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Abstract— This contribution presents sufficient conditions
for the existence of probabilistic bisimulations between two
diffusion processes that are additionally endowed with switching
and resetting behaviors. A probabilistic bisimulation between
two stochastic processes is defined by means of a bisimulation
function, which induces an approximation metric over the
distance between the two processes. The validity of the proposed
sufficient conditions results in the explicit characterization of
one such bisimulation function. The conditions depend on
contractivity properties of the two stochastic processes.

I. INTRODUCTION

Much research nowadays is targeted to the general prob-
lem of model simplification, particularly when the system
under study is dimensionally large and complex. In many
instances – both theoretical and practical – it is critical
to obtain a simplified model that is, in a certain sense,
equivalent to the original one. Alternatively, other approaches
target qualitative simplifications and are mostly concerned
with computationally scalable procedures [3]. The notion of
equivalence between models can be expressed by the corre-
spondence between the trajectories of the original (concrete)
model with those of the simplified (abstract) one, and can
be formalized with the concept of bisimulation [16]. Bisim-
ulation relations are widely used in the computer sciences,
particularly with regards to finite, discrete-space models [14],
[5]. However, in the instance of dynamical models evolving
on continuous spaces or according to probabilistic laws,
the search for a bisimulation relation can lead to rather
conservative results [13], [18]. In this case it is possible to
rely on approximate versions of the notion of bisimulation
[9], or probabilistic variants of it [5], [14] – both relaxations
rely on metrics over the distance between trajectories or
realizations of the models. They both work for models in
continuous- and discrete-time. Whereas the notion in [9]
works for continuous-space models, that in [5], [14] holds
exclusively for probabilistic models over discrete spaces.

The notion of probabilistic bisimulation for models evolv-
ing on uncountable state spaces has been introduced only re-
cently [12]. This work leverages a Lyapunov-based approach
to derive sufficient algebraic conditions for the existence
of probabilistic bisimulation functions between processes as
general as jump linear stochastic sytems. As an alternative to
[12], the work in [1] puts forward sufficient conditions for
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the existence and explicit characterization of a probabilis-
tic bisimulation functions between two diffusion processes,
which are based on their contractivity properties. The condi-
tions in [1] are shown to be related to a probabilistic version
of the concept of incremental stability [2]. Interestingly,
both the notion of Lyapunov stability and the concept of
incremental stability have been recently exploited in the
study of (bi-)simulation relations for deterministic models
on continuous spaces [10], [11].

This work extends the results in [1] in a number of
directions. It is firstly concerned with finding conditions for
the existence of probabilistic bisimulations (Section IV) of
stochastic models with switches and resets, namely models
that can discretely change the structure of their dynamics, as
well as perform finite jumps over their continuous domains
(Section II) – these models are thus probabilistic and hybrid
in nature and are named “switching and resetting diffusions.”
Secondly, the present work looks at probabilistic contractiv-
ity over non-identity metrics (Sections III and V-D). This
allows to consider processes that present non-trivial limit
sets. The study develops a number of numerical studies in
Section V. Proofs are omitted due to space constraints.

II. MODEL

We consider a probabilistic and hybrid framework in the
autonomous case, inspired by [7], [8]. It is characterized by
continuous-time processes that evolve probabilistically over
an uncountable state space, jump randomly within a finite
set of modes, and are reset upon changing mode. We denote
processes with bold typeset, and with normal fonts sample
values, points, or functions over the state space.

The state of the system at time t ∈ R+ (non-negative
reals) is given by a vector (q(t),x(t)) ∈ S, where S .

=
Q × Rn, n < ∞, is the hybrid state space and Q =
{1, 2, . . . , Q}, Q ∈ N, Q < ∞. The discrete component q
belongs to a finite set Q of modes, whereas the continuous
component x to the Euclidean space Rn. Within each mode,
the continuous component is characterized by the following
dynamics:

dx = f(q,x)dt+ σ(q,x)dW + r(q,x)dp, (1)

where f : S → Rn is a vector field (which characterizes
the deterministic drift), σ : S → Rn×m is the diffusion
matrix, W a standard m-dimensional Wiener process [17],
r : S → Rn is a deterministic reset function, and p(·, ·)



is a Poisson measure with intensity dt × Leb(dz), where
Leb is the Lebesgue measure over the real line. The Poisson
process p associated with the random measure induces a
set of random time instants τi, i ≥ 0, τ0 = 0, τi+1 > τi
(called event times), at which the discrete component q of the
process changes location. The initial condition for the model
is sampled from a probability distribution with support over
the whole hybrid state space, π : S → [0, 1]. Let (Ω,F , P )
be the underlying probability space over which W,p, π, and
thus (q,x), are defined [8].

