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Abstract: This paper proposes two new congestion control schemes for packet
switched wireless networks. Starting from the seminal work of Kelly (Kelly et
al., Dec 1999), we consider the decentralized flow control model for a TCP-like
scheme and extend it to the wireless scenario. Motivated by the presence of channel
errors, we introduce updates in the part of the model representing the number of
connections the user establishes with the network; this assumption has important
physical interpretation. Specifically, we propose two updates: the first is static,
while the second evolves dynamically. The global stability of both schemes has been
proved; also, a stochastic stability study and the rate of convergence of the two
algorithms have been investigated. This paper focuses on the delay sensitivity of
both schemes. A stability condition on the parameters of the system is introduced
and proved. Moreover, some deeper insight on the structure of the oscillations of
the system is attained. To support the theoretical results, simulations are provided.
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1. INTRODUCTION

In these past years the control community has
tried to systematically model Communication
Networks in order to analyze their structure,
properties and behavior in depth. Among the al-
gorithms that have been employed for control-
ling the flow of information in a network, the
Transmission-Control-Protocol(TCP) has been the
most successful one (Jacobson, 1998). The seminal
work of Kelly has introduced a rigorous math-
ematical model for TCP (Kelly, 2003)-(Kelly et

1 This work was supported by NSF grant ANI-9905799,
the AFOSR contract F49620-00-1-0327 and the NSF CCR-
0225610 grant.

al., Dec 1999) based on an underlying optimiza-
tion problem; other authors have studied and
interpreted this or similar models (Alpcan and
Basar, Dec 2003)-(Kunniyur and Srikant, Mar
2001)-(Kunniyur and Srikant, Oct 2003). The fun-
damental notion of stability has been considered
in (Paganini et al., to appear), while robustness,
in particular with respect to delays, is the focus of
(Johari and Tan, Dec 2001)-(Vinnicombe, 2001)-
(Vinnicombe, 2002). All these efforts have been
focused on a model for the wired case. The wireless
scenario presents more subtleties then the wired
one: here the packet loss is due both to conges-
tion at the link, and to channel error. (Chen et
al., 2005b) proposed two schemes, a static and



a dynamic one, to fix the sub optimality of the
equilibrium points of the network. In that work,
global stability of the two schemes was proved,
and delay sensitivity analysis studied. In another
paper by the same authors (Chen et al., 2005a),
a stochastic stability analysis is derived, and the
rate of convergence of these two schemes is com-
puted.

In this paper we focus on the presence of delays.
As commonly known, delay is one of the main
causes of instability in otherwise stable dynamical
models, as well as of oscillatory dynamics. We
introduce a condition to ensure stability for the
trajectories of the system. Furthermore, we shed
some light on the structure of the oscillations
induced by delays in the system. We present
simulations to verify our theoretical results.

2. PROBLEM SETUP

A network is described via its J resources, its
links, and its R users (sender-receiver pairs),
which can also be conceived as the routes, subsets
of J . Each link j has a finite capacity Cj . The
connections of the network are described via a
routing matrix A = (ajr, j ∈ J, r ∈ R), where
ajr = 1 if j ∈ r. Every user is endowed with a
sending rate xr ≥ 0 and a utility function Ur(xr),
assumed to be increasing, strictly concave and C1.

Kelly (Kelly et al., Dec 1999) introduced the fol-
lowing fluid flow model, which is a more general,
continuous-time version of the TCP-like additive
increase, multiplicative decrease algorithm:

d

dt
xr(t) = kr


wo

r − xr(t)
∑

j∈r

µj(t)


 , r ∈ R (1)

with kr being a positive scale factor affecting the
adaptation rate. The term wo

r can be thought as
the number of connections the user has with the
network. The congestion signal is generated at a
link j as

µj(t) = pj


 ∑

s:j∈s

xs(t)


 . (2)

Here the pj(y)’s are the prices at the links and are
assumed to be non-negative, continuous and in-
creasing functions; moreover, they depend on the
aggregate rate passing through the link. Through-
out this paper we use the following shape for the
price function, the “packet loss rate”,

pj(y) =
(y − Cj)+

y
. (3)

The end-to-end packet loss rate for user r is
1 − ∏

j∈r pj(
∑

s:j∈s xs), which is approximately∑
j∈r pj(

∑
s:j∈s xs) if pj(

∑
s:j∈s xs) is small. With

this primal scheme (1)-(2), the unique, globally

and asymptotically stable points of the entire
network, denoted by xo = (xo

r, r ∈ R) 2 , are given
by

xo
r =

wo
r∑

j∈r pj

(∑
s:j∈s xo

s

) , r ∈ R. (4)

