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ABSTRACT

Results on approximate model-checking of Stochastic Hybrid Sys-

tems (SHS) against general temporal specifications lead to ab-

stractions that structurally depend on the given specification or

with a state cardinality that crucially depends on the size of the

specification. In order to cope with the associated issues of gen-

erality and scalability, we propose a specification-free abstrac-

tion approach that is general, namely it allows constructing a

single abstraction to be then used for a whole cohort of prob-

lems. It furthermore computationally outperforms specification-

dependent abstractions over linear temporal properties, such as

bounded LTL (BLTL). The proposed approach unifies techniques

for the approximate abstraction of SHS over different classes

of properties by explicitly relating the error introduced by the

approximation to the distance between transition kernels of ab-

stract and concrete models, and by propagating the error in time

over the horizon of the specification. The new technique is com-

pared over a case study to related results in the literature.

Categories and Subject Descriptors

G.3 [Probability and Statistics]: Stochastic processes

Keywords

Markov processes, stochastic hybrid systems, formal verification,

probabilistic model-checking, linear temporal specifications, fi-

nite abstractions, approximate bisimulations.

1. INTRODUCTION
Stochastic Hybrid Systems (SHS) provide a powerful model-

ing framework for diverse application areas such as systems bi-

ology, air traffic control, power networks and telecommunica-
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tion systems [8, 18]. The reliable employment of SHS models

demands solid foundations for their analysis and verification.

One of the most prominent tools for the verification of finite-

state systems is model checking. In particular, with focus on the

discrete-time case, the verification theory of finite-state proba-

bilistic models known as discrete-time Markov Chains (dt-MC)

is mature [5]. The formal verification of dt-MC is enabled by

probabilistic model checking: in this instance verification prob-

lems allow for explicit solutions or answers that can be obtained

in a numerically efficient way leveraging dedicated probabilistic

model checking software [13, ?]. On the other hand, the price to

pay for the descriptive generality of SHS, models that are char-

acterized by an uncountable state space, is the lack of explicit

solutions and the undecidability for most verification problems

[1]. A possible approach to overcome this issue is based on

the concept of abstraction, namely “a quotient system that pre-

serves some properties of interest, while ignoring details” [17].

Abstractions are ideally finite, as this often leads to problem de-

cidability and to explicit solutions. For SHS, finite abstractions

are naturally dt-MC. Notice however that whenever the origi-

nal state space is infinite (as for SHS models), it is often only

possible to synthesize a finite model that is an approximate ab-

straction of the concrete one [11].

Many properties of interest for SHS can be expressed as PCTL

formulae or as linear temporal (LT) specifications [5]. With fo-

cus on the former, the work in [18] has formally related the

verification of PCTL formulae to the computation of correspond-

ing value functions defined over the state space of a SHS. Given

an initial state, such a value function represents the probability

that the execution of SHS satisfies a given PCTL path formula.

Thus one can relate the quality of an approximate abstraction

with respect to a given property to the difference between value

functions computed respectively over the abstraction and over

the concrete model [1].

So far only formula-dependent techniques have been devel-

oped to find approximate finite abstractions of SHS. The first

step of these techniques is to leverage dynamic programming

(DP) [6] principles to derive DP-like recursions for the value

function related to a given formula. The second step is to build

an abstraction in order to numerically compute integrals involved

in the DP recursions, with explicit bounds on the approximation

error. The work in [1] has developed this approach and applied

it to the problem of probabilistic safety (or invariance) within

the class of PCTL formulae. Later, [20] has further improved

these results by relaxing some of the model assumptions and

by finding tighter error bounds, which in turn led to a lower

cardinality of the abstraction required to match a given preci-

sion. Both works have used DP procedures for bounded-horizon



safety value function developed in [3]. Such recursions have

also been developed for the probabilistic reach-avoid problem

in [21]. Although PCTL path formulae for safety and reach-

avoid are part of a more general class of LT specifications, it

has not been clear yet whether DP recursions could be also de-

veloped for other LT specifications. Due to this reason, [2] has

suggested a new approach for the verification of LT specifica-

tions, by reducing the original problem to the safety one defined

over a new SHS, the latter being the product between the origi-

nal SHS and the automaton corresponding to the specification of

interest. Let us mention that the approximate abstraction meth-

ods discussed above are limited to the verification of bounded-

horizon specifications – the work in [23, 24] argued that direct

abstraction may not work for infinite-time problems, and devel-

oped alternative techniques to tackle them.

Notice that all the described methods require building a brand

new approximate abstraction for each given different formula.

This contribution is thus challenged to develop formula-free fi-

nite abstractions over SHS. More precisely: given a SHS D, a

bounded time horizon n and a precision level ǫ, we provide an

explicit way to build a dt-MC D̂ which allows computing value

functions of any n-bounded LT specification with an error that

does not exceed ǫ. This result has several important features.

Firstly, no matter how many properties are to be model-checked

against D, one has to construct only a single formula-free ab-

straction D̂; one can then use any desired model-checking soft-

ware to do verification on D̂ [13, ?]. Secondly, the approach we

propose is especially useful when one needs to look into LT spec-

ifications that are richer than PCTL path formulae, for example

BLTL specifications (their applicative importance was recently

emphasized in [15]). For such problems, the only technique

available in the literature requires solving the safety problem

over the product between a SHS and an automaton expressing

the formula [2]. However, the error for the computation of the

safety value function depends on the size of the state space, thus

the overall error is crucially dependent on the size of the au-

tomaton: this is not the case for the proposed new formula-free

abstraction method. Lastly, the approach we use to quantify the

error of the formula-free abstraction is directly extendable from

LT specifications to other verification problems, such as those

based on reward properties, and it allows developing a unified

technique for the approximate abstraction of SHS over diverse

classes of specifications.

For notational convenience, results in this paper are stated for

discrete-time Markov processes (dt-MP), a class of models that

is more general than discrete-time SHS. The structure of the pa-

per is the following: Section 2 introduces classes of models and

specifications of interest, and formalizes the model-checking of

LT specifications against dt-MP. Section 3 describes the abstrac-

tion technique for BLTL and compares its performance with re-

sults from the literature. An extension of the technique from

BLTL to other specifications is presented in Section 4. Computa-

tional examples are given in Section 5, whereas Section 6 con-

tains the conclusions. Due to space constraints, the proofs of the

statements are omitted from this manuscript.

2. MODELS AND SPECIFICATIONS

2.1 Notations
Let us recall some concepts from measure theory – for a de-

tailed exposition the interested reader is referred to the books

[7, Chapters 1-3] and [10, Chapters 1-3].

We use N = {1, 2, . . . } to denote the set of natural numbers

and write N0 := N∪ {0} and m, n = {m, m+ 1, . . . , n} whenever

m, n ∈ N0 and m < n. We also use the notation R for the set of

real numbers and R̄= R∪ {±∞} for the set of extended reals.

For any set X and collection of its subsets C ⊆ 2X , the σ-

algebra generated byC is denoted byσ(C ). For example,B(R)
is the Borel σ-algebra on R, and is generated by the class of all

open subsets of R. We always assume R to be endowed with

its Borel σ-algebra. Given two measurable spaces (X ,X ) and

(Y,Y ) the map f : X → Y is X /Y -measurable if f −1(A) ∈ X

for any A ∈ Y . In the case of a f : X → R we say that f is

X /B(R)-measurable. For any function f : X → R we denote its

sup-norm by ‖ f ‖ := supx∈X | f (x)|. We denote by bX the space

of all boundedX -measurable functions.

If (X ,ρ) is a metric space, then diam(A) = supx ,y∈Aρ(x , y)

denotes the diameter of a set A⊆ X . Let I ⊆ N0 be some index

set and (X i ,Xi) be a measurable space for any i ∈ I . We denote

the corresponding product measurable space by
∏

i∈I
(X i ,Xi).