The Poisson process p is characterized by state-dependent
rate functions λij(·), i, j ∈ Q, describing the dynamics of the
discrete component of the process, which commutes location
according to the following probability:

P (q(t+ δt) = j|(q(t),x(t)) = (i, x)) = λij(x)δt+ o(dt),
(2)

where i 6= j, and ∀(i, x) ∈ S, λij : Rn → R+, and∑
j∈Q λij(x) = 0. For any (i, x) ∈ S, j ∈ Q, define a func-

tion l : Q × S → R+ so that l(0, (i, x)) = 0, l(j, (i, x)) =∑j
k=1 λik(x). Introduce a function h̃ : R× S → Q, so that

h̃(z, (i, x)) =

{
j − i, if l(j − 1, (i, x)) ≤ z ≤ l(j, (i, x)),
0, else.

Similarly, let us introduce a function r̃ : R× S → Rn as

r̃(z, (i, x)) =

{
r(i, x), if z ≤ |l(i, (i, x))|,
0, else,

where 0 denotes an n-dimensional vector of zero elements.

The process described by (1)-(2) can then be equivalently
expressed as{

dx = f(q,x)dt+ σ(q,x)dW +
∫
R r̃(z, (q,x))p(dt, dz),

dq =
∫
R h̃(z, (q,x))p(dt, dz).

(3)

A solution of (3) is a cadlag [4] stochastic process
(q(t, s0),x(t, s0)) taking values in S, with initial condition
(q(0),x(0)) = s0 sampled from π, which evolves within the
event times [τi, τi+1), i ≥ 0, according to the SDE

dx = f(q,x)dt+ σ(q,x)dW,

and which at times τi, i ≥ 1, undergoes a change of discrete
location and a reset of the continuous component as follows:

x(τi) = lim
t↑τi

x(t) + r

(
lim
t↑τi

(q(t),x(t))

)
,

q(τi) = h̃

(
lim
t↑τi

p(t), lim
t↑τi

(q(t),x(t))

)
,

where p is the Poisson process associated with the random
measure.

Let us introduce the following set of structural assump-
tions on the model in (3).

Assumption 1: For any pair x, y ∈ Rn, q, q′ ∈ Q, there
exists finite and positive constants K1

q ,K
2
q ,K

3
q , such that:

1) Lipschitz continuity: ‖f(q, x)− f(q, y)‖+ ‖σ(q, x)−
σ(q, y)‖ ≤ K1

q ‖x− y‖
2) Bound on growth: ‖f(q, x)‖2 + ‖σ(q, x)‖2 ≤ K2

q (1 +
‖x‖2)

3) Bounded intensities: |λqq′(x)| < K3
q . Furthermore,

4) Finite reset magnitude: the function r(q, x) takes val-
ues in a bounded domain of Rn. �

It can be shown [8] that by upholding Assumption 1
on the components of the model (3), the solution process
(q(t, s0),x(t, s0)) exists and is unique, for any t ≥ t0 = 0
and any finite initial condition s0 = (q0, x0) ∈ S.

It is important to have a precise characterization of the
infinitesimal generator of (3) [4]. Consider a function ψ :
S → R+, assumed to be bounded and twice continuously
differentiable over the continuous domain Rn. The infinites-
imal generator of (3) is an operator L, acting on ψ(q, x),
that is defined for any q ∈ Q as follows:

Lψ(q, x) =
∂ψ

∂x
(q, x)f(q, x) (4)

+
1

2
Tr

(
σ(q, x)σ(q, x)T

∂2ψ

∂x2
(q, x)

)
+
∑
q′ 6=q

λqq′(x) (ψ(q′, x+ r(q, x))− ψ(q, x)) .

The Dynkin equation [4] allows computing expectations
of functions of the process, and states that, for any s ∈ S ,
Esψ(q(t, s),x(t, s)) = ψ(s) + Es

∫ t
0
Lψ(q(l, s),x(l, s))dl.

