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Abstract— This paper deals with the problem of congestion
control and packets exchange on a wireless network. The
mathematical model of the protocol is inspired by and extends a
known fluid flow scheme for the control of congestion on a wired
network. The necessity to introduce a specific wireless model is
motivated by the presence of channel error; often this error (due
to intrinsic noise or channel corruption) is not known exactly.
This motivates the approximation of parts of the structure of
the model with binary functions, whose switching point can be
precisely known. These new discontinuous elements, while in
practice greatly simplifying the structure of the algorithm (they
carry a single bit of information), complicate the theoretical
analysis of its dynamical properties. We therefore approximate
them with continuous functions with proper limiting behavior:
they thus preserve the simple shape and yield themselves to
analysis as well. Given this setup, we then investigate the
important issues of existence and uniqueness of the equilibrium
for the dynamical system, and of local asymptotic stability.
Furthermore, we show that this equilibrium solves a concave
net utility optimization problem, of which the classical one for
wired networks is a special case. The take away point of this
work is that the scheme we propose to handle the traffic on a
wireless network is not only innovative and meaningful, but has
also the potential to be modified and translated into practical
implementation.

I. INTRODUCTION

Transmission Control Protocol (TCP) has recently been
the focus of much research (originated, among the many
contributions, in [1]–[3]). Not long ago, this practical scheme
has been dynamically modeled via a system of continuous
time differential equations that describe the evolution of the
rates (that is, the number of bits per second) of a set of
users that exchange information over a network. This is an
instance of fluid flow model [4], [5]. The study of this model
advances the understanding of the intrinsic characteristics
and dynamical properties of the system. Investigating this
scheme has nevertheless proven to be a rather challenging
task, mostly because of the presence of strong non linearities
in the functions that come into play, and because of the
distributed nature of the scheme. Moreover, the multiple
couplings between its entities (senders, receivers and links)
hampers the global understanding of its behavior.

The current fluid flow models for TCP are limited to
the case of wired networks [4] [5]. Fundamental properties
such as uniqueness of equilibria and stability have been
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studied [6], [7] and conditions for achieving robustness to
disturbances [8] and to delays [9] have been introduced.

Quite recently some researchers have turned their atten-
tion to the wireless scenario. This new setting poses new,
unconfronted challenges, due to the presence of intrinsic
noise and channel errors at the link level. An algorithm
known as MULTFRC [10] and proposed for video streaming
over wireless networks has yielded a scheme for TCP-
friendly rate control, or TFRC, for wireless networks. In [11],
a corresponding continuous-time model is introduced and
studied. Many properties, such as global stability, robustness
conditions to delays and to disturbances, have been derived
[12], [13].

This paper takes a further step: the presence of channel
error is the cause of imperfect feedback from the network
to the users; these errors prevent the exact measurement of
the congestion status on the network. This motivates the
introduction of a simplifying approximation for that part of
the model which is affected by noise. This approximation,
in the form of a step function that switches at a known (or
computable) point, is on the one hand simpler, but on the
other hand discontinuous. It is thus quite hard to do analysis
on the modified scheme. This calls for the introduction of
some continuous approximations, the limiting behavior of
which is studied. It shall be argued and motivated that the
approximated scheme represents an implementable version
of the proposed algorithm for wireless networks.

The paper unfolds as follows: after a brief explanation
of fluid-flow models for wireline networks and a concise
introduction to the TCP scheme for wireless ones in Sec. II,
we propose its related modification and the corresponding
continuous approximations (Sec. II-E). In Section III, a series
of facts will elucidate the existence and uniqueness of the
equilibrium for the approximation of the modified system.
Furthermore, local stability for the scheme will be proved and
limiting behaviors explained. It will then be shown that the
equilibria of the modified model are the solution of a concave
net utility optimization problem, of which the generic one
proposed by Kelly for TCP on wired networks [4] is a special
case. In Section IV, discussions and a description of future
work will close up the paper.

II. A PRACTICAL FLOW CONTROL SCHEME

In this section we first present the dynamical model of the
well known general flow control problem first introduced
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by Kelly et. al. [4]. Starting from the wired scenario, we
motivate and build up the extensions for the more challenging
wireless case; a modification to the model for this setup
is discussed in order to simplify it and enable its practical
implementation.

