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Abstract— This paper presents a framework for analyzing
probabilistic safety and reachability problems for discrete time
stochastic hybrid systems in scenarios where system dynamics
are affected by rational competing agents. In particular, we
consider a zero-sum game formulation of the probabilistic
reach-avoid problem, in which the control objective is to
maximize the probability of reaching a desired subset of the
hybrid state space, while avoiding an unsafe set, subject to
the worst-case behavior of a rational adversary. Theoretical
results are provided on a dynamic programming algorithm
for computing the maximal reach-avoid probability under the
worst-case adversary strategy, as well as the existence of a max-
min control policy which achieves this probability. The modeling
framework and computational algorithm are demonstrated
using an example derived from a robust motion planning
application.

I. INTRODUCTION

Hybrid dynamical models naturally arise in engineering
systems where qualitative behaviors can be abstracted in
terms of discrete modes of operation and quantitative behav-
iors can be characterized in terms of evolution of continuous
states. Examples of such systems can be found in a variety
of application domains, including air traffic management [1],
[2], [3], communication networks [4], systems biology [5],
[6], and robotic motion planning [7], [8], [9]. In cases where
uncertainties in the system dynamics, for example due to
modeling imperfections and environmental disturbances, can
be captured using statistical models, the stochastic hybrid
system framework [10] provides a powerful tool for analysis
and control.

The problem of probabilistic safety for stochastic hybrid
systems involves determining the probability that the system
trajectory, starting from a given initial condition, will remain
inside a safe subset of the discrete and continuous state
space (called a hybrid state space) over some given time
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horizon. On the other hand, the problem of probabilistic
reachability involves determining the probability that the
system trajectory will reach a desired target set. These
problems are of interest, for example, in control and verifica-
tion problems with safety and target attainability objectives.
Here we are interested in a mixture of these two problems,
called the reach-avoid problem, in which the objective is to
characterize the probability that the target set can be attained
subject to a safety constraint.

For stochastic hybrid systems, theoretical results on the
probabilistic safety and reachability problems are established
in [11] and [12]. On the computational side, methods have
been proposed for estimating the safety probability through
a Markov chain approximation [13] and barrier certificates
[14]. A discrete time formulation of these problems is studied
in [15], under the framework of Discrete Time Stochastic
Hybrid Systems (DTSHS), using techniques from stochastic
optimal control [16]. This analysis approach has been gen-
eralized to address the reach-avoid problem in [17] for static
safe sets and target sets. Extensions to time-varying [18] and
stochastic [19] sets have also been considered.

In this paper, we propose a theoretical framework for ex-
tending the analysis of the probabilistic reach-avoid problem
for DTSHS, as described in [17], to a two-player dynamic
game setting. The motivation is that in scenarios where
the system dynamics is affected by inputs from rational
agents with competing objectives, for example in a network
security application [20], or a pursuit-evasion game [21], it
is no longer sufficient to simply model adversarial actions
as random noise. These scenarios can be more naturally for-
mulated as non-cooperative stochastic games where both the
control and adversary are allowed to select rational strategies.
Under this framework, we are interested in characterizing the
optimal probability of satisfying the reach-avoid objective
under the worst-case strategy of a rational adversary, called
the max-min reach-avoid probability. Also, we would like to
find conditions under which there exists an optimal control
policy, which we refer to as a max-min policy.

The main result of this paper is that under certain stan-
dard continuity/compactness assumptions on the stochastic
game model [22], [23], the max-min reach-avoid probability
is Borel-measurable and can be computed by a suitable
dynamic programming algorithm. Furthermore, there exists,
under the same set of conditions, a Borel-measurable max-
min policy and worst-case adversary strategy.

The contributions of this article are several fold. First,
the treatment of the probabilistic reach-avoid problem in a
stochastic game setting requires a non-trivial generalization



of the stochastic optimal control arguments used in [15]
and [17]. In particular, measurability properties of the value
function are more difficult to establish in a stochastic game
setting as opposed to a single-player setting and typically
require a stronger set of assumptions on the topological
properties of the underlying stochastic kernels and action
spaces [24]. Second, given that the pay-off functions for the
reach-avoid problem is sum-multiplicative, the result given
here can be viewed as an extension of existing results in
the stochastic game literature for additive cost games [22],
[25], [26]. Third, the existence of a Borel-measurable max-
min policy is computationally attractive from a controller
synthesis perspective, as Borel-measurable functions can be
uniformly approximated by piecewise constant functions (see
for example [27]).