As already stated, one of the main differences
between the wired case and the wireless one is the
presence of physical channel errors in this latter
case; in the setting of our model these affect the
packet loss rate, which in the wired case only
depends on the congestion measure. We model
this occurrence deterministically: assuming every
link j is affected by the error εj , the new price
function νj is given by:

νj(t) = pj

(∑
s:j∈s

xs(t)

)
+

(
1− pj

(∑
s:j∈s

xs(t)

))
εj

, qj

(∑
s:j∈s

xs(t)

)
≥ pj

(∑
s:j∈s

xs(t)

)
. (5)

The primal scheme (1) then adapts itself accord-
ing to this new price functions qj , which have the
same structural properties as the old pj ; a close
look shows that, compared to the wired case, the
equilibrium point is sub optimal. We introduce the
following two schemes to address this problem.

3. TWO NEW CONTROL SCHEMES

3.1 Static Update

Assume the term ωr is time dependent, wr(t), and
is adjusted according to the following law:

wr(t) = wo
r

∑
j∈r νj(t)∑
j∈r µj(t)

. (6)

Then, the source rate for user r is given by:

d

dt
xr(t) = kr


wr(t)− xr(t)

∑

j∈r

νj(t)


 . (7)

A rapid calculation shows that, under this change,
the equilibrium of the system is again x0. Intu-
itively, if the noise is large, i.e. νj(t) > µj(t), an
increase in wr(t) counteracts it.

3.2 Dynamic Update

Rather than an instantaneous adaptation rule, we
advance a dynamic update for wr as follows:

d

dt
wr(t) = cr

(
wo

r−wr(t)

∑
j∈r pj(

∑
s:j∈s xs(t))∑

j∈r qj(
∑

s:j∈s xs(t))

)
.

(8)

2 In order to lighten the notation, throughout the whole
paper users or links variables with no subscript will directly
denote vectorial quantities.



The equilibrium points of the new, extended sys-
tem are composed of a first part given by the
vector xo and a second part, for the new dynamics,

given by wo
r

∑
j∈r

νj(t)∑
j∈r

µj(t)
. The system of coupled

equations (1)-(2)-(8) is strongly nonlinear and
asymmetric.

4. DELAY SENSITIVITY ANALYSIS

System delay is one of the main causes of oscilla-
tions. Since oscillations are one of the main con-
cerns with TCP schemes, an analysis of the delay
sensitivity is necessary. The setting we adhere to
is that developed by (Johari and Tan, Dec 2001).
The relations (1)-(2) for the primal scheme in the
presence of delays can be expressed as:

d

dt
xr(t) = krw

o
r − krxr(t− Tr)

∑

j∈r

µj(t− d2(j, r))

(9)
and

µj(t) = pj


 ∑

s:j∈s

xs(t− d1(j, s))


 , (10)

where

d1(j, r) + d2(j, r) = Tr ∀r ∈ R. (11)

Here d1(j, r) is the forward delay from the sender
of route r to link j, and d2(j, r) is the return delay
from link j to the sender of route r. Hence Tr is
the round trip time on route r, which is assumed
to be fixed. In the following, we introduce two
conditions for enforcing stability under delays (the
proof for the first one can be found on (Chen et
al., 2005b)).

4.1 Static Update

Theorem 1. The system (6)-(7) is locally stable if
∀r ∈ R,

kr

∑
j∈r qj∑
j∈r pj


∑

j∈r

pj +
∑

j∈r

p′j
∑

s:j∈s

xo
s


 <

π

2Tr
,

(12)
where pj , qj are the values of pj(·) and qj(·) evalu-
ated at the equilibrium point; p′j is the derivative
of pj(·) evaluated at the equilibrium point.

4.2 Dynamic Update

Lemma 1. Let the matrices P = P ∗ Â 0, Q =
Q∗ Â 0, L = diag{li}, li ∈ C, ∀i. Then

σ(Q−1LP ) ⊂ ρ(Q−1P )(Co(0∪{li})∪Co(0∪{−li})).
Proof : Let v be a right eigenvector of P corresponding to
the eigenvalue λ and such that the vector Pv is normalized.

Then Q−1LPv = λv. Then LPv = λQv ⇒ (Pv)∗L(Pv) =
λ(Pv)∗Qv = λv∗P ∗(QP−1)Pv. Therefore, naming k =
ρ(Q−1P )((Pv)∗QP−1(Pv)) and observing that |k| ≥ 1,

λ =
(Pv)∗L(Pv)

v∗P ∗(QP−1)Pv
= ρ(Q−1P )

(∑
i

|Pvi|2
k

(±li) + 0
)
.

