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Abstract: We present a method for the correct-by-design synthesis of controllers that
maximize the safety probability of partially observable stochastic systems. Given a stochastic
system with outputs that are corrupted by Gaussian measurement noise, we construct a
stochastically contracting observer that produces estimates of the internal state of the system.
The contractivity guarantees that the distance between the internal state and the estimate
produced by the observer remains bounded, and we can treat the observer as a fully observable
abstraction of the original system. For the bounded-horizon probabilistic safety objective, we
can synthesize a control law for the observer using a modified safe region according to the bound
on the distance above. The control law applied to the original system guarantees that the safety
objective is met with some given probability. We showcase the approach on a temperature
control problem using a Kalman filter as the observer for a linear stochastic model.
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1. INTRODUCTION

Safety critical systems, such as aircraft, satellites, and
electricity grids, have a prohibitively high cost of failure.
Controllers for these systems must therefore be designed
with guarantees to uphold rigorous safety requirements.
Many of these systems further rely on sensors to measure
their state and their environment. Sensors, however, are
often prone to noise, and cannot capture the entire state
of the system. It is therefore of interest to develop formal
methods for provably-safe controller synthesis that take
this lack of information into account. In particular, our
focus is on partially observable stochastic systems, which
comprise states evolving with some uncertainty and an
observation process. The observation process quantifies
which states are accessible, and if their measurements are
corrupted by noise. A controller then chooses actions based
only on the observation process.

To date, little attention has been given to safety verifi-
cation of partially observable systems. Results on formal
verification are few, and either produce feasible controllers
without optimality guarantees (Giro and Rabe (2012)),
or are restricted to uncontrolled systems (cf. Zhang et al.
(2005)). In a fully observable setting, reachability analysis
is often used to asses whether the state of the system will
remain within a desired (safe) region of the state space
over a given time horizon, particularly in the context of
hybrid systems (see Tomlin et al. (2003), Prandini and
Hu (2006), Abate et al. (2008)). Verma and Del Vecchio
(2012) examine deterministic hybrid systems with hidden
modes, and Ghaemi and Del Vecchio (2014) uncertain sys-
tems with incomplete information on a partial order, but
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reachability analysis of a partially observable stochastic
hybrid system has been approached only recently by Ding
et al. (2013) and Lesser and Oishi (2014).

To the best of our knowledge the only existing approach to
actually computing safety probabilities and controllers for
partially observable stochastic hybrid systems is in Lesser
and Oishi (2015). This approach models the partially
observable system and safety objective as a partially
observable Markov decision process (POMDP) with a
multiplicative cost function, and employs approximate
POMDP optimization techniques. However, the method
suffers from scalability issues, and leads to encoding the
synthesized controller into a set of functions that may be
difficult to implement in practice.

We propose an alternative and simple approach to syn-
thesize provably safe controllers of partially observable
stochastic systems. We first generate an observer to pro-
duce a state estimate, then synthesize a controller and
compute corresponding safety probabilities for the state
estimate, rather than for the actual state of the system.
The use of an observer, whose state is known completely,
mitigates some of the implementation issues that arise
from the POMDP approach of Lesser and Oishi (2015).

The state estimate, however, cannot be treated as the
true state of the system. There is a risk that the state
estimate is kept within the safe region while the true state
is not, which may lead to an (undesirable) overestimate of
the probability of safety. We therefore treat the model of
the state estimate as an abstraction of the actual system,
and draw upon existing work that employs abstractions
to formally verify properties of complex systems (see, e.g.,
Tabuada (2009) for an overview of verification using sym-
bolic abstractions). To our knowledge, these techniques
have never been used for partially observable systems.



