finite set of states, A is the finite set of
actions. T : S×A×S → [0, 1] is a transition probability function such that ∀s ∈ S
and ∀a ∈ A:

∑
s′∈S T (s, a, s′) ∈ {0, 1}. ι ⊆ S denotes the set of initial states.

Any action that belongs to the set A(s) = {a ∈ A |
∑

s′∈S T (s, a, s′) = 1} is
said to be enabled at state s.

Consider an underlying data-generating system that allows to observe and
collect finite traces of data in the form of sequences of visited states and chosen
actions. We take into account the case where an MDP model that exactly rep-
resents the system is unknown but is assumed belonging to a class of uncertain
models comprised in a parametric Markov decision process (pMDP).

A pMDP is a tuple Mp = (S,A, Tp, ι, Θ), where the previous definition of
an MDP is lifted, ceteris paribus, to include a transition function Tp with a
target set specified using parameters found in an n-dimensional vector θ. All
possible valuations of θ are held in Θ ⊆ [0, 1]n, with n ∈ N>0. For any θ ∈ Θ,
we enforce that ∀s ∈ S and ∀a ∈ A(s):

∑
s′∈S Tp(s, a, s′) = 1. Hence, each

valuation of θ induces a single MDP M(θ) with a transition function that can

94 V. B. Wijesuriya and A. Abate

be represented using a stochastic matrix. Whilst the probabilities of all non-
parameterised transitions of Mp are assumed to be known, we allow (unknown)
probabilities of parameterised transitions to be linearly related, as in [21].

2.2 Strategies

A strategy (a.k.a. policy or scheduler) designates an agent’s behaviour within its
environment. For an MDP, a strategy is a distribution over actions at a particular
state. A deterministic strategy selects a single action at a particular state and a
deterministic memoryless (a.k.a. stationary) strategy π : S → A where ∀s ∈ S:
π(s) ∈ A(s), always selects the same action per state, regardless of any available
memory of previously selected actions and/or visited states, hence allowing for
a time-independent choice.

In this work, we are compelled to introduce the notion of memory (a.k.a.
history) with respect to strategies, since memoryless strategies fail to be adequate
with optimality in the choice of actions [2,23]. We call a memory m, a sequence
of states and actions, namely m = s0a0s1a1s2a2... , where si ∈ S, ai ∈ A(si)
and T (si, ai, si+1) > 0. A memory mt = s0a0s1a1s2a2...at−1st is finite if it
covers a finite-time horizon t ∈ N>0. Let M represent the set of possible finite
memories. A deterministic finite-memory strategy π̂ : S × M → A has finitely
many modes M ⊆ M , such that a single action at is chosen at time t, namely
at = π̂(st,mt), ∀t > 0 where mt ∈ M and at ∈ A(st). Obviously, st is the last
state in memory mt: the redundant emphasis on pairs (st,mt) is a notational
convenience inherited from literature that will be further justified in Sect. 4.1.

2.3 Bayesian Reinforcement Learning (Bayesian RL)

Model-based Bayesian RL for pMDPs relies on an explicit model, which is learnt
assuming priors over model parameters and by updating a posterior distribution
using Bayesian inference [25] as more data is gathered from the underlying sys-
tem. Subsequently (and possibly iteratively), the MDP with parameters sampled
from the current posterior is employed to find an optimal policy that maximises
the long-term expected reward.

We consider a Bayes-Adaptive RL formulation [8], with a model that allows
to encode memory as part of the state space. A Bayes-Adaptive MDP is a tuple
Mba = (Ŝ, A, T̂ , ι̂,R), where Ŝ = S×M is the state space encompassing memory,
A is as defined in Sect. 2.1 for an MDP, the transition function T̂ (s,m, a, s′,m′)
designates transitions between belief states (s,m) ∈ Ŝ and (s′,m′) ∈ Ŝ after
choosing an action a. Further, ι̂ ⊆ Ŝ where (s,m) ∈ ι̂ if s ∈ ι. R : Ŝ × A × Ŝ →
R is the newly introduced transition reward. The transition (s, a, s′) plus the
information state m affect the next information state m′, thereby preserving
the Markov property among transitions between belief states.

When an action a is selected in a belief state (s, m), a transition occurs to
the successive belief state (s′,m′) ∼ T̂ (s,m, a, ·, ·) and a transition reward r is
received. With a slight abuse of notation, the function R(s,m, a) = E[r | st =

Bayes-Adaptive Planning for Data-Efficient Verification of Uncertain MDPs 95

s,mt = m, at = a] shall denote the expected reward for the pair: belief state
(s,m) and action a.

Given a finite-time horizon T ∈ N>0 and strategy π̂, the action-value function
Qπ̂(s,m, a) = Eπ̂[ΣT

j=t rj | st = s,mt = m, at = a] is the expected cumulative
transition reward up to the horizon T after action a is chosen over belief state
(s,m) and thereafter following strategy π̂. Solving a BAMDP in our context
boils down to finding a finite-memory, deterministic strategy π̂∗ that maps belief
states from the augmented state space Ŝ to actions in A and which maximises
an expected cumulative transition reward over a given finite horizon T .

2.4 PCTL Properties

We consider non-nested properties expressed in a fragment of probabilistic com-
putational tree logic (PCTL) [15]. For a PCTL formula φ interpreted over states
of a given MDP M, a formula ϕ interpreted over the paths [3], 	
∈ {<,≤,≥, >}
and b ∈ [0, 1], the probabilistic operator φ = P��b(ϕ) in a state s ∈ S expresses
the probability for paths starting at s that satisfy ϕ meet the bounds given by
	
 b. We consider path formulae both bounded: ϕ = φi U≤k φj (with a finite-
time bound k ∈ N>0) and unbounded time: ϕ = φi U φj . Denote by P

π(ϕ | s)
the probability of satisfying ϕ along the paths of MDP M that start from s ∈ S
and follow a given strategy π. The satisfaction of formula P��b(φi U≤k φj) over
M is thus given by:

M |= P��b(φi U≤k φj) ⇐⇒ ∀s ∈ ι : A
π∈StrM

P
π(φi U≤k φj | s) 	
 b,

where P
π is the measure over the events corresponding to the formula φ for

the MDP under strategy π and StrM is the set of all strategies of M and
A ∈ {inf, sup} with following choices for 	
: inf if ≥ or > and sup if < or ≤.
The satisfaction of P��b(φi U φj) over M can be derived similarly. Considering
a pMDP Mp, we let Θφ denote the set of valuations of θ for which the formula
φ is satisfied: θ ∈ Θφ ⇔ M(θ) |= φ and we call Θφ the feasible set.

