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Abstract— Consider a set of sensors estimating the state of a
process in which only one of these sensors can operate at each
time-step due to constraints on the overall system. The problem
addressed here is to choose which sensor should operate at
each time-step to minimize a weighted function of the error
covariance of the state estimation at each time-step. This work
investigates the development of tractable algorithms to solve for
the optimal and suboptimal sensor schedule. First, a condition
on the non-optimality of an initialization of the schedule is
presented. Second, using this condition, both an optimal and a
suboptimal algorithm are devised to prune the search tree of all
possible sensor schedules. This pruning enables the solution of
larger systems and longer time horizons than with enumeration
alone. The suboptimal algorithm trades off the quality of the
solution and the complexity of the problem through a tuning
parameter. Third, a hierarchical algorithm is formulated to
decrease the computation time of the suboptimal algorithm by
using results from a low complexity solution to further prune
the tree. Numerical simulations are performed to demonstrate
the performance of the proposed algorithms.

I. INTRODUCTION

The problem of sensor scheduling is to select one out

of multiple available sensors at each time-step to minimize

a weighted sum of all the estimation errors over a certain

time horizon. Sensor scheduling is an essential technology

for applications that have constraints in which only a subset

of the sensors can operate at each time-step. An example

of such a system is a wireless sensor network comprised of

multiple nodes monitoring an external process. The nodes

perform some local processing of the data which is then

transmitted to a central aggregation process. Constraints on

the network’s communication bandwidth might not allow

all of the nodes to communicate at each time-step. Also,

each node may only have a limited amount of power and

therefore it should be turned off to conserve power when

its measurement is not required. Consequently, the objective

is to manage the schedule of nodes’ measurements. Sensor

scheduling can also be used to handle sensors which interfere

with one another, as with sonar range-finding sensors, and

thus cannot operate at the same time.

Meier et al. [1] proposed a solution to the discrete

time scheduling problem through the use of dynamic pro-

gramming which enumerates all possible sensor schedules;

the combinatorial complexity makes this method intractable
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for long schedule horizons. A local gradient method was

also proposed which is more likely to be computationally

feasible, but only provides a suboptimal solution. In [2],

a relaxed dynamic programming procedure is applied to

obtain a suboptimal strategy, which is bounded by a pre-

specified distance to optimality, that minimizes the trace of

the final state estimate covariance. A convex optimization

procedure was developed in [3] as a heuristic to solve the

problem of selecting k sensors from a set of m. Although

no optimality guarantees can be provided for the solution,

numerical experiments suggest that it performs well. In [4],

a sliding window and thresholding algorithm were applied

in order to prune the search tree; a suboptimal solution

with no bound on the optimality was obtained. A method

that switches sensors randomly according to a probability

distribution to obtain the best upper bound on the expected

steady-state performance was developed in [5].

The sensor scheduling problem can also be thought of as

the dual of an optimal control problem for switched systems,

which form a class of hybrid systems. A switched system

consists of a family of subsystems, each with specified

dynamics, and allows for switching between the different

subsystems. The analysis and design of controllers for hybrid

systems has received a large amount of attention from the

research community [6], [7], [8], [9], [10], [11], [12]. Specif-

ically, Zhang et al. [11], [12] proposed a method based on

dynamic programming to solve for the optimal discrete mode

sequence and continuous input for the discrete-time linear

quadratic regulation problem for switched linear systems.

They proposed several efficient and computationally tractable

algorithms for obtaining the optimal and bounded suboptimal

solution through effective pruning of the search tree, which

grows exponentially with the horizon length.

This work presents four main contributions that arise

out of the insights from the control of switched systems

in [11], [12]. First, a condition is presented that expresses

when the initialization of a sensor schedule is not opti-

mal. Second, based on the previous condition, two efficient

pruning techniques are developed which provide optimal

and suboptimal solutions. These algorithms can significantly

reduce the computation complexity and thus enable the so-

lution of larger systems with longer scheduling horizon than

through brute force enumeration. The suboptimal algorithm

includes a tuning parameter which trades off the quality

of the solution with the complexity of the problem, for

small and large values respectively. Third, an a posteriori

bound on the quality of the solution from the suboptimal

solution is presented. Fourth, a hierarchical algorithm is

formulated which reduces the complexity of the problem

while maintaining the quality of the solution.

