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Abstract— In this paper, an optimal control problem over
a “hybrid Markov Chain” (hMC) is studied. A hMC can be
thought of as a traditional MC with continuous time dynamics
pertaining to each node; from a different perspective, it can
be regarded as a class of hybrid system with random discrete
switches induced by an embedded MC. As a consequence of
this setting, the index to be maximized, which depends on
the dynamics, is the expected value of a non deterministic
cost function. After obtaining a closed form for the objective
function, we gradually suggest how to device a computationally
tractable algorithm to get to the optimal value. Furthermore,
the complexity and rate of convergence of the algorithm is
analyzed. Proofs and simulations of our results are provided;
moreover, an applicative and motivating example is intro-
duced.

I. INTRODUCTION: MOTIVATIONS AND SETTING

Hybrid systems have been studied extensively in the past
decade [1]. However, the field of stochastic hybrid systems
(SHS) is rather young. There are multiple ways to introduce
randomness into the traditional deterministic hybrid sys-
tems’ framework [2]. A notable one is to insert randomness
into the continuous dynamics, i.e. assume that the dynamics
is governed by a stochastic differential equation rather than
an ordinary differential equation [3]. Another one is to
make the discrete jumps random according to a Markov
transition matrix while keeping the continuous dynamics
deterministic [4]; if the transition matrix is independent
of the state of every domain, then it is like having an
underlying MC, and this setting is similar to that of Markov-
Jump Linear Systems. This paper investigates a special
class of optimal control problems over a stochastic hybrid
systems framework defined using this last approach.

In real world applications, the discrete states may cor-
respond to some good or bad modes and the continuous
dynamics may either be forced or endeavor to jump between
those states. A natural question to ask is how to make the
continuous variable stay inside the good states as long as
possible while leave the bad states as quick as possible,
albeit paying a certain cost for this effort. Moreover, if we
can apply some control with a certain cost to make the
continuous state leave the bad states faster, what is the best
control that we can exert to have the largest profit?

The motivation for this work is twofold: first, the ac-
knowledgment of the limits of the classical deterministic
approach for optimal control on hybrid systems and the
need to introduce some uncertainty [5], [1]; then, work on
classical MC with rewards [6], [7]. Results in the domain of
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optimal control for SHS are scarce due to the hardness of the
problem: those that we are proposing are born from a rather
simplified setting, and can be in some extent interpreted via
the more classical MC framework [8], [9]. Nevertheless,
we are suggesting a new, in prospective extensible way to
investigate these problems: in fact, we will highlight some
results that could not be otherwise attained via the results
for MC or through dynamic programming. We first give the
mathematical model of the system and then analyze it. The
basic problem setting is as follows.

A hybrid system, i.e. a collection H =
(Q, X, f, Init, D, E, G, R), is given as follows:

• Q: {q1, q2, ..., qn} is a finite set of discrete states;
• X: Continuous State with x ∈ Rm;
• f : Q × X × U → Rm ; ẋ = f(qi, x, u) is the vector

field related to node qi and U is the set where the
control inputs lie;

• Init = Q × X is the set of initial states;
• D : Q → P (X): a compact subset in Rm, which

includes the origin (the “domain”)1;
• E: a set of edges;
• G : E → P (X): the “guard”; after time T the

continuous state starting from the origin jumps, unless
the state has already hit the boundary of the domain
before this time;

• R : E → P (X): The reset map simply takes the con-
tinuous state back to the origin of the ingoing domain.
In our setting, the discrete jumps occur according to a
Markov transition matrix [Pij ]; moreover, the embed-
ded Markov Chain is supposed to be irreducible2 and
positive recurrent.3

Furthermore assume the following for this problem:

• Each node i has a reward coefficient ρi associated with
it and w.l.o.g., let ρ1 ≥ ρ2 ≥ · · · ≥ ρn > 0.

• τ ≥ T , where τ = inf{t : x(t) ∈ ∂D, x(0) = 0} for x
in each node and without any input.