Theorem 2. The system (1)-(2)-(5)-(8) is locally
stable if the following two conditions hold, ∀r ∈ R:

kr

(∑
j∈r

qj +
∑
j∈r

q′j
∑
s:j∈s

xo
s

)
<

π

2Tr
; (13)

cr

(∑
j∈r

pj +
∑

j∈r
p′j

∑
s:j∈s

xo
s

)

minr∈R

∑
j∈r

qj

<
π

2Tr
. (14)

Proof : As in the proof of global stability for the dynamic
update case, we shall exploit the idea of the two times scale.
The first condition indeed refers to the boundary layer. The
linearization of the relation for the reduced system around
its equilibrium and the manifold equation, comprehensive
of the delays, are:

ω̇r(t) = crωo
r − crxr(t− Tr)

·
∑
j∈r

pj(
∑
s:j∈s

xs(t− d1(j, s)− d2(j, r)));

ωr(t− Tr) = xr(t− Tr)

·
∑
j∈r

qj(
∑
s:j∈s

xs(t− d1(j, s)− d2(j, r))).

Taking the derivative of the second term, after a proper
shift in time, gives:

ω̇r(t) = ẋr(t)
∑
j∈r

qj(
∑
s:j∈s

x̃s(j, r))

+xr(t)
∑
j∈r

q′j(
∑
s:j∈s

x̃s(j, r))
∑
s:j∈s

˙̃xs(j, r),

where x̃s(j, r) = xs(t−d1(j, s)−d2(j, r)+Tr). Substituting
this last relation within the first one, letting xr(t) = xo

r +
yr(t), ẋr(t) = 0 + ẏr(t), and linearizing around these
equilibrium points gives:

∑
j∈r

qj ẏr(t) = −crxo
r

∑
j∈r

p′j
∑
s:j∈s

ys(t− d1(j, s)

−d2(j, r))− cryr(t− Tr)
∑
j∈r

pj

−xo
r

∑
j∈r

q′j
∑
s:j∈s

ẏs(t− d1(j, s)− d2(j, r) + Tr).

Taking he Laplacian transform and simplifying out com-
mon matrix terms, we obtain:

(
diag{xo

r}−1diag
{∑

j∈r

qj

}
+ N(s)

)
sY (s) = −diag{cr} ·

diag{e−sTr}
(

diag{xo
r}−1diag

{∑
j∈r

pj

}
+ M(s)

)
Y (s),

where N(s) and M(s) are composed of



Nrq(s) =
∑

j∈r∩q

q′jexp(−s(d1(j, q)− d1(j, r)));

Mrq(s) =
∑

j∈r∩q

p′jexp(−s(d1(j, q)− d1(j, r))).

Then, naming the quantities inside the two big parentheses
Q(s) and P(s), we have

sY (s) = −Q(s)−1diag{cr}diag{e−sTr}P(s)Y (s). (15)

We are interested in checking the stability of this inter-
connection, and in case pose conditions on the cr terms

to enforce it. Name L = diag
{

cr
π
2

exp(−jωTr)
jωTr

}
, P =

diag{√xr}P(jω)diag{√xr}, Q = diag{√xr}Q(jω)·
diag{√xr}. Then, employing the observation that the ma-
trices
Q(s)−1diag{cr}diag{e−sTr}P(s) and Q−1LP are similar,
we obtain

σ(Q−1LP ) ⊂ ρ(Q−1P )
[
Co

(
0 ∪

{
cr

π

2

exp(−jωTr)

jωTr

})

∪ Co
(
0 ∪

{
− cr

π

2

exp(−jωTr)

jωTr

})]
.

The necessary introduction of the additional negative
terms in the convex hull does not change its structural
property of excluding the −1 point in the complex plane.
The problem then boils down to posing conditions on the
term ρ(Q−1P ); we know that ρ(Q−1P ) ≤ ρ(Q−1)ρ(P ) ≤

ρ(P )
minλσ(Q)

. Notice that N(s) = AT (−s)diag
∑

j∈s
q′jA(s)

and that N(s) = N(−s), N(jω) Â 0,∀ω. From a lin-
ear algebra fact, given two matrices A = A∗ º 0 and
B = B∗, then the eigenvalues of their sum, ranked in-
creasingly, are correspondingly lower bounded by those
of B. Therefore, focusing on the structure of matrix
Q = diag{xo

r}−1diag{
∑

j∈r
qj} + N(s), we claim that

minr(
∑

j∈r
qj) ≤ minλσ(Q) 3 . This translates into the

condition that, ∀r ∈ R:

ρ(Q−1P ) < cr

(∑
j∈r

pj +
∑

j∈r
p′j

∑
s:j∈s

xo
s

)

minr∈R

∑
j∈r

qj

<
π

2Tr
.