The paper is organized as follows. In Section II, we
discuss the model for a discrete time stochastic hybrid game.
In Section III we formulate the reach-avoid problem in a
stochastic game setting. In Section IV, we provide the main
result of the paper on the computation of the reach-avoid
probability and existence of optimal policies. In Section V
we apply the modeling and analysis framework to a motion
planning application. Finally, we provide some concluding
remarks in Section VI.

II. DISCRETE TIME STOCHASTIC HYBRID DYNAMIC
GAME

In this section, we discuss an extension of the DTSHS
modeling framework proposed in [15] to allow the stochastic
kernels characterizing the hybrid state evolution to depend
on the actions of a control and of an adversary. This
will be called a Discrete Time Stochastic Hybrid Dynamic
Game (DTSHG). Following standard conventions in zero-
sum games, we refer to the control as Player I and to the
adversary as Player II.

Definition 1 (DTSHG). A discrete-time stochastic hybrid
dynamic game between two players is a tuple H =
(Q, n,A,D, τv, τq, τr) defined as follows.
• Discrete state space Q := {q1, q2, ..., qm}, m ∈ N;
• Dimension of continuous state space n : Q → N: a

map which assigns to each discrete state q ∈ Q the
dimension of the continuous state space Rn(q). The
hybrid state space is given by X :=

⋃
q∈Q{q}×Rn(q);

• Player I control space A: a nonempty, compact Borel
space;

• Player II control space D: a nonempty, compact Borel
space;

• Continuous state transition kernel τv(dv′|(q, v), a, d): a
Borel-measurable stochastic kernel on Rn(q) given x =
(q, v) ∈ X , a ∈ A, and d ∈ D;

• Discrete state transition kernel τq(q′|(q, v), a, d): a dis-
crete stochastic kernel on Q given x = (q, v) ∈ X ,
a ∈ A, and d ∈ D;

• Reset transition kernel τr(dv′|(q, v), a, d, q′): a Borel-
measurable stochastic kernel on Rn(q′) given x =
(q, v) ∈ X , a ∈ A, d ∈ D, and q′ ∈ Q.

In order to characterize the execution of a DTSHG, it
becomes necessary to define how the player I and player
II actions are chosen at each time step. It is intuitive that
the player whose action is allowed to depend on the choice
of action of the other player in general has an advantage in
the resulting stochastic game. To be somewhat conservative,
we consider an information pattern favorable to Player II.
Specifically, at each time step, Player I is allowed to select
inputs based upon the current state of the system, while
Player II is allowed to select inputs based upon both the
system state and the control input of Player I. A mathematical
description of this is given below.

Definition 2 (Markov Policy). A Markov policy for player
I is a sequence µ = (µ0, µ1, ..., µN−1) of Borel measurable
maps µk : X → A, k = 0, 1, ..., N − 1. The set of all
admissible Markov policies for player I is denoted by Ma.

Definition 3 (Markov Strategy). A Markov strategy for
player II is a sequence γ = (γ0, γ1, ..., γN−1) of Borel
measurable maps γk : X × A → D, k = 0, 1, ..., N − 1.
The set of all admissible Markov strategies for player II is
denoted by Γd.

With these definitions, the execution of DTSHG proceeds
similarly as in the case of DTSHS, except at the beginning of
each time step k, we select player I controls as ak = µk(xk)
and player II controls as dk = γk(xk, ak) , where xk ∈ X is
the current state of the DTSHG. Thus, we can define in an
analogous fashion as in [15] a stochastic kernel τ(dx′|x, a, d)
which describes the evolution of the hybrid state under player
I and player II controls. Let the hybrid state be denoted as
x = (q, v) ∈ X , then

τ((q′, dv′)|(q, v), a, d) = (1){
τv(dv

′|(q, v), a, d)τq(q|(q, v), a, d), if q′ = q
τr(dv

′|(q, v), a, d, q′)τq(q
′|(q, v), a, d), if q′ 6= q.