We call a function µ :X → R̄ a measure on (X ,X ) if µ(;) = 0,

if µ takes at most one of the values ±∞, and if µ(
⋃

n∈N An) =
∑∞

n=1
µ(An) for any sequence of disjoint sets (An)n∈N ⊆ X , where

the series converges absolutely if µ(
⋃

n∈N
An) is finite. Such mea-

sures are also called signed measures, in contrast to positive mea-

sures (namely measures taking values over a subset of R+). A

positive measure µ :X → R+ is called a probability measure (or

distribution) whenever it holds that µ(X ) = 1.

The last notion to be considered is that of a kernel: given

two measurable spaces (X ,X ) and (Y,Y ), a kernel Q on (Y,Y )

given (X ,X ) is a function Q : X × Y → R̄ such that Q x(·) is

a measure on (Y,Y ) for all x ∈ X , and such that the function

x 7→ Q x(A) is X -measurable for any A ∈ Y . We say that Q is a

stochastic kernel if for any x ∈ X the measure Q x is a probability

measure. If (Y,Y ) = (X ,X ) we simply say that Q is a kernel on

(X ,X ), in that case we sometimes write Q(x , A) for Q x(A).

2.2 Discrete-time Markov processes
This work considers a class of models known as discrete-time

Markov processes (dt-MP). Any dt-MP D can be uniquely char-

acterized by a triple (E,E , P), where (E,E ) is a measurable space

and P : E×E → [0, 1] is a stochastic kernel [19]. The state space

of D is (E,E ) and the elements x ∈ E of the state space are the

states of D. P is said to be a transition kernel of D and the quan-

tity P(x , A) represents the probability of going from the state x

to the set A∈ E . The work in [3] provides details of the embed-

ding of discrete-time SHS into the dt-MP framework.

The space of trajectories of D is given by the product space

(Ω,F ) :=
∏∞

k=0
(E,E ), with a generic trajectory denoted by

ω = (ω0,ω1, . . . ) ∈ Ω,

where for any n ∈ N0, ωn ∈ E represents the state of the system

modeled by the dt-MP D at time epoch n. It further follows from

[19, Theorem 2.8] that there exists a unique kernel P defined

on (Ω,F ) given (E,E ) that satisfies, for any n ∈ N0,

Px

 

n
∏

i=0

Ai ×

∞
∏

i=n+1

E

!

= 1A0
(x)

∫

A1

. . .

∫

An

P(xn−1, dxn) . . . P(x , dx1),

where Ai ∈ E are arbitrary sets and i ∈ 0, n. The measure Px tells

which events (measurable sets of trajectories) are more probable

to happen for D than others, given that the initial state is x .

By slight abuse of notation, we say that (Ω,F ,P) as above is a

canonical probability space for the dt-MP D= (E,E , P).



Any set F ∈ F is called an event. We are particularly inter-

ested in the following classes of events: given n ∈ N0, F ∈ F

is an n-horizon event if ω ∈ F together with ωi = ω
′
i
, i ∈ 0, n

implies ω′ ∈ F . The σ-algebra of n-horizon events is given by

Fn := σ

(

n
∏

i=0

Ai ×

∞
∏

i=n+1

E

�

�

�

�

�

Ai ∈ E , i ∈ 0, n

)

, (2.1)

and it represents the history of the observations of the dt-MP

D up to the time epoch n. We say that (Fn)n∈N0
is the natu-

ral filtration of the dt-MP D. The Markov property Px(ωn+1 ∈

A|Fn) = P(ωn, A) suggests that the distribution of the next state

of D depends on its history only through the current state.

The following concept is important for the abstraction proce-

dure given in Section 3: a dt-MP D = (E,E , P) is called finitely

generated (f.g.) whenever E is finite. As an example, we call D

a discrete-time Markov Chain (dt-MC) if E is finite. Clearly, the

finiteness of E implies the finiteness of E ⊆ 2E , hence we have

that a dt-MC is a f.g. dt-MP. However, the inverse statement is

not necessarily true: even if D is finitely generated, the set E

can be uncountable. Such f.g. dt-MP is an artificial object used

below as an intermediate step in the abstraction of a general

dt-MP into a dt-MC (cf. Figure 1).

2.3 Linear temporal specifications
The class of dt-MP models has been introduced to be model-

checked against linear temporal (LT) specifications, which sat-

isfiability can be explicitly decided over any given trajectory

ω ∈ Ω. Thus, the satisfaction relation is defined over the set

|= ⊆ Ω× LT – here the symbol LT designates an abstract class

of LT specifications, which will be further detailed below. Each

LT specification ϕ can be characterized by its sat-set as

SatΩ(ϕ) := {ω ∈ Ω :ω |= ϕ},

which is the subset of the space Ω containing exactly those tra-

jectories that satisfy the specification ϕ.

In accordance to [5, Section 10.3], we define the probabilistic

model-checking problem over LT specifications as follows. Given

a dt-MP D = (E,E , P), an initial state x ∈ E, and an LT speci-

fication ϕ, find the probability that the trajectory of D starting

from state x satisfies ϕ. More precisely, one has to evaluate

Px

�

SatΩ(ϕ)
�

. (2.2)

Recall that for any initial state x ∈ E the probability measure

Px is only defined over the σ-algebra F , and not over arbitrary

collections of trajectories. Due to this reason, we say that the

probabilistic model-checking problem is well posed for D if and

only if the quantity in (2.2) is defined, that is if SatΩ(ϕ) ∈ F .

Whenever the probability in (2.2) is well defined for any ϕ
in a given class of linear temporal specifications LT, one can

follow the procedure described in [4, Section 9.1.3] and do

equivalently a probabilistic model-checking of state specifica-

tions, which would yield a true/false answer instead of an

arbitrary number in the interval [0, 1], as in the case of (2.2).

More precisely, let us define the class of state specifications as

LTstate = LT× 2[0,1] with elements (ϕ, I) where ϕ ∈ LT is an LT

specification and I is a subset of [0, 1]. The satisfaction relation

can then be defined on the product set |=⊆ E× LTstate by

x |= (ϕ, I) ⇔ Px

�

SatΩ(ϕ)
�

∈ I .

Since the quantity in (2.2) needs to be well defined to be evalu-

ated, we first discuss measurability issues.

Let us focus on a particular class of LT specifications compris-

ing automata [5, Chapter 4] and LTL [5, Chapter 5]. In both

cases, specifications are expressed via languages over certain al-

phabets.1 Thus, it is sufficient to consider measurability proper-

ties of such languages, without focusing on a particular modal

logic, thereafter tailoring the developed results to the special

cases of LTL or automata, if needed.

We call an alphabet some finite set Σ, we call letters its ele-

ments σ ∈ Σ and we call words finite or infinite sequences of

letters. Let S = ΣN0 be the set of all infinite words over the

alphabet Σ. The generic element of S is denoted by

π= (π0,π1, . . . ) ∈S, πi ∈ Σ, i ∈ N0.

The infinite language ϕ over Σ is an arbitrary collection of infi-

nite words, i.e. ϕ ⊆S. We regard words as traces of trajectories

of a dt-MP, as already done for the case of dt-MC [5, Section

10.3] and non-probabilistic systems [22]. Note that the canon-

ical trajectory space Ω contains only infinite trajectories. It is

thus convenient to focus on infinite words and languages, since

their finite counterparts can be easily embedded in this frame-

work: to each finite word π′ = (π′
0
, . . . ,π′

n
) there corresponds

an infinite language {π′} ×
∏∞

i=n+1
Σ (we call such a language

a basic language). The embedding of a finite language into an

infinite one can be done in a similar way, word by word. As a

result, we shall deal only with infinite words and languages and

omit the word “infinite” in both cases.