• An input ui with some cost gi(ui) can be applied
to steer the state to reach the boundary ∂D with
time h̃i(ui); gi and h̃i are related to each other by a
monotonically decreasing function φ, i.e. h̃i = φ(gi).
Intuitively, this means that the higher cost we pay, the
shorter time the state can reach the boundary.

• 0 ≤ gi(ui), 0 < h̃i(ui) ≤ T and gi(ui) = 0 iff ui = 0,

1Here P (X) is the power set (the set of all the subsets) of X.
2All the pairs of states communicate.
3The return time to each node is finite.
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Fig. 1. A simple pictorial example for a Hybrid MC.

h̃i(ui) = T iff ui = 04.
• The hybrid execution time is NT , where N > 0 is

predefined a natural number.
• Within each discrete node, only a finite discrete num-

ber k of different controls are available.
• The Hybrid MC is non blocking, and exhibits no Zeno

behavior.

Notice that a key point in the above setting is the spatial
versus temporal guards. The higher weight to the spatial
guard is needed to force the continuous state jump to
another discrete domain if we wish to pay certain cost. The
objective is then to maximize a discounted global expected
reward E(R)5 where R is given by:

R =
1

NT

l∑
i=1

(ρki − gki(uki))h̃ki(uki), (1)

where we assume there are l transitions occurring during the
time NT (for instance, if there is no input for the whole
process, l = N , otherwise, l is a random number and l >
N ) and ki ∈ {1, 2, ..., n}6. This objective function is quite
general and could be specialized to obtain simpler problems,
as we do for the applicative example at the end of the paper.

The outline of this paper is as follows. In Section 2,
an alternative expression for the expected reward is given
which is much easier to deal with. In Section 3, the optimal
choice of the control laws is discussed and a fast convergent
algorithm is proposed to solve the optimal control problem.
An example (Section 4) is then introduced. Future work and
conclusions are discussed at the end.

4A simple example can help to understand these last 3 points: the system
dynamics are ẋ = k + u; k = constant > 0, u > 0, s.t. if u = 0, then
τ = T . This is clearly a very simple relation for a dynamical system,
which helps in the problem’s formulation. The authors are working on
more general extensions (see the Conclusions).

5The 1
NT

term in front of the expression is just the normalization factor.
6As for each jump, the node can be arbitrary, so we only know that

ki ∈ {1, 2, ..., n}.

II. AN EXPLICIT DETERMINISTIC OPTIMIZATION

PROBLEM

In the above expression for the expected total rewards,
the optimal control problem cannot be solved in general as
l is random. We present now the following theorem which
shows an alternative way of expressing the expected reward
in a deterministic sense. We assume from now on that
N � n, i.e. , the hybrid trajectory’s jumps are much more
than the number of nodes available. This implies that l � n
as l ≥ N . Because of the fact that the MC is irreducible
and positive recurrent, the steady state distribution of the
embedded Markov Chain exists and is unique. Let this
steady state distribution of the MC be π, i.e. π = πP . Then
approximately πil transitions occur while the continuous
state is in node i. As the control is a function of the state
only, and due to the time-invariant quality of the MC, the
choice of a control will be unique for each domain and
independent of the time the dynamics might get there.

Theorem 1: With the assumption that l � n, we have

E(R) = E(
1

NT

l∑
i=1

(ρki
− gki

(uki
))h̃ki

(uki
))

=
∑n

i=1 πihi(ui)(ρi − gi(ui))∑n
i=1 πi · hi(ui)

,

where πi is the steady state distribution of the discrete
node i in the steady state and hi(ui) = h̃i(ui)/T .

