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Abstract— In this paper, motivated in particular by models
drawn from biology, we introduce the notion of box invariant
dynamical systems. We argue that box invariance, that is,
the existence of a box-shaped positively invariant region, is a
characteristic of many biologically-inspired dynamical models.
Box invariance is also useful for the verification of stability and
safety properties of such systems. This paper presents effective
characterization of this notion for some classes of systems,
computational results on checking box invariance, the study of
the dynamical properties it subsumes, and a comparison with
related concepts in the literature. The concept is illustrated
using models derived from different case studies in biology.

I. INTRODUCTION

A positively invariant set is a subset of the state space of a
dynamical system with the property that, if the system state
is in this set at some time, then it will stay in this set in the
future [1]. A positively invariant set is extremely useful from
the perspective of formal analysis and verification. It can be
used to verify safety properties of a system, that is, properties
that specify that a system can never be in a given subset of
“unsafe” or “bad” states, as well as stability specifications
[2]. This motivates the need for an effective and constructive
approach to compute positively invariant sets for dynamical
systems.

Positively invariant sets can be obtained by noticing
that their boundaries correspond with level surfaces of a
Lyapunov-like function. This approach has been a source
of several results about positively invariant sets. However,
this is quite restrictive in general, since systems that are not
stable (and hence that do not admit a Lyapunov function)
can still have useful invariant sets.

In this paper, we focus on positively invariant sets that are
in the form of a box, that is, a region specified by giving
bounds for each state variable. The investigation of several
models, especially from the domain of systems biology, has
revealed that they frequently admit box-shaped positively
invariant sets. This seems natural in retrospect since state
variables often correspond to physical quantities that are
naturally constrained and tend to either degrade, or remain
conserved. We show in this paper that it is computationally
feasible to construct box invariant sets for a large class of
dynamical systems and hence that this is an ideal concept
for building analysis and verification tools.
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In this manuscript we introduce and define the notion
of box invariance. We start with the simplest instances of
linear dynamical systems and move to more general nonlin-
ear systems, study their dynamical properties and perform
robustness analysis of box invariant systems. We present
computational complexity results on finding box invariant
sets. The proofs of the claims, all originally derived, can
be found in [3]. Some examples from systems biology are
presented to argue for the significance of the notion.

II. THE CONCEPT OF BOX INVARIANCE

In this work, we shall consider general and uncontrolled
dynamical systems of the form ẋ = f(x),x ∈ Rn. We
assume the basic continuity and Lipschitz properties that
ensure the existence of a unique solution of the vector
field, given any possible initial condition. A rectangular box
around a point x0 can be specified using two diagonally
opposite points xlb and xub, where xlb < x0 < xub

(interpreted component-wise). Such a box has 2n surfaces
Sj,k(1 ≤ j ≤ n, k ∈ {l, u}), where Sj,k = {y : xlb,i ≤ yi ≤
xub,i for i 6= j; yj = xlb,j if k = l; yj = xub,j if k = u}.

Definition 1: A dynamical system ẋ = f(x) is said to be
box invariant around an equilibrium point x0 if there exists
a finite rectangular box around x0, specified by xlb and xub,
such that for any point y on any surface Sj,k(1 ≤ j ≤ n, k ∈
{l, u}) of this rectangular box, it is the case that f(y)j ≤ 0
if k = u and f(y)j ≥ 0 if k = l. The system is said to be
strictly box invariant if the last inequalities hold strictly. �

Note that the existence of a box is unaffected by the
reordering of state variables and by rotations by multiples of
π/2; it also displays invariance under independent stretches
of the coordinates. Nevertheless, it is not invariant under
general linear transformations.

Definition 2: A system ẋ = f(x) is said to be symmetri-
cally box invariant around the equilibrium x0 if there exists
a point u > x0 (interpreted component-wise) such that the
system ẋ = f(x) is box invariant with respect to the box
defined by u and (2x0 − u). �

Vector Norms: The boundary of a box can be seen as
a level surface of a vector norm. Let ‖x‖∞ = max{|xi|, i =
1, . . . , n} denote the infinity norm. Let D be a n×n positive
diagonal matrix. The level set of ‖Dx‖∞ is a hyper-rectangle
in Rn that is symmetric around the origin.