We regard each language as a specification over a dt-MP as

follows. In order to characterize the satisfaction relation |=

between trajectories ω ∈ Ω and specifications (or languages)

ϕ ⊆S, let us introduce the labeling map L : E→ Σ. As a result,

to each state x ∈ E of the dt-MP we assign a letter L(x) ∈ Σ.

While the system described by a dt-MP evolves in time, it pro-

duces a trajectory ω0,ω1, . . . which in turn produces the word

L(ω0)L(ω1) . . . called the trace of ω [5, Section 3.2.2]. We say

that a trajectory satisfies the specification expressed as an infi-

nite language if its trace belongs to such a language.

More formally, we denote by L∗ : Ω → S the element-wise

extension of L given by L∗(ω0,ω1, . . . ) := (L(ω0),L(ω1), . . . ).

We define the satisfaction relation as follows:

ω |= ϕ ⇔ L∗(ω) ∈ ϕ. (2.3)

It follows from (2.3) that SatΩ(ϕ) = L
−1
∗
(ϕ) for all ϕ ∈S.

Having characterized sat-sets SatΩ through the labeling map,

we can state the main result about measurability of the sat-sets

used in our framework. For this purpose, we introduce the im-

portant concept of measurable language. Let us endow the al-

phabet Σ with a discrete σ-algebra 2Σ, which makes (Σ, 2Σ) a

measurable space. Hence, S can be endowed with its product

σ-algebra, which is further denoted by S .

DEFINITION 1. [16] We say that the language ϕ over the al-

phabet Σ (so that ϕ ⊆S) is measurable, whenever ϕ ∈ S .

Obviously, the collection of all measurable languages is just

the σ-algebra S , which is closed under intersections and com-

plementations by definition. The following theorem is crucial

for our further considerations.

THEOREM 1. If L is a E/2Σ-measurable map, then the sat-set

of any measurable language ϕ ∈ S is a measurable subset of Ω.

1In our case there is no substantial difference whether to start
from a finite set of atomic propositions AP and define an alphabet
as Σ = 2AP, or to start directly from some finite set Σ as an
alphabet. For ease of notation we have chosen the latter.



Whenever the map L is E/2Σ-measurable, we call a quintu-

ple (E,E , P,Σ,L) a labeled discrete-time Markov process and write

ldt-MP for short. This notion is different from that of Labeled

Markov process (LMP) defined in [?], where the primary goal

of using labels is to model the non-determinism in transitions.

However, an ldt-MP is similar to a general Labeled Markov

Chain [14, Definition 1] with the only difference that in the lat-

ter case L
−1 : Σ → E is said to be the labeling map. We say

that the ldt-MP is finitely generated (f.g.) if the σ-algebra E is

finite; in particular, if the state space E is finite we use the name

labeled discrete-time Markov Chain (ldt-MC) in place of ldt-MP.

Theorem 1 states that the model-checking of measurable lan-

guages ϕ ∈ S over an ldt-MP is a well-posed problem in the

sense that (2.2) is well-defined. Although not all infinite lan-

guages are measurable [16, Example 8], the important class of

ω-regular languages satisfies the measurability property.

PROPOSITION 1. [16] If ϕ ⊆S is ω-regular, then ϕ ∈ S .

2.4 BLTL specifications
Although Proposition 1, together with Theorem 1, implies

that the probabilistic model-checking of ldt-MP againstω-regular

properties, such as LTL formulae and Büchi automata [5], is a

well posed problem, its solution is in general difficult to find:

as it was shown in previous work [23, 24], the solution of each

particular infinite time-horizon problem depends on structural

features of the dt-MP, such as the presence of absorbing sets.

Due to this reason, we focus on a general class of bounded time-

horizon specifications, which are still very important for appli-

cations, for instance in in systems biology [15] and in financial

mathematics [25, Part III].

Let us first formalize what the horizon of a specification is. A

specification ϕ ⊆ S has a horizon equal to n ∈ N0 if, for any

word π ∈S, the value of the letters in π beyond position n does

not affect whether π ∈ ϕ. More precisely, we call a language

ϕ ⊆S bounded if there exists n ∈ N0 such that

(π ∈ ϕ) ∧
�

πi = π
′
i
, i ∈ 0, n

�

⇒
�

π′ ∈ ϕ
�

(2.4)

holds true for all words π,π′ ∈S. Clearly, if ϕ satisfies (2.4) for

some n ∈ N0, then it also satisfies it for n+ 1. Thus, it is natural

to define the horizon of ϕ ⊆S as follows:

H(ϕ) := inf
�

n ∈ N0 : (2.4) holds true for n
	

.

In other words H(ϕ) is the smallest n ∈ N0 which makes (2.4)

hold true for ϕ, if such n exists, whereas H(ϕ) =∞ otherwise,

where as usual inf(;) :=∞. As an example, each basic language

ϕ′ = {π′}×
∏∞

i=n+1
Σ, where π′ = (π′

0
, . . . ,π′

n
) ∈ Σn is bounded,

and H(ϕ′) = n whenever Σ has more than one letter. Conversely,

it follows from the finite cardinality of the alphabet Σ that each

bounded language is a finite union of basic languages. As a re-

sult, since any basic language is measurable, so is each bounded

language. The equivalent formula for H follows:

H(ϕ) = inf
¦

n ∈ N0 : L−1
∗
(ϕ) ∈ Fn

©

, (2.5)

where Fn is given by (2.1). Thus, Sn := {ϕ ⊆ S : H(ϕ) ≤ n} –

the collection of all languages with an horizon not exceeding n is

a sub-σ-algebra of S , and hence it is closed under intersections,

unions and complementations.

Clearly, each bounded language can be written via the finite

number of basic languages that it contains, which in turn can

be written via the corresponding finite words. It is possible to

consider some alternative, compact representations of bounded

languages. For instance, they appear as accepting languages of

Deterministic Finite Automata (DFA) [5] taking only runs that

are bounded by some a-priori integer n ∈ N0 [2]: we give the

precise definition later, in Section 3.4.

Another way to compactly encode a bounded language is via

BLTL formulae: we now tailor to our study the definition of this

logic given for a different class of models in [15]. The syntax of

BLTL over alphabet Σ is given by the following grammar:

Φ ::= σ | ¬Φ | Φ1 ∧Φ2 | XΦ. (2.6)

We define the semantics of BLTL by introducing the satisfaction

relation between BLTL formulae and infinite words over Σ:

π |= σ ⇔ π0 = σ

π |= ¬Φ ⇔ π 2 Φ

π |= Φ∧Ψ ⇔ π |= Φ and π |= Ψ

π |= XΦ ⇔ θ (π) |= Φ,

where the shift operator θ : S→S is given as follows:

θ (π0,π1,π2, . . . ) = (π1,π2, . . . ).

For any BLTL formula Φ, we define its accepting language L(Φ)

to be the collection of all infinite words that satisfy this formula,

namely L(Φ) := {π ∈S : π |= Φ}.
From the basic BLTL grammar in (2.6) we define the disjunc-

tion of two formulae as Φ1 ∨Φ2 := ¬(¬Φ1 ∧¬Φ2) and the truth

formula as true :=
∨

Σ
σ. The “neXt” temporal operator X al-

lows defining the “bounded Until” one. We first introduce pow-

ers of X inductively by X
0Φ := Φ and X

nΦ := X(Xn−1Φ).

We further defineΦ1U
≤nΦ2 := Φ2∨

∨n

i=1

�

∧i−1

j=0
X

jΦ1 ∧ X
iΦ2

�

for n ∈ N0. This formula has the following familiar semantics:

π |= Φ1U
≤nΦ2 ⇔ π |= Φ2 or θ iπ |= Φ2 for some i ∈ 1, n and

θ jπ |= Φ1 for all 0≤ j < i.