Proof: As the continuous state dwells at node i for πil
times and each time, it stays there for a period of h̃i(ui).
Summing up the time it stays in all the nodes, then

n∑
i=1

(πil · hi(ui)T ) = NT

where hi(ui) = h̃i(ui)/T , hence

l =
N∑n

i=1(πi · hi(ui))

Hence the objective

E(R(u)) = E(
1

NT

l∑
i=1

(ρki − gki(uki))h̃ki(uki))

becomes:

E(R(u)) =
1

NT

n∑
i=1

πilhi(ui)T (ρi − gi(ui))

=
lT

NT

n∑
i=1

πihi(ui)(ρi − gi(ui))

=
∑n

i=1 πihi(ui)(ρi − gi(ui))∑n
i=1 πi · hi(ui)

QED
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III. SELECTION OF OPTIMAL CONTROL LAWS

A. Motivation: a Complexity Analysis

The formula that we introduced for the expected general
reward requires to check all the possible combinations of
nodes and controls in order to get a global optimal reward.
In other words, the computational burden accrues to O(kn)
assuming there are n nodes and within each node, there
are k possible control laws to choose. The idea is now to
try to exploit the structure of the expected reward function
and pose some constraints on the entities in our problem in
order to attain an improvement. We shall analyze first the
simplified two-nodes case, and then try to extend it to the
most general multinode case.

B. Discussion of the Two Nodes Case

To simplify the problem, we assume in this section that

hi(u) = α exp(−gi(u)) + 1 − α, α ∈ (0, 1),∀i.

Then the total expected reward is given by

E(R(u)) =
∑n

i=1 πihi(ui)(ρi − gi(ui))∑n
i=1 πi · hi(ui)

=
∑n

i=1 πi(α exp(−gi(u)) + 1 − α)(ρi − gi)∑n
i=1 πi · (α exp(−gi(u)) + 1 − α)

For simplicity, define E(R(u)) = κ(u). It is clear that
in this case, within node 1 no control should be applied
as node 1 has a higher reward than node 2. Therefore the
problem is whether to apply control in the second node.

Theorem 2: In the two nodes case it is analytically
possible to distinguish between the possibility that the
optimal control for each node is zero or different from zero.
Moreover , in this second case, it can almost always be
computed through a bisection algorithm.

Proof Let us start defining the following quantities:
c0 = (απ1(ρ2 − ρ1) + π1α + 2απ2 − 2α2π2)/(απ1),
c1 = (π2α)/π1, c2 = (π1(1 − α) + π2(1 − α2))/(απ1)
and c3 = 1 +

√
1 + 4c1c2. Then we shall prove that if

b1 = c0 + 2c1c2/c3 + c3/2 − log(c3/2c2) ≥ 0, then there
is no control that should be applied to maximize the total
expected reward. If b2 ≤ 0 where b2 = c0 + c1 + c2, there
is only one local maximum of the E(R) as a function of
g2 and the bisection method can be applied to find the
maximum value7. Otherwise if b1 < 0 < b2, there are two
local maximums of E(R) and the optimal control is the one
which maximizes E(R).

Recall that in the two nodes case,

κ(u) =
π1ρ1 + π2(αe−g2 + 1 − α)(ρ2 − g2)

π1 + π2(αe−g2 + 1 − α)

We want to show that if b1 ≥ 0, then there’s no local
maximum of κ(u) at g2 ∈ (0,∞), i.e. ∂κ(u)

∂g2
= 0 has

7This idea will reduce the complexity of the search for an optimum to
a logarithmic factor.

no solution when g2 ∈ (0,∞). A lengthy but simple
calculation shows that

∂κ(u)
∂g2

= 0 ⇐⇒ g2 = c0 + c1 exp(−g2) + c2 exp(g2)

Let ψ(g2) = c0 + c1 exp(−g2) + c2 exp(g2). Let us now
compute the point g∗2 where the derivative of ψ(g2) at g∗2
is 1, i.e. parallel to the line f(g2) = g2.

ψ′(g2) = −c1 exp(−g2) + c2 exp(g2) = 1
=⇒ exp(g2) = c3/2c2

i.e. g∗2 = log(c3/2c2) and ψ(g∗2) = c0 + 2c1c2/c3 + c3/2.
Hence the tangent line to ψ(g2) at g∗2 has the following
expression f(g2) = g2 + b1 where b1 = c0 + 2c1c2/c3 +
c3/2− log(c3/2c2). The theorem follows immediately after
we explore the geometric meaning of the above compu-
tations. If b1 ≥ 0, then we have that the tangent space
having slope 1 is higher than the line f(g2) = g2, hence
∂κ(u)
∂g2

