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Abstract— This paper describes a theoretical framework for
the design of controllers to satisfy probabilistic safety specifi-
cations for partially observable discrete time stochastic hybrid
systems. We formulate the problem as a partial information
stochastic optimal control problem, in which the objective is
to maximize the probability that the state trajectory remains
within a given safe set in the hybrid state space, using
observations of the history of inputs and outputs. It is shown
that this optimal control problem, which has a multiplicative
payoff structure, is equivalent to a terminal payoff problem
when the state space is augmented with a binary random
variable capturing the safety of past state evolution. This allows
us to derive a sufficient statistic for the probabilistic safety
problem as a set of Bayesian filtering equations updating a
conditional distribution on the augmented state space, as well
as an abstract dynamic programming algorithm for computing
the maximal probability of safety and an optimal control policy.

I. INTRODUCTION

For safety-critical applications such as air traffic manage-
ment [1], automated highway systems [2], and autonomous
vehicle control [3], the designs of feedback controllers are
often required to satisfy stringent safety specifications on the
closed-loop system behavior, as determined by a combina-
tion of industry standards and government regulations. The
problem of meeting these specifications is complicated by
the numerous sources of uncertainties arising within a prac-
tical setting, including both environmental disturbances and
measurement noise. As a modeling framework, stochastic
hybrid systems [4], [5] provide a mathematical formalism for
reconciling discrete and continuous abstractions of system
behavior, while allowing for a probabilistic description of
uncertainty. Within this context, a safety control problem
can be formulated to design an observation-based feedback
policy maximizing the probability that the state trajectory
remains within a safe subset of the hybrid state space.

To illustrate this in terms of a concrete example, one
can consider the heating, ventilation, and air conditioning
(HVAC) system found in large scale commercial buildings.
This system commonly features a complex network of air
handling units, boilers, and chillers, with both discrete and
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continuous elements. In particular, while the room tempera-
tures themselves are inherently continuous and are governed
by thermodynamic laws, the actuators often include switch-
ing devices such as valves, dampers, and pumps. Hybrid
system models have been previously proposed as a possible
abstraction for the complex dynamical behaviors found in
such large scale systems [6], [7]. Within this framework, the
numerous sources of uncertainty including variations in heat-
ing load due to occupancy and equipment (often not directly
measurable) can be potentially captured via a probabilistic
model. Using such models, control designs for environment
comfort can then be posed as safety control problems to
satisfy the requirements of building codes, ANSI/ASHRAE
standards [8], and owner specifications.

In literature, safety control problems are commonly stud-
ied within the domain of formal verification. Perfect informa-
tion formulations, in which the state variables are assumed
to be directly observed, have been studied extensively within
the hybrid systems verification community (see for example
[9]–[15]). In contrast, the case of partial information, with
assumptions of incomplete or imprecise measurements of
system state, has been seldomly considered. Due to the
complexity of the problem, much of the work in this area
has focused on systems with discrete state and observation
spaces [16], [17], [18], or simple classes of hybrid systems to
which the results in the discrete domain can be extended [19],
[20]. In the case of deterministic hybrid systems with order
preserving dynamics, safety control methods have also been
proposed based upon set-valued estimates of the discrete or
continuous state variables [21], [22].

In this work, we present an abstract dynamic programming
solution to the partial information safety control problem
for discrete time stochastic hybrid systems (DTSHS). This
can be viewed as an extension of previous work on per-
fect information problems for such systems [14], [15], as
well as a theoretical contribution towards the understanding
of the role of estimation in a probabilistic safety control
problem. In particular, by adapting the notion of a sufficient
statistic [23], it is shown that the information needed for
optimal safety control is a joint conditional distribution of
the system state and a binary variable representing the safety
of the state history. From this result, a dynamic programming
procedure is derived for the abstract computation of the
maximal safety probability and optimal control policy. While
the development of practical control algorithms will require
future investigations addressing computational complexity,
these results provide insights into the structure of the optimal
controller and estimator for safety specifications.



II. PARTIALLY OBSERVABLE DISCRETE TIME
STOCHASTIC HYBRID SYSTEMS

The model for a partially observable discrete time stochas-
tic hybrid system (POdtSHS) augments the perfect informa-
tion stochastic hybrid system model proposed in [14] with
an observation space and a stochastic observation model. For
the rest of this paper, we denote the Borel σ-algebra of a
topological space X by B(X).