3 Verification and Learning

We present here our integrated verification and learning approach [20].

3.1 Parameter Synthesis

The aim of parameter synthesis is to classify induced MDP models of the corre-
sponding pMDP, between those that satisfy a given property φ and those that do
not. This is achieved by producing an output that maps regions corresponding
to parameter valuations to truth values [13]. Regions that map to “true” are
considered belonging to the feasible set Θφ, while those that maps to “false” are
guaranteed to not contain valuations that satisfy the property φ. This step han-
dles actions pessimistically, namely models are considered to verify property φ

96 V. B. Wijesuriya and A. Abate

regardless of the action selection. This is because we plan to fully utilise actions
for learning at a later step. Evidently, a different trade-off on actions could be
struck, which we delegate to future work. We employ the probabilistic model
checker Storm [7] to perform synthesis because it supports the PCTL properties
of interest.

3.2 Bayesian Inference

Bayesian inference allows to determine a posterior probability distribution over
the likely values of the parameters θ ∈ Θ, based on data gathered from the
underlying system and to update this probability distribution as more data is
collected [25]. It is also possible to incorporate any subjective beliefs about the
parameters using a prior distribution P (θ).

Denote by D the set of finite traces gathered from the system so far, com-
prising a count Ca

s,s′ of how many times a particular transition (s, a, s′) has
been observed. We limit parameterisation of pMDP transitions to two cases of
interest: (a) each transition of the pMDP is parameterised either with a single
parameter (e.g. θi or 1−θi) or with a constant k ∈ (0, 1]; (b) the pMDP includes
transitions whose transition probabilities are expressed as affine functions of the
form gs′

s,a(θ) = k0 + k1θ1 + . . . + knθn. For any instance of (b), [21] suggests two
transformations that produce a pMDP that contains only transition probabili-
ties of the form given in (a). Therefore, without loss of generality and for the
purpose of succinctness, we assume pMDPs with parameterisation correspond-
ing to the form in (a) herein. For transitions having identical parameterisations,
their transition counts can be grouped together using parameter tying [22].

Denote by C(θi), the number of times transitions parameterised by θi have
been observed in D : C(θi) =

∑
Ca

s,s′ for Tp(s, a, s′) = θi. Similarly, we define
C ′(θi) to count transitions parameterised by 1 − θi, i.e., transitions not param-
eterised by θi given that there exists a transition parameterised by θi under the
same action a ∈ A(s). We collect both C(θi) and C ′(θi) in C̄(θi) for brevity.

Assuming a prior distribution P (θi) over each component parameter θi ∈ θ,
the posterior distribution over θi can be expressed using Bayes’ rule as:

P (θi | D) ∝ P (θi)θ
C(θi)
i (1 − θi)C′(θi).

The counts Ca
s,s′ follow a multinomial distribution [25]. Selecting a Beta distri-

bution: Beta(θi; (αθi
, βθi

)) as a conjugate prior, the posterior distribution has a
closed-form expression, allowing it to be updated by adding respective parameter
counts to the hyper-parameter pair (αθi

, βθi
) [25]:

P (θi | D) = Beta(θi; C̄(θi) + (αθi
, βθi

)).

Note that hyper-parameters αθi
and βθi

are the parameters of the (Beta) prior
distribution over θi. We denote by Ui(m) the update on hyper-parameter counts
C̄(θi)+(αθi

, βθi
), corresponding to an information state m. Marginals P (θj | D)

can be combined to form the posterior for the entire vector θ ∈ Θ under the

Bayes-Adaptive Planning for Data-Efficient Verification of Uncertain MDPs 97

assumption that each component parameter θj is independent over those inde-
pendent state-action pairs in the pMDP. Thus, the posterior P (θ | D) is given
by: P (θ | D) =

∏
θj∈θ P (θj | D). Whenever an analytical update is impossible,

we can resort to sampling techniques to obtain posterior realisations [21].

3.3 Confidence Computation

Given a specification φ and the posterior distribution P (θ | D) for θ ∈ Θ
obtained from a system of interest S, the confidence on whether S |= φ, can be
quantified according to [20]:

C = P(S |= φ | D) =
∫

Θφ

P (θ | D)dθ =
∫

Θφ

∏

θj∈θ

P (θj | D)dθ. (1)

This quantity in general can be computed using Monte Carlo integration [20].

3.4 Overview of the Approach

I2: Property φ = P��b(ϕ)

I1: pMDP Mp

1: Parameter synthesis

2a: Strategy synthesis

2b: Collect data from S 2c: Bayesian inference

3: Compute confidenceO: C = P(S |= φ | D)

Θφ,Mp

π̂∗

D

P (θ | D)

Θφ

P
(θ|

D
)

Fig. 1. Verification and Learning. I1, I2 are inputs
and output O is the confidence estimate C .

The different phases of our
approach are shown in Fig. 1.
We assume that the available
parametric model Mp best
represents the underlying sys-
tem together with its uncer-
tain dynamics. We first per-
form parameter synthesis over
the given parametric model to
find the feasible set of param-
eter values Θφ that satisfy the
specification at hand. We then

collect data from the system and employ Bayesian inference to update the pos-
terior distribution over the likely values of the parameters with respect to the
gathered data. Finally, we output a quantification of the confidence that the
underlying system satisfies the specification over the data gathered so far.

In this work, the feasible set and the current distribution over the parameter
space are propagated through a BAMDP model and used to plan (viz. synthesise
a strategy) for gathering valuable data from the underlying system. We synthe-
sise strategies to sequentially collect data to optimise the measure in Eq. (1)
which will be further elaborated in Sect. 4.2.