A well-known quantitative notion of model abstraction is
that of approximate bisimulation, introduced for stochas-
tic systems in Julius and Pappas (2009). An abstract
model approximately bisimulates a given concrete model
if the models’ outputs remain within a bounded distance
of each other, either in expected value or in probability.
Abate (2009) uses the notion of stochastic contractivity
(introduced in Pham et al. (2009)) to show the existence
of an approximate bisimulation between uncontrolled dif-
fusion processes, and Zamani et al. (2014) use incremental
input-to-state stability (originally introduced in Angeli
(2002) for non-probabilistic models) to generate approx-
imate bisimulations for controlled diffusion processes. The
contractivity or stability properties of the system guar-
antee the existence of a Lyapunov-like function over the
two outputs, which is integral to bounding the distance
between trajectories of the two models.

The contribution of this paper is an indirect extension of
the above notions of formal abstraction via approximate
probabilistic bisimulation. Although we do not employ the
notion of bisimulation explicitly, we design an observer and
show that, if it is stochastically contractive, a Lyapunov-
like function exists that bounds the expected value of
the distance between the trajectories. The observer can
therefore be thought of as a formal abstraction of the
original system that is, however, fully observable. As such,
we show that safety properties can be verified over the
observer with classical techniques, employing a subset of
the safe set of interest that is defined according to the
maximum expected distance between trajectories. Further,
a controller is synthesized over the observer, and shown
to guarantee a certain probability of safety when applied
directly to the original system. We conclude by showcasing
the approach on a linear temperature control problem
using a Kalman filter as the observer.

2. PRELIMINARIES

2.1 Notations

We denote the expected value of random quantities with
E; when a probability measure or an expected value is
induced by a control policy π (to be defined later), we
write Pπ and Eπ, respectively. A random variable x ∼
N (µ,Σ) follows a Gaussian distribution with mean µ and
covariance Σ. The complement of a set B is written Bc,
and P[Bc] = 1 − P[B]. For a compact set B ⊂ Rn, the
boundary of B is denoted ∂B.

For a space X , Xn = X × . . . × X is the n-times product
space of X . The state of a system at discrete time step n
is denoted xn, and the sequence of states (x0, x1, . . . , xn)
is abbreviated as x0:n. We use ‖·‖ to denote the Euclidean
vector norm, and if a different norm is required, i.e. ‖ ·‖∞,
then it is explicitly stated. For a matrix A, the norm
‖x‖A = xTAx. The trace of a matrix A is written tr(A),
and the maximum eigenvalue of A is denoted λmax(A).

2.2 Problem Formulation

We consider the following partially observable discrete
time controlled stochastic system

xn+1 = f(xn, un) + σ(xn)wn, x0 = ξ,

yn = h(xn) + vn,
(1)

with internal state xn ∈ X , output h(xn) ∈ Y, noisy
output measurement yn ∈ Y, and initial condition ξ (to be
further characterised shortly). The function f is assumed
to be continuous and differentiable, f ∈ C1. The control
input un ∈ U is assumed known (perfectly measured
without noise), but the controller only has access to the
noisy output yn. The state space X is assumed equal to
Rm, and output space Y equal to Rl, with l ≤ m. The
control space U is assumed bounded.

The noise terms wn and vn are each independent and
identically distributed Gaussian random variables, with
wn ∼ N (0,W) and vn ∼ N (0,V). The initial condition
ξ is also an independent Gaussian random variable, with
ξ ∼ N (µ0,Σ0). We therefore do not know the starting
state x0 exactly, but only know that it initializes according
to a Gaussian distribution.

When the internal state of the model is unknown, it can
be estimated by constructing an observer. An observer is
a model designed to produce an estimate of the internal
state of the system through knowledge of the dynamics
and output measurements, and often takes the form

x̂n+1 = f(x̂n, un) + Ln(yn − h(x̂n)), (2)

with Ln the so-called observer gain. The state x̂n ∈ X̂ =
Rm is an estimate of xn. To be practically useful, the
observer should produce an accurate state estimate that
converges quickly in time to the internal state.