= 0 has no solution (Figure 2 bottom). It is easy to
show that ψ(0) = b2 > b1, hence if b2 ≤ 0, there is only
one solution (Figure 2 top) and in this case, there is only one
local maximum of the function E(R) and then we can use
the bisection methods to efficiently compute the maximum
value of E(R) among all the k possible inputs. Otherwise,
if b1 < 0 < b2, there are two solutions and hence there
are two local maximum values and the best we can do is
to check all the k possible inputs and choose the one that
maximizes E(R). This case is nevertheless rather rare, as it
can also be visually understood from the figures. In general,
as an heuristic, we can state that the control can be found
through the bisection algorithm.

QED

We discuss two simple examples to illustrate the theorem.
Example 1: Suppose we have two discrete nodes 1 and

2. Using the previous notations, let ρ1 = 10, ρ2 = 1 be
the associated rewards of the two nodes and P11 = 0.9,
P12 = 0.1, P21 = 0.1, P22 = 0.9 are the transition
probabilities when discrete jumps occur. It is not hard to
show that in this case π1 = π2 = 0.5. Within each node,
we have 10 possible control laws (plus no control action)
available which make gi to be one of the 10 possible values
{1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5, 5.5} and the corresponding
hi takes value according to hi = 0.7 exp(−gi) + 0.3.
Intuitively, node 2 has a much lower reward than node 1
and when there is a discrete jump, the probability to jump
to node 1 is halved, therefore some control is needed. It
can be shown that b1 = −6.6473 < b2 = −6.1429 < 0
hence according to the above theorem, we should apply the
control (See Figure 3 top).

Example 2: In this second example, we use the same
setting as the example above, but let ρ2 = 8. It turns out
that in this case b2 = 0.8571 > b1 = 0.3527 > 0, hence
the best control strategy is to apply no control which is
intuitively true (See Figure 3 bottom).
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Fig. 2. Geometric Meaning of b in Example 3.1 and 3.2

Extension: Since the definition of the setting we have
assumed to have only a finite number of possible inputs
within each domain. After this discussion it should be
instead clear how the results we reached can be easily
extended to the case where every domain has a limited
but continuous, and as such infinite in cardinality, interval
of controls. The proposed methods are able to single out
the optimal control in a computationally feasible way. This
is an improvement to the classical dynamic programming
methods for MC with rewards, which hypothesize a limited
number of possible choices per node.

C. Discussion of the Multi-nodes Case

If we have more than 2 discrete nodes, it becomes much
harder to select the best control for each node among the
k possible inputs. The reason lies in the fact that when we
compute the partial derivatives of κ(u) with respect to gi,
the result involves other gj’s; therefore if we want to find
the best gi, we have to know the other gj’s first, which
are unavailable. This global correlation makes things rather
hard. We shall now introduce an algorithm which converges
in general in a few rounds of iterations.

Algorithm 1: Take the provisory optimum u∗(0) =
[u1(0), u2(0), · · · , un(0)], and randomly select each com-
ponent.
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Fig. 3. κ(u) versus g(u) for ρ2 = 1 and ρ2 = 8 respectively

While(convergence criterion is not satisfied) {
For i = 1 : n {
1. vary only u∗(i) and choose the control ui of node i
which maximizes E(R);
2. u∗(i) = ui; }
End(for) }
End(while)

This algorithm reduces the time complexity to O(n)
rather than O(kn). This is because each cycle consists of n
steps and each step in the worse case checks the k possible
inputs available. Normally a few cycles are needed for
the total expected value to converge. We have performed
some simulations in the MATLAB environment for the
multinodes case. The outcomes demonstrate the efficiency
of the algorithm. We have used six nodes as the example of
the multinodes case and each node has ten possible control
inputs available including applying no controls.