Definition 1 (POdtSHS). A partially observable dis-
crete time stochastic hybrid system is a tuple H =
(Q,n, U, Z, νx, νq, νr, ζ0, ζ), defined as follows.
• Discrete state space Q := {q1, q2, ..., qm}, m ∈ N;
• Dimensions of continuous state space n : Q → N: a

map which assigns to each discrete state q ∈ Q the
dimension of the continuous state space Rn(q). The
hybrid state space is given by S :=

⋃
q∈Q{q} ×Rn(q);

• Control input space U : a nonempty Borel space;
• Observation space Z: a nonempty Borel space;
• Continuous state transition kernel νx(dx′|(q, x), u): a

Borel-measurable stochastic kernel which assigns to
each s = (q, x) ∈ S and u ∈ U a probability measure
on the Borel space (Rn(q),B(Rn(q)));

• Discrete state transition kernel νq(q′|(q, x), u): a Borel-
measurable stochastic kernel which assigns to each s =
(q, x) ∈ S and u ∈ U a probability distribution over Q;

• Reset transition kernel νr(dx′|(q, x), u, q′): a Borel-
measurable stochastic kernel which assigns to each
s = (q, x) ∈ S, u ∈ U , and q′ ∈ Q a probability
measure on the Borel space (Rn(q′),B(Rn(q′)));

• Initial observation kernel ζ0(dz|s): a Borel-measurable
stochastic kernel which assigns to each s ∈ S a
probability measure on the Borel space (Z,B(Z));

• Observation kernel ζ(·|s, u): a Borel-measurable
stochastic kernel which assigns to each s ∈ S and u ∈
U a probability measure on the Borel space (Z,B(Z)).

Under a POdtSHS model H, the available information
at each time step k is the history of inputs and outputs
(z(0), u(0), ..., z(k−1), u(k−1), z(k)), along with the prior
distribution of the initial state (q(0), x(0)). For compactness
of notation, we define as in [23] the information spaces

Ik := Zk+1 × Uk, k = 0, 1, . . . .

An element of Ik is referred to as the information vector at
time step k. For the initial state distribution, we denote the set
of probability measures on S by P(S). In the following, we
define our optimization space to be the set of all randomized
control policies with memory.

Definition 2. A policy π′ for H is a sequence π′ =
(π′0, π

′
1, ..., π

′
N−1) of universally measurable stochastic ker-

nels π′k(du|p0; ik), which assigns to each initial state dis-
tribution p0 ∈ P(S) and information vector ik ∈ Ik a
probability measure on the Borel space (U,B(U)). The set
of such policies is denoted by Π′.

If for each k, initial state distribution p0 ∈ P(S) and
information vector ik ∈ Ik the stochastic kernel π′k assigns

probability mass one to some point in U , the policy π′ is said
to be non-randomized. The class of non-randomized policies
for H is denoted as Π.

Following the procedure in [14], one can construct from
νx, νq , and νr a hybrid state transition kernel ν(ds|s, u) on
S given S × U :

ν((q′, dx′)|(q, x), u) = (1){
νq(q|(q, x), u)νx(dx′|(q, x), u), if q′ = q
νq(q

′|(q, x), u)νr(dx
′|(q, x), u, q′), if q′ 6= q.

For a given initial state distribution p0 ∈ P(S) and policy
π′ ∈ Π′, the execution of the POdtSHS is as described in
Algorithm 1.

Algorithm 1 POdtSHS Execution
Require: POdtSHS model H, initial state distribution p0 ∈
P(S), and control policy π′ ∈ Π′.
Extract from S a value s0 according to p0;
Extract from Z a value z0 according to ζ0(·|s0);
Set s(0) = s0 and i0 = z0;
for k = 0 to N − 1 do

Extract from U a value uk for u(k) according to
π′k(·|p0; ik);
Extract from S a value sk+1 for s(k + 1) according to
ν(·|sk, uk);
Extract from Z a value zk+1 for z(k+ 1) according to
ζ(·|sk+1, uk);
Set ik+1 = (ik, u(k), z(k + 1));

end for
return Sample Path {(s0, z0, u0, ..., sN , zN )}.