A. Special Case: Resetting Diffusion (RD)

As a special case of (3), consider a model with probabilis-
tic continuous dynamics and no discrete mode commutations
– it resets onto its unique domain according to an arrival
process p. More precisely, consider Q = {q}, the state-
dependent rate function λ(x)

.
= λqq(x), and the functions

f(x)
.
= f(q, x), σ(x)

.
= σ(q, x), r(x)

.
= r(q, x). The state

space is simply Rn. A resetting diffusion is thus described
by the following dynamical relation:

dx = f(x)dt+ σ(x)dW + r(x)dp. (5)

Consider a bounded, twice continuously differentiable func-
tion ψ : Rn → R+. The infinitesimal generator L is defined
over points x ∈ Rn as follows:

Lψ(x) =
∂ψ

∂x
(x)f(x) +

1

2
Tr

(
σ(x)σ(x)T

∂2ψ

∂x2
(x)

)
+ λ(x) (ψ(x+ r(x))− ψ(x)) .

B. Special Case: Switching Diffusions (SD)

As a second special case of (3), consider the framework
known as switching diffusions [7], characterized by proba-
bilistic continuous dynamics and discrete mode changes with
no associated continuous resets:{

dx = f(q,x)dt+ σ(q,x)dW,

dq =
∫
R h̃(z, (q,x))p(dt, dz).

(6)



Select a function ψ : S → R+, assumed to be bounded
and twice continuously differentiable within each of the
continuous domains Rn. The infinitesimal generator L at
point s = (q, x) is defined as follows:

Lψ(s) =
∂ψ

∂x
(s)f(s) +

1

2
Tr

(
σ(s)σ(s)T

∂2ψ

∂x2
(s)

)
+
∑
q′ 6=q

λqq′(x) (ψ(q′, x)− ψ(q, x)) .

III. STOCHASTIC CONTRACTIVITY

The following definition extends [1], [19], and is inspired
by studies of contractivity analysis for deterministic models
in [15]. For any (q, x) ∈ S, introduce the function s(q, x) =
x + r(q, x). Define Λq = supx∈Rn |λqq(x)|, which is finite
as per Assumption 1.3. Denote with mA : A → R a map
that acts on a finite set A = {a1, . . . , an} and yields the
maximum among the elements of the set A, mA(ai) =
maxi=1,...,n;ai∈A |ai|.

Definition 1 ((General) Stochastic Contractivity):
Consider the process in (3). Assume that the following
conditions are valid for all q ∈ Q:

1) f(q, ·) is such that, for all x̃ ∈ Rn,∃Fq < ∞ :

λmax

(
∂f
∂x (x̃)

)
≤ Fq , where ∂f/∂x(x̃) is the symmet-

ric part of the Jacobian of f(q, ·) evaluated at x̃, and
λmax(·) is a function computing the maximum value
among the real parts of the eigenvalues of a matrix

2) σ(q, ·) is Lipschitz continuous, as per Assumption 1.1,
with finite and positive constant K1

q : (K1
q )2 .

= Sq
3) s(q, ·) is such that, for all x̃ ∈ Rn,∃Rq < ∞ :

s(q, x̃)T s(q, x̃) ≤ Rq x̃T x̃
The system in (3) is said to be stochastically contractive

(in the identity metric) if the following conditions hold:

mQ(Fq) ≤ 0, mQ(Λq(Rq − 1)) ≤ 0,

2mQ(Fq) + mQ(Sq) + mQ(Λq(Rq − 1)) < 0. �

Let us focus on special cases of Definition 1. The first
deals with resetting diffusions.

Definition 2 (Stochastic Contractivity for RD): Consider
the process in (5). Assume that the following conditions are
valid:

1) f(·) is such that, for all x̃ ∈ Rn,∃F < ∞ :

λmax

(
∂f
∂x (x̃)

)
≤ F

2) σ(·) is Lipschitz continuous with finite and positive
constant K1 : (K1)2 .

= S
3) s(·) is such that, for all x̃ ∈ Rn,∃R < ∞ :

s(x̃)T s(x̃) ≤ R x̃T x̃
The system in (5) is said to be stochastically contractive

(in the identity metric) if the following holds:

2F + S + Λ(R− 1) < 0. �

The second special case deals with switching diffusions.