As can be seen in the tables, ρ and π are respectively
the reward coefficients and steady state distribution of the
nodes. The global optimum u∗ is obtained via calculating all
the possible combinations of the different inputs of the six
nodes; the total CPU time for this brute-force calculation is
around 64 seconds. For the proposed algorithmic solution,
u∗(0) is the provisory optimal control law that we set

1845



node 1 node 2 node 3 node 4 node 5 node 6
ρ 16 12 10 6 4 1
π 0.16 0.20 0.20 0.12 0.17 0.15

u∗ 1 1 1 6 7 8
u∗(0) 1 1 1 3 2 4
u∗(1) 1 1 1 5 7 8
u∗(2) 1 1 1 6 7 8
u∗(3) 1 1 1 6 7 8

Table 2-1: Optimal Control Laws in the Multinodes case

node 1 node 2 node 3 node 4 node 5 node 6
ρ 16 12 10 6 4 1
π 0.5 0.1 0.05 0.04 0.13 0.2

u∗ 1 5 6 7 8 8
u∗(0) 1 5 4 2 5 3
u∗(1) 1 1 6 7 8 8
u∗(2) 1 5 6 7 8 8
u∗(3) 1 5 6 7 8 8

Table 2-2: Optimal Control Laws in the Multinodes case

initially with random choices. After one cycle, consisting of
4 steps, u∗ has been updated to u∗(1) and this is repeated
for 3 cycles , i.e. until u∗(3) is obtained. To make the
notation clearer, we define the different possible controls
with increasing numbers, from 1 to 10, i.e. we index
the set {0, 0.5, 1, · · · , 4, 4.5}, similarly as in the previous
examples. In this case the CPU time used to complete the
5 cycles is around 0.025 second which is about 2500 times
faster.

a) Observations on the Rate of Convergence: Proving
that the rate of convergence is polynomial in time is in
general a difficult task[10]. Nevertheless, if we let e(k) =
E(R)∗ − E(R)k where E(R)∗ stands for the true optimal
total expected reward and E(R)k stands for the calculated
total expected reward at the kth cycle, and if there exists
β ∈ R such that 0 < β < 1 and e(k+1)

e(k) < β ∀k, then we
are sure that the rate of convergence is linear in time. This
is simply because the error goes to zero exponentially fast.
However, in our case it is also possible, although very rare,
that the algorithm may cause the total expected reward to
converge to a value which is not the true optimal value, but
rather to a local maximum: this is an unavoidable drawback
of “coordinate ascent” algorithms like this one. Despite all
these drawbacks, this algorithm is much more efficient than
checking all the possible combinations of the control laws.
As n grows large, this becomes an unbeatable advantage
compared to the exponential time complexity.

b) Comparison with other results in Literature: It can
be demonstrated that similar results can be attained through
some theorems from MC with rewards, or in general from
dynamic programming [8][11]. We claim two improvements
about our results: first, a computationally easier way to
achieve them, as shown in the proposed Algorithm, as well
as in the 2-nodes heuristic and the starting point choice.
Moreover, as already discussed in the previous section, we
claim that these results are still valid if we have an input
that can continuously vary within an interval; this case
cannot be covered by the more classic results that can be
found in Literature. Also, just as a hint to future work,
the mentioned extension to the finite-time case promises to

node 1 node 2 node 3 node 4 node 5 node 6
ρ 16 12 10 6 4 1
π 0.05 0.01 0.05 0.04 0.15 0.7

u∗ 1 1 1 1 1 5
u∗(0) 1 1 1 1 1 3
u∗(1) 1 1 1 1 1 5
u∗(2) 1 1 1 1 1 5
u∗(3) 1 1 1 1 1 5

Table 2-3: Optimal Control Laws in the Multinodes case

bring an improvement, for this special case, to the known
dynamic programming approach.

IV. APPLICATION: PRODUCTIVITY ALLOCATION IN

HIGH-TECH MARKETS

A. Key Concepts for Productivity Allocation

In this paragraph, we shall apply the previously developed
concepts to define a productivity strategy for a company.