For a given initial condition x0 ∈ X , player I policy
µ ∈ Ma, and player II strategy γ ∈ Γd, the closed-
loop execution of the DTSHG is then specified through the
following definition.

Definition 4 (DTSHG Execution). Let H be a DTSHG
and N ∈ N be a finite time horizon. A stochastic process
{xk, k = 0, ..., N} with values in X is an execution of H
associated with an initial condition x0 ∈ X , a player I policy
µ ∈Ma, and a player II strategy γ ∈ Γd, if its sample paths
are obtained according to Algorithm II.1.

It can be observed that the execution resulting from
Algorithm II.1 is a time inhomogeneous stochastic pro-
cess on the sample space Ω = XN+1, endowed with
the canonical product topology B(Ω) :=

∏N+1
k=1 B(X),

where B(·) denotes the Borel σ-algebra on a topological
space. For notational conveniences, we define τµk,γk(·|x) :=
τ(·|x, µk(x), γk(x, µk(x))) as the closed-loop hybrid state
transition kernel at time k, under given choices of µ ∈ Ma

and γ ∈ Γd. For a fixed initial condition x0 ∈ X , the
stochastic kernels τµk,γk , k = 0, 1, .., N induce an unique



Algorithm II.1 DTSHG Execution
Input Initial condition x0 ∈ X , player I policy µ ∈ Ma,

player II strategy γ ∈ Γd
Output Sample Path {xk, k = 0, ..., N}

Set k = 0;
while k < N do

Set ak = µk(xk);
Set dk = γk(xk, ak);
Extract from X a value xk+1 according to
τ(·|xk, ak, dk);
Increment k;

end while

target 
set 

unsafe set X
x0

Fig. 1. The probabilistic reach-avoid problem is concerned with finding the
probability that the state trajectory, starting from a given initial condition
x0 ∈ X , will reach a target set while avoiding an unsafe set.

probability measure Pµ,γx0
on Ω (see Proposition 7.28 of

[16]). In the next section, we describe how this probability
measure allows us to quantify the probability of satisfying
the reach-avoid objective for player I.

III. PROBABILISTIC REACH-AVOID PROBLEM FOR
DTSHG

Using the modeling framework of a DTSHG, we consider
a stochastic game formulation of the probabilistic reach-
avoid problem in which player I (the control) has the
objective of steering the hybrid state into a desired target
set, while avoiding an unsafe set (as illustrated in Fig. 1),
and player II (the adversary) has the opposing objective of
steering the state into the unsafe set or preventing the state
from reaching the target set. This scenario can arise, for
example, in a robust control application where we would
like design a feedback controller to steer the system state
into a neighborhood of an operating point, subject to state
constraints on the closed-loop trajectory and disturbances
acting on the system dynamics. In contrast with the single-
player case, as addressed in [17], an optimal control policy
for the DTSHG needs to account for the worst-case strategy
of the adversary.

In the following, we proceed to give a more precise
statement of the problem. As in [17], we assume that the
Borel sets K,K ′ ∈ B(X) are given as the target set and safe
set, respectively, with K ⊆ K ′. For a given initial condition
x0 ∈ X , player I policy µ ∈ Ma, and player II strategy
γ ∈ Γd, the probability that the execution (x0, x1, ..., xN ) of
a DTSHG reaches K at some time j = 0, 1, . . . , N in the
horizon of interest, while staying inside K ′ at all previous

times i = 0, 1, . . . , j is given by

rµ,γx0
(K,K ′) := Pµ,γx0

 N⋃
j=0

(K ′ \K)j ×K ×XN−j


=

N∑
j=0

Pµ,γx0
((K ′ \K)j ×K ×XN−j), (2)

where the second equality follows by the fact that the union
is disjoint. By Proposition 7.28 of [16], this probability can
be computed as

rµ,γx0
(K,K ′) = (3)

Eµ,γx0

1K(x0) +

N∑
j=1

(
j−1∏
i=0

1K′\K(xi)

)
1K(xj)

 ,
which is analogous to the sum-multiplicative cost given in
[17] for a DTSHS. Now define the worst-case reach-avoid
probability under a choice of Markov policy µ as

rµx0
(K,K ′) = inf

γ∈Γd

rµ,γx0
(K,K ′). (4)

Our control objective is then to maximize this worst-case
probability over the set of Markov policies:

Problem 1. Given a DTSHG H, target set K ∈ B(X), and
safe set K ′ ∈ B(X) such that K ⊆ K ′:

(I) Compute the max-min reach-avoid probability

r∗x0
(K,K ′) := sup

µ∈Ma

rµx0
(K,K ′), x0 ∈ X; (5)

(II) Find a max-min policy µ∗ ∈ Ma, whenever it exists,
such that r∗x0

(K,K ′) = rµ
∗

x0
(K,K ′), ∀x0 ∈ X .