The goal is to construct an observer for system (1),
and use that observer to verify safety properties over
the internal state trajectory x0:N . We want to determine
the probability, starting from a given initial condition ξ,
that the state trajectory x0:N ∈ RmN remains within
some compact safe region K ⊂ Rm for all time steps
n = 0, . . . , N , with N <∞:

pNsafe(ξ, π) = Pπ[x0:N ∈ K | ξ], (3)

where π denotes a policy that generates the sequence
of control inputs u0:N−1. We specifically consider only
Markov policies that map the current state estimate to
a control input, formally defined as follows.

Definition 1. A Markov policy π for the observer-based
control problem is a sequence of functions π = (π0, . . . ,
πN−1) that map the current state estimate to the space of

control inputs: πn : X̂ → U , for all n = 0, . . . , N − 1. The
set of all such policies is denoted by Π.

While in (3) the policy π is assumed to be given, in general
we may want to find the policy that maximizes the safety
probability, namely

π∗ = arg max
π∈Π

pNsafe(ξ, π). (4)

We plan to synthesize a control policy for the observer in
(2) that, when applied online to (1), guarantees that the
internal state remains within K with a probability at least
equal to 1− α.

Problem 1. Given a partially observable system (1), a
compact safe region K ⊂ Rm, and a design parameter
0 ≤ α < 1, we would like to design an observer (2) such
that we can

(1) Generate a lower bound to safety probability (3)
by finding an equivalent safety probability for the
observer.



(2) Synthesize a control policy for the observer that guar-
antees that the internal state of the model remains
within K with probability at least 1− α.

The evolution of the system in (1) under an observer-based
control policy would proceed as follows. At the initial time
0, state x0 is generated according to x0 = ξ ∼ N (µ0,Σ0),
and the observer is initialized as x̂0 = µ0. The control
input u0 is selected as u0 = π0(x̂0). At time n − 1, the
observation yn−1 is recorded. At time n, x̂n is generated
according to (2), and the control input un is selected as
un = πn(x̂n). The observation yn is then recorded, and
state xn evolves to xn+1 according to (1).

2.3 Stochastic Contraction Theory

A deterministic dynamical system is contracting in some
region O ⊆ Rm if all trajectories that start within a ball
centered around a given trajectory lying inside O for all
time, remain within that ball and converge to the given
trajectory. It is distinct from the usual notions of stability
that describe convergence to an equilibrium point or to
a nominal trajectory, instead describing convergence of
trajectories to each other. The following definition is ex-
tended from Lohmiller and Slotine (1998) for autonomous
systems.

Definition 2. The nonlinear controlled discrete-time sys-
tem

xn+1 = f(xn, un).

is said to be contracting with respect to the uniformly
positive definite metric Mn = ΘT

nΘn if there exists a
constant 0 < β < 1 such that

sup
u∈U

λmax

(
FTn Fn

)
≤ β,

for all x ∈ X and for all n, with generalized Jacobian
Fn = Θn+1

∂f
∂xΘ−1

n .

If the Jacobian ∂f
∂x is a function of u, then the system may

be contracting for a specific value of u, or for all possible
u ∈ U , depending on the problem of interest. In our case,
we are interested in contractivity for all u ∈ U , since we
are searching for an optimal control input. It may also be
the case that the system is contracting for all u ∈ U ⊂ U ,
in which case we could search for control inputs only over
the subset U .

The above definition can be extended to stochastic sys-
tems, where we are instead concerned with convergence
properties over the expected values of the trajectories. As
presented in Pham (2008), a stochastic system is stochasti-
cally contracting if its noiseless dynamics are contracting,
and the impact of the noise is bounded.

Definition 3. A stochastic control system of the form

xn+1 = f(xn, un) + σ(xn)wn, (5)

with control input un and noise input wn ∼ N (0,W), is
stochastically contracting in the metric Mn if

(1) The noiseless dynamics f(xn, un) are contracting ac-
cording to Definition 2 with metric Mn, and

(2) There exists a finite constant C such that

tr(σ(x)TMnσ(x)W) ≤ C
for all x ∈ X , and for all n ∈ [0, N ].