A. Wired Networks

A communication network is described via a set J of links
and a set R of users (sender-receiver pairs). Each j ∈ J
has a finite capacity Cj < ∞. The network interconnections
are described via a routing matrix A = (ajr, j ∈ J, r ∈
R), where ajr = 1 if j ∈ r, ajr = 0 else. A fluid-flow,
continuous-time model for the TCP scheme [4] has been
proposed in order to facilitate the analysis of the properties
of the protocol. To each user a sending rate xr ≥ 0 and
a utility function Ur(xr) are associated. Ur(xr) is assumed
to be increasing, strictly concave and C1. The exchange of
information between users over the links can be interpreted
as a concave maximization problem [14], [15] depending on
the aggregate utility functions for the rates and on some costs
on the links:

max
∑
r∈R

Ur(xr)−
∑
j∈J

Pj

∑
s:j∈s

xs

 , (1)

where the cost functions Pj(·) are defined as

Pj(y) =
∫ y

0

pj(z) dz. (2)

The terms pj(y) can be interpreted as “prices” at the link and
are assumed to be non-negative, continuous and increasing
functions; they represent some congestion measure and,
as can be inferred from their structure, they have a local
dependence on the aggregate rate passing through the link.
As in [5], in this paper we shall stick to the following “packet
loss rate”:

pj(y) =
(y − Cj)+

y
. (3)

Flow control can then be regarded as a dynamical system
evolving according to Problem (1), that is having an equilib-
rium which is the solution of (1). User r will accrue a packet
loss rate which, under our assumptions of small pj , can
be approximated as

∑
j∈r pj(

∑
s:j∈s xs). The rate control

scheme has the following shape, for r ∈ R:

d

dt
xr(t) = kr

wo
r − xr(t)

∑
j∈r

pj

∑
s:j∈s

xs(t)

 , (4)

with kr a positive scale factor affecting the adaptation rate,
and the constant wo

r can be physically interpreted as the
number of connections that the user establishes with the
network; as discussed, the congestion signal (packet loss rate)
depends on the sum of the prices along all the links that are
crossed by the user. Interpreting the model (4) as a dynamical
relation, it is easy to express its equilibrium in an implicit
form. In [4] it is shown by Lyapunov arguments that this
equilibrium is unique and asymptotically stable. Moreover,

the schemes can be endowed, under conditions over their
parameters, with many interesting properties (as an example,
robustness to delays).

B. Wireless Networks

Wireless channels are affected by errors, due to the cor-
ruptibility of the signals flowing through them and to the
presence of noise. This directly influences the packet loss at
each link in a TCP-like setting. We thus encompass this fact
within a new price function for, say, link j ∈ J :

qj

∑
s:j∈s

xs(t)

 , pj

∑
s:j∈s

xs(t)

+ εj . (5)

This function accounts for both the congestion measure
(presence of the term pj), as well as the non-negative term
εj that accounts for the channel error. The TCP model (4)
will then depend on this new function qj . It is again easy
to calculate the equilibrium of this new dynamic relation.
Interpreting this fact through an underlying optimization
problem, as in (1), shows that the new equilibrium will
be suboptimal. This fact motivates the introduction of an
enhancement to the wireless scheme, as described in the
following section.

C. A new Control Scheme for Wireless Networks

In [11]–[13], we introduced two extensions of the TCP
scheme, both aimed at compensating its suboptimality when
employed in wireless networks. In this paper we shall
focus on one of these two proposed schemes, the “dynamic
update.” Assume the term ωr is time dependent, ωr(t), and
evolves according to:

d

dt
wr(t) = c

(
wo

r − wr(t)

∑
j∈r pj(

∑
s:j∈s xs(t))∑

j∈r qj(
∑

s:j∈s xs(t))

)
. (6)

We can interpret this dynamical relation, in a fluid-flow
sense, as the modification of the number of connections
that the user has with the network. It is easy to compute
the equilibria {x∗r , ω∗r} of this new scheme and check that
the “optimum point” of the first component (the rates) is
the same as that of (4). Aiming at a dynamical analysis of
this scheme, in [11] we showed that the interconnection is
globally asymptotically stable, under the realisitc assumption
that the two dynamical relations evolve in two different time
scales. In [12] and [13] we instead investigated the robustness
of the scheme to delays and studied its resilience against
disturbances. It is important to stress that this scheme can be
easily implemented by adjusting the number of connections
which an application opens in a real network. Therefore, it is
an application layer based approach and it is easy to deploy,
as it does not require changes on the network infrastructure
or its protocol.

