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Abstract— This work proposes a procedure to construct
a finite abstraction of a controlled discrete-time stochastic
hybrid system. The state space and the control space of the
original system are partitioned by finite lattices according to
some refinement parameters. The approximation errors can
be explicitly computed, over time, given proper continuity
assumptions on the model. We show that the errors can be
arbitrarily chosen by increasing the partition accuracy. Similar
bounds can be provided if a particular feedback control policy
is selected and quantized. The obtained abstraction can be
interpreted as a Bounded-parameters Markov Decision Process,
or a controlled Markov set-Chain, and can be used both for
verification and control design purposes. We finally test the
approximate abstraction technique on a model from systems
biology.

I. INTRODUCTION

The dynamical analysis of complex, high-dimensional,
possibly stochastic models often poses many challenges, both
at a theoretical and at a computational level. Abstraction
techniques are often the method of choice, when not the
only viable option, for the analysis of such systems.

According to this approach, a system with a smaller
(possibly finite) state space is obtained, which is equivalent
to the original system under study. Systems equivalence
is usually defined via the notions of language equivalence
and bisimulation [4], [14]. Recently, approximate notions
of equivalence [8] have been developed, where a metric
is introduced to quantify the distance between the original
system and its abstraction.

The present line of research looks at abstractions of
Hybrid Systems (HS), models which often require to be
abstracted for analysis. The contribution in [6] proposes an
algorithm to construct an approximate abstraction of a HS
by means of a timed automaton, which is a model with
simpler continuous dynamics. In [7] it has been proved that
stable linear systems admit finite approximately bisimilar
abstractions with arbitrary precision. In [15] the same has
been done for a class of stable non-linear systems. In [13]
a notion of approximate bisimilarity is proposed for a class
of Stochastic Hybrid Systems (SHS), that is HS which are
endowed with probabilistic terms.

The recent work in [1] has introduced an approximate
abstraction for a class of SHS, and formalized a computation
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of a bound on the error associated with this abstraction. By
reinterpreting the new model as a Markov set-Chain (MSC)
[10], the authors have investigated the asymptotic behavior
of the original SHS via that of the MSC. Furthermore, the
work has proposed an algorithm which, given a desired pre-
cision on the steady-state error, finds a refinement parameter
and synthesizes an abstraction, according to that parameter,
which abides by the desired precision bound.

The present contribution extends that in [1] in three
directions. First, the SHS model is more general, in that
an execution is allowed to change mode not just according
to a spatial condition, but to a state-dependent probability
distribution (which, as a special case, could reproduce a spa-
tial guard). Second, the model is control-dependent, which
requires a proper partitioning of the control space, and an
integration of the errors on the state and on the control. Both
the open-loop and the feedback control structures will be
considered. Third, the work derives explicit bounds on the
error between the transition probabilities of the abstracted
model and those of the original model (considered over
the regions of the partition), for each time instant (and in
particular in steady-state). This bounds represent another step
towards a definition of stochastic bisimulation, which is the
ultimate goal of this line of research.

Our abstraction can be used both for verification purposes
(e.g. given a continuous control policy on a continuous
plant, verify properties of the quantized implementation of
the control on a discretized state space) and for design
purposes (e.g. given a continuous system, design a quantized
control policy on the abstraction, using classical algorithms
for Markov Decision Processes (MDP) [16], which may
guarantee the correct behavior of the original plant).

The paper develops as follows. Section II introduces the
SHS model, namely the discrete-time, controlled SHS (dt-
cSHS). Section III recalls some results on MSC, which
will be utilized in the following. Section IV introduces
the abstraction procedure, which turns the original dt-cSHS
into a bounded-parameters MDP (BMDP). Once a policy is
fixed, the BMDP reduces to an MSC. Section V delves into
the computation of the errors associated to the abstraction.
Finally, in section VI we test the proposed abstraction tech-
nique on a model drawn from biology, which describes the
biosynthesis of the antibiotic subtilin by the soil bacterium
Bacillus subtilis. We employ the abstraction framework to
investigate its asymptotic properties.

II. CONTROLLED DISCRETE TIME STOCHASTIC HYBRID
SYSTEMS

Definition 1 (dt-cSHS): A discrete time controlled
stochastic hybrid system is a tuple H = (S,A, Tq, Tt, Tr),



where
• S := ∪i∈Q{i}×Di, is the hybrid state space, that con-

sists of a set of discrete states Q := {q1, q2, . . . , qm},
for some finite m ∈ N, and by a set of continuous
“domains” for each mode i ∈ Q, each of which is
defined to be a compact subset Di ⊂ Rn(i). The
function n : Q → N assigns to each i ∈ Q the
dimension of the continuous state space Rn(i);

• A is the control space, a continuous and compact Borel
subset of Rp;

• Tq : Q× S ×A → [0, 1] is a discrete stochastic kernel
(the “discrete transition kernel”) on Q given S × A,
which assigns to each s ∈ S and a ∈ A, a discrete
probability distribution over Q: Tq(q|s, a);

• Tt : B(D(·)) × S × A → [0, 1] is a Borel-measurable
stochastic kernel (the “continuous transition kernel”) on
D(·), given S×A, which assigns to each s = (q, x) ∈ S
and a ∈ A a probability measure on the Borel space
(Dq,B(Dq)): Tt(dx|(q, x), a);

• Tr : B(D(·))×S×A×Q → [0, 1] is a Borel-measurable
stochastic kernel (the “reset kernel”) on D(·), given S×
A × Q, that assigns to each s = (q, x) ∈ S, a ∈ A,
and q′ ∈ Q, q′ 6= q, a probability measure on the Borel
space (D(q′),B(D(q′))): Tr(dx|(q, x), a, q′). �

The system initialization at the initial time (say k = 0)
may be specified by some probability measure π0 : B(S)→
[0, 1] on the Borel space (S,B(S)). Here B(S) is the σ-field
generated by the subsets of S of the form ∪q{q}×Bq , with
Bq denoting a Borel set in Dq .