Now consider the sample space of state, observation, and
control sequences over k time steps given by Ωk := Sk+1×
Zk+1 × Uk. Then by Proposition 7.45 of [23], given p0 ∈
P(S) and π′ ∈ Π′, the stochastic kernels ν, ζ0, and ζ induce
a unique probability measure Pk(π′, p0) on Ωk, describing
the probabilistic evolution of the closed-loop trajectory of
system H under policy π′.

III. PROBLEM FORMULATION

In this section, we give a formal definition of the proba-
bilistic safety problem under partial information. Specifically,
suppose that one is given a safe set W ∈ B(S) and a
time horizon [0, N ]. Then for a fixed initial state distribution
p0 ∈ P(S) and control policy π′ ∈ Π′, the probability that
the state trajectory (s0, s1, ..., sN ) remains within the set W
for every time instant k = 0, 1, ..., N is given by

pπ
′

N (p0;W ) :=PN (π′, p0)({(s0, z0, u0, ..., sN , zN ) :

sk ∈W, ∀k ∈ [0, N ]})
=PN (π′, p0)(WN+1 × ZN+1 × UN ). (2)

By Proposition 7.45 of [23], the safety probability above
can be equivalently expressed as an expectation of a multi-
plicative payoff:



pπ
′

N (p0;W ) = Eπ
′

p0

[
N∏
k=0

1W (sk)

]
, (3)

where Eπ
′

p0 denotes the expectation with respect to the
probability measure PN (π′, p0) on the sample space ΩN .
Using this payoff, we define the partial information safety
control problem as follows.

Problem 1. Given a POdtSHS H, initial state distribution
p0 ∈ P(S), safe set W ∈ B(S), and time horizon N :

1) Compute the maximal probability of safety

p∗N (p0;W ) := sup
π′∈Π′

pπ
′

N (p0;W );

2) Find an optimal policy π∗ ∈ Π′, if it exists, such that
p∗N (p0;W ) = pπ

∗

N (p0;W ). Otherwise, for a choice of
ε > 0, find an ε-optimal policy π∗ε ∈ Π′ satisfying

p
π∗ε
N (p0;W ) ≥ p∗N (p0;W )− ε.

IV. SUFFICIENT STATISTIC AND EQUIVALENT PERFECT
STATE INFORMATION PROBLEM

A common approach to partial information stochastic
optimal control problems is to transform the original prob-
lem into one of perfect information through the notion of
sufficient statistic, which is, roughly speaking, an estimator
which provides sufficient information for optimal control,
with respect to the objective function of interest [23]. As will
be shown in this section, a sufficient statistic for Problem 1 is
an estimator which computes a joint conditional distribution
of the current state and a binary random variable representing
the safety of past state evolution.

A. Terminal Payoff Problem for an Augmented System
First, we will show that the partial information safety

problem is equivalent to a terminal payoff problem when
the state space is augmented with a binary variable. In
particular, consider the random variables hk : Ωk → {0, 1},
k = 0, 1, ..., N , defined as:

h0 := 1; hk :=

k−1∏
j=0

1W (sj), k ≥ 1. (4)

These variables can be viewed as a binary state represent-
ing the safety of the state history up to time k − 1. Now
consider an augmented POdtSHS model with an expanded
state space S̃ := {0, 1}×S, in which the state of the system
at any time k is given by the pair (hk, sk). From (4),

hk+1 = 1W (sk)hk, ∀k ≥ 0,

which results in an augmented state transition kernel
ν̃(ds̃|s̃, u) on S̃ given S̃ × U :

ν̃((hk+1, dsk+1)|(hk, sk), uk) :=
ν(dsk+1|sk, uk), hk = 0, hk+1 = 0

0, hk = 0, hk+1 = 1

1S\W (sk)ν(dsk+1|sk, uk), hk = 1, hk+1 = 0

1W (sk)ν(dsk+1|sk, uk), hk = 1, hk+1 = 1.

(5)

For the augmented system, observation kernels ζ̃0(dz|s̃) and
ζ̃(dz|s̃, u) can be simply defined as

ζ̃0(dzk|hk, sk) := ζ0(dzk|sk), (6)

ζ̃(dzk|hk, sk, uk−1) := ζ(dzk|sk, uk−1). (7)

With these definitions, we write the augmented POdtSHS
model as H̃ := (S̃, U, Z, ν̃, ζ̃0, ζ̃).