D. A Practical Discretization of the Scheme

From the structure of Eqn. (6) we can gather that the im-
plementation of the control law for wr depends on the precise
measurement of the ratio

P
j∈r pj(

P
s:j∈s xs(t))P

j∈r qj(
P

s:j∈s xs(t)) , which is the
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portion of the packet loss rate that is exclusively caused by
congestion. From an end-to-end point of view, users can infer
which packet is lost only by observing a discontinuity in the
sequence number that is carried by every packet1; the reason
of the loss (congestion or channel error) would not be given
though. Therefore users can only precisely measure the end-
to-end packet loss rate, i.e.

∑
j∈r qj(

∑
s:j∈s xs(t)), but not

the quantity due to congestion, i.e.
∑

j∈r pj(
∑

s:j∈s xs(t)).
In principle, users can have the ability to exactly mea-

sure
∑

j∈r pj(
∑

s:j∈s xs(t)), provided more information is
gathered from the network infrastructure. As an example,
the routers and the base stations can generate an Explicit-
Loss-Notification (ELN) marking2 on consecutive packets
when they understand that the current packet is lost due to
the wireless transmission. Therefore if the users observe a
lost packet, they can check the ELN bit on the successive
packet to see whether the loss is caused by congestions or
by channel error. This way, users can get a precise measure
of
∑

j∈r pj(
∑

s:j∈s xs(t)), and therefore a better estimate
of the above ratio. Other solutions are based on end-to-end
statistics, or there exist schemes that are not using packet loss
as a congestion measure: for instance, TCP Vegas quantifies
the congestion on a measure of the queueing delay. However,
to our best knowledge, none of the real world network
infrastructures currently employ these functionalities. Even
worst, it is quite hard to add these enhancemente in every
router and base station, and it may break the end-to-end
principle Internet relies on.

All of the above motivates to seek a better way to control
the quantities wr based on some alternative that is easy for
users to measure. We first gauge how the ratio affects the
system performance in (6):

• If a route r is underutilized, then the ratio is zero; this
implies that the number of connections wr(t) increases
in order to boost the user rate xr(t), which makes the
system pursue full utilization on the rth route;

• If the route r is fully utilized, i.e. if any one of its link is
congested, than the ratio takes a value between zero and
one, finely adjusting wr(t), and hence xr(t), to make
the system pursue the maximum utility.

This behavior suggests the idea of replacing the ratio with
an indicator function. Specifically, introducing the vector
quantity x(t) = [x1(t), . . . , xcard(R)(t)]T , let us define the
following quantity:

Ir(x) = Ind

∑
j∈r

(yj(t)− Cj)+

yj
> 0

 (7)

=
{

1, if route r is congested at time t;
0, otherwise.

Here yj(t) =
∑

s:j∈s xs(t) is the aggregate rate flowing
through link j. From this definition, we can observe that

1In practice, the sender waits for three duplicate acknowledgements
asking for the retransmission of the missing packet, before it asserts that
the packet is lost.

2Along with ELN, there exist schemes known as Explicit-Congestion-
Notification (ECN) that, as intuitive, work similarly.

• Ir(x) has exactly the same behavior as the ratio when
route r is underutilized, therefore, replacing the ratio
with Ir(x) will not affect the system’s thrust to pursue
full utilization.

• If any of the links of route r is congested, Ir(x) does
not have the exact same behavior as the ratio; instead,
it assumes the value one to push down wr(t), so as to
decrease xr(t) in order to avoid further congestion on
the route.

Unlike the ratio in (6), the value of the indicator function
can be easily and accurately estimated by each user. In fact,
its value is directly correlated to changes on the round trip
time (RTT) for each user3. Physically, RTT consists of the
round trip propagation delay and round trip queuing delay.
For a given route, assuming the backward path is congestion-
free, i.e. the incoming rates to the sender are less than
the links capacities, the round trip propagation delay is a
fixed value, and the queuing delay is zero if the forward
path is not congested. If the forward path is congested, the
queuing delay increases to positive values, and if the path
is continuously congested the value keeps increasing to a
maximum until the buffer is overflowed. Hence, an increase
in RTT is due to the presence of forward congestion (and
therefore increasing queueing delay)4; the increase itself is
symptomatic of the indicator function assuming a value of
one. On the other hand, if there is no increase in RTT, then
most probably the route is not congested, which means that
he indicator function is likely to be equal to zero.