Definition 3 (Stochastic Contractivity for SD): Consider
the process in (6). Assume that the following conditions are
valid for all q ∈ Q:

1) f(q, ·) is such that, for all x̃ ∈ Rn,∃Fq < ∞ :

λmax

(
∂f
∂x (x̃)

)
≤ Fq

2) σ(q, ·) is Lipschitz continuous, as per Assumption 1.1,
with finite and positive constant K1

q : (K1
q )2 .

= Sq
The system in (6) is said to be stochastically contractive

(in the identity metric) if the following holds:

2mQ(Fq) + mQ(Sq) < 0. �

Remark 1: Definition 1 poses restrictions on the dy-
namics. Within each domain it is critical that the accrued
contractivity effect of drift and reset offsets the disruptive
presence of the diffusion term. Furthermore, to account for
jumps between different domains, a contractivity condition
has to hold for any possible pair of domains, which leads to
the use of the maximization function. An numerical example
in Section V-A illustrates contractive dynamics. �

IV. PROBABILISTIC BISIMULATIONS

In this Section we recall the definition of probabilistic
bisimulation of two stochastic processes by associating its
existence to that of a function that relates the (expected
value of the squared) distance between them. We claim that
a sufficient condition for the existence of a probabilistic
bisimulation function is the stochastic contractivity of a new
system obtained by composing the two processes.

Consider two processes Si, i = 1, 2, with solutions
(qi(t),xi(t)) ∈ Si of (3) and equipped with observations:

yi(t) = gi(xi(t)), i = 1, 2. (7)

Let us assume that both observation functions take values in
Ro, o ∈ N, o < ∞. The use of an observation map allows
to compute the distance between two processes Si, i = 1, 2
resorting to the standard Euclidean norm, rather than a (more
complicated) distance defined over their hybrid state spaces
[4]. Notice that the processes Si, i = 1, 2 do not necessarily
have the same state dimension (i.e., Q1 6= Q2, n1 6= n2), and
are not driven by the same noise W nor by the same jump
process p.

Assumption 2: Assume that each gi, i = 1, 2, vanishes at
the origin and is Lipschitz continuous with finite positive
constant K4

i . (Define ν = max{K4
1 ,K

4
2}.) �

Consider now the process made up by composing in
parallel S1 and S2 and by subtracting their observations.
The parallel composition is performed by taking the cross
product of the hybrid state spaces for the two processes
(S̄ = S1 × S2). The output is defined as follows:

ȳ(t) = g1(x1(t))− g2(x2(t))
.
= g(x̄(t)), (8)

where we have denoted with x̄ =
[
x1 x2

]T
(henceforth

barred variables denote the composed model). Let us recall
the following classical notion:



Definition 4 ((Super-)Martingale, [6]): A function χ :
Rn → R is called a martingale for a stochastic process
s(t, s0), t ≥ 0, taking values in Rn, if for any s0 ∈ Rn, t ≥
0,Es0 [χ(s(t, x0))] = χ(s0). The function χ is called a
supermartingale if Es0 [χ(s(t, x0))] ≤ χ(s0). �

The following definition relates the behavior of the two
processes S1 and S2 by upper-bounding the distance between
their observations with a non-increasing function of time:

Definition 5 (Probabilistic Bisimulation Function, [12]):
A continuous function ψ : Rn1 × Rn2 → R+

0 is called a
probabilistic bisimulation function for the processes S1 and
S2, solution of (3)-(7), if, considering the composed process
in (8), the following holds:

1) ∀(s1, s2) ∈ S̄, si = (qi, xi), ψ(x̄) ≥ ‖g(x̄)‖2;
2) ∀s̄0 = (q̄0, x̄0) ∈ S̄, ψ(x̄(t, x̄0)) is a supermartingale

started at x̄0.
If two processes S1, S2 (started at s̄0) admit a probabilistic
bisimulation function, then they are said to be probabilisti-
cally bisimilar with precision ψ(x̄0). �

If such a function exists, then we are allowed to state that
Px̄o

(
sup0≤s≤t ‖g(x̄(s, x̄o))‖2 ≥ δ

)
≤ ψ(x̄o)

δ : this defines a
(probabilistic) bound on the distance between outputs of the
two processes.