Contraction theory (and the related concept of incremental
stability, see Abate (2009)) have been used in the design
and analysis of observers for non-probabilistic systems
(cf. Sontag and Wang (1997)) or systems with noisy
observations (cf. Pham et al. (2009)).

3. SAFETY VERIFICATION OVER ABSTRACTIONS

As mentioned in the Introduction, the notion of approx-
imate probabilistic bisimulation is often used to gener-
ate abstractions over stochastic, continuous space models.
Two systems are approximately probabilistically bisimi-
lar if control inputs can be chosen for each system such
that the outputs of each system (which lie in the same
space) remain bounded in probability or expected value,
i.e. E[‖h1(x1

n) − h2(x2
n)‖2] ≤ κ where h1 and h2 are the

output mappings of two systems indexed by 1 and 2,
respectively. In previous work the output is not noisy, and
verification is considered directly over the output rather
than the internal state.

In particular, Abate (2009) and Julius and Pappas (2009)
introduce the notion of a probabilistic bisimulation func-
tion φ(x1, x2), which is a supermartingale that bounds the
distance between outputs, φ(x1, x2) ≥ ‖h1(x1

n)−h2(x2
n)‖2

for all x1 ∈ Rm1 , x2 ∈ Rm2 . In discrete time, a super-
martingale is a non-increasing random process satisfying

E
[
φ(x1

n+1, x
2
n+1) | φ(x1

n, x
2
n)
]
≤ φ(x1

n, x
2
n). (6)

Because the distance between outputs is bounded above
by a supermartingale, we may use the following known
inequality:

P[ sup
0≤n≤∞

‖h1(x1
n)− h2(x2

n)‖2 > ε | x1
0, x

2
0]

≤ P[ sup
0≤n≤∞

φ(x1
n, x

2
n) > ε | x1

0, x
2
0] ≤ φ(x1

0, x
2
0)

ε
. (7)

If system 2 represents a simplified abstraction of system 1,
we can construct a set Kε ⊂ K, which is the set K with
boundaries deflated by size ε (Kε is the set K minus the
ε-neighborhood of the boundary ∂K of K), and determine
the probability that x2

n remains inside Kε for all n. The
inequality (7) then gives a bound on the probability that
x1
n ∈ K for all n, as a function of the probability that

x2
n ∈ Kε for all n and of the quantity

φ(x1
0,x

2
0)

ε .

While we will utilize supermartingale properties to analyze
partially observable systems, the above approach is not
directly applicable in our context because a) we consider
outputs with additive noise; and b) we do not wish to
verify properties over the noisy output, but rather over
the internal states of the original system.

4. OBSERVER DESIGN AND CONTROLLER
SYNTHESIS

To overcome the discrepancy between verifying properties
over the internal state versus the noisy output, we design
an observer and treat it as the abstraction of the concrete
model. The state estimate produced by the observer is
available for controller synthesis. The control input syn-
thesized over the “abstraction” x̂n is then directly applied
to the concrete model xn.



4.1 A Bound on the Distance Between Internal States and
State Estimates

To guarantee an upper bound to the distance E [‖xn − x̂n‖],
we must have an observer that is stochastically contract-
ing. An observer defined according to (2) is stochastically
contracting in the metric Mn if there exists β < 1 and
C2 <∞ such that

sup
u,x,n

λmax

(
Θn+1

(
∂f

∂x
− Ln

∂h

∂x

)
Θ−1
n

)
≤ β, (8)

max
n

tr
(
LTnMn+1LnV

)
≤ C2. (9)

We will also make the additional assumption that

sup
x,n

tr
(
σ(x)Tσ(x)W

)
≤ C1, (10)

for C1 < ∞, which will be necessary when comparing
trajectories x0:N and x̂0:N .

For system (1) without measurement noise vn nor process
noise wn, a contracting observer guarantees convergence
of x̂n to xn. In the presence of noise, however, we cannot
have complete convergence, but rather convergence up to
fluctuations because of noise.