IV. SOLUTION APPROACH AND IMPLICATIONS

In this section, we state a result regarding the computation
of the max-min reach-avoid probability through dynamic
programming and the existence of max-min policies. To
ensure that the desired measurability properties are preserved
in a dynamic programming recursion, we will require the
following additional assumptions on the stochastic kernels
of the DTSHG, as inspired by [22], [23].

Assumption 1.
(a) For each x = (q, v) ∈ X and E1 ∈ B(Rn(q)), the

function (a, d)→ τv(E1|x, a, d) is continuous on A×D;
(b) For each x = (q, v) ∈ X and q′ ∈ Q, the function

(a, d)→ τq(q
′|x, a, d) function is continuous on A×D;

(c) For each x = (q, v) ∈ X , q′ ∈ Q, and E2 ∈ B(Rn(q′)),
the function (a, d)→ τr(E2|x, a, d, q′) is continuous on
A×D.

It should be noted that we only assume continuity of the
stochastic kernels in the actions of Player I and Player II,
but not necessarily in the system state. Thus, our Borel-
measurable model still allows for stochastic hybrid systems
where transition probabilities change abruptly with changes
in the system state. Furthermore, if the action spaces A



and D are finite or countable, then the above assump-
tions are clearly satisfied under the discrete topology on
A and D. Also, if τv(·|(q, v), a, d) has a density func-
tion fv(v

′|(q, v), a, d), v′ ∈ Rn(q) for every q ∈ Q, and
fv(v

′|(q, v), a, d) is continuous in a and d, it can be checked
that the assumption for τv is satisfied. A similar condition
can also be formulated for the reset kernel τr.

Now define a dynamic programming operator T which
maps a Borel-measurable function J : X → [0, 1] to a
function T (J) : X → [0, 1] as defined by

T (J)(x) = sup
a∈A

inf
d∈D

1K(x) + 1K′\K(x)H(x, a, d, J), (6)

where H(x, a, d, J) :=
∫
X
J(x′)τ(dx′|x, a, d).

The main result of the paper is as follows.

Theorem 1. Let H be a DTSHG satisfying Assumption 1.
Let K,K ′ ∈ B(X) be Borel sets such that K ⊆ K ′. Let
the operator T be defined as in (6). Then the composition
TN = T ◦ T ◦ · · · ◦ T (N times) is well-defined and

(a) r∗x0
(K,K ′) = TN (1K)(x0), ∀x0 ∈ X;

(b) There exists a player I policy µ∗ ∈ Ma and player II
strategy γ∗ ∈ Γd satisfying

rµ,γ
∗

x0
(K,K ′) ≤ r∗x0

(K,K ′) ≤ rµ
∗,γ
x0

(K,K ′), (7)

for every x0 ∈ X , µ ∈ Ma, and γ ∈ Γd. In particular,
µ∗ is a max-min policy for player I.

Aside from providing us with a dynamic programming
algorithm for computing the max-min reach-avoid probabil-
ity, this result also gives a more precise characterization of
the max-min policy. In particular, we have by (7) that if
the control were to select the max-min policy µ∗ and the
adversary were to deviate from the worst-case strategy γ∗,
then the reach-avoid probability will be at least r∗x0

(K,K ′).
On the other hand, if the control were to deviate from
the max-min policy µ∗ and the adversary were to choose
the worst-case strategy γ∗, then the reach-avoid probability
will be at most r∗x0

(K,K ′). Thus, µ∗ can be interpreted
as a robust control policy which optimizes a worst-case
performance index.