Other temporal modalities can be defined using the bounded

until operator, e.g. “bounded eventually” as ◊≤nΦ := trueU
≤nΦ

and “bounded always” as �≤nΦ := ¬(◊≤n¬Φ). Using BLTL we

can then pose well-known verification problems, such as prob-

abilistic reach-avoid (using U
≤n), reachability (using ◊≤n), and

safety (using �≤n). As an example, the specification induced

by the language L(�≤nσ) is equivalent to a finite-horizon safety

one [1]. Moreover, BLTL allows to consider more complex prop-

erties: let Σ = {α,β ,γ} and consider the following formula:

Φ =�≤100(α∨ β) ∧ ◊≤50�≤50α.

Supposing that {α,β} corresponds to the safe set and {α} to the

target set, formula Φ reads as “the system will be safe for at

least 100 steps and within the following 50 iterations it will end

up spending at least 50 consecutive steps in the target set.” For

more instances of BLTL formulae see e.g. [15].

Finally, the horizon of accepting languages of BLTL formulae

can be found as follows. Clearly, we have that H(L(σ)) = 0 and

the following relations hold

H(L(¬Φ)) = H(L(Φ)), H(L(XΦ)) = H(L(Φ)) + 1

H(L(Φ1 ∧Φ2)) =max(H(L(Φ1)),H(L(Φ2))).

By induction, for any BLTL formula the horizon of its accepting

language is finite and hence by (2.5) such a language is measur-

able, which leads to the well-posedness of probabilistic model

checking of BLTL. Note also that for each basic language ϕ there

exists a formula Φ such that ϕ = L(Φ). As a result, BLTL allows

describing all possible bounded languages.



3. FINITE ABSTRACTIONS OF LDT-MP
In order to progressively introduce the main results presented

in this work, let us first discuss how one can perform verifica-

tion of BLTL formulae against stochastic models with finite state

spaces, specifically ldt-MC. Notice that, from (2.6), the gram-

mar of BLTL is a fragment of LTL. Thus, any BLTL formula can

be expressed via an automaton, and its verification over an ldt-

MC is known [5, Chapter 10.3]. On the other hand, any BLTL

formula Φ can be directly expressed via the basic components

(finite words) of its accepting language L(Φ): one can further

compute probabilities of sat-sets for each word and find the sum

thereof to obtain the probability of the sat-set for L(Φ).

With focus on the general case of ldt-MP, automata model-

checking was studied in [2]. However, as it has been mentioned

in the introduction, the error for the approximate solution de-

pends on the size of the automaton (cfr. Section 3.4). This is

especially important in case of BLTL, which often leads to au-

tomata with large state spaces (cfr. Section 5).

To cope with the issues described above, this contribution pro-

vides a formula-free abstraction technique made up of two steps.

We show that any BLTL model-checking problem over f.g. ldt-

MP can be explicitly reduced to the same problem over a certain

ldt-MC. Perhaps not a striking result per se, it motivates look-

ing for finitely generated approximate abstractions of general

ldt-MP. The overall abstraction scheme is depicted in Figure 1:

the general ldt-MP is approximately abstracted as a f.g. ldt-MP,

which in turn is exactly abstracted as a ldt-MC.

3.1 Quotient ldt-MC of a f.g. ldt-MP
A f.g. ldt-MP with an infinite state space is an artificial ob-

ject that is used as an intermediate step between a general ldt-

MP and a ldt-MC in the abstraction procedure. Intuitively, a

finitely generated abstraction is useful since it has the same un-

countable state space as the original model but only a discrete

measurability structure given by its finite σ-algebra. To be more

precise, let us first comment on the structure of some arbitrary

f.g. ldt-MP D = (E,E , P,Σ,L). Since the σ-algebra E is fi-

nite, it follows that there exists a finite measurable partition of

E which generates E , i.e. there exists a finite collection of dis-

joint non-empty sets E1, . . . , EN satisfying
⋃N

i=1
Ei = E, and such

that E = σ(E1, . . . , EN ). Although the state space E can still be

an uncountable set, the finite structure of E in particular implies

that all measurable maps are constant when restricted to the

partition sets. This follows directly from the definition of mea-

surability and the fact that E is generated by a finite partition.

For example, for the stochastic kernel of D it holds that

P(x ′, A) = P(x ′′, A) ∀ x ′, x ′′ ∈ Ei , i ∈ 1, N , A∈ E . (3.1)

Moreover, any set A ∈ E admits a unique representation of the

form A =
⋃

i∈I
Ei where I ⊆ 1, N is some index set, e.g. it is

empty for the case A= ;. As a result, the stochastic kernel P is

uniquely determined by the matrix with entries given by

pi j := P(x i , E j), (3.2)

where x i can be any point in Ei , as it follows from (3.1).

Notice that the construction above means that only the sets

Ei , rather than single states x ∈ E or general subsets of E, are

“observable” locations. For example, if (Ω,F ,P) is a proba-

bility space of D then the probability that ω1 belongs to Ei is

well-defined and is given by Px(ω1 ∈ Ei) = P(x , Ei). However,

for any non-empty E′ ( Ei the probability Px(ω1 ∈ E′) is not

defined since E′ /∈ E . This can be interpreted as follows: we

know the one-step transition probability for entering the set Ei ,

but nothing can be said about the transition probability into a

generic subset of Ei .

The above discussion leads to regard the partition sets Ei as

equivalence classes of states in E, and to construct a quotient

ldt-MC over the finite state space made up by the collection

of such equivalence classes. Such an ldt-MC is characterized by

transition probabilities derived from the discrete structure of the

kernel P given in (3.1). In order to formally present this object,

let us introduce the indexing map I : E→ 1, N , defined uniquely

by the formula x ∈ E
I(x), that assigns to each x ∈ E the index of

the partition set that state x belongs to.

DEFINITION 2. Given a f.g. ldt-MP D = (E,E , P,Σ,L) we de-

fine the quotient ldt-MC by D̂ = (Ê, Ê , P̂,Σ, L̂), where the state

space is Ê = 1, N and Ê = 2Ê ; P̂ is defined by the stochastic ma-

trix P̂(i, { j}) = pi j , with pi j given by (3.2); the labeling map is

L̂(i) = L(x) where x is any element of Ei .

Note that in Definition 2 the new labeling map L̂ is well-

defined since L : E → Σ is E/2Σ-measurable and hence its re-

striction to any partition set Ei is constant. Let us emphasize that

we have used the name quotient because Ê can be thought of as

a finite collection of equivalence classes of states in the original

state space E with an equivalence relation ∼ generated by the

partition E1, . . . , EN , i.e. x ′ ∼ x ′′ if and only if I(x ′) = I(x ′′).

Let (Ω̂, F̂ , P̂) denote the canonical probability space of D̂. The

main result on the quotient ldt-MC is stated as follows.

THEOREM 2. For any specification ϕ ∈ S it holds that

Px

�

SatΩ(ϕ)
�

= P̂
I(x)

�

SatΩ̂(ϕ)
�

.

3.2 F.g. abstraction of a general ldt-MP
We have shown that the probabilistic model-checking of a f.g.

ldt-MP can be reduced to that of its quotient ldt-MC. This mo-

tivates us to look for finitely generated abstractions of general

ldt-MP. Obviously, such an abstraction is in general not exact,

hence there is no hope for equivalence results as in Theorem 2.

The best one can do is constructing an abstract f.g. ldt-MP that

is designed to approximate the value in (2.2) for the original

ldt-MP. This leads to the introduction of an appropriate notion

of distance between probability measures.

DEFINITION 3. Let µ : X → R̄ be a signed measure defined on

a measurable space (X ,X ); its total variation norm is given by

‖µ‖X := sup
A∈X

��

�µ(A)
�

�+
�

�µ(Ac)
�

�

�

.