System (4-5), endowed with this new term, is modified as:{
d
dtxr(t) = kr

(
wr(t)− xr(t)

∑
j∈r (εj + pj(yj(t)))

)
;

d
dtwr(t) = c (wo

r − wr(t)Ir(x)) .
(8)

The model is a nonlinear, coupled system with disconti-
nuities introduced by the terms Ir(x), r ∈ R. The discon-
tinuities make it harder to analyze the system, which does
not fit into the classical framework for analysis previously
employed; it would instead require the study of solutions in
the Filippov sense [16]. We instead decide to tackle this prob-
lem by approximating the term Ir(x), r ∈ R with continuous
functions; hence we get a continuous approximated version
of the system in (8), which we describe in the following.

E. Continuous Approximations of the System and the Two
Time Scales Assumption

The parameter-dependent function we use to approximate
Ir(x) in (8) is the following, where β > 0:

fβ
r (x) =

e

P
j∈r ln

0@1+e
β

yj−Cj
yj

1A
− 1

1 + e

P
j∈r ln

0@1+e
β

yj−Cj
yj

1A , r ∈ R. (9)

3Here we call RTT the sum of the time it takes a packet to go from
sender to receiver, and back.

4Again, under the slack assumption that the incoming rates to the sender
are less than the links capacities.
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we also approximate the non-smooth quantity pj(yj(t)) =
(yj(t)− Cj)+/yj(t) in (8) with the following function:

gβ
j (yj(t)) =

1
β

ln
(

1 + e
β

yj(t)−Cj
yj(t)

)
, j ∈ J. (10)

It should be clear that fβ
r (x) → Ir(x) and gβ

j (yj(t)) →
pj(yj(t)) as β →∞.

The corresponding approximated system is, ∀r ∈ R,{
d
dtxr(t) = kr

(
wr(t)− xr(t)

∑
j∈r(εj + gβ

j (yj(t)))
)

;
d
dtwr(t) = c

(
wo

r − wr(t)fβ
r (x)

)
.

(11)
Since the approximated system in (11) is continuous, we

can then analyze its equilibrium and stability for arbitrary
values of β. As β →∞, the system in (11) approaches the
original system in (8). Therefore, the logic is to analyze the
properties of the system in (11) and, by letting β →∞, we
expect to reveal those of the interconnection in (8).

The approximated system in (11), although continuous,
is still complex to analyze. Similar to the model in (4-
6), it is a nonlinear, coupled, multivariable system, and the
two equations are not exactly symmetrical even though they
might appear to be so.

In [11] we argued that in the actual TCP schemes the
rate of change of the quantity wr, representing the num-
ber of connections that a user has with the network, is
dimensionally less than that of xr, representing the source
sending rate. Therefore, inspired by the control literature on
singular perturbation systems [16], we carefully make a key
assumption to enable the time-decoupling of the system: the
dynamics corresponding to xr and wr evolve in two different
time scales; the first in a faster one, while the second in a
slower one. This helps us derive strong results for the overall
interconnection.

The two time scales assumption applied to the approxi-
mated system in (11) highlights two kinds of dynamics: a
fast one, which is described in the boundary-layer system,
and a slow one, which is encompassed in the reduced-order
system. The fast interconnection is described, ∀r ∈ R, as{

d
dtxr(t) = kr

(
wr(t)− xr(t)

∑
j∈r(εj + gβ

j (yj(t)))
)

;
wr(t) = constant.

(12)
In the slower timescale, we instead have the following
dynamics, ∀r ∈ R:{

xr(t) = wr(t)P
j∈r(εj+gβ

j (yj(t)))
;

d
dtwr(t) = c

(
wo

r − wr(t)fβ
r (x(t))

)
.

(13)

Under the two times scale setting, the behavior of the system
can be described as follows. On the fast timescale, wr can be
thought as being held constant, and the entire system can be
expressed as the boundary system shown in (12). This system
is nothing but a slight modification of Kelly’s control system
on wired network (as expressed in (4)), except for the term
wo

r replaced by the “constant” wr(t) and the price function
pj(yj(t)) replaced by

∑
j∈r(εj + gβ

j (yj(t))); the behavior
of the boundary system can thus be easily inferred from

the known results of the system in (4). It has a unique and
globally exponentially stable equilibrium, which is a function
of wr. Particularly, on the fast timescale, xr converges to the
equilibrium manifold defined as follows:

xr(t) =
wr(t)∑

j∈r(εj + gj(yj(t)))
, r ∈ R. (14)

On the slow timescale, xr has already converged to the
equilibrium manifold, and the system collapses into the
reduced system described in (13). Its behavior determines
how the approximated system evolves in the long run;
therefore, together with the boundary layer system, it fully
characterizes behavior of the system for all possible times.
Motivated by the above considerations, we shall mainly focus
on investigating the reduced system in (13).