Due to space limitations, the proof of the theorem is
omitted. Instead we will highlight here the main points of the
proof. The interested reader is referred to REF:TechReport
for further details. First, we can show in a similar manner as
in [15] and [17] that the reach-avoid probability rµ,γx0

(K,K ′)
under fixed µ ∈Ma and γ ∈ Γd is computed by a recursive
formula. Second, we can prove a max-min selection theorem
for T , as an application of [24] and [28], showing that
the operator T preserves measurability properties and that
there exists Borel-measurable selectors which achieve the
supremum and infimum in (6). Finally, using the recursive
formula for rµ,γx0

(K,K ′) and the selection theorem for T ,
we can show that TN (1K) simultaneously upper bounds
and lower bounds r∗x0

(K,K ′) and that there exist a player I
policy and player II strategy which satisfy (7). The last step
can be seen as an extension of the dynamic programming

results for additive cost stochastic games [22], [25], [26] to
the sum-multiplicative case.

On a computational note, the dynamic programming re-
cursion in Theorem 1 can be carried out in an approximate
fashion through a discretization of the continuous state space
and player control spaces. Specifically, suppose that an
analytic characterization of the hybrid state transition kernel
τ is available (for example as a probability density function
over the continuous state space within each mode), then for
each grid point xg ∈ X , and discretized inputs ag ∈ A and
dg ∈ D, the operator H(xg, ag, dg, J) in (6) can be computed
by integration of J over X , under the probability measure
τ(·|xg, ag, dg). This then provides a piece-wise constant
approximation of the value function through a discrete grid
representation. In [29], this type of discretization schume
is shown to converge uniformly to the maximal safety
probability for a DTSHS, at a rate that is linear in the grid
size parameter. For the case where an analytic expression
for τ is not available, Monte Carlo simulation may be used
to approximate the transition probabilities, as discussed in
[17]. We note however that the computational complexity of
this approach does scale exponentially with the dimension
of the continuous state space. Finding methods to reduce
this computational complexity is a topic of ongoing research
[30].

V. COMPUTATIONAL EXAMPLE

Here we provide a practical example from the domain of
robust motion planning to illustrate the modeling framework
and solution approach discussed previously. Specifically, we
consider a target tracking application where the control
objective is to drive an autonomous quadrotor helicopter
to a hover region over a moving ground vehicle within
finite time, while satisfying certain velocity constraints. This
problem has been addressed in [31] using a continuous
time robust control framework, and experimental tests have
been performed on the Stanford Testbed of Autonomous
Rotorcraft for Multi-Agent Control (STARMAC) [32].

Through experimental trials, the position-velocity dynam-
ics of the quadrotor is found to be well-approximated by
a double integrator model in the planar axis x and y, with
some added disturbance terms to account for the movement
of the ground vehicle and the effects of model uncertainties
and actuator noise. Using the DTSHG framework, we will
assume a probabilistic model for the noise entering into
the quadrotor dynamics, while allowing the ground vehicle
to choose inputs rationally within its acceleration limits.
More specifically, consider the following stochastic model
for the relative motion between the quadrotor and the ground
vehicle:

x1(k + 1) =x1(k) + ∆tx2(k)+

∆t2

2
(g sin(φ(k)) + dx(k)) + η1(k)

x2(k + 1) =x2(k) + ∆t(g sin(φk) + dx(k)) + η2(k)



y1(k + 1) =y1(k) + ∆ty2(k)+

∆t2

2
(g sin(−θ(k)) + dy(k)) + η3(k)

y2(k + 1) =y2(k) + ∆t(g sin(−θ(k)) + dy(k)) + η4(k),

where x1, x2, y1, y2 are the position and velocity of the
quadrotor relative to the ground vehicle in the x−axis and
y−axis respectively, ∆t is the discretization step, φ is the
quadrotor roll angle command, θ is the quadrotor pitch angle
command, and g is the gravitational constant.

The disturbance parameters in this model include dx and
dy , which are the accelerations of the ground vehicle in the x
and y directions, as well as ηi, i = 1, . . . , 4, which represent
the model uncertainties and actuator noise. Given that the
ground vehicle may be a rational agent, we take dx and dy
to be the inputs of player II. On the other hand, we model ηi
as normally distributed according to ηi ∼ N (0, (σi

2)∆t2).
In order to complete the description of the DTSHG model,

we note that the inputs φ and θ are selected from a quantized
input range due to digital implementation. These quantization
levels can be viewed as the discrete states of the system,
resulting in a discrete time switched system.