If Q is a kernel on (X ,X ) given (Y,Y ), we use the same notation

for the induced norm: ‖Q‖X := supy∈Y ‖Q y‖X .

Let us now consider an ldt-MP D= (E,E , P,Σ,L). In order to

construct a finitely generated abstraction, we are going to retain

its state space E and its logical structure (given by Σ and L):

this is done in order to avoid the necessity of abstracting speci-

fications in addition to the model. As a result, the abstraction is

obtained modifying E and P into some finite Ẽ ⊆ E and P̃, thus

resulting in model D̃= (E, Ẽ , P̃,Σ,L). Note that it is always pos-

sible to choose some finite Ẽ and P̃, e.g. one can start with Ẽ

generated by the labels, then define P̃ such that every label is

absorbing. Although this is rarely an optimal choice, it can be

further refined as discussed in Section 3.3.

Let (Ω, F̃ , P̃) be the probability space of D̃ and let (F̃n)n∈N0

be its natural filtration. The following result shows that the dis-

tance between measures P and P̃ propagates at most linearly in

time via the distance between transition kernels P and P̃.



Figure 1: Two-step abstraction procedure: from a general ldt-MP to f.g. ldt-MP, to abstract ldt-MC

LEMMA 1. For any n ∈ N0 the following inequality holds true:

‖P− P̃‖F̃n
≤ n · ‖P − P̃‖Ẽ .

We are now ready to state the main result, which deals with

the approximate BLTL model-checking over a general ldt-MP

using a finite ldt-MC abstraction obtained via a f.g. ldt-MP.

THEOREM 3. Let D = (E,E , P,Σ,L) be a given ldt-MP and let

D̃ = (E, Ẽ , P̃,Σ,L) be its finitely generated abstraction, and let D̂

be the quotient ldt-MC of D̃. Then, for any x ∈ E and ϕ ∈ S ,
�

�Px

�

SatΩ(ϕ)
�

− P̂
I(x)

�

SatΩ̂(ϕ)
�
�

� ≤ H(ϕ) · ‖P − P̃‖Ẽ .

Theorem 3 states that any BLTL probabilistic model-checking

problem over an ldt-MP can be approximately solved using

an appropriate ldt-MC abstraction. The derived error bounds

are clearly useful only for bounded-horizon specifications ϕ,

whereas for infinite-horizon specifications the distance between

kernels P and P̃ in general cannot be employed to control the

error. Still, we show in Section 4.1 that for some infinite-horizon

specifications bounds on the error can be derived.

The results in Theorem 2 and Theorem 3 can be related to

notions of precise and approximate bisimulation, respectively,

which have been introduced for ldt-MC e.g. in [9].

Let us now focus on the bounded-horizon case H(ϕ)<∞ and

provide an explicit construction of finitely-generated approxi-

mations for a given ldt-MP (E,E , P,Σ,L). We also show how

to upper-bound the distance between kernels. This procedure

has two ingredients: the choice of the finite σ-algebra Ẽ and

the choice of the corresponding kernel P̃. Consider a finite col-

lection of non-empty E -measurable sets (E1, . . . , EN ), such that

Ei ∩ E j = ; for all i 6= j and E =
⋃N

i=1
Ei , and such that for any

index i ∈ 1, N it holds that L|Ei
≡ const . We define

Ẽ = σ(E1, . . . , EN ) (3.3)

to be the σ-algebra generated by this partition. To introduce the

kernel P̃, we choose representative points x i ∈ Ei and define

P̃(x , A) :=

n
∑

i=1

1Ei
(x)P(x i, A) (3.4)

for any set A ∈ Ẽ . Note that P̃ given by (3.4) is uniquely de-

termined by the matrix with entries p̃i j := P(x i , E j) (cf. (3.2)).

We call a collection (Ei , x i)
N
i=1

defined as above a tagged par-

tition of the ldt-MP (E,E , P,Σ,L). Note that any tagged parti-

tion (Ei, x i)
N
i=1

generates the pair (Ẽ , P̃) by formulae (3.3), (3.4),

hence for a given ldt-MP it defines uniquely its finitely gener-

ated abstraction (E, Ẽ , P̃,Σ,L).

3.3 Bounds on the distance between kernels
1. General BLTL specifications. Let us now discuss how

to find upper bounds on the distance ‖P − P̃‖Ẽ , and when is it

possible to control it by choice of the tagged partition (Ei , x i)
N
i=1

.

We define κi(P̃) :=
∑N

j=1
supx∈Ei

|P(x , E j)− P(x i , E j)|, i ∈ 1, N .

The next proposition gives bounds on ‖P − P̃‖Ẽ in terms of κi .

PROPOSITION 2. For any tagged partition (Ei, x i)
N
i=1

:

‖P − P̃‖Ẽ ≤max
i∈1,N

κi(P̃). (3.5)

Although bounds in (3.5) are explicit and do not require any

assumptions on the model, it may be impractical to find them

and to control them by tuning the partition. Due to this reason,

let us restrict our attention to the important class of integral

kernels.

ASSUMPTION 1. Let (E,ρ) be a metric space and E be its Borel

σ-algebra. Assume that P is an integral kernel, i.e. that there ex-

ists a σ-finite basis measure µ on (E,E ) and a jointly measurable

function p : E × E → R+ such that P(x , dy) = p(x , y)µ(dy), i.e.

P(x , A) =
∫

A
p(x , y)µ(dy) for any x ∈ E, A∈ E .

To make our results sharper, we need to assume that the den-

sity p satisfies certain Lipschitz-like conditions. The work in [1]

raised uniform Lipschitz continuity assumptions in order to con-

trol the bound for the computation of value functions character-

izing probabilistic safety. This assumption was further relaxed

in [20] into local Lipschitz continuity. In this work we further

generalize the latter assumption as follows.

ASSUMPTION 2. Under Assumption 1, for some tagged partition

(Ei , x i)
N
i=1

there exist measurable functions λi : E→ R+ such that

Λi :=
∫

E
λi(y)µ(dy)<∞ for all i ∈ 1, N, and such that

|p(x ′, y)− p(x ′′, y)| ≤ λi(y)ρ(x
′, x ′′) ∀x ′, x ′′ ∈ Ei , ∀y ∈ E.

PROPOSITION 3. If Assumption 2 is satisfied, then for any index

i ∈ 1, N it holds that κi ≤ Λiδi where δi = diam(Ei).

The latter result together with Theorem 3 leads to:

COROLLARY 1. If Assumption 2 is satisfied, then for any x ∈ E

and ϕ ∈ S the following bound holds true:
�

�Px

�

SatΩ(ϕ)
�

− P̂
I(x)

�

SatΩ̂(ϕ)
�
�

�≤ H(ϕ) ·max
i∈1,N

Λiδi .

One can notice that the bounds provided in Proposition 3 are

similar in shape to those in [20, Theorems 4,6]. This further

allows tailoring the sequential and adaptive gridding algorithm

in [20, Section V] to our case. Indeed, whenever a precision

level ǫ is fixed, one can start with some partition (Ei , x i)
N
i=1

sat-

isfying Assumption 2 and further refine it until the abstraction

error becomes smaller than ǫ. If each refinement reduces the

diameter of the partition sets at least by the factor of 2, then

clearly the maximum number of refinements necessary to reach

the precision level can be upper-bounded (for details see [20]).