The model is inspired by that in [3]. However, unlike
this last source, for the sole sake of simplicity we do not
distinguish a control input acting on the discrete or on the
continuous dynamics. This model is an extension of the
similar framework in [1] by the introduction of the control
set. Furthermore, unlike in [1], where the change in mode
depends on the verification of spatial conditions, here the
execution is allowed to change its operating mode according
to the probability law of the discrete kernel Tq , which is
defined on the whole state space. Notice that the spatial
conditions in [1] may be obtained by assuming that Tq has
an indicator-like structure:

Tq(q′|(q, x), a) =
{

1, if (q, x) ∈ gq,q′ ,∀a ∈ A
0, else, (1)

where, as in [1], we denoted with gq,q′ a subset of the domain
Dq , which is associated to a jumping condition to mode
q′ ∈ Q, q′ 6= q. We refer the reader to the details contained
in [3] for further insights on the model. Let us report here
the definition of finite and infinite execution process, after
introducing the concepts of control string and policy.

Definition 2 (Control String): Given a dt-cSHS H, a con-
trol string is a sequence a = (a0, a1, . . . , aN ), of cardinality
N + 1, N ∈ N, of values ak ∈ A. �

Definition 3 (Execution): Given a dt-cSHS H,
an initial distribution π0 and a control string
a = (a0, a1, . . . , aN ), an execution of H is a stochastic

process1 {s(k) = (q(k),x(k)) : ∀k = 0, . . . , N+1, sk ∈ S}
generated by the following algorithm:

extract from S a value s0 = (q0, x0) for s(0), according to
the distribution π0;
for k = 0 to N ,

extract a value qk+1 ∈ Q for q(k + 1), according to
Tq(· |sk, ak);

if qk+1 6= qk ∈ Q,

then extract a value sk+1 ∈ S for s(k + 1), according
to Tr(· |sk, ak, qk+1);
else extract a value sk+1 ∈ S for s(k + 1), according
to Tt(· |sk, ak);

end. �

It is clear that, when N = ∞, the algorithm does not
terminate. We make use of the following shortened notation,
where q, q′ ∈ Q:

T (ds|(q, x), a, q′) =


Tq(q′|(q, x), a)Tt(dx|(q, x), a)
if q = q′,

Tq(q′|(q, x), a)Tr(dx|(q, x), a, q′)
if q 6= q′.

Definition 4 (Markov Control Policy): Given a dt-cSHS
H, a (state) feedback control policy ν on a time horizon
[0, . . . , N ] for H is a sequence of functions νi : S → A, i ∈
[0, . . . , N ], which associates to each hybrid state s ∈ S a
control action νi(s) ∈ A. �

We will often employ stationary (or homogeneous) policies,
that is policies that are time invariant and thus simply
characterized by a function ν : S → A. The controls are
all assumed to be deterministic.

Definition 5 (Feedback Execution): Given a dt-cSHS H,
an initial distribution π0 and a homogeneous Markov control
policy ν, a feedback execution of H is a stochastic process
{s(k) : ∀k = 0, . . . , N + 1, sk ∈ S} generated by the
algorithm in Definition 3, where ak = ν(sk). �

III. MARKOV SET-CHAINS

We recall here the concept of Markov set-chains, which
in this paper is later leveraged to prove properties of the
abstraction. The results are from [10].

Definition 6: Let P,Q ∈ Rn×n be nonnegative matrices
(not necessarily stochastic) with P ≤ Q. We define the
following “ transition set:”

[P,Q]={A ∈ Rn×n : A is a stochastic matrix,P ≤ A ≤ Q}

�

In the proceeding, we assume that the set [P,Q] 6= ∅. When
the “bounding matrices” will be clear by the context, we will
use the more compact notation [Π]. We can define a Markov
set-chain as a non-homogeneous discrete-time Markov chain,

1Bold symbols will denote processes, while regular typesets points on the
state space.



where the transition probabilities vary non-deterministically
within a compact transition set [Π] at each time step. More
formally,

Definition 7: Let [Π] be a transition set, i.e. a compact
set of n × n stochastic matrices. Consider the set of all
non-homogeneous Markov chains having all their transition
matrices in [Π]. We call the sequence

[Π], [Π]2, · · ·

a Markov set-chain, where [Π]k is defined by induction
as the set of all possible products A1, · · · , Ak, such that
∀i = 1, · · · , k, Ai ∈ [Π].
Let [π0] be a compact set of 1× n stochastic vectors, intro-
duced as in Definition 6. We call [π0] the initial distribution
set. �
The compact set [πk] = [π0][Π]k is the k-th distribution set
and