4 Active Learning

We introduce a new technique for model-based Bayesian RL to synthesise a
finite-memory strategy to further explore the system from data.

98 V. B. Wijesuriya and A. Abate

4.1 Bayes-Adaptive Model

In order to collect maximally useful data from the underlying system, we take
into account the importance of (both past and expected) information to decrease
the uncertainty associated with model parameters with respect to property satis-
faction. Our confidence quantification (cf. Eq. (1)) is a proxy for this uncertainty:
if the property is satisfied over the underlying system, one would expect the con-
fidence to be as high as possible and, conversely, as low possibly if the property
is not satisfied (essentially, in either case, one ideally wants to be away from the
value 0.5).

We lift the BAMDP model described in Sect. 2 to support uncertainty
described by parameterised transitions assuming a Beta-Binomial representation
for the posterior distribution (as in Sect. 3.2). Using this uncertainty representa-
tion, we encompass the information state m by a joint probability distribution im
over the hyper-parameters, which are collectively denoted by the pair (α,β) =
{Uj(m) | ∀θj ∈ θ}, namely, α = 〈C(θ1) + αθ1 , C(θ2) + αθ2 , . . . , C(θn) + αθn

〉
and β = 〈C ′(θ1)+βθ1 , C

′(θ2)+βθ2 , . . . , C
′(θn)+βθn

〉 where n = |θ|. The hyper-
parameters for θj are thus denoted by im,j . The distribution im acts as a statistic
for m that summarises all information accumulated so far. We furthermore adapt
the pair (s,m) to (s, im) as a belief state of the BAMDP, essentially lifting mem-
ories M to the hyper-parameters (α,β) of the (Beta) posterior distributions, M̂.
This lifting preserves the Markovian property of transition function T̂ . For the
remainder of the paper, we employ im and M̂ to reason about intended concepts
over m and M, respectively.

We formulate BAMDPs in this work to transform the uncertainty in param-
eters θ ∈ Θ of a pMDP into certainty about belief states of a BAMDP. A prior
P (Tp) on the transition function Tp of a pMDP corresponds to a prior distribu-
tion P (θ) over parameters θ. Accordingly, we can define a posterior belief b(Tp)
over the transition function given data D , so that b(Tp) = P (θ | D). For a mem-
ory m, this belief can be quantified as b(Tp) = P (Tp | im) ∝ P (im | Tp)P (im).
The transition dynamics for the BAMDP can be formulated as:

T̂ (s, im, a, s′, im′) =
∫

Tp

Tp(s, a, s′)P (Tp | im)dTp, (2)

where m′ is the updated memory after the transition (s, a, s′) is witnessed. The
RHS of Eq. 2 is the expectation of Tp(s, a, s′), which corresponds to the expec-
tation of the posterior P (θ | D), hence T̂ can be expressed as:

T̂ (s, im, a, s′, im′) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1imas′ (im′)
αθj

αθj
+βθj

if Tp(s, a, s′) = θj ,

1imas′ (im′)
βθj

αθj
+βθj

if Tp(s, a, s′) �= θj and
∃sk ∈ S : Tp(s, a, sk) = θj ,

Tp(s, a, s′) otherwise,

(3)

where 1b(a) is 1 if a equals b, else 0.

Bayes-Adaptive Planning for Data-Efficient Verification of Uncertain MDPs 99

4.2 Synthesis of Bayes-Adaptive Strategies

The reward function R is used in the BAMDP to designate expected confidence
updates resulting from transitions and thereby to guide the learning process. We
work with finite-horizon problems. Positive rewards defined at the horizon (and
zero elsewhere) require the learner to consider complete trajectories spanning
the horizon in order to accumulate non-zero rewards. This can be computation-
ally expensive should the horizon be large. Therefore, we focus on obtaining
immediate rewards at each step of the learning process.

We define belief-dependent rewards [19] based on the difference between the
confidence estimate at the given time step and that at the successive time step.
As a learning process is designed to maximise rewards [28], here it is focussed
on maximising the information content from the system’s data to compute the
most accurate confidence estimate possible. In order to achieve this, we need to
synthesise strategies that maximise the deviation between future confidence and
the base case K = 0.5.

Denote by Ct, the confidence estimate at current time step t, where we have
set C0 = K . After selecting action at over the belief state (st, imt

), the next-step
confidence Ct+1 can be used to define an immediate confidence gain rt+1 as:

rt+1 = |K − Ct+1| − |K − Ct|.

The reward function R(s, im, a) is thus defined as R(s, im, a) = E[rt+1 | st =
s, imt

= im, at = a], where clearly R(s, im, a) = 0 if there is no associated param-
eterised transition. An interesting observation about R is that corresponding
rewards might converge to zero in the limit, i.e., go to zero as the agent is left
with nothing more to learn.

With respect to a prior distribution P (θ), the Bayes-Optimal policy π̂∗ that
maximises the expected cumulative reward over a finite horizon T is given by

π̂∗(s, im) = arg max
a∈A(s)

Q∗(s, im, a),

where the corresponding Bayes-Optimal action-value function is given by

Q∗(s, im, a) = sup
π̂

Eπ̂[ΣT
j=trj | st = s, imt

= im, at = a, θ ∼ P (θ)].

Note that the Bayes-Optimal policy π̂∗(s, im) depends on prior beliefs and
is consistent with the way in which Ct+1 is calculated. According to Eq. (1),
this value corresponds to the expected values of the parameter counts after tran-
sitioning from state st by selection of action at. Starting from the expected
values of transition counts, as described in Sect. 3.2, we can collect the expected
parameter counts in C̄(θ). The expected transition counts correspond to the
Binomial distribution over the transitions under a chosen action. The expected
values of the transition probabilities can be calculated via the expected values
of the parameters. For instance, the expected value of a given parameter θj is

E[θj] =
αθj

αθj
+ βθj

. The expected transition probability for the transition (s, a, s′)

is hence gs′
s,a(E[θj]).