It is important to note that results in Proposition 3 hold only

if the state space E is bounded with respect to its metric ρ. In-

deed, the condition on the finite cardinality of the partition N



that is used for the construction of the finite quotient ldt-MC

implies that diam(E) ≤
∑N

i=1
δi < ∞. There are two ways to

cope with this restriction: first of all, one can always transform

the original metric into an equivalent bounded one, for example

ρ′(x , y) :=
ρ(x ,y)

1+ρ(x ,y)
. The transformation of the metric leads to

a change in the functions λi in Assumption 2: one shall further

look for conditions on the original kernel in order to assure that

the corresponding integrals Λi are bounded. Alternatively, one

can introduce an additional assumption on the kernel P in order

to deal with unbounded state spaces, as follows. The idea is that

the original state space can be approximated with a bounded set,

say Bǫ, with any precision level ǫ > 0. More precisely:

ASSUMPTION 3. Under Assumption 1, assume that there exists

λ ∈ R such that for any points x ′, x ′′, y ∈ E it holds that

|p(x ′, y)− p(x ′′, y)| ≤ λ ·ρ(x ′, x ′′),

and for any ǫ > 0 there exists a bounded set Bǫ such that:

P(x , Bc
ǫ
)≤ ǫ, ∀ x ∈ E,

|p(x ′, y)− p(x ′′, y)| ≤ ǫ, ∀ x ′, x ′′ ∈ Bc
ǫ
, y ∈ Bǫ.

PROPOSITION 4. If Assumption 3 is satisfied with an ǫ > 0,

let us consider (Ei , x i)
N
i=1

to be a tagged partition with EN = Bc
ǫ
.

Denote δ =maxi∈1,N−1δi , then

‖P − P̃‖Ẽ ≤ ǫ+
1

2
max

�

ǫ ·µ(Bǫ),λδ ·µ(Bǫ)
	

. (3.6)

Proposition 4 allows reaching any desired precision only if

there is a choice of Bǫ such that limǫ→0 ǫ ·µ(Bǫ) = 0. Indeed, in

such case it is possible to make ǫ and ǫ ·µ(Bǫ) in (3.6) as small

as needed, and then to further construct a partition of Bǫ in such

a way that λδµ(Bǫ) < ǫ ·µ(Bǫ) by tuning δ appropriately.

2. Special case: bounded-horizon probabilistic safety.

Let us now tailor the results above for the important case of

bounded-horizon safety. Consider an ldt-MP D = (E,E , P,Σ,L)

with Σ = {α,β}. As discussed earlier, we can formulate the

probabilistic safety problem via the BLTL formula Φn = �
≤nα,

which allows the application of the results above. However, no-

tice that in such a case one has to partition the whole state space,

whereas it is known from [1, 20] that it is sufficient to partition

only the safe set A = L
−1(α). Let us show how this problem

can be studied in the new framework – in other words, below

we consider a formula-dependent abstraction technique for the

safety as a special case of the formula-free one presented above.

Let ∆ /∈ E be some auxiliary state introduced to represent

set Ac and define a new ldt-MP D
′ = (E′,E ′, P ′,Σ,L′), where

E′ = A∪{∆} and E ′ = σ(EA, {∆}), where EA = {B ⊆ A : B ∈ E} is

the subspaceσ-algebra of A. The kernel P ′ is given by P ′(x , B) =

P(x , B) for x ∈ A, B ∈ EA, and P ′(x ,∆) = P(x , Ac) for x ∈ A, and

P ′(∆, {∆}) = 1. Finally, L′(x) = α for x ∈ A and L
′(∆) = β .

Let us denote by (Ω′,F ′,P′) the probability space of D′, then

Px

�

SatΩ(L(Φn))
�

= P
′
x

�

SatΩ′(L(Φn))
�

for all x ∈ A and n ∈ N0, as it follows from the integral repre-

sentation of the safety probability [1]. As a result, rather than

doing verification of safety over D we can do this over a simpler

ldt-MP D
′, and still obtain the same result. Let us show how

Assumption 2 changes in such a case for D.

First of all, in order to solve the safety problem over D
′ we

need to partition E′, which reduces to partitioning only A. Sup-

pose now that Assumption 1 holds for D and that diam(A)<∞.

We define a metric ρ′ over E′ by: ρ′(x , y) = ρ(x , y) if x , y ∈ A,

and ρ′(x ,∆) = diam(A) + 1 if x ∈ A. We further derive a

new basis measure µ′ from µ as µ′(B) = µ(B) if B ∈ EA and

µ′({∆}) = 1. As a result, from P(x , dy) = p(x , y)µ(dy) and

P ′(x , dy) = p′(x , y)µ′(dy) we obtain the following density p′:

p′(x , y) = p(x , y) if x , y ∈ A, and p′(x ,∆) = P ′(x , {∆}). Thus,

if D satisfies Assumption 1 with parameters (ρ,µ, p) then D
′

also satisfies it with parameters (ρ′,µ′, p′) defined above. Thus,

for Assumption 2 to hold for D′, the original process D only has

to satisfy the following relaxed version of this assumption.

ASSUMPTION 4. Under Assumption 1 for D: for some partition

(Ei , x i)
N
i=1

of A there exist measurable functions λ′
i
: A→ R+ such

that Λ′
i
:=
∫

A
λ′

i
(y)µ(dy)<∞ for all i ∈ 1, N, and such that

|p(x ′, y)− p(x ′′, y)| ≤ λ′
i
(y)ρ(x ′, x ′′) ∀x ′, x ′′ ∈ Ei , ∀y ∈ A.

To summarize, the discussion above suggests that in order to

solve a probabilistic safety problem over the original ldt-MP D,

one can partition only the safe set A and lump Ac into a single

state∆. Furthermore, Assumption 4 is sufficient to yield bounds

as in Corollary 1. Note that although these bounds would hold

for any bounded language over D
′, in general only the safety

specification over D′ can be related to that over D.

3.4 Connections with the literature
1. Discrete-time Stochastic Hybrid Systems. Above we

have shown how to bound the quantity ‖P − P̃‖Ẽ needed for

the abstraction technique, and which assumptions are sufficient

to control this bound. The results have been stated in measure-

theoretical terms, for instance dealing with abstract basis mea-

sures and densities. In order to further elucidate the meaning

of these results over concrete models, as well as to highlight

their connection with recent literature, this section focuses on

models expressed as discrete-time SHS. We say that an ldt-MP

D= (E,E , P,Σ,L) is an ldt-SHS if E =
⋃

q∈Q
{q}× Dq, where Dq

are Borel subsets of Rmq and mq ∈ N for all q ∈ Q. Q is a finite

set of modes (or locations) and E is a hybrid state space.

We can endow E with a disjoint union topology and choose

E to be its Borel σ-algebra. In other words, any B ∈ E can

be decomposed uniquely as B =
⋃

q∈Q
{q} × Bq, where Bq is a

Borel subset of Dq. It is thus natural to define a basis measure

µ on (E,E ) by µ(B) =
∑

q∈Q
ℓmq (Bq), where ℓm stands for the

Lebesgue measure on Rm. It is common to define the transition

kernel of ldt-SHS through its hybrid components [1] as

P((q, c), {q′}× dc′) =

¨

Tq(q
′|(q, c))Tx(dc′|(q, c)), q′ = q,

Tq(q
′|(q, c))Tr(dc′|(q, c), q′), q′ 6= q,

for any c ∈ Dq and q ∈ Q and where Tq is a discrete probability

law, whereas Tr , Tx are continuous (reset and transition) ker-

nels. The semantical meaning of the conditional distributions

Tq, Tr , Tx is given in [1]. Let us now show how the density p can

be constructed given the co-product basis measure µ as above,

and densities t x , t r of Tx , Tr respectively:

p((q, c), (q′, c′)) =

¨

Tq(q
′|(q, c))t x(c

′|(q, c)), q′ = q,

Tq(q
′|(q, c))t r(c

′|(q, c), q′), q′ 6= q.