Now consider a Borel-measurable function ξ : P(S) →
P(S̃) which takes an initial state distribution on S to an
initial state distribution on S̃:

ξ(p0)(h0, ds0) :=

{
0, h0 = 0

p0(ds0), h0 = 1.
(8)

Clearly, ξ is one-to-one, which implies, by a technical result
due to Kuratowski (see [24], p. 442, Corollary 2) that P(S)
and ξ(P(S)) ⊂ P(S̃) are isomorphic Borel spaces, with the
Borel isomorphism ξ.

We define the set of admissible control policies for an
augmented POdtSHS model H̃ as follows.

Definition 3. A policy π̃′ for H̃ is a sequence π̃′ =
(π̃′0, π̃

′
1, ..., π̃

′
N−1) of universally measurable stochastic ker-

nels π̃′k(duk|ξ(p0); ik), which assigns to each initial state
distribution ξ(p0) and information vector ik ∈ Ik a proba-
bility measure on the Borel space (U,B(U)). The set of such
policies is denoted by Π̃′.

Given initial state distribution ξ(p0) ∈ ξ(P(S)) and
policy π̃′ ∈ Π̃′, the augmented stochastic kernels induce
a probability measure P̃k(π̃′, ξ(p0)) on the sample space
Ω̃k := S̃k+1 × Zk+1 × Uk.

Now consider a terminal payoff problem for the aug-
mented system, in which the objective function is the prob-
ability that the state trajectory reaches the set {1} ×W at
time N , as given by

p̃π̃
′

N (ξ(p0); {1} ×W ) := Eπ̃
′

ξ(p0)

[
1{1}×W (s̃N )

]
, (9)

where Eπ
′

p0 denotes the expectation with respect to the
probability measure P̃N (π̃′, ξ(p0)) on the sample space Ω̃N .
The optimal payoff over the policy space Π̃′ is then

p̃∗N (ξ(p0); {1} ×W ) := sup
π̃′∈Π̃′

p̃π̃
′

N (ξ(p0); {1} ×W ). (10)

In the following, we establish the equivalence between
Problem 1 and the terminal payoff problem (10).

Proposition 1. Let H be a POdtSHS and W ∈ B(S) be
a safe set. Let H̃ be the corresponding augmented system.
Then for every p0 ∈ P(S), N ∈ N, we have

p∗N (p0;W ) = p̃∗N (ξ(p0); {1} ×W ).

Proof. Let p0 ∈ P(S), N ∈ N. Given that ξ is a
Borel isomorphism, Π̃′ and Π′ can be considered identi-
cal policy spaces via the identification π′k(duk|p0; ik) =
π̃′k(duk|ξ(p0); ik), for given policies π′ ∈ Π′ and π̃′ ∈ Π̃′.
It is then sufficient to prove that, for every π′ ∈ Π′, the
following equality holds:

pπ
′

N (p0;W ) = p̃π
′

N (ξ(p0); {1} ×W ).



Indeed, by the previous definitions,

p̃π
′

N (ξ(p0); {1} ×W ) =

∫
Ω̃N

1{1}×W (s̃N )ζ̃(dzN |s̃N , uN−1)

× ν̃(ds̃N |s̃N−1, uN−1)π′N−1(duN−1|p0; iN−1)

× ζ̃(dzN−1|s̃N−1, uN−2)ν̃(ds̃N−1|s̃N−2, uN−2)

× · · · × π′0(du0|p0; z0)ζ̃0(dz0|s̃0)ξ(p0)(ds̃0)

=

∫
S̃×SN×ZN+1×UN

N∏
k=1

1W (sk)ζ(dzN |sN , uN−1)

× ν(dsN |sN−1, uN−1)π′N−1(duN−1|p0; iN−1)

× · · · × π′0(du0|p0; z0)1{1}×W (s̃0)ζ̃0(dz0|s̃0)ξ(p0)(ds̃0)

=

∫
ΩN

N∏
k=0

1W (sk)dPN (π′, p0) = pπ
′

N (p0;W ).

This completes the proof.

B. Derivation of a Sufficient Statistic

We now proceed to derive a sufficient statistic with respect
to the terminal payoff problem (10), using existing results for
additive cost formulations of partial information problems.
By Proposition 1, this in turn provides a sufficient statistic
for the original safety control problem.

Intuitively, a sufficient statistic is an estimator which pro-
vides enough information to the controller for computation
of expected future payoff. A formal definition is given below,
as adapted from Definition 10.6 of [23].