To clarify, given the distinct and independent noise pro-
cesses v0:n and w0:n driving the trajectories x̂0:n and x0:n,
respectively, and considering the joint process (x, x̂), we
have the following theorem, extended from Pham (2008).

Theorem 4. For a discrete-time observer (2) that is stochas-
tically contracting in the metric Mn, i.e. that satisfies (8)-
(9), and for dynamics (1) with process noise on the internal
state satisfying (10), it holds that

E[‖xn − x̂n‖2Mn
] ≤ βnE[‖ξ − ξ̂‖2M0

] +
C1 + C2

1− β
(11)

for all n ≥ 0 and for the same control sequence u0:N

applied to both x0:N and x̂0:N .

The proof can be shown by deriving a Lyapunov-like
function Vn(xn, x̂n) = ‖xn − x̂n‖2Mn

over the composed
system (x, x̂), for which we can state the following.

Theorem 5. The Lyapunov function Vn(x, x̂) = ‖x− x̂‖2Mn

over the composed system (x, x̂) with dynamics (1) and
(2) using the same sequence of control inputs u0:N , and
under assumptions (8)-(10), satisfies

E[Vn+1(xn+1, x̂n+1) | Vn(xn, x̂n)] ≤ βVn(xn, x̂n) + C,

with C = C1 + C2, for all n ≥ 0.

Theorem 5 gives a bound on the distance between xn and
x̂n at any time n, but is not a supermartingale, as in (6),
because of the presence of the constant C. Therefore, the
bisimulation approach of, e.g., Julius and Pappas (2009)
does not apply. However, because we are only interested
in finite time properties of (1), we can apply inequalities
related to supermartingales, as given in (Kushner, 1967,
p. 86). We then get the following theorem.

Theorem 6. For observer trajectory x̂0:N with dynamics

(2), initialized by ξ̂ = µ0 (Dirac probability distribution
centered at µ0), and true state trajectory x0:N with dy-
namics (1) initialized by a random variable ξ ∼ N (µ0,Σ0),
and under assumptions (8) - (10), for any ε > 0, policy
π ∈ Π, and time horizon 0 ≤ N <∞, it follows that

Pπ[ sup
0≤n≤N

‖xn − x̂n‖ > ε] ≤
1−

(
1− E[‖ξ − ξ̂‖2]

ε2

)(
1− C

ε2

)N
, for ε ≥

√
C

1− β
,

E[‖ξ − ξ̂‖2]βN

ε2
+

(1− βN )C

ε2(1− β)
, for ε <

√
C

1− β
.

4.2 Correct-by-Design Control using Observer

Based on Theorem 6, we can proceed in the same manner
as Julius and Pappas (2009) and Abate (2009) to synthe-
size a correct-by-design controller, and to generate a lower
bound to the safety probability (3).

More precisely, given a parameter ε, we can find α such
that P [sup0≤n≤N ‖xn− x̂n‖ > ε] ≤ α. Alternately, given a
desired α, we can iterate over possible ε > 0 until we find
the minimal ε for which P[sup0≤n≤N ‖xn − x̂n‖ > ε] ≤ α.
However ε is selected, we then define the set Kε as

Kε = {x ∈ Rm : x ∈ K ∩ ‖x− x‖ > ε, ∀x ∈ ∂K}. (12)

A controller is then synthesized using existing methods for
fully observable stochastic systems (either as done later
through dynamic programming, or through an additional
finite abstraction step), which maximizes the probability
that the state estimate x̂ remains within Kε. Applying the
synthesized controller to x, we can conclude the following.

Theorem 7. For any ε > 0, compact safe sets K ∈ Rm and
Kε ∈ Rm, and given that Pπ[sup0≤n≤N ‖xn− x̂n‖ > ε] ≤ α
for all π ∈ Π, it follows that

Pπ
∗
[x0:N ∈ K | ξ] ≥ Pπ

∗
[x̂0:N ∈ Kε | ξ̂]− α, (13)

with π∗ = arg supπ∈Π Pπ[x̂0:N ∈ Kε | ξ̂].