[π0], [π0][Π], · · ·

is the Markov set-chain with initial distribution set [π0].
Definition 8: For any stochastic matrix A, its coefficient

of ergodicity is defined as follows:

T (A) =
1
2

max
i,j
||ai − aj ||,

where ai, aj are the i–th, j–th rows of A. �
The above definition can be directly extended to Markov
set-chains:

Definition 9: For any transition set [Π], its coefficient of
ergodicity is defined as follows:

T ([Π]) = max
A∈[Π]

T (A).
�

Since T (·) is a continuous function and [Π] a compact set,
the corresponding maximum argument exists. Notice that
T ([Π]) ∈ [0, 1] provides a measure of the “contractive”
nature of the Markov set-chain: the smaller T ([Π]), the more
contractive the MSC. The following notion is important for
characterizing the convergence of a MSC:

Definition 10: Suppose r is an integer such that
T (A1, · · · , Ar) < 1, ∀A1, · · · , Ar ∈ [Π]. Then [Π] is said
to be product scrambling and r its scrambling integer. �
We now illustrate some results on the convergence of MSC.

Theorem 1: Given a product scrambling MSC with tran-
sition set [Π] and initial distribution set [π0], then there exists
a unique limit set [π∞] such that [π∞][Π] = [π∞]. Moreover,
let r be the scrambling integer. Then for any positive integer
k,

dh([πk], [π∞]) ≤ αβk (2)

where α = [T ([Π]r)]−1dh([π0], [π∞]), β = T ([Π]r)
1
r < 1

and dh is the Hausdorff distance. Thus

lim
k→∞

[πk] = lim
k→∞

[π0][Π]k = [π∞],
�

Define the diameter of a compact set (referred to either
matrices or vectors) as

∆([Π]) = max
A,A′∈[Π]

||A−A′||.

The following result provides an upper bound for the diam-
eter of the limit set [π∞].

Theorem 2: Given a product scrambling Markov set-
chain with transition set [Π] = [P,Q] and such that T ([Π]) <
1, then

∆([π∞]) ≤ ∆([Π])
1− T ([Π])

≤ ||Q− P ||
1− T ([Π])

.
�

IV. ABSTRACTION PROCEDURE

In digital and embedded control systems, often the control
action comes in quantized form. The discrete nature of this
action has required the understanding of how it relates to
continuous quantities (which is a topic of classical industrial
control and automation), and how concepts such as stability,
reachability, and robustness are affected by this [5]. Similar
comments apply to the state space of a system.

With the above frame of mind, the abstraction we propose
for the state and the control spaces can be used as a double-
edged weapon (see section V-A). From a verification per-
spective, given a continuous control policy on a continuous
plant, we can use finite abstractions to verify properties of
the quantized implementation of the control. On the other
hand, from a design point of view, given a continuous system,
we can resort to its finite abstraction as a framework over
which to synthesize an implementable (quantized) control
policy (e.g. using classical MDP algorithms [16]), while
guaranteeing that the closed-loop behavior of the original
system is similar to that of the abstracted system.

In this section we introduce an abstraction of a dt-
cSHSH into a Bounded-parameter Markov Decision Process
(BMDP) [9]. This model is closely related to the so-named
controlled Markov set-Chain (cMSC) [11]. Given a BMDP
(or a cMSC) and a feedback control policy, the resulting
controlled system is effectively a Markov set-Chain [10].
The MSC framework has been leveraged in [1], where a less
general and uncontrolled SHS has been abstracted to within
that structure.

The abstraction of the probabilistic dynamics of H is
obtained by approximating some of its elements [1, sections
4 and 5]. Let us suppose that the stochastic kernels Tt, Tr
admit densities t, r. Let us raise the following conditions:

Assumption 1 (Continuity of the Stochastic Kernels):
1) |Tq(q̄|s, a)−Tq(q̄|s′, a′)| ≤ Lq‖x−x′‖+Mq‖a−a′‖,

for all s = (q, x), s′ = (q, x′) ∈ Dq, a, a′ ∈ A and
q̄ ∈ Q;

2) |t(x̄|s, a) − t(x̄|s′, a′)| ≤ Lt‖x − x′‖ + Mt‖a − a′‖,
for all s = (q, x), s′ = (q, x′) ∈ Dq, a, a′ ∈ A, and
(q, x̄) ∈ Dq;

3) |r(x̄|s, a, q̄)− r(x̄|s′, a′, q̄)| ≤ Lr‖x− x′‖+Mr‖a−
a′‖, for all s = (q, x), s′ = (q, x′) ∈ Dq, a, a′ ∈ A,
(q̄, x̄) ∈ Dq̄ , and q̄ ∈ Q, q̄ 6= q;

Lq, Lt, Lr,Mq,Mt,Mr are finite positive constants. �

A. State Space Partition
Let us recall that Dq is a compact set, for each q ∈ Q.

We introduce a finite partition of the hybrid state space S =
∪q∈Q{q} × Dq . For each q ∈ Q, one can define a partition
{Dq}δ made up of subsets of Dq . We allow the partition to
be general in its shape. However it is usually introduced as
a grid of width δ in Rn(q) ∩ Dq , where δ is the diameter



of the partition, that is the maximum distance between any
two points in the same equivalence class. The set {S}δ =⋃
q∈Q
{q} × {Dq}δ is then a partition of the whole S.