We include a simulation, in figure (1), to show
that the condition holds. The network topology
we analyze is that of two users with one shared
link (see figure (2) with n = 2). The link error rate
is set to 2%. We assume the following parameters:
wo

1 = 60, wo
2 = 30; T1 = 0.1s, T2 = 0.16s;

k1 = 0.35, k2 = 0.2. The condition fixes the
constants c1 = 0.004, c2 = 0.004.

5. THE STRUCTURE OF THE DELAYS

It is quite important to understand the proper-
ties of the oscillations present in a system. In
our rather complex setting, it is only possible
to get quantitative results locally, considering a
linearized version of the model. Consider a mul-
tidimensional delay differential equation of the
following kind

ẋ(t) =
n∑

i=1

Aix(t− τi). (16)

3 The reader should realize that, in a worst case scenario,
the bound can be not so tight.
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Fig. 1. Dynamic update system with delay: con-
vergence of (a) rates xr(t), r = 1, 2, (b)
wr(t), r = 1, 2, (c) packet loss rate pj(·) and
qj(·), j = 1, 2, with initial rate set to 0.

The above delay differential equation (DDE),
which is defined for say t ≥ t0, needs to be
specified also in the interval [t0 − T, t0] , where
T = maxi=1,...,nτi, through a pre-shape function
x(t) = φ(t). The frequency of the oscillations
of the different modes can be derived from the
expression of the poles of the system, which are
the solutions of its characteristic equation:

det(λI −
n∑

i=1

Aie
−λτi) = 0. (17)

If we make the simplifying assumption, as already
postulated in (Johari and Tan, Dec 2001), that
the delay is the same for every user, then n = R,
otherwise in general n = J

( R
2

)
+ R.

Unfortunately the roots of the characteristic equa-
tion (17), which is non linear and transcendental,
cannot be expressed in a closed form. As a matter
of fact, we need to resort to a class of functions
W (s) known as Lambert functions. A detailed
description of them can be found in (Asl and
Ulsoy, 2003). The general solution of the DDE can
be expressed, similarly to the case of the solution



in terms of the state transition matrix for the
ODE, as:

x(t) =
+∞∑

k=−∞
e1/TWk(−AT )tCk. (18)

Wk denote the kth branch of the function. The
coefficients Ck are vectors determined by the pre-
shape functions. In our particular case, given that
the initial condition for the state equations (rates)
is less than the optimal rate 4 , then the dynamics
will experience no delay as long as all the users do
not congest the network. In fact, in this situation
both the price function and its derivative will be
zero for all the links. As soon as one link gets
congested, the users that rely on it will start ex-
periencing a delay. This implies that the preshape
functions in our setting are actually those trajec-
tories that describe the transient of the sending
rates. In some special cases (depending on the
form of the preshape functions), it could happen
that only few of the coefficients Ck are different
from zero, which may simplify the analysis of the
oscillation frequencies. Unfortunately, it should be
clear from the reasoning how this does not happen
in our quite involved case.

In the following, we shall focus on two very simple
topologies; exploiting some approximations in the
first case, we will try to describe how oscillations
are characterized in the second, more general
case. For the sake of simplicity, we shall focus on
the dynamical equations with no update, which
structure actually encompasses also the case of
the static update. The first network topology we

Fig. 2. Multi-user, one-link topology.

study is that of one user, with one single link (see
figure(2), with n = 1). Considering the linearized
expression

ẏ1(t) = −k1(p1 + xo
1p
′
1)y1(t− T ),

we can infer that the two terms into the paren-
thesis will have different weight depending on the
operating point of the system. Assuming the clas-
sical shape for the price, p1(x1) = (x1−C1)

+

x1
, then

the equilibrium of the system will be at the point
xo

1 = C1 + ωo
1. In the case of light congestion,

ωo
1 ¿ C1, then p1 ¿ xo

1p
′
1; in the opposite case of

4 This is typically what happens when a user starts
sending packets through the network.

heavy congestion, ωo
1 À C1, then p1 À xo

1p
′
1. This

fact can be extended and used for the more general
structure of the one bottleneck link, with n users.
It is represented in figure (2). We assume that
the forward and backward delays for each user
are the same: di(1, j) = dj(1, i), ∀i, j = 1, . . . , n.
Therefore, the round trip times are also the same,
Ti = Tj = T, ∀i, j = 1, . . . , n. The linearized
dynamical equations in this case are:

ẏ(t) =




p1 + ŷ1p
′
1 ŷ1p

′
1 · · · ŷ1p

′
1

ŷ2p
′
1 p1 + ŷ2p

′
1

.