The paper proceeds as follows. Section II describes the



standard sensor scheduling problem formulation. Then, sev-

eral properties of the objective function are explored and a

theorem which is useful for pruning branches in the search

tree is presented in Section III. In Section IV, a description

of tractable algorithms for determining the optimal and

suboptimal solutions is provided, and the performance of

both algorithms is explored through random simulations. In

Section V, the hierarchical method is formulated. The paper

concludes with directions of future work.

II. PROBLEM FORMULATION

Consider the following linear stochastic system defined by,

x (k + 1) = Ax (k) + w (k) , ∀k ∈ TN (1)

where x (k) ∈ R
n is the state of the system, w (k) ∈ R

n is

the process noise and TN = {0, . . . , N − 1} is the horizon.

The initial state, x(0), is assumed to be a zero mean Gaussian

distribution with covariance Σ0 i.e., x(0) ∼ N (0,Σ0). At

each time step, only one sensor is allowed to operate from

a set of M sensors. The dynamics of the ith sensor is,

yi (k) = Cix (k) + vi (k) , ∀k ∈ TN (2)

where yi(k) ∈ R
p and vi(k) ∈ R

p are the measure-

ment output and noise of the ith sensor at time k, re-

spectively. The process and measurement noise have zero

mean Gaussian distributions, w (k) ∼ N (0,Σw) , vi (k) ∼
N (0,Σvi

) , ∀i ∈ M where M , {1, . . . ,M} is the set

of M sensors. The process noise, measurement noise and

initial state are also assumed to be mutually independent.

Denote by M
t the set of all ordered sequences of sensor

schedules of length t where t ≤ N . An element σt =
{σt

0, σ
t
1, . . . , σ

t
t−1} ∈ M

t is called a (t-horizon) sensor

schedule. Under a given sensor schedule σt, the measurement

sequence is,

y(k) = yσt

k

(k) = Cσt

k

x(k) + vσt

k

(k), ∀k∈{1, . . . , t− 1}.

For each k ≤ t with t ≤ N and each σt ∈ M
t, let Σ̂σt

k be

the covariance matrix of the optimal estimate of x(k) given

the measurements {y(0), . . . , y(k−1)}. By a standard result

of linear estimation theory, the Kalman filter is the minimum

mean square error estimator, and the covariance of the system

state estimate evolves according to the Riccati recursion,

Σ̂σt

k+1=AΣ̂σt

k AT +Σw−

AΣ̂σt

k C
T
σt

k

(

Cσt

k

Σ̂σt

k CT
σt

k

+Σv
σt

k

)−1

Cσt

k

Σ̂σt

k A
T

(3)

with initial condition Σ̂0 = Σ0 and k ≤ t. Define V (σt) :
M

t → R+ as the accrued cost of the weighted trace of the

estimation error covariance matrix at each time-step,

V (σt) =

t
∑

k=1

qktr
(

Σ̂σt

k

)

(4)

where qk is a non-negative scalar weighting factor for each

time-step. The use of this objective function also enables the

representation of the estimation error at the final time-step

by setting qk = 0, ∀k 6= N . Formally, the objective is,

minimize
σN∈MN

V
(

σN
)

. (5)

III. PROPERTIES OF THE OBJECTIVE FUNCTION

Let A denote the positive semidefinite cone, which is the

set of all symmetric positive semidefinite matrices. Similar

to [12], a Riccati Mapping, ρi : A → A can be defined,

which maps the current covariance matrix, Σ̂k, under the

measurement from sensor i ∈ M to the next covariance

matrix of the estimate,

ρi(Σ̂k)=AΣ̂kA
T−

AΣ̂kC
T
i

(

CiΣ̂kC
T
i +Σvi

)−1

CiΣ̂kA
T +Σw.