Given any s = (q, x) ∈ S there exists an element of {S}δ ,
that is a set denoted by 〈s〉, such that s ∈ 〈s〉. It is clear that
any 〈s〉 ∈ {S}δ is a subset of the hybrid state space, i.e.
〈s〉 ⊆ S , and that 〈s〉 belongs to a single domain Dq . Let
us select any point s̄ = (q̄, x̄) ∈ S to be the representative
point of the set 〈s〉. For instance, we may select its centroid.
The following holds:

∀s ∈ S, ∃〈s〉 ∈ {S}δ : s, s̄ ∈ 〈s〉 ∧ q = q̄ ∧ ‖x− x̄‖ ≤ δ.

Given any q ∈ Q and any subset W ⊆ Rn(q), we denote the
measure of the volume of W as λW = L(W ), where L is the
Lebesgue measure. We also define the volume of the hybrid
state space as λS =

∑
q∈Q

λDq . Since we defined a partition of

Dq as a grid of width δ, then ∀s = (q, x) ∈ S, λ〈s〉 = δn(q).
For these reasons, the cardinality of the complete partition
{S}δ is given by:

|{S}δ| =
∑
q∈Q

λDq
δn(q)

.

If we assume, for the sake of simplicity and without loss of
generality, that ∀q ∈ Q, n(q) = n, then |{S}δ| = λS

δn .

B. Control Space Partition

Let A ⊂ Rp be a compact set: we define a finite partition
{A}η of the control space A by defining a grid of width η
of Rp ∩ A, as it was illustrated above for S.

Given any a ∈ A there exists an element of {A}η , which
we denote as 〈a〉, such that a ∈ 〈a〉. Any element 〈a〉 ∈
{A}η is a subset of the control space, i.e. 〈a〉 ⊆ A. Let
ā ∈ A be a representative point of 〈a〉, e.g. its centroid. The
following holds:

∀a ∈ A, ∃〈a〉 ∈ {A}η : a, ā ∈ 〈a〉 ∧ ‖a− ā‖ ≤ η.

As we did above, we define the volume of the control space
as λA, and the volume of each element of the control space
partition λ〈a〉 = ηp. The cardinality of {A}η is given by:

|{A}η| =
λA
ηp
.

V. ERROR ANALYSIS OF THE ABSTRACTION

We recall that for any hybrid state s = (q, x) ∈ S ,
we denote 〈s〉 as the corresponding element in the state
space partition {S}δ and s̄ as the representative element
of 〈s〉. Moreover, for any control a ∈ S we denote 〈a〉
as the corresponding element in the control space partition
{A}η and ā as the representative element of 〈a〉. We will
denote with ({S}δ, {A}η) the combined partition of state
and control spaces, which depends on the pair (δ, η).

Given a hybrid state s = (q, x) ∈ S, a control value a ∈
A, and any set 〈s′〉 ∈ {S}δ , we will approximate the one
step transition probability

p(s(k + 1) ∈ 〈s′〉 | s(k) = s, a(k) = a),

with the transition probability

p(s(k + 1) ∈ 〈s′〉 | s(k) = s̄, a(k) = ā),

for any k ≥ 0. The computation of the above quantities
involves the use of either the transition kernel Tt, or of the
reset kernel Tr, depending on the mode selected by Tq . We
use the following notation, where C ⊆ B(S):

ps,a(C) = p(s(k + 1) ∈ C | s(k) = s, a(k) = a),

A. One-step error
Select a hybrid state s = (q, x) ∈ S and a control value

a ∈ A. For any set 〈s′〉, s′ = (q′, x′), q′ 6= q we can derive
the following bound:

|ps,a(〈s′〉)− ps̄,ā(〈s′〉)|

=
∣∣∣∫〈s′〉 T (dz|(q, x), a, q′)−

∫
〈s′〉 T (dz|(q, x̄), ā, q′)

∣∣∣
≤
∫
〈s′〉

∣∣∣Tq(q′|(q, x), a)Tr(dz|(q, x), a)

−Tq(q′|(q, x), a)Tr(dz|(q, x̄), ā)
∣∣∣

≤
∫
〈s′〉

{∣∣∣Tq(q′|(q, x), a)Tr(dz|(q, x), a)

−Tq(q′|(q, x̄), a)Tr(dz|(q, x), a)
∣∣∣

+
∣∣∣Tq(q′|(q, x̄), a)Tr(dz|(q, x), a)

−Tq(q′|(q, x̄), ā)Tr(dz|(q, x), a)
∣∣∣

+
∣∣∣Tq(q′|(q, x̄), ā)Tr(dz|(q, x), a)

−Tq(q′|(q, x̄), ā)Tr(dz|(q, x̄), a)
∣∣∣

+
∣∣∣Tq(q′|(q, x̄), ā)Tr(dz|(q, x̄), a)

−Tq(q′|(q, x), a)Tr(dz|(q, x̄), ā)
∣∣∣}

≤ λ〈s′〉
(
(Mr +Mq)‖a− ā‖+ (Lr + Lq)‖x− x̄‖

)
.

If it is instead the case that s′ = (q, x′), 〈s′〉 ⊆ Dq , by using
the kernel Tt the following holds:

|ps,a(〈s′〉)− ps̄,ā(〈s′〉)|
≤ λ〈s′〉

(
(Mt +Mq)‖a− ā‖+ (Lt + Lq)‖x− x̄‖

)
.