We have just explicitly embedded the densities of a ldt-SHS into

the general measure-theoretical framework we use in this con-

tribution. In particular, we obtain that the Lipschitz assumption

on Tq, t x , t r as per [20, Assumption 2] is indeed a special case



of Assumption 4 of this contribution, as it follows from

| f (x1)g(x1)− f (x2)g(x2)| ≤ ‖ f ‖ · |g(x1)− g(x2)|

+ ‖g‖ · | f (x1)− f (x2)|,

for any functions f , g : E → R and any x1, x2 ∈ E. Thus, with

focus on the safety problem, Corollary 1 under Assumption 4

in this contribution implies [20, Theorem 6] as a special case,

where functions λ′
i

have a piecewise-constant shape.

2. Specifications expressed as DFA. Let us discuss the veri-

fication of DFA specifications over a general ldt-MP. A DFA is a

tupleA = (Q, q0,Σ, t, F) where Q is a finite set of states, q0 ∈Q

is the initial state, Σ is a finite alphabet, t : Q × Σ → Q is a

transition function and F ⊆ Q is a set of accepting states. Given

an infinite word π ∈ S, the corresponding trajectory η ∈ QN0

is defined by η0 = q0 and ηi+1 = t(ηi ,πi) for all i ∈ N0. For

any n ∈ N0 ∪{∞} we define the accepting language Ln(A ) ⊆S

as follows: the word π ∈ S is n-accepted by A if its corre-

sponding trajectory ηi ∈ F for some i ≤ n. Clearly, in case

n = ∞ we obtain the usual accepting condition for DFA, else

Ln(A ) ∈ S and H(Ln(A ))≤ n. As a result, the model-checking

problem is well-posed and we can apply a formula-free abstrac-

tion in the case n<∞. Alternatively, we can follow the formula-

dependent approach given in [2], which we now recall and com-

pare. Given a ldt-MP D = (E,E , P,Σ,L) we define a new ldt-

MP D
A = (EA ,EA , PA , {α,β},LA ) as follows: EA =Q× E and

EA is the corresponding product σ-algebra. Also L
A (q, x) = β

if q ∈ F and L
A (q, x) = α otherwise. Finally:

PA ((q, x), {q′} × dx ′) = 1t(q,L(x))(q
′) · P(x , dx ′). (3.7)

In this case, for any n ∈ N0 ∪ {∞} [2]

Px(SatΩ(Ln(A ))) = 1−P
A
x
(SatΩA (L(�

≤n+1α))), (3.8)

where (ΩA ,FA ,PA ) denotes the probability space of DA . Such

an object is called the product between the ldt-MP and the DFA,

and is alternatively denoted by D⊗A [2].

To do verification ofA we can either leverage a formula-free

abstraction technique to find the left-hand side of (3.8), or a

formula-dependent one to evaluate safety in its right-hand side.

Note, however, that in the latter case we still have to partition

the whole original state space E as α corresponds to (Q \ F)× E.

In order to compare the two techniques in more detail, let us

suppose that Assumption 2 holds true for D. By Corollary 1,

we have that the error introduced by the formula-free abstrac-

tion is equal to ε1 = n ·maxi Λi,Dδi . Now, with focus on the

formula-dependent approach, notice that Assumption 2 for D

implies Assumption 4 for DA . In particular, without having any

additional information but Assumption 2 over D, we can only

say that λ′
i,DA
(q, y) = λi,D(y) for all pairs (q, y) that belong to

the safe set A= (Q \ F)× E. As a result, we obtain that

Λ′
i,DA

=

∫

A

λ′
i,DA
(q, y)µA ({q}× dy)

=
∑

Q\F

∫

E

λi(y)µ(dy) = #(Q \ F) ·Λi ,

where # denotes the cardinality of a set and µA is a product

measure of the measure µ on E and the counting measure on Q.

Hence, the error of the formula-dependent approach is

ε2 = (n+ 1) ·max
i
Λ′

i,DA
δi ≥ #(Q \ F) · ε1.

Such an error is in most cases larger than the error introduced

by the formula-free abstraction – this highlights yet another ad-

vantage of the proposed approach. If we fix the precision level

and further refine the partition for the formula-dependent ab-

straction to reach this precision, whenever D is an ldt-SHS

the cardinality of the corresponding finite abstraction will be

O (#(Q\ F)m+1) bigger than that of the formula-free abstraction,

where m is the largest dimension of the continuous components

of the hybrid state space. To further elucidate this scalability

assessment, we provide a concrete example in Section 5.

Clearly, we have supposed that no additional information about

the structure of the original system is used. Although such as-

sumption is relevant in many applications where e.g. it is not

possible to compute Lipschitz-like functions λ adaptively for any

new partition, it motivates exploiting the structure of the DFA

A which possibly may help reducing ε2 – for example one can

try using methods from [12]. However, it is by no means clear

whether such attempts would in general enable overcoming the

factor #(Q \ F), which can be a large integer.

4. FURTHER APPLICATIONS
The previous section has shown how to build a formula-free fi-

nite abstraction tailored to the goal of probabilistic BLTL model-

checking against ldt-MP models. Let us now discuss how the

technique we used to prove the main result in Theorem 3 can

lead to other important applications. This technique is given in

Lemma 1, which relates the one-step error ‖P − P̃‖Ẽ to the final

error ‖P− P̃‖F̃n
by showing that the one-step error propagates

in time at most linearly. This idea essentially extends a similar

method developed for approximate model-checking of particu-

lar PCTL specifications, such as safety [1]. One of the possible

advantages of the current approach is that the one-step error can

be related not only to the final error for safety and BLTL, but also

to the final error for other verification problems: such a relation

allows working on improvements of the one-step error, rather

than on computing the final error for each verification problem.

The new results on the one-step error would be then applica-

ble to all verification problems where the relation between the

one-step and final errors is known.

To further emphasize the usefulness of the proposed approach,

let us recapitulate that the one-step error has been successfully

related to the final error in the BLTL model-checking of an ldt-

MP. Below we show other examples of verification problems where

it is as well worth applying the newly introduced approach based

on the one-step error. Note that in each such example this error

can be bounded using any of Propositions 2, 3 and 4.

4.1 Infinite-horizon reach-avoid
As already mentioned, the formula-free abstraction technique

presented in this work is not directly applicable to general un-

bounded time instances, since the one-step error cannot be lin-

early accrued over an infinite horizon. However, the abstraction

described above can still be applied over particular instances of

infinite-horizon problems.

Consider an ldt-MP D = (E,E , P,Σ,L) where Σ = {α,β ,γ}.
We are interested in the infinite-horizon reach-avoid problem,

which can be stated using the “unbounded Until” operator from

LTL or PCTL. Such an operator can be easily expressed using a

disjunction over BLTL formulae αUβ :=
∨∞

n=0
αU≤nβ . Note that

the infinite disjunction is needed for the definition of U, which

is not part of BLTL where only finite disjunctions are allowed.

Moreover, the corresponding accepting language L(αUβ) is not

bounded, being anω-regular language. For this specification we

define the following value function w(x) := Px(SatΩ(L(αUβ))),



which is known to be a solution of the Bellman equation [18]

w(x) = 1B(x) + 1A(x)Pw(x), (4.1)

where A := L
−1(α) and B := L

−1(β). Let r := supx∈A P(x , A).

Whenever r < 1, equation (4.1) admits a unique solution [18].

Let now D̃ = (E, Ẽ , P̃,Σ,L) be some finitely-generated ab-

straction of D and let us denote the corresponding value func-

tion by w̃(x) := P̃x (SatΩ(L(αUβ))).

THEOREM 4. If r < 1 the following bound holds true:

‖w− w̃‖ ≤
‖P − P̃‖Ẽ

1− r
. (4.2)

As in the case of the safety problem in Section 3.3, to solve

the reach-avoid problem one can consider a version D
′ of D

where states corresponding to α and γ are lumped into two sin-

gle states. Owing to this simpler structure, it is easier for D′ to

satisfy assumptions needed to control the one-step error.