Symmetrical box invariance has been indirectly already
studied in the literature by exploring when ‖Dx‖∞ is a



Lyapunov function for a dynamical system. The notion of
component-wise (exponential) asymptotic stability of a linear
system is characterized by ‖Dx‖∞ being a strong Lyapunov
function [4], [5], [6].

More generally, for a linear system ẋ = Ax, a vector norm
‖Wx‖, where W is of rank n, will be a Lyapunov function
if µ(Q) < 0, where WA = QW [7]. Here µ(Q) is a matrix
measure defined by lim∆→0+

‖I+∆Q‖−1
∆ . This condition is

also sufficient for quadratic and infinity norms [8].

III. CHARACTERIZATION OF BOX INVARIANCE.
We investigate the notion of box invariance for several

classes of systems, propose efficient computational ways to
find such boxes, and study their robustness properties.

A. Linear Systems
Given a linear system and a box around its equilibrium

point, the problem of checking whether the system is box
invariant with respect to the given box can be solved by
checking the condition only at the 2n vertices of the box
(instead of on all points of the surface of the box):

Proposition 1: A linear system ẋ = Ax,x ∈ Rn is box
invariant if there exist two points l ∈ (R−)n and u ∈ (R+)n

such that for each point c, with ci ∈ {ui, li}, we have Ac ∼
0, where ∼i is ≤ if ci = ui and ∼i is ≥ if ci = li. �

Remark 1: Proposition 1, which is a simple consequence
of linearity, shows that box invariance of linear systems
can be checked by testing the satisfiability of n2n linear
inequality constraints (over 2n unknowns given by l and u).
Theorem 1 and Theorem 2 will allow us to simplify this to
testing n linear inequalities over n variables. �

The notion of box invariance and symmetrical box invari-
ance are equivalent for linear systems:

Theorem 1: A linear system ẋ = Ax, where A ∈ Rn×n,
is box invariant iff it is symmetrically box invariant. �
As a result of Theorem 1, we can now use results obtained
using infinity vector norms as Lyapunov functions [7], [5].
The following result can be easily obtained using a direct
proof based on simplifying the n2n inequality constraints.

Theorem 2: An n-dimensional linear system ẋ = Ax is
symmetrically box invariant iff there exists a positive vector
c ∈ (R+)n such that Amc ≤ 0, where am

ii = aii(< 0) and
am

ij = |aij | for i 6= j. This is equivalent to checking if the
system defined by Am is symmetrically box invariant. �

Putting together Theorem 1 and 2, we conclude that in
order to check whether a linear system ẋ = Ax is box
invariant, we only need to test if there exists a positive
vector c such that Amc ≤ 0. This can be solved using
linear programming in polynomial time. However, we can
do much better. Since Am has negative diagonal terms and
non-negative off-diagonal terms, it is immediate that the
Fourier-Motzkin procedure can be used to solve the n linear
inequality constraints Amc ≤ 0 for positive c in O(n3) time.

In fact, we can exactly characterize when the Fourier-
Motzkin procedure would succeed in finding a solution using
the notion of principal minors. A principal minor of a matrix
A is the determinant of the submatrix of A formed by
removing certain rows and the corresponding columns from

A [9]. A matrix A is said to be a P-matrix if all of its
principal minors are positive.

Theorem 3: Let A be a n × n matrix such that aii < 0
and aij ≥ 0 for all i 6= j. Then, the following statements are
equivalent:

1) The linear system ẋ = Ax is strictly symmetrically
box invariant.

2) −A is a P-matrix.
3) For every i = 1, 2, . . . , n, the determinant of the top

left i× i submatrix of −A is positive. �
Remark 2: Theorem 3 shows that box invariance of linear

systems can also be tested by checking if the modified matrix
−Am is a P -matrix. It is known that the problem of deciding
if a given matrix is a P -matrix is co-NP-hard [10]. But in
our case, due to the special form of Am, we can determine if
−Am is a P -matrix using a simple O(n3) Fourier-Motzkin
elimination procedure. �

In the language of infinite vector norms, the existence
of a positive vector c such that Amc ≤ 0 is equivalent to
µ(D−1AmD) ≤ 0, where D is the positive diagonal matrix
diag(c). This connection was known [5], [7], but we now
have the following new complexity result.

Theorem 4: Let A ∈ Qn×n be any matrix and let Am

denote a n×n rational matrix such that am
ii < 0 and am

ij ≥ 0
for i 6= j (e.g., the one obtained from A). The following
problems can be solved in O(n3) time:
• Is the linear system ẋ = Ax (strictly) box invariant?
• Are the constraints Amz ≤ 0, z > 0 satisfiable?
• Does there exist a positive diagonal matrix D s.t.