In the following, we will use the new constants:

L = max{Lt+Lq, Lr+Lq}, M = max{Mt+Mq,Mr+Mq}.

In general, we can state that, ∀s, s′ ∈ S,∀a ∈ A:

|ps,a(〈s′〉)− ps̄,ā(〈s′〉)| ≤ λ〈s′〉
(
M‖a− ā‖+ L‖x− x̄‖

)
≤ δn(Mη + Lδ) , ε1. (3)

Consider now a static Markov control policy ν : S → A
defined on the systemH. Let us raise the following additional
continuity assumption:

Assumption 2 (Continuity of the Control): For any static
Markov policy ν : S → A,

|ν(s)−ν(s′)| ≤ La‖x−x′‖,∀s = (q, x),∀s′ = (q, x′) ∈ Dq,



where La is a finite and positive constant. �

Based on Assumption 2, calculations similar to those that
yielded inequality (3) lead now to the bound:

|ps,ν(s)(〈s′〉)− ps̄,ν(s̄)(〈s′〉)|

=
∣∣∣∫〈s′〉 T (dz|s, ν(s), q′)−

∫
〈s′〉 T (dz|s̄, ν(s̄), q′)

∣∣∣
≤ λ〈s′〉

(
MLa + L

)
‖x− x̄‖ ≤ δn

(
MLa + L

)
δ.

In this instance, we have referred the abstraction exclusively
to the state space. We will use the notation ({S,A})δ to
stress this. Instead, we may be given a Markov control policy
ν : S → A and want to construct a discrete abstraction of
the closed loop system H by defining a quantized policy
ν̄ : {S}δ → {A}η on the abstraction. Given ν(s) = a,
for any s ∈ S, let us introduce ā so that ā, a ∈ 〈a〉. This
introduces a further abstraction approximation error, because
of the approximation of the Markov control policy on the
original system.

|ps,ν(s)(〈s′〉)− ps̄,ā(〈s′〉)|

=
∣∣∣∫〈s′〉 T (dz|s, ν(s), q′)−

∫
〈s′〉 T (dz|s̄, ā, q′)

∣∣∣
≤
∫
〈s′〉

{
|T (dz|s, ν(s), q′)− T (dz|s̄, ν(s), q′)|

+|T (dz|s̄, ν(s), q′)− T (dz|s̄, ā, q′)|
}

≤ λ〈s′〉 (L‖x− x̄‖+M(‖ν(s)− ν(s̄)‖+ ‖ν(s̄)− ā‖))
≤ δn (Lδ +MLaδ +Mη) , ε2. (4)

B. Multi-step error
In the following we aim at generalizing the above calcula-

tions by computing the approximate probability of an event,
over a finite time horizon, with the associated error. For the
sake of clarity, we derive explicit formulas for the two-steps
case, then generalize them.

Pick any hybrid state s = (q, x) ∈ S and a two-step static
control policy a ∈ A. Consider the probability p2

s,a(〈s′′〉)
to transition to any set 〈s′′〉 ⊆ S, s′′ = (q′′, x′′), q′′ 6= q
in two time steps. Let us also consider the same quantity,
computed over the abstraction ({S}δ, {A}η), and denoted
with p2

s̄,ā(〈s′′〉). The error can be quantified as follows:

|p2
s,a(〈s′′〉)− p2

s̄,ā(〈s′′〉)|
= |
∫
〈s′′〉

∫
S T (dz′|(q′, z), a, q′′)T (dz|(q, x), a, q′)

−
∫
〈s′′〉

∑
j∈{S}δ

∫
〈s′j〉

T (dz′|(q′, x̄j), ā, q′′)T (dz|(q, x̄), ā, q′)|

≤
∑
j∈{S}δ

∫
〈s′′〉

∫
〈s′j〉

∣∣∣T (dz′|(q′, z), a, q′′)T (dz|(q, x), a, q′)

−T (dz′|(q′, z), a, q′′)T (dz|(q, x̄), ā, q′)
∣∣∣

+
∣∣∣T (dz′|(q′, z), a, q′′)T (dz|(q, x̄), ā, q′)

−T (dz′|(q′, x̄j), ā, q′′)T (dz|(q, x̄), ā, q′)
∣∣∣

≤ 2L(〈s′′〉)λS(Lδ +Mη) = 2λSε1.

By proceeding similarly, we derive that the error associated
with the kth-step is

|pks,a(〈s′〉)− pks̄,ā(〈s′〉)| ≤ (2λS)k−1ε1.

Remark 1: The calculations for the single- and multi-step
errors can be extended to events C ⊆ B(S) that do not
necessarily coincide with the partition sets 〈s〉 ∈ {S}δ . This
will resort to an under- or an over-approximation of C by sets
of the partition. We leave the details to the interested reader,
as our attention will be focused on the probability distribution
of the original SHS H over the sets of the partition, as the
following paragraph further develops. �

C. Error dynamics

We will analyze in this section the approximation error
dynamics of the abstraction defined in section IV. We will
distinguish two cases.