4.2 Rewards
One useful extension of the results in Section 3 stems out

of the following observation. Let D = (E,E , P) be some dt-

MP and let D̃ = (E, Ẽ , P̃) be its finitely-generated abstraction.

Let (Ω,F ,P) and (Ω, F̃ , P̃) represent the canonical probability

spaces of D and D̃ respectively, and let Ex and Ẽx denote the

corresponding expectations.

THEOREM 5. If ξ : Ω→ R is F̃n-measurable then for any x ∈ E
�

�Ex[ξ]− Ẽx[ξ]
�

� ≤ n · ‖ξ‖ · ‖P − P̃‖Ẽ

This fact can be applied to the approximate computation of

reward functionals (cf. [5, Chapter 10.5] for dt-MC), since they

are real-valued maps ξ defined over trajectories ω. The F̃n-

measurability assumption requires the reward ξ to depend only

on the first n + 1 coordinates of ω, i.e. ω0, . . . ,ωn. Such an

assumption holds for a wide range of problems, for instance in

finance [25].

Let us show how to approximately compute the expected value

of rewards in the following example. The first hitting time of a

set A ∈ E is a defined by τA(ω) := inf{n ≥ 0 : ωn ∈ A}. For a

function g ∈ bE , set A ∈ E and n ∈ N0, let us define a reward

of the following form: ξn
g,A
(ω) :=

∑τA∧n

k=0
g(ωk). For example,

if g = 1B where B ∈ E is some set, then ξn
g,A

is the time that a

trajectory ω spends in the set B prior to hitting set A and within

the time epoch n. Let us show now how to approximately com-

pute Ex[ξ
n
g,A
] using finite abstractions. Let (Ei, x i)

n
i=1

be a tagged

partition that generates D̃ – since there is no labeling structure,

we only require that A ∈ Ẽ , which is equivalent to A =
⋃

i∈I
Ei

for some index set i. We cannot apply immediately Theorem

5 to ξn
g,A

as in general it is only Fn-measurable rather than F̃n-

measurable. Thus, we first approximate the original reward with

an F̃n-measurable one: we define g̃(x) :=
∑N

i=1
1Ei
(x)g(x i),

which is clearly Ẽ -measurable, hence ξn
g̃,A

is F̃n-measurable.

ASSUMPTION 5. Let (E,ρ) be a metric space and E be its Borel

σ-algebra. Denote δ =max1≤i≤N diam(Ei) and assume that

|g(x ′)− g(x ′′)| ≤ η ·ρ(x ′, x ′′), ∀x ′, x ′′ ∈ Ei , ∀i ∈ 1, N ,

for some constant η > 0.

THEOREM 6. If Assumption 5 is satisfied then for any x ∈ E

|Ex[ξ
n
g,A
]− Ẽx[ξ

n
g̃,A
]| ≤ (n+ 1)

�

n · ‖g‖ · ‖P − P̃‖Ẽ +ηδ
�

.

5. CASE STUDY
To elucidate the techniques developed throughout this work,

let us consider the following model. Let the state space E be the

interval [0, 10], endowed with a Euclidian metric, and let E be

the corresponding Borel σ-algebra. We construct the transition

kernel P as an integral kernel with a basis Lebesgue measure µ=
ℓ1 and a density p being a weighted sum of two components:

p(x , y) = w(x)p1(y) + (1− w(x))p2(y). The weighting func-

tion w is chosen to be the relative distance to the center of the

interval: w(x) := 1

5
|x − 5|. The function p1(y) corresponds to a

truncated Gaussian distribution given by p1(y) := K · e−
1
2
(y−5)2 ,

and p2(y) =
1

10
corresponds to the uniform distribution. Here K

is a normalization constant defined by
∫

E
p1(y)dy = 1, so that

K ≈ 0.3989. The shape of the density p suggests that the closer

the current state to the center of the interval, the more impact

the truncated Gaussian term has whereas if the current state is

far from the center of the interval, the dynamics are affected by

the uniform term in p. Note that the dt-MP (E,E , P) satisfies

Assumption 1 by construction.

We introduce the alphabet Σ = {α,β} and the labeling map

L(x) = α if x ∈ [4, 6] and L(x) = β otherwise. In order to build

the formula-free abstraction of the ldt-MP D = (E,E , P,Σ,L),

we fix a time horizon T = 100 and select the precision level to

be equal to ǫ = 0.1. We are going to apply Proposition 3 to find

the required size of the partition sets, so we need to check if

Assumption 2 holds in this case. It holds that

|p(x ′, y)− p(x ′′, y)|= |p2(y)− p1(y)| · |w(x
′)− w(x ′′)|

≤ |p2(y)− p1(y)| · |x
′ − x ′′|,

so we can select λ(y) = |p2(y)− p1(y)| as per Assumption 2,

regardless of the choice of the partition. In this case it holds

that Λ :=
∫ 10

0
λ(y)dy ≈ 1.1422.

Let us now consider some arbitrary partition (Ei, x i)
N
i=1

of D

and let δ = maxi diam(Ei). It follows from Proposition 3 that

the one-step error is given by Λδ and the final error is equal

to TΛδ. As a result, to reach the desired precision level we

need to select a partition size δ ≤ ǫ

TΛ
and the cardinality of the

partition results in N1 = 10/δ = 11422. Let us emphasize that

this partition leads to a ldt-MC that can be used for the model-

checking of any linear temporal property with horizon T .

As a second example, in order to further clarify the statements

made for formula-dependent abstraction techniques in Section

3.4, let us consider a particular specification given by a DFAA =

(Q, q0,Σ, t, F) where Q = 0, M , q0 = 0 and F = {M}. Further,

let the transition function be given by t(q,α) = q + 1 if q /∈ F ,

t(M ,α) = M and t(q,β) = 0. Such an automaton expresses the

BLTL formula Φ = ◊≤100−M�≤Mα in the sense that LM+1(A ) =

L(Φ). For simplicity, let us select M = 50 from now on. As

we have discussed, the formula-free abstraction yields an ldt-

MC D̂ with N = 11422 states and introduces the error ε1 =

0.1 over this specification. We can then verify the formula by

solving a safety problem on D̂
A , which requires dealing with

C1 = #(Q \ F)N + 1= 50 · 11422+ 1≈ 6 · 105 states.

As an alternative, we can do formula-dependent abstraction

and try to solve the safety problem over DA . Based on the dis-

cussion in Section 3.4, in order to have the same precision level

of 0.1, we need to take partition sets that are of size 50 times

smaller, compared to the formula-free abstraction. Since the di-

mension of the problem is m = 1, this results in a cardinality of

the obtained Markov Chain equal to C2 ≈ 502 · N1 = 50 · C1 ≈

3 ·106 states, which is a number substantially larger than C1 and



as such possibly critical for computations. As a remark, if the

dimension of the state space would be bigger, say m = 2, then

we would have that C2 ≈ 2500C1. If we increased the parameter

M (e.g., M = 70), as a result we would obtain C2 ≈ 5 · 103C1.

6. CONCLUSIONS
This contribution has presented a formula-free approach for

approximate finite abstractions of SHS tailored to BLTL model

checking. The work has shown that in a number of problems,

for example when dealing with specifications expressed as au-

tomata, this approach can mitigate scalability issues related to

formula-dependent abstractions – this motivates further need

for more tailored and precise formula-dependent abstraction meth-

ods. The approach is based on the propagation of the difference

in transition kernels introduced by the abstraction (the “one-step

error”) as a global error over the complete verification problem.

Besides the application on formula-free abstractions over BLTL,

this technique can also be used over probabilistic safety (PCTL)

of SHS, and allows for extensions beyond BLTL.

Results on formula-free abstraction do not hold over general

infinite-horizon problems, which calls for specific techniques to

tackle these problems [24]. The authors are also looking into

extensions of the developed techniques to the controlled case.
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