100 V. B. Wijesuriya and A. Abate

4.3 Bayes-Adaptive Temporal Difference Search

The learning algorithm we introduce is based on learning from simulated episodes
of experiences gathered from the BAMDP. However, a BAMDP can be sizeable,
even for a corresponding simple concrete MDP [8]. The information space grows
exponentially with the number of state-action pairs in the concrete MDP and the
horizon T of exploration. In our setting, T directly relates to the length of the
traces drawn from the system and T can be chosen arbitrarily but needs to be
large enough to witness several state transitions. However, when the PCTL prop-
erty imposes a finite-time bound k on satisfaction, T should not exceed k. Even
though there exist exact solutions to BAMDPs, for instance, via dynamic pro-
gramming using Gittins indices [11], in most practical cases they are intractable.
Let us recall that we denote by Q(s, im, a) the expected cumulative transition
reward, when action a is selected at belief state (s,m). It is in practice not pos-
sible to store all values of Q(s, im, a) in memory and learning exact values might
be too slow. One way of reducing these computational burdens is to observe that
distinct memories may yield the same (or a similar) belief [8], hence generalisa-
tion of Q values among related paths can be helpful. [10] proposes a Monte Carlo
simulation algorithm to estimate Q values with a function approximator, which
allows generalisation between states, actions and beliefs. However, such methods
require to evaluate the final step of the simulation to update all corresponding
Q values.

In this work, we follow an approach based on temporal difference (TD) learn-
ing [28], which can update the estimate of the Q value after every step of a sim-
ulation. This is helpful when the time horizon is very long (or non-terminating).
Furthermore, the ability to learn step by step helps in estimating Q values with
low variance and to plan via subsequent decisions that can be correlated in time.
Temporal Difference Search (TD Search) is a simulation-based algorithm that
employs value function approximation. Initially used for planning in Computer
Go [27], we extend TD search to the context of Bayes-Adaptive models.

A new Bayes-Adaptive temporal difference search algorithm is outlined in
Algorithm 1. It gathers episodes of simulated trajectories starting from the cur-
rent belief state (st, imt

) according to an ε–greedy strategy. An ε–greedy strategy
selects an action that maximises the local Q value with a probability equal to
1 − ε or outputs a random action with probability ε. Rather than exploring the
whole BAMDP, our algorithm commits to solving a sub-BAMDP that starts at
the current belief state and spans a given time horizon T . Once Algorithm 1
synthesises a strategy (based on the current posterior P (θ | D)), we roll it out
up to the designated time horizon T and collect data (in the form of traces of
length T) from the underlying system. We then update the BAMDP model via
Bayesian inference using the collected data: the current posterior distributions
of each parameter θi ∈ θ is updated using the new data. Next, we synthesise a
new strategy to further gather data. We continue in this fashion until we have
gathered an arbitrary allowed number of traces from the system. We then output
the eventual confidence estimate that asserts whether the system satisfies the
property (cf. Fig. 1).

Bayes-Adaptive Planning for Data-Efficient Verification of Uncertain MDPs 101

Value Function Approximation. In order to approximate the value function,
we lift the action-value function with a weight matrix β of learnable param-
eters: Q(s, im, a;β). The goal of the learning process is to then find β that
minimises the mean-squared error between approximate and true Q functions:
E[(Q(s, im, a;β) − Q(s, im, a))2].

Algorithm 1. Bayes-Adaptive Temporal Difference Search
1: Inputs:
2: st, imt

3: Initialize:
4: β ← 0, ρ ← 0
5: procedure Search(st, imt)
6: while time remaining do � Start episode
7: s ← st, im ← imt , t̃ ← t
8: a ← π̂ε–greedy(s, im; Q)
9: ξ ← 0, ξ′ ← 0

10: while t̃ < T do
11: s′ ∼ T̂ (s, im, a, ·, ima·)
12: R ← R(s, im, a)
13: a′ ← π̂ε–greedy(s

′, imas′ ; Q)
14: δ ← R + Q(s′, imas′ , a′; β) − Q(s, im, a; β)
15: ξ = λξ + y(im) ⊗ x(s, a)
16: ξ′ = λξ + y(imas′) ⊗ x(s′, a′)
17: β ← β + αδξ − αξ′(ξ�ρ)
18: ρ ← ρ + ω(δJ − ξ�ρ)ξ
19: s ← s′, a ← a′, t̃ ← t̃ + 1
20: end while
21: end while
22: return arg max

at

Q(st, imt , at; β)

23: end procedure

We use the backward
view of SARSA(λ) [28], with
ε–greedy strategy improve-
ment, to help learn parame-
ters β at each step of simula-
tion sequences. The parame-
ter λ designates up to how far
in time should bootstrapping
occur (bootstrapping refers to
updating an estimated value
with one or more estimated
values of the same kind).
To implement the backward
view, it is required to main-
tain an eligibility trace ξa

s,im
1

for each tuple (s, im, a). An
eligibility trace [28] temporar-

ily remembers the occurrence of an activity, for instance, visiting a state and
choosing an action. The trace signals the learning process that the credit asso-
ciated to the activity is eligible for change. The trace assigns credit to eligible
activities based on combing assignments from two common heuristics: frequency
heuristic (where credit is assigned to most frequent activities) and recency heuris-
tic (where credits is assigned to most recent activities).

A BAMDP entails a convex action-value function [8] as a function of the infor-
mation state: this function becomes piecewise linear if the horizon is finite and if
the state-action space is discrete. Therefore, linear value function approximation
is appropriate to represent the true convex action-value function for a particular
state-action pair. Since the transition rewards we receive correspond to a gain in
confidence, the values are bounded within [0, 1]. As such, the introduced function
approximation is truncated using the sigmoid function σ(x) = 1

1+e−x [27].

Feature Representation. The quality of the value function approximation
Q(s, im, a;β) greatly depends on employed features: we use the feature triple
(s, im, a). A good approximation procedure should generalise well for those mem-
ories that lead to similar information states (or beliefs). The feature represen-
tation should facilitate likewise representations for such memories. We propose
the following representation for Q(s, a, im;β) [10]:

Q(s, im, a;β) = y(im)�βx(s, a).