µ(D−1AmD) ≤ 0 (in the infinity norm)?
• Is −Am a P -matrix? �
Remark 3: Theorem 4 is stated for rational matrices since

irrational real numbers are computationally difficult to repre-
sent and manipulate. �

We can not only decide box invariance, but also find box
invariant sets by generating solutions for the above linear
constraint satisfaction problem. Indeed, with a linear system,
ẋ = Ax, we can associate a cone in the positive 2nth

-
ant described by the set C = {x ∈ R+n : Amx ≤ 0}.
Any choice of a single vertex in C, or a couple of different
points in C and its origin-symmetric, determine respectively a
symmetric and a non-symmetric box for the system described
by A (see Fig. 1). For linear systems, box invariance is a
stronger concept than stability, see also [5], [7], [8].

Theorem 5: If a linear dynamical system is box invariant,
then it is stable. �
In other words, the invariant set is also a domain of attraction
and its existence will imply stability (towards the enclosd
equilibrium). The opposite is not true (see Cor. 1).

B. Connections with Metzler Matrices
Matrices with the shape of those in Theorem 3 (or,

equivalently, of Am in Theorem 2) are known under the
appellative of Metzler matrices. Metzler matrices are in fact,
by definition, matrices with non-negative off-diagonal terms.
In particular, the known positive matrices form a subset of
them. Stochastic matrices (or rates matrices, which can be
obtained from probability transition matrices) are another



Fig. 1. A three-dimensional conic region C describing the set of possible
choices for the positive vertex of an invariant box.

instance of Metzler matrices, with an additional constraint
on the row sum.The properties of Metzler matrices can be
reconducted to those of positive matrices, or at least to those
of non-negative matrices. In fact, for every Am ∈ Rn×n that
is Metzler, there exists a positive number c such that Am+cI
is non-negative. For instance, pick c ≥ maxi∈{1,...,n} |aii|.

Perron and Frobenius were the first to study positive
matrices. Many results can be extended to the Metzler case
provided a structural property, that of irreducibility, holds.
This property is also used in the theory of Markov Chains,
and assumes that there is a connectivity chain between each
pair of elements of the matrix, i.e. a sequence of links that
brings from the first term of the couple to the second one,
along the underlying connection graph that is associated with
the matrix. In practice this assumption is not restrictive, as
its lack of validity would imply a certain level of decoupling
between parts of the dynamical system; this would then
advocate a separate study of these different parts in the first
place, therefore solving the issue at its root. [3, Example 2]
shows this explicitly. Similar, slightly slacker results, can in
any case be derived for the general case. The following holds
(cf. [11]):

Proposition 2: Suppose Am ∈ Rn×n is Metzler; then it
has an eigenvalue τ which verifies the following statements:

1) τ is real;
2) τ > Re(λ), where λ is any other eigenvalue of Am

different from τ ;
3) τ has single algebraic and geometric multiplicity;
4) τ is associated with a unique (up to multiplicative con-

stant) positive (right) eigenvector (equivalently, consid-
ering the transpose of Am, also with a positive left
eigenvector);

5) τ ≤ 0 iff ∃c > 0, such that Amc ≤ 0; τ < 0 iff there
is at least one strict inequality in Amc ≤ 0;

6) τ < 0 iff all the principal minors of −Am are positive;
7) τ < 0 iff −(Am)−1 > 0. �
Such a special τ is generally known as the Perron-

Frobenius eigenvalue of the matrix. We can prove the fol-
lowing theorem:

Theorem 6: Suppose Am is Metzler and has negative

diagonal terms; then all the points of the previous fact hold
but 5), which needs to be modified as:

5) τ ≤ 0 iff ∃c > 0, such that Amc ≤ 0; τ < 0 iff
∃c > 0, such that Amc < 0. �

The following two results will be used in the remainder:
Theorem 7: If A and B are two Metzler matrices and

aij,i 6=j ≤ bij,i 6=j , while aii = bii,∀i ∈ {1, . . . , n}; then
τA ≤ τB , where τA, τB are the two Perron-Frobenius
eigenvalues of, respectively, A and B. �

Theorem 8: Given a Metzler matrix Am, with Perron-
Frobenius eigenvalue τ , the following holds:

min
i

n∑
j=1

am
ij ≤ τ ≤ max

i

n∑
j=1

am
ij , i ∈ {1, . . . , n}. (1)

If the equality holds, then it does in both cases. �
Remark 4: A similar result holds calculating along the

columns of the matrix Am. �
The previous results are interesting because they allow us
to reinterpret the conditions we found beforehand (Thm. 2)
within a new perspective. In particular, this gives a new proof
of Theorem 3. If our original state matrix Am is already
Metzler, then we can infer some dynamical properties of the
linear system associated to it. For instance,

Corollary 1: Strict box invariance for a linear system ẋ =
Amx, with Am Metzler, implies asymptotic stability. The
converse is not true. �
The following result, anticipated in the introduction, is
interesting from a robustness study perspective.

Corollary 2: Given a Metzler matrix Am, its box in-
variance is not affected by pre- or post-multiplications by
positive diagonal matrices. �
Although the connection with the theory of Metzler matrices
appears quite promising, the reader should notice that in
general it is not possible to directly translate results obtained
for a Metzler matrix Am to its ancestor A, which may not
be Metzler. The results outlined for the Metzler correspon-
dent of a system matrix can be instead fully exploited for
robustness analysis, as explained in the next section.

Example 1: A Model for Blood Glucose Concentration.
The following model is taken from [12]. It is a model of a

physiologic compartment, specifically the human brain, and
focuses on the dynamics of the blood glucose concentration.
In general, this compartment is part of a larger model of
glucose concentration in all organs of the body that interact
via some conservation laws. The mass balance equations are
the following:

VBĊBo = QB(CBi − CBo) + PA(CI − CBo)− rRBC

VIĊI = PA(CBo − CI)− rT ,

where VB describes the capillary volume, VI the interstitial
fluid volume, QB the volumetric blood flow rate, PA the
permeability-area product, CBi the arterial blood solute
concentration, CBo the capillary blood solute concentration,
CI the interstitial fluid solute concentration, rRBC the rate
of red blood cell uptake of solute, and rT models the
tissue cellular removal of solute through cell membrane. The
quantity PA can be expressed as the ratio VI/T , where T is



the transcapillary diffusion time. For this last value, which
may in general vary, we choose the value T = 10 [min].

VB 0.04 [l] VI 0.45 [l]
QB 0.7 [l/min] CBi 0.15 [kg/l]
rT 2× 10−6 [kg/min] rRBC 10−5 [kg/min]

By applications of the conditions described above, the
system is box invariant. Figure 2 plots a trajectory and some
boxes. In [13], an extension of the model is studied. �
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Fig. 2. Blood Glucose Concentration: simulation of a trajectory, and
computation of some boxes.

C. Robust Properties of Box Invariance
The issue of robustness arises in biological models when

some parameters of the system are not known exactly and
thus may be thought to lie within specified bounds. These
parameters can represent rates of reactions that are often
unknown or subject to noise.

The theory of Metzler matrices allows us to exploit some
results on the spectral properties of this class of matrices
to study robustness of box invariance of linear systems.
Consider Theorems 7 and 8. As discussed above, the positive
Perron eigenvector xτ defines (one vertex of) the actual box.
This knowledge can be exploited to obtain stricter bounds for
the Perron eigenvalue τ .

Corollary 3: Given a Metzler matrix Am, with Perron-
Frobenius eigenvalue τ and a positive vector x, the following
holds:

min
i

1
xi

n∑
j=1

xja
m
ij ≤ τ ≤ max

i

1
xi

n∑
j=1

xja
m
ij , i ∈ {1, . . . , n}.�

Remark 5: The substitution of xτ in place of x turns the
inequality into equality, in both directions. Thus, due to the
continuous dependence of the eigenvalues of a matrix on its
elements, the use of x = xτ for bounding the value of τ of
a matrix Am will definitely yield better results than the use
of x = 1, as in Thm. 8. �

If the Perron-Frobenius eigenvector is unknown, we can
obtain improved bounds for the Perron-Frobenius eigenvalue
regardless of the computation of any vector. We skip the
details, but refer the reader to the results for positive matrices
in [14] for simple adaptation to the Metzler case.

We start with two cases in our study of robustness. The
first deals with uncertainty on the diagonal terms, while the
second with uncertainty on the off-diagonal terms. It is clear
that, for a matrix with Metzler form, the effect of these two
sets towards box invariance is dichotomic: while the first
contributes to it, the second can be disruptive.