III. ANALYSIS AND SIMULATIONS RESULTS

A. Existence, Uniqueness of The Equilibrium, Its Local
Stability and The Related Optimization Problem

In this section we show that the system in (11) has a unique
equilibrium, and that this equilibrium is locally exponentially
stable. We start from showing that any existing equilibrium
is locally stable in a neighborhood; then, thanks to this
fact and together with some results from the Poincare-Hopf
Index Theorem [16], we conclude that there can be only one
equilibrium.

Before stating the main results, the following fact is
introduced. Let us remind the definition of the vector quantity
x(t) = [x1(t), . . . , xcard(R)(t)]T , and similarly for w(t).

Lemma 1: The equilibrium manifold shown in (14) is a
one-to-one mapping between x(t) and w(t); moreover, the
following holds on the manifold:

ẇ = D(x)ẋ,

where

D(x) = diag(x)
(
diag

(∑
j∈r

εj + gj(yj)
xr

)
+AT diag(g′j(yj))A

)
is a product of two positive definite matrices, and as such
all its eigenvalues are positive.
Proof: Refer to Appendix A.

Remark 1: Lemma 1 implies that within the reduced
system (13), analyzing the behavior of the system with
respect to x is equivalent to carrying out the analysis with
respect to w; as a matter of fact, both of them, as well as
their derivatives, are in a one-to-one relationship.

Based on the two time scales decomposition and on
singular perturbation theory [16], [17], showing that for the
approximated system in (11) any possible equilibrium is
locally exponentially stable follows from the fact that both
the boundary system and the reduced system are locally
exponentially stable around the equilibrium. We first claim
the following lemma for the reduced system:

Lemma 2: Assume that for the reduced system in (13),
xe is one of its possible equilibria; then xe is locally
exponentially stable for any β > 0.
Proof: Refer to Appendix B.
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Furthermore, exploiting the fact that the boundary layer sys-
tem is locally exponentially stable [18], we apply arguments
used in [16] and in [17] for the stability of singular per-
turbation non-linear system to infer that any equilibrium of
the composite system shown in (11) is locally exponentially
stable. This fact is stated in the following:

Theorem 1: xe, the equilibrium for the composite system
shown in (11) with arbitrary β > 0, is locally exponentially
stable.
Thus far we have shown that any existing equilibrium is
locally exponentially stable. Another important question to
address is how many equilibria there are for the system. The
answer is stated in the following:

Theorem 2: For any arbitrary β > 0, the approximated
system (11) has a unique equilibrium.
Proof: Refer to Appendix C.

Remark 2: Theorem 1 and Theorem 2 state the existence
of a unique equilibrium and ensure its locally stability for the
continuous approximated system in (11), for any value of β.
At the limit as β →∞, the approximated system approaches
the original discontinuous system in (8). Therefore, for large
β, we expect the approximated system to have a very close
behavior with the original system, except at the discontinuity
point yj(t) = Cj .
In the following, we motivate how the unique equilibrium
solves a concave optimization problem, which is a modifi-
cation of the one proposed for the wired case in Eqn. (1).

Theorem 3: For any arbitrary β > 0, the unique equilib-
rium of the approximate system in (11), denoted by (xe, we),
solves the following concave optimization problem

max
x≥0

∑
r∈R

Ur(xr)−
∑
j∈J

∫ yj

0

gj(z) dz, (15)

with Ur, r ∈ R being the concave function:

Ur(xr) =
∫ xr

0

h−1
r

(
wo

r

ν

)
dν, r ∈ R,

where h−1
r , r ∈ R, is the inverse of the monotonically

increasing function hr:

hr(z) ,

(∑
j∈r

εj + z

)
fr(z) =

(∑
j∈r

εj + z

)
eβz − 1
eβz + 1

.

Proof: First it is easy to see the net utility function in (15)
is concave. Then the claim follows by setting to zero the
derivative of the net utility function with respect to x.

One observation for Theorem 3 is in order: the unique
equilibrium for the system in (11) for the wireless scenario
solves a concave optimization problem which is similar to the
general one (Eqn. (1)) solved for the wired network [4], but
with different utility functions Ur(xr) for each user. More
precisely, while the Ur(xr) in the wired network case is only
a function of xr, in wireless scenario it is also a function of∑

j∈r εj , that is the packet loss rate associated with the route
r. In fact, if we let β → ∞ and εj = 0,∀j ∈ J , i.e. if we
tend to the wired network scenario, we have hr(z) = z, and
thus the optimization problem in (15) becomes identical to

that of the wired network optimization one. In this case,
the equilibrium xe is exactly the same as x∗, implying
the optimization problem in the wired network is merely a
special case of that in (15).