Theorem 1: Consider two processes, solutions of (3) and
with output (7) under Assumption 2. If the composition
of S1, S2 (as in (8)) is stochastically contractive (as in
Definition 1), then S1 and S2 are probabilistically bisimilar.
When existing, a probabilistic bisimulation function for the
two processes started at x̄ has the form ψ(x̄) = 2ν‖x̄‖2. �

Introduce the function γ : Ro × Ro × R+ → R+ as
γ((y1, y2), t) = ‖g1(x1)− g2(x2)‖2eΓt, where

Γ = 2mQ(Fq) + mQ(Sq) + mQ(Λq(Rq − 1))

is the global contractivity coefficient. It characterizes
a time-dependent upper bound on the (expected value
of the squared) distance between S1, S2 started at
(q1, x1), (q2, x2), q1, q2 ∈ Q. Similarly for the special cases:

Corollary 1: If the two processes are solutions of (5)
(resp. (6)) with output (7) under Assumption 2, the contrac-
tivity condifion in Definition 2 (resp. 3) on their composition
(as in (8)) ensures their probabilistic bisimilarity. �

V. CASE STUDIES AND EXTENSIONS

A. Dynamical Properties of a single Contractive Switching
and Resetting Diffusion

Let us consider a system made up of Q = {1, 2},S =
Q × R2. The drift is linear, f(i, x) = Aix, x = [x1, x2]T ,
and characterized by:

A1 =

[
−0.6 0.3
−0.6 0.15

]
, A2 =

[
−0.35 0

0.1 −0.25

]
.

The continuous dynamics are driven by a 1-
dimensional Wiener process, scaled by matrices
σ(1, x) = 0.2[x1 x2]T , σ(2, x) = 0.3[x1 x2]T . The Poisson
measures are characterized by rates Λ1 = 0.41,Λ2 = 0.38,
which are independent of the continuous component. The
reset maps induce a rotation and an expansion of the
continuous state, as follows:

r(i, x) = αi

[
cos(θi) − sin(θi)
sin(θi) cos(θi)

]
x,

where α1 = 1.1, α2 = 4/3, and θ1 = −1, θ2 = −0.1.
The global coefficient of contractivity equals −0.0778 < 0.
Let us denote the fully observed process started at s0 ∈ S
with (q(t, s0),x(t, s0)). Figure 1 displays the dynamical
properties of the process, along with its distance from the
origin (which is the limit set for the dynamics).
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Fig. 1. A single realization of the continuous component x(t, s0) of
the process (in blue color, left plot). The plots on the right describe its
(squared) norm, upper bounded by the function γ(x0, t) = γ((x0, 0), t) =
e−0.0778 t‖x0‖2, and the evolution of its discrete component q(t, s0). The
time horizon is T = 10 sec, and is divided in N = 102 time intervals. The
initial condition is s0 = (1, [1, 1]T ).

B. Probabilistic Bisimilarity of two Processes

We now compare the evolution of the process described
in Section V-A with that of the following fully observed
deterministic ODE, which takes values xr ∈ R2: ẋr(t) =
A1xr.

We assume that process (q(t, s0),x(t, s0)) is initialized
according to the uniform distribution s0 ∼ U(A), where A =
Q × [−1, 1]2. Similarly, process xr(t, (xr)0) is initialized
according to (xr)0 ∼ U([−1, 1]2). Clearly, the contractiv-
ity coefficient of their composition again equals −0.0778.
The function E(s0,(xr)0)[‖x(t, s0) − xr(t, (xr)0)‖2], t ∈
[0, 20] is computed over 103 experiments. The function
γ(s0, (xr)0, t) = e−0.0778 t‖x0 − (xr)0‖2 and the bisim-
ulation function ψ(s0, (xr)0) = ‖x0 − (xr)0‖2 are both
averaged over the different initial conditions. Figure 2 plots
the outcomes.
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Fig. 2. Top row: three realizations of x(t, s0) and of xr(t, (xr)0).
To ease the interpretation, we have kept s0 = (1, [1 1]T ) fixed. Bot-
tom row: average over 103 experiments for E(s0,(xr)0)[‖x(t, s0) −
xr(t, (xr)0)‖2], γ((s0, (xr)0), t), and ψ(s0, (xr)0). The time horizon is
T = 20 sec, and is divided in N = 200 time intervals.