1) Diagonal Perturbations: For the first instance, let us
refer to a matrix of the form Am

ε , where am
ε,ij = am

ij , i 6= j,
while am

ε,ii = am
ii (1 + ε). In other words, Am

ε = Am +
ε diag(am

ii ). If ε > 0, then the perturbed system remains
box invariant. If ε < 0, then the Perron-Frobenius eigenvalue
τε of Am

ε may still be negative for some ε. The eigenvalues
of Am

ε are known to be a convex function of the entries of the
diagonal matrix ε diag(am

ii ). In particular, from Corollary
3 and by the convexity of the max function, it follows that
τε ≤ τ + ε maxi am

ii . Hence, a lower bound to the minimum
allowed (negative) perturbation that maintains box invariance
is given by the inequality ε > − τ

maxi am
ii

.

2) Off-diagonal Perturbations: In the second case, more
complex in general than the first, we can again exploit the
upper bounds described in either Thm. 8 or Cor. 3 to make
sure that the box invariance condition is retained if some
of the off-diagonal terms vary. Introducing a new perturbed
matrix Am

ε , where am
ε,ij = am

ij (1 + εij),∀i, j 6= i and am
ε,ii =

am
ii , we are interested in finding how much we can perturb

the off-diagonal elements of the matrix Am, while preserving
box invariance. Along direction i, introducing the vector εi =
[εij ]j=1,...,n and a vector vi = [δij ]j=1,...,n, where δij is the
Kronecker delta, we state the problem as follows:

max
εi≥0

‖εi‖2
2, s.t.

n∑
j=1

Am
εi |(i,j) < 0, (vi)T εi = 0.

The choice of the norm is arbitrary at this level. Moreover,
we focus on positive perturbations for the off-diagonal terms,
because only those can negatively affect box invariance. The
reader should notice that, while negative perturbations do not
affect box invariance, they may interfere with the Metzler
structure of the matrix (in particular, its irreducibility). The
first constraint comes from Thm 8. In general, as discussed,
it can be substituted by (Xτ )−1Am

εiXτ |(i,j) ≤ 0,∀i =
1, . . . , n, where Xτ is a diagonal matrix formed with the
elements of the Perron (right) eigenvector xτ of Am. The
second constraint forces the diagonal terms of Am to stay
unperturbed, and bounds the solution of the problem. The
optimization problem can be restated by introducing two
Lagrange multipliers (respectively λ > 0 and ν), one for each
constraint. Let us denote the ith row of Am

εi as Am
i (1 + εi).

Calculations show that the solution has the form, εi =
1
2 (λAmT

+ γvi), where

λ =
1∑n

j=1,j 6=i am
ij

+
am

ii∑n
j=1,j 6=i(a

m
ij )2

;

ν = − am
ii∑n

j=1,j 6=i am
ij

− (am
ii )2∑n

j=1,j 6=i(a
m
ij )2

= −λam
ii .



This can be rewritten as follows, ∀j 6= i:

εi
i = 0; εi

j =
1
2

(
am

ij∑n
j=1,j 6=i am

ij

+
am

ii am
ij∑n

j=1,j 6=i(a
m
ij )2

)
.

3) General Perturbations: We can tackle the problem
more generally, albeit trading off the obtainment of closed
form solutions. Let Am be a Metzler matrix that describes
a box invariant linear system. Consider the perturbed matrix
Am

ε = Am + E = Am +
∑n

i,j=1 εij [∆(i,j)], where ∆(i,j)

is an n × n matrix that has a 1 in position (i, j), and 0
elsewhere, and εij ≥ 0,∀i, j ∈ {1, . . . , n}. It is clear that
adding positive terms to a Metzler Matrix may disrupt its
box invariance. It then makes sense, in order to understand
what the worst (in some sense) perturbation is, that does not
affect the box invariance property, to set up the following
problem:

max
E

f(E), s.t. (Am
ε 1 < 0) ∨ (1T Am

ε < 0), E ≥ 0.

Here f(E) is a measure of the “perturbation level” intro-
duced in the model. For instance, we may choose f(E) =∑n

i,j=1 εij , or f(E) = ‖E‖p, p ≥ 1. The first constraint
codifies the condition of Thm. 8. For the 2-norm (p = 2),
interpreting E as a function of its elements εij , introducing
an epigraph and resorting to the Schur complement, we can
reformulate the problem as the following LMI:

max
εij≥0

s≥0

s, s.t.