1 Note that in Algorithm 1, we actually maintain an eligibility trace matrix ξ.

102 V. B. Wijesuriya and A. Abate

This form encodes the feature triple into the Q approximation, with vector x(s, a)
concerning state-action pairs and vector y(im) representing information states.

x(s, a) indicates which state-action pair is currently involved. Therefore, for
a particular pair, this representation of Q is linear as a function of im which
approximates the true convex action-value function. State-action pairs with sim-
ilar features will be considered to be similar. We associate x(s, a) with binary
features by assigning it a column vector of size Z, with value one assigned to the
location of the element corresponding to (s, a) and to any entry corresponding
to parameter similar state-action pairs of (s, a), while other entries are assigned
the value zero2. By parameter similar state-action pairs, we mean those pairs
with outgoing transitions having identical parameterisation.

The construction of the vector y(im) requires representing beliefs in a coor-
dinate vector form. However, as beliefs are not finite-dimensional objects, a
finite-dimensional approximation is therefore required. [10] proposes a sampling
mechanism based on a sequential importance sampling particle filter. We con-
struct y : M̂ → R

Z as follows, assuming that Z is the degree of the finite-
dimensional approximation. We initialise y(im), a column vector with Z ele-
ments, to 1

Z at the beginning of each episode of Algorithm 1. We then modify
y(im) by updating each entry j at the current step, using the probability given
by T̂ (s, im, a, s′, imas′), as:

yj(imas′) = yj(im)T̂ (s, im, a, s′, imas′).

Notice how this scheme allows different memories leading to same belief to be
mapped as identical representations, i.e., y(im′) = y(im) if b(m′) = b(m). With
this construction, it is not required to explicitly update the information of belief
states that are not directly traversed in the simulation, since these updates are
implicitly reflected in the finite-dimensional representation. The two updates (cf.
Algorithm 1, lines: 15 and 16) on eligibility traces capture the joint effect of the
introduced feature vectors x and y (in the algorithm, ⊗ denotes the standard
outer product).

Feature vectors x(s, a) and y(im) effectively generalise from states, actions,
and memories already seen to those unseen. As such, the rolled-out simulations
will achieve the generalisation without the need to traverse all possible states of
the BAMDP, making the algorithm much more efficient.

We run Algorithm 1 episodically (note that an episode starts from line 6 and
ends in line 21) to learn β using simulated traces from the BAMDP model. We
roll-out these simulations (cf. from line 10 to 20) up to the horizon T . The prop-
agation of knowledge from one step of the algorithm to the other is fundamental
to learning good representations from past experiences. When rolling-out simula-
tions, one can use y(im) from previous time step t̃−1 for learning in the current
step t̃ but y(im) may degenerate, e.g. leaving one of its entries yj(im) = 1
and rest being zero. Given a threshold Y , we simply re-initialise all entries if

1∑
j yj(imt̃

)2 < Y or else, we reuse y from the previous β update.

2 This scheme is sometimes called one-hot encoding.

Bayes-Adaptive Planning for Data-Efficient Verification of Uncertain MDPs 103

Convergence. In the context of our action-value function approximation, con-
vergence means that entries of β reach a fixed point. Linear SARSA (λ) (which
is the underlying learning algorithm used in TD search) is sensitive to initial
values of β and does not always converge in view of chattering [9]. Convergence
guarantees for standard SARSA(λ), requiring a greedy in the limit with infinite
exploration (GLIE) sequence of strategies and Robbins-Monro conditions for the
learning rate α [28], are not in general enough to guarantee convergence for linear
SARSA (λ), since it is not a true gradient-descent method [29]. Policy gradient
methods [28] on the other hand can be used in place if one desires guaranteed
convergence. This motivates the use of stochastic gradient descent algorithms.
Since we roll-out a complete strategy before the next stage of data gathering, we
are essentially performing open loop control together with the current beliefs we
possess. Therefore, our planning stage is based on off-policy learning : training
on outcomes from an ε-greedy strategy in order to learn the value of another.
Linear TD with gradient correction (TDC) [29] can be used to force SARSA to
follow the true gradient. We adopt TDC to support the form of Q and the pres-
ence of matrix β. Based on the mean-square projected Bellman error (MSPBE)
objective function [29], TDC employs two additional parameters: matrix ρ and
scalar ω and updates β and ρ accordingly on each state transition (cf. lines 17–18
of Algorithm 1, where J is a properly-sized all-ones matrix).

5 Experiments

5.1 Setup

We evaluate our approach over three case studies. We consider a range of simu-
lated underlying systems (corresponding to different instantiations of the param-
eters) and compare obtained confidence results against the corresponding ground
truths, via mean-squared error (MSE) metric. We compare strategies generated
by our synthesis algorithm, Algorithm 1 (denoted BA strategy) against other
strategies: a strategy synthesised in [21] (denoted Synth strategy), a given proba-
bilistic memoryless strategy (denoted RS strategy), and a strategy that randomly
select actions at each state (denoted No strategy).

First case study involves the pMDP given in [21], endowed with 6 states, 12
transitions, and 2 parameters and the PCTL property P≥0.5(true U complete)
(complete is the label associated to one of the 6 states).

For the second case study (cf. Fig. 2), we extend an MDP model for a
smart buildings application [4] to a pMDP with action space A = {foff, fon}
and parameter vector θ = {θ1, θ2}. Actions correspond to the on/off state
of a fan inside a room. We verify the satisfaction of the PCTL property
P≥0.35¬(true U≤20 (E,O)). Beyond the comparison between strategies described
above, we use traces generated by our algorithm and by other strategies with a
Bayesian Statistical Model Checking (Bayesian SMC) [30] implementation. SMC
collects trajectories from the system, checks whether trajectories satisfy a given
property and subsequently uses statistical methods such as hypothesis testing to
determine whether the system satisfies the property.

104 V. B. Wijesuriya and A. Abate

Thirdly, we carry out experiments with a well-known pMDP benchmark
from [14], the Randomised Consensus Protocol. This case study allows to show-
case the efficiency and effectiveness of our approach over large MDPs. We con-
sider an instance of the problem with 4112 states and 7692 transitions, where
we fix the number of processes N = 2 (i.e. two parameters) and the proto-
col constant K = 32 to check the PCTL property P≥0.25(true U (finished &
allCoinsEqualToOne)).