For the target tracking application, the target set is chosen
to be a square-shaped hover region centered on the ground
vehicle, with some tolerance on the relative velocity. In
(x1, x2) coordinates, this is specified as

Kx = [−0.2, 0.2]m× [−0.2, 0.2]m/s.

The safety constraint in this case is chosen to be a bound
on the permissible relative position and velocity. In (x1, x2)
coordinates, this is specified as

K ′x = [−1.2, 1.2]m× [−1, 1]m/s.

The corresponding target set Ky and safe set K ′y in the y
direction are specified identically. The target and safe sets in
two dimensions are then defined as K = Kx×Ky and K ′ =
K ′x ×K ′y respectively. Under a stochastic game formulation
of the problem, the objective of the quadrotor (player I) is
to reach the hover region K while satisfying the state and
velocity constraint K ′, subject to the worst-case acceleration
inputs (dx, dy) of the ground vehicle.

Given the problem description, we decouple the reach-
avoid probability computation into two independent calcu-
lations in the (x1, x2) and (y1, y2) coordinates. For the
numerical results to be shown here, the roll and pitch
commands are chosen from the range [−10◦, 10◦], quantized
at 2.5◦ intervals, while the acceleration bounds for dx and
dy are chosen to be [−.4, .4] m/s2 and are discretized at
0.1ms intervals for numerical computation. The variance of
the noise parameters is set to be σi = 0.4. The time step is
set to be ∆t = 0.1s. The time horizon is chosen to be one
second (N = 10).

Using the dynamic programming algorithm discussed in
Section IV, we compute the max-min reach-avoid probability
for the quadrotor over the safety constraint set K ′x in (x1, x2)
coordinates, using a discrete grid of 61 × 41 nodes. The
result is shown in Fig. 2. The corresponding contours of this

Fig. 2. Probability of reach-avoid for the relative position and velocity of
the quadrotor with respect to the ground vehicle.

probability map are plotted in Fig. 3, with the target set K
shown in the center with probability contour one. Due to the
symmetry of the problem, only the results for the x−axis
are shown.

An interpretation of these results can be given as follows.
Suppose we initialize the quadrotor at a relative x-position
x1(0) and relative x-velocity x2(0) within the 0.8 probability
contour in Fig. 2, namely where r∗(x1(0),x2(0))(K,K

′) ≥ 0.8.
Then by Theorem 1, if the quadrotor were to select its roll
angle commands according to the max-min control policy µ∗

over a time interval of one second, then it will safely reach
the hover region with a probability of at least 80%, regardless
of the choice of acceleration inputs by the ground vehicle.
Thus, the set of states

{
(x1, x2) : r∗(x1,x2)(K,K

′) ≥ 0.8
}

form the set of feasible initial conditions for which there
exists a feedback policy satisfying the target tracking speci-
fications with at least 80% probability over the time horizon
of interest.

In comparison with a deterministic reachability approach,
such as considered in [31], the probabilistic reachability
analysis discussed here provides a measure of confidence in
the system performance in cases where hard bounds on the
noise parameters is not available, but a statistical model can
be obtained for the noise parameters through experimental
data (for example as a Gaussian distribution). On the other
hand, when bounds for some of the disturbances are available
(in this case the acceleration inputs of the ground vehicle),
the DTSHG model still allows us to determine the perfor-
mance of the system under the worst-case behavior of these
disturbances, as well as to construct a control policy which
optimizes this worst-case performance.

VI. CONCLUSION

In this work, we described a framework for extending the
study of probabilistic safety and reachability problems for
discrete time stochastic hybrid systems to a stochastic game
setting in which the evolution of the system state is affected
by the decisions of two rational agents. The probabilistic
reach-avoid problem is formulated within this framework as
a zero-sum game between a control and an adversary. A
solution to this problem is provided in the form of a dynamic
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Fig. 3. Reach-avoid probability contours for the target tracking game.

programming algorithm for computing the max-min reach-
avoid probability and an existence and synthesis result for
the max-min policy. Some directions for future work include
tractable approximation schemes for the reach-avoid proba-
bility, extensions to infinite horizon reachability problems,
and investigation of alternative information patterns between
the control and the adversary.
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