In summary, we have shown that we can solve a conserva-
tive safety problem over the observer x̂ to generate π∗, as

well as Pπ∗
[x̂0:N ∈ Kε | ξ̂], and apply the optimal policy π∗

to the original system online by additionally employing the
state estimate at each time step. The closed-loop state tra-
jectory x0:N is then guaranteed to remain within K under

policy π∗, with probability at least Pπ∗
[x̂0:N ∈ Kε | ξ̂]−α.

In practice, there is a risk that the bound obtained for α
is quite large, requiring ε to increase in size to reduce that
of α. This could then render the set Kε small, so that the
probability of x̂ remaining within Kε also becomes small.
This is an issue we are currently exploring, but believe
there may be a way to characterize and optimize a trade-
off between the size of ε and the size of α.

5. CASE STUDY: TEMPERATURE REGULATION

We apply the observer-based control method to a two-
room heating example with continuous state dynamics.
The state xn = [x1

n, x
2
n]T , with xin the temperature in

degrees Celsius of room i at time n, so that X = R2.
The control input u ∈ U = {0, 1, 2} is a command that
programs the heater to heat room one (u = 1), room two
(u = 2), or shut off (u = 0). The effect of the input is in
q(u) ∈ Z2, for which the ith element of q(u) is 1 if u = i,
and 0 otherwise. The dynamics of the temperature in the
two rooms, taken from Abate et al. (2008), are:



[
x1
n+1

x2
n+1

]
=

[
0.9613 0.022
0.022 0.9613

] [
x1
n

x2
n

]
+

[
0.8 0
0 0.9333

]
q(un)

+

[
0.1002
0.1002

]
+ wn

= Axn +Bq(un) + c+ wn

where the state xn is subject to the additive Gaussian noise
wn ∼ N (0, [0.025, 0; 0, 0.025]). Further, xn is unknown
to the controller, and only a noisy observation of the
temperature in the first room is available,

yn = [1 0]xn + vn, (14)

with Y = R and vn ∼ N (0, 0.1). The state at time 0
is initialized according to a Gaussian distribution with
x0 ∼ N (µ0,Σ0), Σ0 = [0.02, 0; 0, 0.02].

Because the dynamics are linear with additive Gaus-
sian noise, the optimal state estimate is generated by a
Kalman filter. The observer dynamics use the steady state
Kalman gain matrix L, which in this case is equal to
L = [0.3759, 0.089]T ,

x̂n+1 = Ax̂n +Bq(un) + c+ L [H(Axn +Bq(un) + c

+vn) + wn+1 −H(Ax̂n +Bq(un) + c)]

= (I − LH)Ax̂n +Bq(un) + c

+ LHAxn + LHvn + Lwn+1.

Note that the observer is of the form x̂n+1 = Ax̂n+Bun+
c + L(yn+1 − Cx̂n+1), which is distinct from (2) because
we assume a constant gain L and use the observation at
time n+1 rather than at time n. However, all of the above
results still apply.

The state estimate is a function of xn, which is a Gaussian
random variable when conditioned on y0:n, with mean x̂n
and covariance Σn, calculated according to the Kalman
filter. Therefore the probability distribution of the state
estimate x̂n+1, conditioned on x̂n, is also Gaussian, with
mean Ax̂n+Bq(un)+c and covariance ATHTLTPnLHA+
HTLTVLH+LTWL. The state estimate x̂n can be treated
as an independent Markov process with control input un,
whose transition kernel follows a Gaussian distribution
initialized by x̂0 = µ0 (µ0 being the mean of the initial
distribution of x0).