Like [21], for convenience of presentation, we have selected all simulated
underlying systems such that a single parameter θ∗ is responsible for the satis-
faction/falsification of the property: θ∗ = (θ1 = θ2). Intervals over θ∗ (namely,
feasible sets) corresponding to the system verifying the corresponding property
are: I1 = [0.369, 0.75] (for case 1), I2 = [0.0, 0.16] (for case 2) and I3 = [0.2, 0.5]
(for case 3), respectively.

Our approach has been implemented in C++. We consider non-informative
priors for all parameters involved i.e., uniform ones (α = β = 1). Over different
values of θ∗, data from the simulated underlying system is collected as traces
containing state-action pairs visited over time. We gather confidence estimates
through n number of runs. If Cj is the confidence estimate at the j-th run of case
study i, then MSE is computed as = 1

nΣn
j=1(1Ii

(θ∗)−Cj)2. For the experiments,
we set algorithm parameters (cf. Algorithm 1) as follows. λ is set to 0.8, ω to
0.9, α to 1

(t̃+1)0.65 and ε to 1
t̃+1

. We train β on 1000 episodes for all case studies
and set Z = 50 for the large model in case study 3.

5.2 Results

The MSE outcomes for each case study are summarised in Figs. 3a, b and c.
The horizontal axis (system parameter) represents values of θ∗ for the simulated
underlying systems. The intervals Ii above allow to separate systems that satisfy
the property from those that do not, by a clear edge/boundary (e.g., for Fig. 3a
this edge is rooted at 0.369). The MSE results have been drawn by experiments
carried out under limited amount of data (e.g. for the third case study, we have
used 10 traces, each of length 10, namely (t10, l10)). These results show that our
approach clearly outperforms other strategies.

It is important to note that we incur a comparably higher error at system
parameters that are very close to the mentioned edge. This is due to the nature
of the confidence computation that we perform. For a point closer to the edge,
this could yield a posterior distribution that will have its peak centred at the
point with probability mass falling almost equally in both the feasible set and
outside it. As more data is gathered, the posterior distribution may grow taller
and thinner, but with the slightest shift in its peak, a large proportion of the
mass may fall on either side, resulting in an increase of the MSE. This increased
sensitivity near the edge soon subsides as we move away from the edge, where
the mass can now fall in either part of the interval.

Note that we achieve a significant performance for the large pMDP model
in case study 3 (cf. Fig. 3c). For a model of this magnitude, the corresponding

Bayes-Adaptive Planning for Data-Efficient Verification of Uncertain MDPs 105

Bayes-Adaptive model is enormous, making it impossible to search/traverse it
entirely. The proposed generalisation approach embedded in our search algorithm
allows to tackle this otherwise intractable problem. Unfortunately, [21] times out
(in 1 h after going out of memory) when attempting synthesis, i.e., explicitly
evaluating memoryless strategies does not scale well for large models.

(E,O)

(F,O)(F,C)

(E,C)

1− θ21− θ2

(1− 0.75
−θ1)

(1− 0.25
−θ1)

1− 0.35 1− 0.15

0.35

0.75

0.15
0.25

θ1 θ1

θ2 θ2

fon

fon

foff
foff

Fig. 2. Extended pMDP model
for case study in [4].

Figures 3d and e present results on case
study 2. These show that our method is able
to gather more useful data than Synth and to
rapidly converge to the ground truth. Main-
taining good performance even at very low
amounts of data (e.g. 10 traces or traces of
length 5) shows that our approach is robust
to the nature of the gathered data. The major
reason behind this is that the current strategy
constantly looks for parameterised transitions
as much as possible: it is over these transitions
that confidence gain may happen. This is in
stark contrast to techniques like SMC, where
the length of horizon of the trace needs to be
long enough to either reach a designated state
or find counterexamples for the given property.

Figure 3f provides results for an experiment conducted over case study 2,
and shows two significant aspects of our approach: first, the information content
of the traces that we have generated from our approach, by comparing them
against those generated from other strategies; and secondly, the demonstration
that SMC can be problematic in situations where one has access to only a limited
amount of data. Running traces generated by different strategies (BA vs Synth vs
No) through a Bayesian SMC algorithm, demonstrates that our (BA) approach
converges rapidly to the ground truth, faster than other methods (Synth and
No). This shows that our traces encompass much richer information content to
compute better confidence estimates to decide the satisfiability of the property.

SMC provides outcomes that are usually much faster than canonical model
checking tools. However, for case study 2, the property we have selected is a
negative bounded-time property that requires falsification by reaching a specific
state (E,O). This is a tricky property to ascertain via SMC, due to the lack
of counterexamples with trace lengths much shorter than the formula horizon.
On the other hand, such traces processed with our approach (i.e. confidence
computation using the posterior distribution) yield much better results than
Bayesian SMC. This shows that we can work with much shorter horizons than
the formula horizon and are still able to accurately verify properties. Performance
at shorter trace lengths is an important performance criterion for large models,
like the one in case study 3, where you would need fairly longer trace lengths
(e.g. 1000 or more) for SMC to work, whereas our approach is able to verify the
property with a couple of orders of magnitudes lower trace lengths (e.g. 10).