Assume we are dealing with a highly dynamic market.
A start-up is a company willing to penetrate the market
with a new, ground-breaking and “disruptive” technology,
coming mostly from the application of research efforts into
new product concepts. Typically, the company is about to
address a pristine market, which is therefore quite critical,
unstable and uncertain. Therefore, after probing the value
of its new product, it usually segments the market, offering
different types of it, where the difference in price depends
on heterogeneous qualities; this is done to possibly address
different customer needs. Before entering the market, a lot
of research is done to assess the customer’s demands. Usu-
ally the company has a limited production capability, being
small and trying to limit the costs of product development
before getting any revenue. Say that the company is able
to produce three products, p1, p2, p3, which cost c1, c2, c3

and will be sold at price r1, r2, r3. The factory is able to
manufacture and convey to the sellers exclusively one of
the three goods at a time; moreover, it is possible to choose
to deploy more workforce and speed up the manufacture
machinery (let’s dub this non negative index w and say
that it is proportional to the exerted effort) to hasten the
production cycle, but this comes at a cost: let us say that,
being the default manufacture time T , it is possible to
achieve a production time hi(w), δ ≤ hi(w) ≤ T at a cost
gi(w), ci ≤ gi(w). The final information that the company
can rely on is the demands of the products: analysts have
surveyed that the customer orders will overcome the pro-
duction capability and are assessed to be o1, o2, o3 (in other
words, there will be no delay between the production of two
consecutive orders). In other words, anytime the company is
expected to receive an order of product pi with probability
equal to oi/

∑3
j=1 oj and, once accepted it, it is committed

to honor it (look at Figure 4 for reference). We want to
maximize the revenues over a finite time horizon NT (we
look ahead just for a finite time, or we have information
on the market demand limited to that period of time which
should then be refreshed), and choose a clever production
policy that would maximize a returns-related objective.
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Fig. 4. Simple pictorial representation of the Hybrid Model used for the
market structure.

B. The Hybrid System Model

From the problem description, it should appear clear how
the market can be modelled: we define a three-nodes hybrid
Markov chain, where each node represents the company
producing one of the three items; from any of the three
nodes, the probabilities to jump to any other are given by
oi . Every node has a reward given by the difference between
the price of the product and the cost to produce it; being
the cost dependent on how much effort w we put on it
the reward turns out to be Ri(w) = ri − gi(w), and the
time spent is hi(w). The time horizon is simply NT . In
this new setting the reward will not be proportional to the
time, but clearly the optimal choice will heavily depend on
the cumulative time spent inside the nodes. Furthermore,
in this framework we see that the system starts already in
steady state, i.e. the transition probabilities from a node are
equivalent to the steady state probabilities of the chain itself.
We will spend the next section to tailor the formulas to the
new case.

C. The New Problem

Under this new setting, the previous theory is modified
as follows: the objective is to maximize the total expected
reward E(R) over a time horizon NT , where

R =
1

NT

l∑
i=1

(rki − gki(wki)); (2)

here, as before, l is the random number of jumps that
occur during time NT .

As previously worked out in the proof of Theorem 1, we
have that NT = N

∑n
i=1 πihi(wi); plugging back into the

expected reward, we express the problem as a maximization
of the following index:

E(R) = N

∑n
i=1 πi(ri − gi(wi))∑n

i=1 πihi(wi)
. (3)

As before, we have a situation where there is coupling
between all the terms referring to the nodes of the graph,
even if the formulas look quite simpler than before.

The computation of the optimal policy can be done our
proposed algorithm suggested in the previous section with
fast convergence rate.

V. CONCLUSIONS

In this paper, a class of optimal control problems have
been studied by extending the concept of hybrid Markov
Chain. An analysis with respect to the underlying MC is
given and one algorithm is proposed to choose the optimal
control law. MATLAB simulations confirm the validity of
the criterion, and an example its viability to model real life
problems. We have underlined how our setting, even though
still quite simplified in the continuous-time dynamics, can
achieve novel results. Moreover, we think that possible
extensions of it could help solve more general optimization
problems for Stochastic Hybrid Systems.

Future work will be focusing mostly on the follow-
ing problems: as stated, introduction of more general,
continuous-time dynamics and of more generic reset maps;
finite-time analysis; definition of the node’s reward with
respect to the system’s equilibria and search of a relation
between the chosen policy/control and some stability behav-
ior [12]; investigation of further applications, most likely in
Biological Systems.
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