Definition 4. A statistic for H̃ is a sequence (η0, η1, ...ηN−1)
of Borel-measurable functions ηk : ξ(P(S)) × Ik → Bk,
where B0, ..., BN−1 are nonempty Borel spaces. A statistic
(η0, η1, ...ηN−1) for H̃ is said to be sufficient for control if

1) For every k = 0, 1, ..., N − 1, there exists a Borel-
measurable stochastic kernel ν̂(dηk+1|ηk, u) on Bk+1

given Bk×U such that for every p0 ∈ P(S), π̃′ ∈ Π̃′,
and Ek+1 ∈ B(Bk+1), the following identity holds

P̃k+1(π̃′, ξ(p0)) {ηk+1(ξ(p0); ik+1) ∈ Ek+1|
ηk(ξ(p0); ik) = η, uk = u} = ν̂(Ek+1|η, u)

for P̃k(π̃′, ξ(p0)) almost every (η, u).
2) There exists an upper semianalytic function gN :

BN → [0, 1] such that for every p0 ∈ P(S) and
π̃′ ∈ Π̃′, the following identity holds

Eπ̃
′

ξ(p0)

[
1{1}×W (s̃N )|ηN (ξ(p0); iN ) = η

]
= gN (η)

for P̃N (π̃′, ξ(p0)) almost every η.

Given the terminal payoff structure of (10), a sufficient
statistic can be selected as a set of filtering equations
which recursively update a conditional distribution on the
augmented state space S̃. More precisely, consider a Borel-
measurable mapping Ψ : P(S̃)× U → P(S̃) defined as

Ψ(p̃, u)(E) :=

∫
S̃

ν̃(E|s̃, u)p̃(ds̃), ∀E ∈ B(S̃). (11)

Ψ can be viewed as the prediction step of a Bayesian filter.
By Lemma 10.3 of [23], there also exist Borel-measurable

stochastic kernels Φ0(ds̃|ξ(p); z) on S̃ given ξ(P(S)) × Z
and Φ(ds̃|p̃; z, u) on S̃ given P(S̃)× Z × U which satisfy

∫
S̃′
ζ̃0(Z ′|s̃)ξ(p0)(ds̃) = (12)∫

S̃

∫
Z′

Φ0(S̃′|ξ(p0); z)ζ̃0(dz|s̃)ξ(p0)(ds̃)∫
S̃′
ζ̃(Z ′|s̃, u)p̃(ds̃) = (13)∫

S̃

∫
Z′

Φ(S̃′|p̃; z, u)ζ̃(dz|s̃, u)p̃(ds̃)

for every Borel set S̃′ ∈ B(S̃), Z ′ ∈ B(Z), probability
distribution ξ(p0) ∈ ξ(P(S)), p̃ ∈ P(S̃), and control input
u ∈ U . Φ0 and Φ can be viewed as, respectively, the
initialization step and update step of a Bayesian filter.

For a given information vector ik ∈ Ik and initial state
distribution ξ(p0) ∈ ξ(P(S)), define the stochastic kernels
p̃k : ξ(P(S))×Ik → P(S̃) recursively through the following
filtering equations:

p̃0(ξ(p0); i0) := Φ0(ds̃0|ξ(p0); z0), (14)
p̃k+1(ξ(p0); ik+1) := Φ(ds̃k+1|Ψ(p̃k, uk); zk+1, uk).

By Proposition 10.5 of [23], we have that the sequence
{p̃k(ξ(p0); ik)}N−1

k=0 is a sufficient statistic for H̃. In particu-
lar, there exists a transition kernel ν̂(dp̃k+1|p̃k, uk) describ-
ing the evolution of p̃k, which we refer to as an information
state. Moreover, one can define a terminal payoff with
respect to the information state as

gN (p̃N ) :=

∫
S̃

1{1}×W (s̃N )p̃N (ds̃N ). (15)

C. Reduction to Perfect State Information Problem

We conclude this section by showing that Problem 1 is
equivalent to a perfect information problem on the space
of information states. In particular, consider a perfect state
information model Ĥ in which the state space is given
by Ŝ := P(S̃), the action space is given by U , and the
state transition kernel is given by ν̂. Now define the set of
admissible control policies for Ĥ as follows.