C. Probabilistic Bisimilarity of Models with Outputs

Let us compare the following two linear, single-mode SDE
with observation maps [12]. The second model is a “reduced”
version of the first, extended model.

dx = Ax dt+ Σx dW, y = Gx,

dxr = Arxr dt+ Σrxr dW, yr = Grxr,

where (in “Matlab” notations)

A = blkdiag(a1, a2, a3), Ar = blkdiag(a1, a2);

a1 =

[
−1 −10
10 −1

]
, a2 =

[
−2 −20
20 −1

]
, a3 =

[
−2 0
0 −2.5

]
;

Σ = 0.15


1 0 0 0 1 1
0 1 0 0 0 0
0 0 1 0 1 1
0 0 0 1 0 0
1 0 0 0 0 1
0 0 1 0 1 0

 ,Σr = Σ(1 : 4; 1 : 4);

G =

[
0.84 −1.03 1.07 −0.88 0.5 0
−0.60 −1.35 −0.26 −0.27 0 −0.5

]
,

and Gr = G(1 : 2; 1 : 4). The processes are initialized
deterministically in x0 = [111111]T , (xr)0 = [1111]T .
Based on the extended mode, we obtain a contractivity
coefficient equal to 2F + S ≈ −1.6 < 0. Figure 3 displays
the output of a single realization of the two processes, along
with the average over 102 experiments of their distance and
with function γ (here ν ≈ 2.08).

D. Non-Identity Metrics

An advantage that comes along with the use of (stochastic)
contractivity analysis in the search for probabilistic bisimu-
lation functions is the extension of the former to non-identity
metrics [15], which entails the possibility of considering
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Fig. 3. Left plot: single realizations of y(t, x0) (red color, full model) and
of yr(t, (xr)0) (blue color, reduced-order model), where the initial con-
ditions have been set to x0 = [111111]T , (xr)0 = [1111]T respectively.
Right plot: computation, over 102 experiments, of E(x0,(xr)0)[‖y(t, x0)−
yr(t, (xr)0)‖2] (blue plot), and plot of γ((x0, (xr)0), t) (green plot). The
time horizon is T = 3 sec, and is divided in N = 103 time intervals.

bisimulation functions for models with non-trivial limit sets,
such as closed orbits and limit cycles. For the sake of
explanation, we shall focus on the RD model in (5) (the
extension to models as in (3) follows intuitively).

Definition 6 (Stochastic Contractivity, Non-Identity Metrics):
Consider the process in (5), and a square matrix
Θ(x), x ∈ Rn, such that M(x) = ΘT (x)Θ(x) � 0,
uniformly in x. Assume that the following holds:

1) f(·) is such that, for all x̃ ∈ Rn,∃F < ∞ :

λmax

(
dΘ
dt (x) + Θ(x)∂f∂x (x̃)

)
Θ−1(x) ≤ F

2) σ(·) is Lipschitz continuous in the metric M(·) with
finite and positive constant K1 : (K1)2 .

= S
3) s(·) is such that, for all x̃ ∈ Rn,∃R < ∞ :

λmax
(
ΘT (x̃)sT (x̃)MT (x̃)s(x̃)Θ(x̃)

)
≤ R

The system in (5) is said to be stochastically contractive in
the metric M(·) if

2F + S + Λ(R− 1) < 0. �

In general, selecting a proper metric M(·) to show the
contractivity property of a process can be non trivial. Ideally,
a coordinate transformation Θ(·) allows to define a (non
unique) metric and to enforce the conditions in Definition
6 directly, as the following example shows.

a) Example of Contractivity over a Non-Identity Met-
ric: Consider the following two-dimensional model in polar
coordinates (ρ, θ) ∈ R+ × [0, 2π]:

ρ̇ = ρ(l1 − ρ2), θ̇ = l2, (9)

where l1 > 0, l2 ∈ R. The model has an unstable equilibrium
set at (0, θ), and a limit cycle at (1, θ). The parameter
l2 denotes the direction and the angular speed of rotation.
Introduce the coordinate change z = Vl1(ρ) = log(ρ/