Regarding the actual implementation of the proposed
scheme in (8), it is necessary to discretize continuous
quantities. For instance, controlling wr is implemented by
adjusting the number of connections, which has to be an
integer number; controlling xr is implemented by adjusting
the number of finite packets to be sent out in a time interval.
Therefore, it is very unlikely that the system will operate
exactly at those points of discontinuity. From this point
of view, the analysis based on the approximated system is
accurate enough to predict and interpret the performance of
the actual implementation of the algorithm.

From a theoretical point of view, the existence of a unique
locally stable equilibrium encourages our effort to show that
in fact the equilibrium is globally asymptotically stable;
indeed we have already seen that the whole setting can
be interpreted as a utility maximization problem that holds
globally.

B. Simulations

Fig. 1. Simulation topology.

In the following we present the output of some simu-
lations. They show how the performance of the modified
scheme closely matches that of the original scheme, in which
we assumed full information of the feedback signals from
each link. The topology is presented in Fig. 1 and matches
that in [11]. The two time scales assumption has been
taken in consideration by properly setting the multiplicative
constants in the differential equations: as a result, it can be
observed that the changes of wr are slower than those of
the rates xr. The initial conditions for Figure 2 are precisely
those of Fig. 5 in [11]. The reader should compare these two
plots to convince himself of the similarity of the results. Due
to the discretizations we introduced, the current outcomes
display some oscillations (see for instance Fig. 2-second)
that were not present in the original scheme; for this reason,
we have refined the integration step and thus necessarily
increased the simulation time. This oscillating behavior
happens around the optimum for the system (see Fig. 2-
first plot), which matches that of [11]; we discussed that
this optimum corresponds to the full utilization of the links
(observe the oscillations of the congestion measures, (see
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Fig. 2-third)), hence at conditions close to the discontinuity
points in the vector fields.
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Fig. 2. Simulations for the modified “dynamic-update” scheme. Conver-
gence of rates xr(t), r = 1, 2, 3 (top figure), wr(t), r = 1, 2, 3 (second
plot), packet loss rate pj(·) and qj(·), j = 1, 2 (third plot), and net utility
(bottom figure); the initial rates have been set to the value 0.

IV. CONCLUSIONS AND FUTURE WORK

Standing upon the results presented in [11], where a fluid-
flow approximation as a dynamical scheme for controlling
the flow over packet-switched wireless networks was pro-
posed and analyzed, this paper introduces an alternative of
such model for the wireless scenario. The model is obtained
by introducing an indicator function. This simplification is
motivated by the necessity to apply the scheme to real world
networks, which present inaccurate feedback to the end-
users; the new, 1-bit scheme is still an application layer based

approach, which therefore does not require any change in the
network infrastructure and protocol. The modified model,
although easier to implement than its precursor, comes at
the cost of introducing some discontinuities in the dynamics,
which complicate the theoretical analysis. Therefore, we pro-
pose an approximation based on some continuous, parameter-
dependent functions which, at the limit, coincide with the
discontinuous ones. The new functions yield themselves
to some analysis: we prove the existence and uniqueness
of the equilibrium of the interconnected systems, solving
a concave net utility optimization problem, of which the
generic one proposed by Kelly et. al., [4], is a special case.
Moreover, we show that this scheme, on a neighborhood
of the equilibrium, is exponentially stable. These results are
accurate enough to predict and interpret the performance in
reality, and are interesting enough to encourage continuing
efforts in theoretical aspects.

Given the parallel with the model in [11], the investigaton
of the global asymptotical stability of the unique equilibrium
holds promising results; furthermore, interpreting the proper-
ties of the equilibrium from the network optimization stand-
point, such as fairness between users and route utilization,
may give important further insights. The delay stability and
the robustness to stochastic disturbance are also interesting
to investigate from both a practical as well as a theoretical
point of view.
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APPENDIX

A. Proof of Lemma 1

Proof: Focusing on the manifold described by Eqn.
(14), in order to prove the desired result we want to show
that one x(t) results in one w(t), and conversely that one
w(t) results in one x(t).

• It is easy to see from (14) that one x(t) maps to a unique
w(t).

• Now we show that, given w(t), there is only one value
for x(t) satisfying (14). Given w(t) = w, (14) is the
maximum for the following strictly concave function of
x over Rcard(R):

U(x) =
X
r∈R

wr log xr−
X
j∈J

Z P
s:j∈s xs

0

„
εj +

(y − Cj)
+

y

«
dy.