In the first case (“synthesis”), we assume that a Markov
control policy ν is not selected on the system H. The ab-
straction ({S}δ, {A}η) is made up of a MDP–and associated
errors– with transition probability matrix P = {pij(ā)},
where pij(ā) = ps̄i,ā(〈sj〉) for each 〈si〉, 〈sj〉 ∈ {S}δ :
s̄i ∈ 〈si〉, and for each 〈a〉 ∈ {A}η : ā ∈ 〈a〉. Given any
feedback control policy introduced on ({S}δ, {A}η), call it
ν̄ : {S}δ → {A}η , the controlled MDP is actually a MC
M, with transition probability matrix P = {pij}, pij =
ps̄i,ν̄(〈si〉)(〈sj〉). We define our abstraction as a Markov
set-Chain [M], with transition probability interval [P ] =
{[pij − ε1, pij + ε1]}, according to the error in (3).

In the second case (“verification”), we assume that a static
Markov control policy µ : S → A is already selected on the
SHS H. Our abstraction consists of a MDP and a quantized
Markov control policy µ̄ : {S}δ → {A}η . Using the same
reasoning as above, we consider an abstraction [M], which is
a Markov set-Chain with transition probability interval [P ] =
{[pij − ε2, pij + ε2]}, according to (4).

We will prove the following theorem for the error bounds
of the first case, but the same result directly applies to the
second case by using the bound ε2, instead of ε1. Recall the
following notations introduced above, ∀〈s〉 ∈ {S}δ,∀h ≥ 0:

pks0,ν(〈s〉) = p
(
s(k + h) ∈ 〈s〉 | s(h) ∈ 〈s0〉, ν

)
,

pks̄0,ν̄(〈s〉) = p
(
〈s〉(k + h) = 〈s〉 | 〈s〉(h) = 〈s0〉, ν̄

)
where pks̄0,ν̄ is the probability distribution over the state space
({S}δ, {A}η) and is generated by the Markov set-chain [M].
The distribution pks0,ν over the sets of the partition is derived
from that of the SHS H, and can be thought to be generated
by a non-homogeneous Markov chain Π(k), with the same
state space of [M].

Theorem 3: Assume that there exist a partition
({S}δ, {A}η) such that the corresponding Markov set-
chain abstraction [M] is ergodic, with coefficient of
ergodicity T ([M]) < 1 and scrambling integer r. Then, for
any s0 ∈ S, 〈s〉 ∈ {S}δ and any policy ν̄ and ν(s) = ν̄(〈s〉):

dh(pks0,ν(〈s〉), pks̄0,ν̄(〈s〉)) ≤

≤ min

{(
λS
δn

)k k∑
i=1

εi1, 2αβ
k +

2λS(Mη + Lδ)
1− T ([M])

}
, (5)

where α, β, and the metric dh are defined as in Theorem 1.
�



Proof: It can be shown by direct calculation that
the approximation error increments with k according to the
following upper bound:

|pks0,ν(〈s〉)− pks̄0,ν̄(〈s〉)| ≤
(
λS
δn

)k k∑
i=1

εi1. (6)

This bound corresponds to an uncertainty interval explosion,
when elevating the interval matrix [M] to the power ok k.
The ergodicity assumption on [M] implies, by Theorem 1,
that there exist a steady-state distribution p∞ν̄ and constants
α, β such that:

dh(p∞ν̄ , p
k
s̄0,ν̄(〈s〉)) ≤ αβk, (7)

We recall that p∞ν̄ and pks̄0,ν̄(〈s〉) are intervals of probability
distributions.

By the computation of the transition probabilities and
bounds of our abstraction, the stochastic behavior pks0,ν̄ gen-
erated by [M] is conservative with respect to the stochastic
behavior pks0,ν generated by Π(k). In fact ∀k ≥ 0,Π(k) ∈
[M] by construction of [M]. Definition 9 implies that:

T (Π(k)) ≤ T ([M]). (8)

Equation (8) implies that a limit p∞ν exists and belongs to
the steady state interval of the abstraction

dh(p∞ν̄ , p
∞
ν ) ≤ ∆(p∞ν̄ ), (9)

and that the convergence speed of H is bounded by the
convergence speed of M

dh(p∞ν , p
k
s0,ν(〈s〉)) ≤ αβk. (10)

By the triangular inequality, and by equations (7), (10) and
(9), the following holds:

dh(pks0,ν(〈s〉), pks̄0,ν̄(〈s〉))
≤dh(pks0,ν(〈s〉), p∞ν ) + dh(p∞ν , p

∞
ν̄ ) + dh(p∞ν̄ , p

k
s̄0,ν̄(〈s〉))

≤2αβk + ∆(p∞ν̄ ) (11)

Equations (6) and (11) imply the following inequality:

dh(pks0,ν(〈s〉), pks̄0,ν̄(〈s〉)) ≤

≤ min

{(
λS
δn

)k k∑
i=1

εi1, 2αβ
k + ∆(p∞ν̄ )

}
(12)

Theorem 2 implies that:

∆(p∞ν̄ ) ≤ |{S}δ|ε1 ≤
λS
δn

2δn(Mη + Lδ)
1− T ([M]

=
2λS(Mη + Lδ)

1− T ([M])
,

and the result follows.

Equation (5) provides a bound for the approximation error,
for each time step k ≥ 0. If the abstraction is endowed with
some ergodicity, by tuning the partition parameters (δ, η)
of ({S}δ, {A}η) it is thus possible to achieve any desired
precision on the error.