Definition 5. A policy π̂′ for Ĥ is a sequence π̂ =
(π̂′0, π̂

′
1, ..., π̂

′
N−1) of universally measurable stochastic ker-

nels π̂′k(duk|p̃0, u0, ..., p̃k−1, uk−1, p̃k), which assigns to
each sequence of controls and information states a probabil-
ity measure on the Borel space (U,B(U)). The set of such
policies is denoted by Π̂′.

We note that by Proposition 7.44 of [23], the policy space
Π̂′ can be viewed as a subset of Π̃′, and hence of Π′. In
particular, it is the subset of control policies which depends
upon the history of inputs and outputs only through the
history of inputs and information states. If for each k, the
stochastic kernel π̂′k depends upon the history only through
the current information state p̃k, then the policy π̂′ is said to
be Markov. The class of non-randomized, Markov policies
for Ĥ is denoted as Π̂.



Given an initial information state p̃0 ∈ Ŝ and a policy
π̂′ ∈ Π̂′, the transition kernel ν̂ induce a probability measure
P̂ π̂
′

p̃0
on the sample space Ω̂N := ŜN+1 × UN .

Now consider a terminal payoff function

JN,π̂′(p̃0) :=

∫
Ω̂N

gN (p̃N )dP̂ π̂
′

p̃0 . (16)

and a perfect information optimal control problem for Ĥ

J∗N := sup
π̂′∈Π̂′

JN,π̂′ . (17)

The next result establishes the equivalence between Prob-
lem 1 and the perfection information problem (17).

Proposition 2. Let H be a POdtSHS and W ∈ B(S) be a
safe set. Let Ĥ be the corresponding perfect state information
model. Define a function ϕ : P(S)→ P(Ŝ) as

ϕ(p0)(E) :=

∫
S

ζ0({z0|p̃0(ξ(p0); z0) ∈ E} |s0)p0(ds0),

(18)
for every Borel set E ∈ B(Ŝ). Then we have

p∗N (p0;W ) =

∫
Ŝ

J∗N (p̃0)ϕ(p0)(dp̃0), ∀p0 ∈ P(S).

Furthermore, if π̂′ ∈ Π̂′ is optimal, or ε-optimal for (17),
then π̂′ is also optimal, or ε-optimal for Problem 1.

The proof of this result proceeds by straightforward appli-
cation of Proposition 10.3 of [23], combined with Proposition
1 of section IV-A, and is omitted for brevity.

V. SOLUTION TO PARTIAL INFORMATION SAFETY
PROBLEM

In this section, we provide a dynamic programming
solution to the partial information safety problem via its
equivalent perfect information formulation defined in (17).
Specifically, let F be the set of upper semianalytic functions
from Ŝ to [0, 1]. Consider a dynamic programming operator
T : F → F defined as

T (J)(p̃) := sup
u∈U

∫
Ŝ

J(p̃′)ν̂(dp̃′|p̃, u), p̃ ∈ Ŝ. (19)

Then the solution to (17) can be stated as follows.

Proposition 3. Let Ĥ = (Ŝ, U, ν̂) be a perfect state infor-
mation model. Then

1) J∗N = T N (gN );
2) For every ε > 0, there exists an ε-optimal non-

randomized Markov policy π̂∗ε ∈ Π̂ for (17).

This result follows by standard dynamic programming
results for perfect information problems (see for example
Propositions 8.2, 8.3, and 10.1 of [23]). In other words,
J∗N can be computed through recursive applications of the
dynamic programming operator T , and that it is sufficient to
consider the set of non-randomized Markov policies Π̂ over
the set of randomized policies Π̂′. Thus, we arrive at our
main result.

Theorem 1. Let H be a POdtSHS and W ∈ B(S) be a safe
set. Let Ĥ be the corresponding perfect state information
model. Define gN : Ŝ → [0, 1] as in (15) and ϕ : P(S) →
P(Ŝ) as in (18). Then, for every p0 ∈ P(S), we have

1) p∗(p0;W ) =
∫
Ŝ
T N (gN )(p̃0)ϕ(p0)(dp̃0);

2) For every ε > 0, there exists an ε-optimal non-
randomized policy π∗ε ∈ Π for Problem 1 of the form

π∗k,ε(p0; ik) = π̂k,ε(p̃k(ξ(p0); ik)), k = 0, 1, ..., N−1.