The strict concavity implies that the maximum exists
over Rcard(R) and is unique; hence there can only be
one value for x(t) = x satisfying (14). Therefore, one
w(t) maps to only one x(t).

The relation between ẇ and ẋ is derived as in [11]. For the
last claim of the proposition, refer to known results from
[19].

B. Proof of Lemma 2

Proof: Around the equilibrium of the reduced system,
let xr(t) = xe

r + zr(t) and denote D(xe) as D̃; linearizing
around this point, we have that, ∀r ∈ R,

ż(t) = cD̃−1

 
1

xe
r

fr(x
e)
X
j∈r

`
εj + gj(y

e
j )
´
zr(t)

+
X
j∈r

`
εj + gj(y

e
j )
´
µe

r

X
j∈r

βg′j(y
e
j )
X

s:j∈s

zs(t)

+fr(x
e)
X
j∈r

g′j(y
e
j )
X

s:j∈s

zs(t)

!
,

= −cD̃−1

 
diag (fr(x

e)) D̃ + diag
`X

j∈r

`
εj + gj(y

e
j )
´ ´

· diag (βµe
r) AT diag(g′j(y

e
j ))A

”
z(t), (16)

where

µe
r =

e

P
j∈r ln

0B@1+e
β

ye
j−Cj

yj

1CA
0BBB@1 + e

P
j∈r ln

0B@1+e
β

ye
j
−Cj
yj

1CA
1CCCA

2 > 0, r ∈ R,

and

g′j(y
e
j ) =

Cj

(ye
j )2

e
β

ye
j−Cj

ye
j

1 + e
β

ye
j
−Cj

ye
j

> 0, j ∈ J.

Denote

E = diag (fr(x
e)) D̃

+ diag

 X
j∈r

`
εj + gj(y

e
j )
´
βµe

r

!
AT diag(g′j(y

e
j ))A.

Then by simple arguments, the system in (16) is stable if
and only if D̃−1E has all positive eigenvalues. We now show
that this requirement is verified.

First notice that this is equivalent to show that the eigenval-
ues of ED̃−1 are positive since ED̃−1 is similar to D̃−1E.
Define G = diag

(∑
j∈r

εj+gj(y
e
j )

xe
r

)
. Then

ED̃−1 = diag(fr(x
e))+G·diag (xe

rβµe
r) AT diag(g′j(y

e
j ))AD̃−1.

At the same time we notice that

D̃
ˆ
AT diag(g′j(y

e
j ))A

˜−1

=
“
G + AT diag(g′j(y

e
j ))A

”“
AT diag(g′j(y

e
j ))A

”−1

= G

0@“
AT diag(g′j(y

e
j ))A

”−1
+

“
diag(

X
j∈r

εj + gj(y
e
j )

xe
r

)
”−1

1A .

Define the terms inside the brackets as B; we can then have
the following expression for ED̃−1:

ED̃−1 = diag(fr(x
e)) + G · diag (βµe

r) B−1G−1

= G · diag(βxe
rµ

e
r)

„
diag(

fr(x
e)

βxe
rµe

r

) + B−1

«
G−1.

We claim that ED̃−1 has positive eigenvalues, due to the
following three facts:

• B � 0, since it is a sum of two positive definite
matrices; hence diag

(
fr(xe)
xe

rβµe
r

)
+ B−1 � 0.

• diag(βxe
rµ

e
r)
(
diag

(
fr(xe)
xe

rβµe
r

)
+ B−1

)
has positive

eigenvalues, because it is the product of two positive
definite matrices [19];

• ED̃−1 has positive eigenvalues, because it is similar to
diag(βxe

rµ
e
r)
(
diag

(
fr(xe)
βµe

r

)
+ B−1

)
.

Finally, D̃−1E has positive eigenvalues and hence the system
in (16) is exponentially stable for arbitrary β > 0.
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C. Proof of Theorem 2

Proof: First, any equilibrium (xe, we) of the system
in (11) must lie on the equilibrium manifold defined by
(14). We also know that on this manifold the entire system
collapses to a lower-dimension reduced system shown in
(13). Therefore, it is equivalent to investigate the reduced
system for the existence and uniqueness of the equilibrium.

Here, we apply the Poincare-Hopf Index Theorem to claim
that at least one equilibrium exists in the reduced system;
then we apply Lemma 2 to conclude that the number of
equilibria must be one.