Theorem 4: Given H and an homogeneous policy ν, if a
stationary probability distribution pν of H exists, then there
exist δ > 0, η > 0, such that T ([M]) < 1. �

Proof: Let us call P ks0,ν the probability measure
associated with the SHS H at time k, associated with a
deterministic initial condition s0 and with the control ν [3].
Recall that, for a given a ν, a stationary distribution for H
pν : S → [0, 1] is such that, ∀(q, x), (q′, x′) ∈ S, pν(q, x) =∫
S T ((dx′, q′)|(q, x), ν, q′)pν(q, x). Furthermore, the follow-

ing holds, for any s0 ∈ S:

lim
k→∞

d(P ks0,ν , pν) = 0, (13)

where d is a proper distance between probability measures.
As before, let Π(k) be the transition probability matrix of the
non homogeneous Markov chain that generates pks0,ν(〈s〉),
obtained as the restriction of the distribution P ks0,ν on S on
the sets 〈s〉 ∈ {S}δ . Since for each k ≥ 0

pks0,ν(〈s〉) =
∫
〈s〉
P ks0,ν(s)ds,

then equation (13) implies that a steady state probability
distribution for Π(k) exists, and thus T (Π(k)) < 1. Since
lim
δ,η→0

[M] is a stochastic matrix (and not an interval) and

∀k ≥ 0,Π(k) ∈ [M], the following holds:

lim
δ,η→0

T ([M]) = lim
δ,η→0

max
A∈[M]

T (A) = T (Π(k)) < 1.

This implies that for any γ > 0, there exist finite δ > 0, η >
0 such that |T ([M]) − T (Π(k))| < γ. Thus, for γ̄ < 1 −
T (Π(k)), there exist δ̄ > 0, η̄ > 0 such that T ([M]) < 1.

The theorem above guarantees that, given a stochastic sys-
tem H with known asymptotics, it is possible to tune the
parameters pair (δ, η) in order to construct an approximate
abstraction that is arbitrarily close to H.

VI. ABSTRACTION AND ANALYSIS OF A STOCHASTIC
MODEL FOR BACTERIAL ANTIBIOTIC BIOSYNTHESIS

The following model describes the production of the
antibiotic subtilin by the bacterium Bacillus subtilis. The
original model from [12] is slightly simplified in its structure
by exploiting some symmetry in its organization, as observed
in [2]. The model presents four variables: y = [SigH] (con-
centration of a sigma factor in the environment), z = [SpaS]
(concentration of subtilin), X (food level), D (population
level). The first two entities are at the cellular level and have
probabilistic dynamics, while the last two are deterministic
averaged dynamics. Time is discrete, and the dynamics are
obtained according to a first order Euler scheme, with time-
step ∆. The variables are bounded below by zero and above
by the quantities yM , zM , XM , DM .

The level of the sigma factor SigH follows a probabilistic
switching behavior according to:

y(k+1) =
{
y(k)− λ1y(k)∆ + w1(k) if X ≥ ηDM

y(k) + (k3 − λ1y(k))∆ + w2(k) if X < ηDM ,

which hinges on the food-dependent spatial condition {X =
ηDM}. Here 0 ≤ η ≤ 1. The terms w1, w2 are independent
normal variables with zero mean and variance ∆.



Next, the concentration of the protein SpaS depends on
one of two possible states of a switch S1 as follows:

z(k+1) =
{
z(k)− λ3z(k)∆ + v1(k) if S1 is OFFz
z(k) + (k5 − λ3z(k))∆ + v2(k) if S1 is ONz.

Again v1, v2 are independent normal variables with zero
mean and variance ∆. The structure of S1 = {OFFz, ONz}
is assumed to be that of a Markov Chain, whose transition
probability matrix is:

P1 =
[

1− b0 b0
b1 1− b1

]
. (14)

The parameters b0, b1 depend on [SigH] according to [12]

b0(y) =
αy

1 + αy
,

b1(y) = 1− b0(y).

The quantity α = e−∆Grk/RT depends on the Gibbs free
energy, a gas constant and the environment temperature.

The variation in the population level is modeled by a
logistic equation as follows:

D(k + 1) = D(k) + rD(k)
(

1− D(k)
D∞

)
∆, r > 0. (15)

This is a quadratic equation, with two equilibria. The non-
trivial (and stable) equilibrium relation depends on the quan-
tity D∞, which is known as the carrying capacity. Let us
a priori define it to be equal to D∞ = X

XM
DM . In other

words, as intuitive, the steady state dynamically depends on
the relative quantity of food in the environment. The food
dynamics follow the difference equation

X(k + 1) = X(k) + (k2νz(k)− k1D(k)X(k))∆, ν < 1.
(16)

Notice that the population level has two equilibria. The
first (D = 0) is unstable, while the second (D = D∞) is
stable. To this second equilibrium point corresponds a stable
equilibrium for the food level X .

The above set of dynamical relations can be re-
framed as a SHS. The new model has four modes,
Q = {q1 = (ONy, ONz), q2 = (ONy, OFFz), q3 =
(OFFy, ONz), q4 = (OFFy, OFFz)}, where the pairs refer
to the activities of the variables y, z: ONy = {X : 0 ≤
X < ηDM}, OFFy = {ηDM ≤ X ≤ XM};ONz =
{S1 is ONz}, OFFz = {S1 is OFFz}. The continuous part
of the state space is also four dimensional, in each of the
discrete domains, and it reflects the bounds on the four
variables: D = {[0, yM ]× [0, zM ]× [0, XM ]× [0, DM ]}.