106 V. B. Wijesuriya and A. Abate

0.15 0.369‡ 0.75
S �|= φ S |= φ

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

0.1

0.2

0.3

0.4

0.5

0.6

System Parameter

M
ea
n-
Sq

ua
re
d
E
rr
or Synth

RS
No
BA

(a) MSE for Case 1 (t10,l10)

0.01 0.16‡ 0.24
S |= φ S �|= φ

0.01 0.06 0.12 0.18 0.24
0

0.1

0.2

0.3

0.4

0.5

0.6

System Parameter

M
ea
n-
Sq

ua
re
d
E
rr
or Synth

BA

(b) MSE for Case 2 (t10,l20)

0.25 0.5‡ 0.75
S |= φ S �|= φ

0.25 0.35 0.45 0.55 0.65 0.75
0

0.1

0.2

0.3

0.4

0.5

0.6

System Parameter

M
ea
n-
Sq

ua
re
d
E
rr
or No

RS
BA

(c) MSE for Case 3 (t10,l10)

10 20 30 40 50 60 70 80 90 100

0.7

0.8

0.9

1

Number of Traces

C
on

fid
en

ce

Synth
BA

(d) Case 2 (θ∗ = 0.13,l20)

5 15 25 35 45 55

0.7

0.8

0.9

1

Length of Trace

C
on

fid
en

ce Synth
BA

(e) Case 2 (θ∗ = 0.14,t10)

5 10 15 20 25 30 35 40 45 50
0

0.2

0.4

0.6

0.8

1

Length of Trace

C
on

fid
en

ce

Synth (SMC)
No (SMC)
BA (SMC)
BA (Posterior)

(f) Case 2 (θ∗ = 0.24,t10)

Fig. 3. Mean-squared error (MSE) and average confidence results for the three case
studies. The number of generated traces or the length of generated traces is indicated
by values prefixed with t or l, respectively. Translucent bars along the x-axes of a, b
and c designate the simulated underlying systems that satisfy the property φ and those
which do not. Respective edges/boundaries are followed by a ‡ symbol.

6 Conclusions and Future Work

We have a data-based efficient verification approach to assert whether a partially
unknown probabilistic system satisfies a given property expressed as a logical
specification. Our approach takes into account memory in calculating optimal
strategies to gather data from the underlying system so as to derive the most
accurate confidence estimates possible.

As future work, based on the updated confidence value, one could tune/repair
the parametric model until a decisive confidence is achieved. For instance, if
the output confidence value is 0.5, then there exists an equal chance that the
property is either satisfied or not over the system. If this value has been obtained
after gathering a substantial amount of data, this may mean that the employed
parametric model was not supportive enough to gauge the satisfaction of the
property, hence it could be adjusted until a substantial judgement about the
satisfiability can be made.

Furthermore, in this work, actions are exclusively selected for learning tasks.
Instead, one might choose them in the context of model classification (i.e., param-
eters selection), in order to steer the system towards property satisfaction.

Bayes-Adaptive Planning for Data-Efficient Verification of Uncertain MDPs 107

References

1. Araya-López, M., Buffet, O., Thomas, V., Charpillet, F.: Active learning of MDP
models. In: Sanner, S., Hutter, M. (eds.) EWRL 2011. LNCS (LNAI), vol. 7188,
pp. 42–53. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29946-
9 8

2. Arming, S., Bartocci, E., Chatterjee, K., Katoen, J.-P., Sokolova, A.: Parameter-
independent strategies for pMDPs via POMDPs. In: McIver, A., Horvath, A. (eds.)
QEST 2018. LNCS, vol. 11024, pp. 53–70. Springer, Cham (2018). https://doi.org/
10.1007/978-3-319-99154-2 4

3. Baier, C., Katoen, J.P.: Principles of Model Checking. MIT Press, Cambridge
(2008)

4. Cauchi, N., Abate, A.: StocHy: automated verification and synthesis of stochas-
tic processes. In: 25th International Conference on Tools and Algorithms for the
Construction and Analysis of Systems (TACAS) (2019)

5. Chen, Y., Nielsen, T.: Active learning of Markov decision processes for system ver-
ification. In: 2012 11th International Conference on Machine Learning and Appli-
cations (ICMLA), vol. 2, pp. 289–294, December 2012

6. Cubuktepe, M., et al.: Sequential convex programming for the efficient verification
of parametric MDPs. In: Legay, A., Margaria, T. (eds.) TACAS 2017. LNCS, vol.
10206, pp. 133–150. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-
662-54580-5 8

7. Dehnert, C., Junges, S., Katoen, J.-P., Volk, M.: A Storm is Coming: a mod-
ern probabilistic model checker. In: Majumdar, R., Kunčak, V. (eds.) CAV 2017.
LNCS, vol. 10427, pp. 592–600. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-63390-9 31

8. Duff, M.O.: Optimal learning: computational procedures for Bayes-Adaptive
Markov decision processes. Ph.D. thesis (2002)

9. Gordon, G.J.: Chattering in SARSA(λ) - a CMU learning lab internal report.
Technical report (1996)

10. Guez, A., Heess, N., Silver, D., Dayan, P.: Bayes-adaptive simulation-based search
with value function approximation. In: Ghahramani, Z., Welling, M., Cortes, C.,
Lawrence, N.D., Weinberger, K.Q. (eds.) Advances in Neural Information Process-
ing Systems, Curran Associates, Inc., vol. 27, pp. 451–459 (2014)

11. Guez, A., Silver, D., Dayan, P.: Efficient Bayes-adaptive reinforcement learning
using sample-based search. In: Advances in Neural Information Processing Sys-
tems 25: 26th Annual Conference on Neural Information Processing Systems 2012,
Proceedings of a Meeting Held 3–6 December 2012, Lake Tahoe, Nevada, United
States, pp. 1034–1042 (2012)

12. Haesaert, S., Van den Hof, P.M., Abate, A.: Data-driven property verification of
grey-box systems by Bayesian experiment design. In: American Control Conference
(ACC), 2015, IEEE, pp. 1800–1805 (2015)

13. Hahn, E.M., Han, T., Zhang, L.: Synthesis for PCTL in parametric markov decision
processes. In: Bobaru, M., Havelund, K., Holzmann, G.J., Joshi, R. (eds.) NFM
2011. LNCS, vol. 6617, pp. 146–161. Springer, Heidelberg (2011). https://doi.org/
10.1007/978-3-642-20398-5 12