√
l1),

which translates into the dynamics ż = l1(1− e2z) that are
stable at the origin z = 0 and have a contractivity index
F = −2l1 < 0. It can be shown that a metric for the original
model can be induced by selecting Θ(ρ) = ∂Vl1/∂ρ = 1/ρ,



which yields M(ρ) = 1/ρ2. Let us remark that the chosen
metric is not unique. �

The example above leads to a general trick for selecting
a possible metric: to look for a function that characterizes
the limit region as its level set. Clearly this presupposes
the explicit knowledge of the limit set. (Notice that the
technique does not always lead to a legitimate coordinate
transformation, as in Example a) – in general the matrix Θ
has to be square and has to lead to a uniformly positive
definite matrix M .) This can also lead to a generalization of
the result in Theorem 1 for finding a bisimulation function
for two processes, under proper contractivity assumptions.
Consider two systems S1, S2, as in (5), and a compact set
C ⊂ Rn described as a level set of a differentiable function
V : Rn → R as C = {x ∈ Rn : V (x) = 0}. Select output
processes yi(t) = gi(xi(t)) = V (xi(t)). The following
holds:

Theorem 2: Consider two processes S1, S2 as in (5), with
initial conditions respectively x1, x2 ∈ Rn. If both systems
are stochastically contractive over the set C (i.e., there exists
a legitimate metric M as in Definition 6) then a probabilistic
bisimulation function for them is ψ(x1, x1) = |V (x1) −
V (x2)|2, whenever V is Lipschitz. �

b) Example of Probabilistic Bisimulation for Stochasti-
cally Contractive Processes over a Limit Set: Let us consider
a perturbed version of (9):

dρ = ρ(l1 − ρ2)dt+ σ(ρ)dW, θ̇ = l2, (10)

where we assume σ(ρ) = α|Vl1(ρ)|, α > 0. By expressing
x1 = ρ cos θ, x2 = ρ sin θ, we obtain in Cartesian coordi-
nates the following model:

dx1 = ((l1 − x2
1 − x2

2)x1 − l2x2)dt+ αa|Vl1(ρ)|dW,
dx2 = ((l1 − x2

1 − x2
2)x2 + l2x1)dt+ αa|Vl1(ρ)|dW.

The model has an attractive limit cycle at Cl1 = {(x1, x2) :
x2

1 + x2
2 = l1}. We denote its solution from (xa)0 with

xa(t, (xa)0) ∈ R2, t ≥ 0.
We compare the above model with a second system that is

endowed with a limit cycle, namely the van der Pol oscillator
[20]. This can be expressed as:

ẍv + β(t)(x2
v − 1)ẋv + xv = 0. (11)

For this second order model, if β(·) > 1 the system displays
relaxation oscillations, if β(·) � 1 the system presents a
circular limit cycle at C = {((xv)1, (xv)2) : (xv)

2
1 +(xv)

2
2 =

4}, whereas as β(·) ≈ 0 the system behaves like a simple,
undamped harmonic oscillator. Let us further perturb the
model in (11) with a Wiener process with diffusion term
αv|V4(xv)|. Over a simulation horizon [0, T ], we select a β
that is a monotonically decreasing function of time, so that
β(0) = 1 and β(T ) = 0. Let us denote the solution of (11)
from (xv)0 with xv(t, (xv)0) ∈ R2, t ≥ 0.

Select l1 = 4 and l2 = 1, so that the two limit sets
coincide, and αa = αv = 1. Let us focus on the observed
process ȳ(t) = |ga(xa(t)) − gv(xv(t))|2 = |V4(xa(t)) −
V4(xv(t))|2. Figure 4 displays the outcomes. �
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Fig. 4. Left plot: single realizations of xa(t, (xa)0) (noisy attractor) and of
xv(t, (xv)0) (perturbed van der Pol oscillator), where the initial conditions
have been set to (xa)0 = (0, 0)T , (xv)0 = (4, 0)T . To ease the interpre-
tation, we have kept s0 = (1, [1 1]T ) fixed. Right plot: average, over 102

experiments, for E((xa)0,(xv)0)[|V4(xv(t, (xv)0))−V4(xa(t, (xa)0))|2],
and ψ((xa)0, (xv)0). The time horizon is T = 102 sec, and is divided in
N = 104 time intervals.
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