[
−sI −E(ε)
E(ε) sI

]
� 0,

min
{
Am

ε 1,1T Am
ε

}
< 0,

where the last inequality is to be interpreted componentwise.

D. Polynomial Systems
Dynamical models in biology are often in the form of

polynomial systems, ẋ = p(x), where p(x) is a vector of
polynomials over x. The condition for box invariance for
polynomial systems can be written as a formula in the first-
order theory of reals

∃l, u.∀x.
∧

1≤j≤n ((x ∈ Sj,l ⇒ pj(x) ≥ 0) ∧
(x ∈ Sj,u ⇒ pj(x) ≤ 0)), (2)

where, as mentioned earlier, Sj,k are the 2n faces of the box
defined by l and u. Since this theory is decidable [15], [16],
the following result follows.

Theorem 9: Box invariance of polynomial systems is
decidable. �

While this is a useful theoretical result, it is not very
practical due to the high complexity of the decision proce-
dure for real-closed fields. A subclass of polynomial systems,
called multi-affine systems [17], naturally arise in modeling
biochemical reaction networks [17], [18]. In these systems,
the polynomials are restricted so that each variable has at
most degree one in each monomial. Multi-affine systems
have several nice properties that have been exploited for
building efficient analysis tools. We generalize the definition
of multi-affine systems and call a system ẋ = p(x) multi-
affine if each variable xj has degree at most one in each
monomial in pi for all j 6= i. In fact, the universal quantifiers

in Formula (2) can be eliminated and Formula (2) can
be simplified for multi-affine systems to a conjunction of
n2n (existentially quantified) constraints using the following
analogue of Proposition 1.

Proposition 3: A multi-affine system ẋ = p(x),x ∈ Rn

is box invariant iff there exist two points l, u ∈ Rn such that
for each point c, with ci ∈ {ui, li}, we have p(c) ∼ 0,
where ∼i is ≤ if ci = ui and ∼i is ≥ if ci = li. �

Proposition 3 still requires checking satisfiability of an
exponential number of (nonlinear) constraints. The following
result shows that we cannot hope to obtain polynomial
time algorithms for checking box invariance of multi-affine
systems for the case when the box is given.

Theorem 10: The problem of determining if a multi-
affine system is box invariant with respect to a given box
is co-NP-hard. �
However, for a very useful subclass of multi-affine systems,
we can reduce the number of constraints (from n2n) to 2n.
We use the notion of monotonicity. A function f : Rn 7→ R is
monotonic with respect to a variable xj if f(. . . , xj , . . .) ≤
f(. . . , x′j , . . .) (or f(. . . , xj , . . .) ≥ f(. . . , x′j , . . .)) when-
ever xj < x′j .

Proposition 4: Let ẋ = p(x) be a multi-affine system
such that each multi-affine polynomial pi(x) is monotonic
with respect to every variable xj for j 6= i. Then, the n2n

constraints of Proposition 3 are equivalent to some subset of
2n constraints. �

We illustrate the ideas and the utility of Proposition 4 in
the following example.

Example 2: Consider the following Phytoplankton
Growth Model (see [19] and references therein):

ẋ1 = 1− x1 − x1x2
4 , ẋ2 = (2x3 − 1)x2, ẋ3 = x1

4 − 2x2
3,

where x1 denotes the substrate, x2 the phytoplankton
biomass, and x3 the intracellular nutrient per biomass. This
system is not multi-affine in the sense of [17], but it is
multi-affine in our weaker sense. Moreover, it satisfies the
monotonicity condition, and hence by Proposition 4, its
box invariance is equivalent to the existence of l,u s.t.
the following 6 constraints (that subsume the 3 · 23 = 24
constraints) are satisfied:

1− u1 − u1l2
4 ≤ 0, u2(2u3 − 1) ≤ 0, u1

4 − 2u2
3 ≤ 0,

1− l1 − l1u2
4 ≥ 0, l2(2l3 − 1) ≥ 0, l1

4 − 2l23 ≥ 0.