14. Hahn, E.M., Hermanns, H., Wachter, B., Zhang, L.: PARAM: a model checker for
parametric Markov models. In: Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010.
LNCS, vol. 6174, pp. 660–664. Springer, Heidelberg (2010). https://doi.org/10.
1007/978-3-642-14295-6 56

https://doi.org/10.1007/978-3-642-29946-9_8
https://doi.org/10.1007/978-3-642-29946-9_8
https://doi.org/10.1007/978-3-319-99154-2_4
https://doi.org/10.1007/978-3-319-99154-2_4
https://doi.org/10.1007/978-3-662-54580-5_8
https://doi.org/10.1007/978-3-662-54580-5_8
https://doi.org/10.1007/978-3-319-63390-9_31
https://doi.org/10.1007/978-3-319-63390-9_31
https://doi.org/10.1007/978-3-642-20398-5_12
https://doi.org/10.1007/978-3-642-20398-5_12
https://doi.org/10.1007/978-3-642-14295-6_56
https://doi.org/10.1007/978-3-642-14295-6_56

108 V. B. Wijesuriya and A. Abate

15. Hansson, H., Jonsson, B.: A logic for reasoning about time and reliability. Formal
Aspects Comput. 6(5), 512–535 (1994)

16. Henriques, D., Martins, J.G., Zuliani, P., Platzer, A., Clarke, E.M.: Statistical
model checking for Markov decision processes. In: Proceedings of the 2012 Ninth
International Conference on Quantitative Evaluation of Systems, QEST 2012,
IEEE Computer Society, Washington, DC, USA. pp. 84–93 (2012)

17. Legay, A., Sedwards, S., Traonouez, L.-M.: Scalable verification of Markov decision
processes. In: Canal, C., Idani, A. (eds.) SEFM 2014. LNCS, vol. 8938, pp. 350–362.
Springer, Cham (2015). https://doi.org/10.1007/978-3-319-15201-1 23

18. Mao, H., Chen, Y., Jaeger, M., Nielsen, T.D., Larsen, K.G., Nielsen, B.: Learning
Markov decision processes for model checking. In: Proceedings Quantities in Formal
Methods, QFM 2012, Paris, France, 28 August 2012, pp. 49–63 (2012)

19. Marom, O., Rosman, B.: Belief reward shaping in reinforcement learning. In:
Thirty-Second AAAI Conference on Artificial Intelligence (2018)

20. Polgreen, E., Wijesuriya, V.B., Haesaert, S., Abate, A.: Data-efficient Bayesian
verification of parametric Markov chains. In: Agha, G., Van Houdt, B. (eds.) QEST
2016. LNCS, vol. 9826, pp. 35–51. Springer, Cham (2016). https://doi.org/10.1007/
978-3-319-43425-4 3

21. Polgreen, E., Wijesuriya, V.B., Haesaert, S., Abate, A.: Automated experiment
design for data-efficient verification of parametric Markov decision processes. In:
Bertrand, N., Bortolussi, L. (eds.) QEST 2017. LNCS, vol. 10503, pp. 259–274.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66335-7 16

22. Poupart, P., Vlassis, N., Hoey, J., Regan, K.: An analytic solution to discrete
Bayesian reinforcement learning. In: Proceedings of the 23rd International Confer-
ence on Machine Learning, ICML 2006, ACM, New York, NY, USA, pp. 697–704
(2006)

23. Puterman, M.L.: Markov Decision Processes: Discrete Stochastic Dynamic Pro-
gramming, 1st edn. Wiley, New York (1994)

24. Quatmann, T., Dehnert, C., Jansen, N., Junges, S., Katoen, J.-P.: Parameter syn-
thesis for Markov models: faster than ever. In: Artho, C., Legay, A., Peled, D.
(eds.) ATVA 2016. LNCS, vol. 9938, pp. 50–67. Springer, Cham (2016). https://
doi.org/10.1007/978-3-319-46520-3 4

25. Ross, S., Pineau, J., Chaib-draa, B., Kreitmann, P.: A Bayesian approach for learn-
ing and planning in partially observable Markov decision processes. J. Mach. Learn.
Res. 12(May), 1729–1770 (2011)

26. Sen, K., Viswanathan, M., Agha, G.: Statistical model checking of black-box prob-
abilistic systems. In: Alur, R., Peled, D.A. (eds.) CAV 2004. LNCS, vol. 3114, pp.
202–215. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-27813-
9 16

27. Silver, D., Sutton, R.S., Müller, M.: Temporal-difference search in Computer Go.
Mach. Learn. 87(2), 183–219 (2012)

28. Sutton, R.S., Barto, A.G.: Introduction to Reinforcement Learning, 1st edn. MIT
Press, Cambridge (1998)

29. Sutton, R.S., Maei, H.R., Precup, D., Bhatnagar, S., Silver, D., Szepesvári, C.,
Wiewiora, E.: Fast gradient-descent methods for temporal-difference learning with
linear function approximation. In: Proceedings of the 26th Annual International
Conference on Machine Learning, ICML 2009, ACM, New York, NY, USA, pp.
993–1000 (2009)

30. Zuliani, P., Platzer, A., Clarke, E.M.: Bayesian statistical model checking with
application to Stateflow/Simulink verification. Form. Methods Syst. Des. 43(2),
338–367 (2013)

https://doi.org/10.1007/978-3-319-15201-1_23
https://doi.org/10.1007/978-3-319-43425-4_3
https://doi.org/10.1007/978-3-319-43425-4_3
https://doi.org/10.1007/978-3-319-66335-7_16
https://doi.org/10.1007/978-3-319-46520-3_4
https://doi.org/10.1007/978-3-319-46520-3_4
https://doi.org/10.1007/978-3-540-27813-9_16
https://doi.org/10.1007/978-3-540-27813-9_16

	Bayes-Adaptive Planning for Data-Efficient Verification of Uncertain Markov Decision Processes
	1 Introduction
	1.1 Related Work

	2 Rudiments
	2.1 Markov Decision Processes
	2.2 Strategies
	2.3 Bayesian Reinforcement Learning (Bayesian RL)
	2.4 PCTL Properties

	3 Verification and Learning
	3.1 Parameter Synthesis
	3.2 Bayesian Inference
	3.3 Confidence Computation
	3.4 Overview of the Approach

	4 Active Learning
	4.1 Bayes-Adaptive Model
	4.2 Synthesis of Bayes-Adaptive Strategies
	4.3 Bayes-Adaptive Temporal Difference Search

	5 Experiments
	5.1 Setup
	5.2 Results

	6 Conclusions and Future Work
	References