We are interested in controlling the temperature to remain
within bounds K = [17.5, 22] × [17.5, 22]. The Kalman
observer is contracting in the identity metric Mn = I,
with contraction rate β = 0.923, and we can use Theorem
6 to construct the set Kε. Further, the constant C1 equals
0.0349, and C2 equals 0.0144. We can then solve a dynamic
program over the fully observable estimator model using
safe set Kε (see Abate et al. (2008)), to generate a control
policy and corresponding safety estimates for the system,
according to Theorem 7. Note that we do not consider
computation error arising from the dynamic program
(which requires discretization of the space X̂ ), although
we could incorporate such an analysis through the work
of, e.g., Soudjani and Abate (2013).

We can choose to set either ε or α as a design parameter,
and then calculate the other value according to Theorem
6. For example, if we desire ε = 1, then α must equal
0.254. Alternately, if we desire α = 0.1, then ε = 1.66.
We again point out the trade-off between setting α small
(which is desirable), which might cause ε to be large and

Fig. 1. Probability that xn ∈ K for all n ∈ [0, 5], given
a range of initial means µ0 = (x̂1

0, x̂
2
0) ∈ Kε =

[19, 20.5] × [19, 20.5]. The values are obtained from
the probability P[x̂0:N ∈ Kε], minus the calculated
bound α = 0.12 on the probability that the distance
between x and x̂ exceeds ε = 1.5.

Fig. 2. Simulated probability that xn ∈ K, P[x0:N ∈ K],
using the control policy computed from the dynamic
program over x̂ over varying µ0 = (x̂1

0, x̂
2
0), obtained

empirically as the percentage of safe trajectories out
of 200 trials.

thus likely reduce the probability that x̂0:N ∈ Kε, versus
setting α large (undesirable) which might allow ε to be
small and likely increase the probability that x̂0:N ∈ Kε.
For this example, ε is set to 1.5, and α = 0.12, making the
set Kε = [19, 20.5]× [19, 20.5]. Fig. 1 shows the estimated
probability that xn remains within K for N = 5 time steps
(which is a lower bound to the actual probability) given
µ0 = (x̂1

0, x̂
2
0). This is the probability that x̂n remains in

Kε for N time steps minus α, as per Theorem 7.

We also tested the performance of the controller con-
structed by the dynamic program over the state estimate.
We performed 200 simulations for each initial x̂0, and gen-
erated a sample trajectory of the state and observations.
The state estimate is constructed online using the Kalman
filter algorithm, and the appropriate control input is se-
lected using the look-up table generated by the dynamic
program. The ratio of successful runs (where the state xn
remains within K for 5 time steps) is presented for varying
x̂0 in Fig. 2. Note that the controller performs quite well,
and the probability of success according to the simulation
is higher than the computed lower bound, as expected.

Fig. 3, however, shows that the maximum distance
supn ‖xn − x̂n‖ is not negligible, and the conservativeness
in Kε is indeed necessary. Were we to treat x̂ as the



Fig. 3. Maximum Euclidean distance between x and x̂ over
N = 5 time steps, for each of 200 simulations for a
random starting value x̂0 ∈ [19, 20.5]× [19, 20.5].

true state and simply generate the probability that x̂
remains within K rather than Kε, our controller would
not be guaranteed correct to a certain probability, and the
associated probabilities of safety would be overestimates.

6. CONCLUSIONS

We have discussed the use of a stochastically contract-
ing observer as an abstraction for a partially observable
stochastic system. The expected value of the distance
between the state estimate, produced by the observer,
and the actual state, remains bounded and converges to
a constant value over time, which allows us to bound the
probability that the distance between the internal state
and the state estimate exceeds some given threshold. We
have then used this threshold along with the fully observ-
able observer dynamics to solve an equivalent probabilistic
safety problem defined over a subset of the given safe set.
As a result, we have been able to synthesize a correct-
by-design controller for the original, partially observable
system. This approach enables the use of known techniques
to synthesize a controller that is a function of the state esti-
mate, which we have access to, rather than using methods
for partially observable systems, which are known to be
more computationally demanding.
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