One possible solution for these constraints is given by l =
(0, 0, 0) and u = (2, 1, 1/2) indicating that the box formed
by these two points as diagonally opposite vertices is a
positive invariant set. �

E. Extensions to a class of NonLinear Systems
In this section we use ideas from the previous robustness

study to efficiently check box invariance (using only a
sufficient, but not necessary, characterization) of a subclass of
multi-affine systems in which the degree of each polynomial
is at most two. This assumption is natural for models of
biochemical reactions in which every reaction can have at
most two reactants. We shall tackle the study of these systems
leveraging two different perspectives.



NonLinear Systems as perturbations of Linear Sys-
tems: Consider a general non linear, multi-affine model
ẋ = f(x),x ∈ Rn. The structure of the vector field allows
to express the model as

ẋ = Ax + g(x) = Ax + B(x)x = Γ(x)x.

where A is a constant n×n matrix, while B(x) is made up
of terms that are now linear in the variables, and in particular
can be chosen to have the form b(x)ii = 0, b(x)ij =
βxi + γxk; i 6= k 6= j ∈ {1, 2, . . . , n};β, γ ∈ R. The
nullity of the values on the diagonal is justified in biological
instances by observing that a dimerization of an element
cannot yield that element. Notice that in the off-diagonal
positions we could in principle also accomodate second order
homogeneous terms (b(x)ij = βxi+γxk+δxj , which would
incidentally disrupt the multi-affine structure as defined in
[17]).
Let us now assume that system corresponding to the linear
part (ẋ = Ax) is box-invariant, i.e. that there exists a
nontrivial (conical) set C in Rn that defines all the possible
locations of the symmetric vertices of the invariant hyper-
rectangle. Let us introduce a matrix Γm(x) =̇ Am +Bm(x),
where bm(x)ij = |b(x)ij |. It is then possible to refer
back to section III-C.2 and think of Γm(x) = Am

ε , where
bm(x)ij = εij/am

ij . In other words, the non-linear part
can be conceived as an additional term that may disrupt
the box invariance of the linear system. Clearly this is a
pessimistic take, which comes from the positivity assumption
on the terms bm(x)ij . By the application of the results
derived in III-C.2, a set of upper bounds for the values of
the “allowed perturbations” is obtained. Furthermore, these
bounds define some hyperplanes which, when intersected,
reduce the feasible region for the vertices of the box:
bm(x)ij = |βxi + γxk| ≤ |β||xi|+ |γ||xk| ≤ εij/am

ij , where
εij is here the maximum allowed perturbation, solution of
the optimization problem. Notice that these inequalities on
halfspaces are all satisfiable on the positive quadrant, and
when intersected with the cone C define a new set of possible
vertices for the invariant hyper-rectangle.

Overvaluing Dynamical Systems: A second method
to compute invariant regions, closely related to the first in
its outcomes, is based on the definition of an overvaluing
system [20], [21], which depends on the choice of a particular
(vector) norm [7]. Consider the multi-affine model already
introduced: ẋ = Ax + g(x) = Ax + B(x)x = Γ(x)x,x ∈
Rn. As shown in Section II, in our study, we are interested in
a real valued, infinity vector norm p(x) = ‖x‖∞ or possibly
in a scaled version thereof, pW (x) = ‖Wx‖∞, where W is
a diagonal, positive n × n matrix. The right-derivative of
p(x) [7], D+p(x), can be upper-bounded, within a given
limited region S ⊂ Rn, by a value m ∈ R as follows:
D+p(x) ≤ mp(x). Results in [20] allow to claim that,
whenever the inequality D+p(x) ≤ mp(x) holds in S with
m < 0, then the region defined as

B =̇ {x ∈ Rn : p(x) ≤ c, c ∈ R+} ⊆ S

is positively invariant for the original nonlinear system.
As a side result, the original non linear system will

be asymptotically stable, as expected. The right-
derivative D+p(x) can be upper-bounded by a set
of inequalities: given the matrices A and B(x) as
in the preceding paragraph, notice that D+p(x) ≤
maxi=1,...,n{aii +

∑
j 6=k 6=i |aij | + |β||xi| + |γ||xk|}p(x).

This condition is in fact similar to the one used for the
robustness study in section III-C.2 and exploited above.
Here no prior assumption on the existence of an invariant
box is raised. The approach is similar, accounting for the
rescaling factors, for the case of pW (x). The above region
B ⊆ S is an n-dimensional hypercube with side of length
2c. The vector norm pW (x) would instead single out a
symmetric hyper rectangle with a vertex lying on the vector
[w11, . . . , wnn]T .
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