.

. ŷ2p
′
1

.

.

. · · ·
. . .

.

.

.

ŷnp
′
1 ŷnp

′
1 · · · p1 + ŷnp

′
1


 y(t− T )(19)

where we named y = [y1, . . . , yn]T . It is possible
to extend the reasoning we advanced in the single
user case to the multiuser case: if the network
works in a highly congested region, then the
linearization can be approximated as:

ẏ(t) = p1In×ny(t− T ), (20)

The matrix has its n eigenvalues equal to p1 and,
as eigenvectors, the orthonormal basis. Therefore,
denoting with Λ the diagonal matrix of the eigen-
values, we have that

W (A) = W (Λ).

For the principal branch, k = 0, we obtain

W0(Λ) = diag{W0(λi)} = diag
{ ∞∑

n=1

(−n)n−1

n!
pn
1

}
.

The solution of the DDE equation then can be
expressed as

ẏ(t) = e
diag

{∑∞
n=1

(−n)n−1

n! pn
1

}
Tt




C1
0

..

.
Cn

0


+conj. branches.

If the network has the optimum in a lightly
congested point, then the linearization can be
approximated as:

ẏ(t) = p′1diag{ŷi}




1 1 · · · 1

1 1
... 1

... · · · . . .
...

1 1 · · · 1




y(t− T ).(21)

The matrix has a special structure, and it can be
proved that it has zero n − 1 eigenvalues equal
to 0, plus one equal to p′1

∑n
i=1 ŷi. In this case,

if we name V the matrix with the corresponding
eigenvectors on its columns, we have

W0(−AT ) = V −1W (−AT )V =

V −1




0 · · · 0
.
..

. . .
.
..

0 · · ·
∞∑

m=1

(−m)m−1

m!

(
p′1

n∑
i=1

ŷi

)m


V T.



At this point, it would be interesting to check
for sufficient conditions to avoid oscillations in
a system of DDE’s. Unfortunately the literature
provides only sufficient conditions for the exis-
tence of components with oscillating dynamics, or
necessary and sufficient conditions for the oscil-
lations of all the components of the solutions of
the DDE. All of them hinge upon the following
fact, (Gopalsamy, 1992)-(Gyory and Ladas, 1991):
Every solution of equation (16) oscillates compo-
nentwise if and only if its characteristic equation
(17) has no real roots.

From this, we derive that both in the case of highly
congested network, as well as in that of lightly
congested one, there will be some solutions with
components that will not oscillate, but which will
rather converge to the equilibrium exponentially.

6. DISCUSSION AND CONCLUSION

In this paper we have completed the analysis of
the structural properties of two new schemes for
flow control over wireless networks. Both algo-
rithms modify the number of connections that
a single user has with the network; the first
scheme employs a static algorithm, while the sec-
ond applies a dynamic scheme. In a first paper
(Chen et al., 2005b) we motivated the structure of
both schemes and analyzed their global stability;
moreover, for the static scheme, we suggested a
condition on some of the coefficients to obtain
stability in the presence of heterogeneous delays
at the users. This paper extends the same idea to
the more complex dynamic scheme; simulations
for this case are provided. Furthermore, we at-
tempted to get some insight on the structure of
the oscillations in the presence of delays. This is
motivated by the fact that, in real world TCP
schemes, oscillations represent an important issue.
We should however mention that in real TCP
schemes oscillations might be as well due to other
important causes, for instance the discretization
of the schemes. Resorting to the theory of Delay
Differential Equations, and posing some simplify-
ing assumptions, we managed to get some early
results on the problem, which has never been
systematically considered in the literature before.
Nevertheless, it is been increasingly clear how
hard the topic is to be studied analytically. Future
research will stand on these results to proceed
further.

Another paper by the same authors (Chen et al.,
2005a) focused on the stochastic stability analysis,
and the calculation of the rate of convergence of
both schemes. The authors are already working
on the application of this scheme to a real TCP
setting, extending the theory and getting more
insight from the simulations.
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