Fact 1: (Poincare-Hopf Index Theorem) Let D be an open
subset of R, N > 0, and ν : DN → RN be a smooth
vector field, with nonsingular Jacobian matrix ∂ν/∂p at
every equilibrium p. If there is a G ⊆ DN such that every
trajectory moves inward of region G, then the sum of the
indices of the equilibria in G is (−1)N .

To apply Poincare-Hopf Index Theorem, we need to
construct a proper vector field and the corresponding region
G. For the reduced system, it is equivalent to investigate
either w(t) or x(t) as they are connected by a one-to-one
mapping.

We claim that the vector field defined by

ν(w(t)) := ẇ(t) = c
(
[wo

r ]r∈R − [wr(t)fr(x(t))]r∈R

)
(17)

is the one we want. To see that, first note ν(w(t)) can be
expressed as a function of x(t), the Jacobian matrix can be
expressed as

∂ν/∂w = ∂ν/∂x · ∂x/∂w.

We have shown that if xe is an equilibrium of system in (13),
then xe is locally stable, indicating ∂ν/∂x is nonsingular at
the equilibrium. Also remember that x and w are related by a
one-to-one mapping, hence ∂x/∂w is nonsingular. It follows
that ∂ν/∂w is nonsingular at the equilibrium.5

We now start to construct the region G. First note the
following facts:

• if route r is not congested, gj(yj(t)) ≤ 1
β ln 2; so

xr(t) ≥
wr(t)∑

j∈r(εj + 1
β ln 2)

.

As we increase wr(t), xr(t) will eventually reach the
value minj∈r Cj and route r will be congested (the
existence of cross traffic can only add to the congestion
of the route). Hence we claim that if wr(t) is sufficiently
large, the route will be congested, regardless of the
traffic pattern in the network.

• if route r is congested, at least on one link j of the
route, the aggregate arriving rate yj(t) exceeds the link
capacity Cj , therefore

fr(x(t)) ≥ 2
eln 2

1 + eln 2
− 1 = 1/3.

5rank(A)+rank(B)−k ≤ rank(AB) ≤ min(rank(A), rank(B)).

Hence wo
r − wr(t)fr(x(t)) < we

r − wr(t)/3 as long as
route r is congested.

It follows that, as wr(t) becomes sufficiently large, the route
r must be congested. There must exist one wmax

r such that
wo

r − wmax
r fr(x) < wo

r − wmax
r /3 < 0. Then the region G

can be defined as

G = [0, wmax
1 ]× [0, wmax

2 ] · · · [0, wmax
card(R)].

We check the value of the vector field on the boundary of
G:

• if wr(t) = 0, then ẇr(t) > 0, according to (17).
• if wr(t) = wmax

r , then by the definition of wmax
r and

according to (17), ẇr(t) < 0.
Therefore, every point on the boundary G will move inward.

Before we use the Poincare-Hopf Index Theorem, the
following Lemma says there are only finite number of
equilibria inside G.

Lemma 3: Let M denote the number of equilibriums in-
side G, and 0 < weq

i < wmax represents the ith equilibrium,
then M < ∞.
Proof: Any equilibrium is locally exponentially stable by
Lemma 2, and hence is locally unique in an open set
around it. The set of equilibria, denoted by E = {weq :
wo

r − weq
r fr(weq) = 0, r ∈ R}, is closed and bounded

(i.e., compact) since the weq
r fr(weq) is continuous and weq

is bounded. The union of those disjoint open sets, each
including one locally unique equilibrium weq ∈ E , forms
a covering of E . By [20], we claim the number of these
disjoint open sets must be finite. Therefore M is finite.

Hence by the Poincare-Hopf Index Theorem, and noticing
that M is finite, we have the following equations, indicating
that there is at least one equilibrium inside region G and

Index(G) = (−1)card(R) =
M∑
i=1

Index(weq
i ),

where we have again used the quantity card(R), the dimen-
sion of w(t).

But every weq
i is locally stable, hence the Jocobian matrix

at the equilibrium weq
i , denoted by J(weq

i ), has all its
eigenvalues be negative. Therefore

Index(weq
i ) = sgn(Det(J(weq

i ))) = (−1)card(R).

Therefore, we can see these two equations imply M = 1.
Together with the fact that any point outside G can not be
an equilibrium, we conclude there is only one equilibrium
for system in (13).

Finally, as the reduced order system has only one unique
equilibrium on the equilibrium manifold, we conclude the
system (11) has a unique equilibrium, for arbitrary β > 0.
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