Let us introduce the stochastic kernels relative to the
probabilistic dynamics at the cellular level:

Tt(dy|(OFFy, y)) = N (dy, y − λ1y∆,∆);
Tt(dy|(ONy, y)) = N (dy, y + (k3 − λ1y)∆,∆);
Tt(dz|(OFFz, z)) = N (dz, z − λ3z∆,∆);
Tt(dz|(ONz, z)) = N (dz, z + (k5 − λ3z)∆,∆).

Here N (·, x, σ) is a normal distribution of mean x and
variance σ. The reset kernels Tr are trivial. Furthermore,

the discrete kernels have the following form:

Tq(q2|((ONy, y), (ONz, z)) = P1(2, 1)1ONy ;
Tq(q3|((ONy, y), (OFFz, z)) = P1(1, 2)1OFFy ;
Tq(q4|((OFFy, y), (ONz, z)) = P1(2, 1)1OFFy ;
Tq(q1|((OFFy, y), (OFFz, z)) = P1(1, 2)1ONy ,

where the other possible transition probabilities are obtained
analogously, or by complementation.

The constants for the locally Lipschitz Tt kernels, with
regards to their density t, are those in [1]:

|t(·|q, y)− t(·|q, y′)| ≤ 1√
2
eyM − 1
yM

|y − y′|,∀q ∈ Q.

Those for the Tq kernels can be directly found by inspecting
(14):

|P1(i, j)(y′)−P1(i, j)(y′′)| ≤ α|y′ − y′′|,∀y′, y′′ ∈ [0, yM ].

Let us introduce a uniform partition of the state space
according to a grid of width ∆, which we assume to be
a divisor of the quantity ηDM .2 The order of the cardinality
of the partition is easily |Q|(max{yM , zM , XM , DM}/∆)4.
Clearly λS = yMzMXMDM . The introduced error is ε1 =
∆5
(

1√
2
eyM−1
yM

+ α
)

.
As in [12], we have chosen yM = 4, zM = 4, XM =
10, DM = 1, λ1 = 0.2, λ3 = 0.2, k1 = 0, k3 = 0.5, k5 =
1, r = 0.02, ν = 0.1, 1k2 = 0.4, α = 0.4. ∆ has been chosen
to be equal to 0.01. The reference simulations have been
implemented with a Monte Carlo approach, by running ten
simulations with starting states corresponding to the repre-
sentative points of the abstraction, thus assuming uniformly
distributed probability for the initial points.
We have then implemented a complete abstraction of the
above SHS dynamics with discretization level δ = 0.5. The
MC has 1260 rows. The outputs for population level and food
are in Table I and are compared to those of the Monte Carlo
Simulations. While the steady states of the population and
of the food appear to be close to the desired ones, those of
the cellular dynamics, here not reported, are not satisfactory.
This is possibly due to the sparsity of the obtained MC:
the presence of deterministic dynamics in fact introduce a
number of null terms.
We have then decided to reduce the abstraction down to the
cellular dynamics. This has been motivated by their relatively
fast dynamics, as well as their noise level. More precisely, we
have come up with two different abstractions, one for each
of the two regions ONy, OFFy , for the dynamics of y and
z ([SigH] and [SpaS]). The outputs for population and food
are close to those of the Monte Carlo Simulations (see Table
I). This has also speeded up the abstraction computation
time so that we can push the discretization level to be
quite small. Notice the computational improvement that the
abstraction procedure gains, despite the required procedure
and calculation of the steady state.
In Figures 1 and 2 we plot single realizations of the reduced-
abstraction dynamics (top rows) and a single realization out

2We thus avoid that spatial boundaries split partition cells.



TABLE I
STEADY STATE COMPUTATIONS

Population Level Food Level Time
Simulation with
full Monte Carlo 0.88 3.6 127

Simulation with
Reduced Abstraction 0.78 3.1 37

Simulation with
Full Abstraction 0.5 2.7 80

of the Monte Carlo simulations (bottom rows), representing
the long-term behavior of population and food levels.

The take-away point of the case study is that the abstrac-
tion procedure appears to be significant especially in the
presence of fully stochastic dynamics.

Fig. 1. Comparison between reduced-abstraction simulations (top row) and
single realization of the actual dynamics (bottom row), for initial conditions
D(0) = 0.5 (population, left column) and X(0) = 9.5 (food, right
column).

VII. CONCLUSIONS

This work has extended an abstraction procedure for
control Stochastic Hybrid Systems, using Markov set-Chain
as abstraction class. By raising some continuity assumptions
on the stochastic kernels, we have derived an explicit relation
between the state and control space partition accuracy and the
approximation error of the abstraction. We have furthermore
derived a bound for the distance between the transition
probabilities of the abstract system and those of the original
system, evaluated at each time instant on the regions of the
partition. Finally, we have tested the approximate abstraction
technique on a dynamical model from systems biology. The
main avenue for future research is to provide a definition
of approximate bisimulation, in order to employ the present
framework to stochastic model checking.
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