3) If π̂ = (π̂0, π̂1, ..., π̂N−1) ∈ Π̂ satisfies

π̂k(p̃) ∈ arg sup
u∈U

∫
Ŝ

J∗k+1→N (p̃′)ν̂(dp̃′|p̃, u), p̃ ∈ Ŝ,

where J∗k→N := T N−k(gN ), k = 0, 1..., N − 1, then
π̂ is an optimal policy for Problem 1.

By this result, the maximal probability of safety p∗(p0;W )
for a POdtSHS can be computed via a terminal payoff
dynamic programming iteration. Furthermore, the ε-optimal
policies can be found within the class of non-randomized
policies which depends on the initial distribution p0 and
information vector ik only through the information state p̃k.
This decouples the partial information safety problem into
two subproblems:

1) Computing an ε-optimal control policy π̂∗ε using the
dynamic programming recursion in Proposition 3;

2) Computing the information state p̃k through the filter-
ing equations (14).

The first subproblem, which is the control aspect of the
problem, can be performed in an offline setting, while the
second subproblem, which is the estimation aspect of the
problem, has to be performed in an online setting. It is
important to remark that the numerical solutions to both
of these problems require computational algorithms on the
information state space Ŝ. Given that p̃k is a probability
distribution, which is in general infinite dimensional, rather
than a hybrid state sk, which is finite dimensional, this
represents a significant growth in computational complexity
over perfect information safety problems.

VI. ANALYTICAL EXAMPLE

To illustrate some of the salient features of the partial
information safety problem, as well as some of the main
difficulties, we will discuss in this section a simple discrete
state example. For such systems, the computational complex-
ity can be concretely stated in terms of a class of well-known
partial information optimal control problems.

In particular, consider a system H with the state space
S = {q1, q2, q3, q4}, control input space U = {σL, σR}, and
observation space Z = {oL, oR}. For u = σL, the state
transition probability is defined as ν(qj |qi, σL) = 1 if i =
j = 1 or j = i − 1, i = 2, 3, 4, and ν(qj |qi, σL) = 0
otherwise. For u = σR, the transition probability is defined
as ν(qj |qi, σR) = 1 if i = j = 4 or j = i + 1, i = 1, 2, 3,
and ν(qj |qi, σR) = 0 otherwise. The observation probability
is characterized by ζ0(oL|s) = ζ(oL|s, u) = α for s = q1, q2

and ζ0(oR|s) = ζ(oR|s, u) = α for s = q3, q4, where α ∈



[0.5, 1]. For the safety control problem, the safe set is selected
as W = {q2, q3}, and the initial state distribution is chosen
to be p0 = ( 1−β

2 , β2 ,
β
2 ,

1−β
2 ), β ∈ [0, 1].

Systems of this type, with discrete state, input, and output
spaces, are often referred to as Partially Observable Markov
Decision Processes (POMDPs) [25], [26]. The information
state p̃k for this example is a discrete distribution over the
augmented state space S̃ = {0, 1} × {q1, q2, q3, q4}. More
generally, one can show that the the safety problem for
a POMDP is equivalent to a terminal payoff problem for
an augmented POMDP with twice the number of discrete
states. However, as shown in [27], the latter problem (i.e.
the computation of an optimal policy with respect to the
terminal payoff) is in general PSPACE-complete.

The simplicity of this particular example, however, allows
the analytical calculation of an optimal solution. In particular,
by applying Theorem 1, one can show that for any time
horizon N ≥ 1, the maximal probability of safety is given
by p∗N (p0;W ) = αβ, with a stationary optimal policy

π̂∗k(p̃) =

{
σR, p̃k(1, q2) ≥ p̃k(1, q3)

σL, otherwise.

Further details can be found in section 5.7 of [28]. It is
worth noting that the optimal policy requires knowledge of
an augmented state distribution over the space S̃, rather than
simply a conditional state distribution over S.

VII. FUTURE WORK

There are several possible future research directions for
addressing the computational challenges of a partial informa-
tion safety problem. First, one may investigate finite dimen-
sional representations or approximations of the information
state for subclasses of stochastic hybrid systems, in order
to allow the computation of a control policy on a finite
dimensional space. Another direction is to find methods for
computing optimal control policies with respect to specific
choices of estimation schemes. The resulting safety perfor-
mance can then be compared to decide on an appropriate
design. Finally, in the case that the measurement uncertainty
is bounded, it may also be possible to take a robust control
approach by treating the uncertainty as a source of distur-
bance, albeit at some cost of conservativeness.
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