(6)

A k-horizon Riccati mapping, φσt

k : A → A can similarly

be defined, which maps the covariance matrix, Σ0, under the

first k elements of the sensor schedule σt,

φσt

k (Σ0) = ρσt

k

(

ρσt

k−1

(

. . .
(

ρσt

0
(Σ0)

)))

. (7)

Definition 1 (Switched Riccati Mapping): The

mapping ρM : 2A → 2A, defined by,

ρM (S) =
{

ρi

(

Σ̂
)

: ∀i ∈ M, ∀Σ̂ ∈ S
}

,S ∈ 2A

is called the switched Riccati mapping.

The switched Riccati mapping maps the set of positive

semidefinite matrices to another set of positive semidefinite

matrices by mapping each matrix in S through each possible

sensor measurement.

Definition 2 (Characteristic Sets): Let {Hk}
N

k=0 be de-

fined as the characteristic sets as they completely character-

ize the objective function. Each set is of the form (Σ, γ) ∈
A× R+ and is generated recursively by:

Hk+1 = hM (Hk) from H0 = {(Σ0, tr (Σ0))} with

hM(H) = {(ρi(Σ), γ + tr(ρi(Σ))) : ∀i ∈ M, ∀(Σ, γ) ∈ H} .
Let hM(·) be referred to as the characteristic set mapping.

The characteristic sets grow exponentially in size from the

singleton set {(Σ0, tr(Σ0))} to the set HN consisting of up

to MN pairs of a positive semidefinite matrix and an accrued

cost. These sets express the covariance of the estimate and

the objective cost at every time-step under every possible

sensor schedule.

Let Hk(i) be the ith element of the set Hk, Σk(i)
and γk(i) be the covariance matrix and objective cost,

respectively, corresponding to the ith element of the set Hk,

κ(Σk(i)) ∈ M
k be the ordered sensor schedule correspond-

ing to the covariance estimate of the state Σk(i) and κ∗ be

the optimal sensor schedule for the problem. Figure 1 depicts

the search tree for an example with two sensors. The tree

grows exponentially with each time-step, requiring careful

development of computationally-tractable solutions.

The main idea of the subsequent solution methods is

motivated by the following properties of the Riccati mapping.

Theorem 1: For any i ∈ M and any Σ1,Σ2 ∈ A,

(i) [Monotonicity] If Σ1 � Σ2, then ρi (Σ1) � ρi (Σ2);
(ii) [Concavity] ρi (cΣ1 + (1− c)Σ2) � cρi (Σ1) + (1 −
c)ρi (Σ2), ∀c ∈ [0, 1].



Fig. 1. The search tree for the sensor scheduling problem for an
example with two sensors. This tree is the enumeration of all possible
sensor schedules and the covariance of the estimate at each time-step. The

superscript for each covariance matrix, Σ̂, is the sensor schedule used to
obtain that estimate of the state.

Remark 1: The monotonicity property is a well-known

result and its proof is provided in [13]. The concavity prop-

erty is an immediate consequence of Lemma 1-(e) in [14].

Thus, systems starting with a larger initial covariance, in

the positive semidefinite sense, will yield larger covariances

at all future time-steps. This result is important because it

provides insight into how to reduce the complexity of the

scheduling problem.

Theorem 1 can be repeatedly applied to result in the

following corollary.

Corollary 1: Let σN ∈ M
N and any Σ1,Σ2 ∈ A, then

∀k ∈ [0, N ]

(i) If Σ1 � Σ2, then φσN

k (Σ1) � φσN

k (Σ2);

(ii) φσN

k (cΣ1 + (1− c)Σ2) � cφσN

k (Σ1)+(1−c)φσN

k (Σ2),
∀c ∈ [0, 1].

Definition 3 (Algebraic Redundancy): A pair (Σ, γ) ∈
H is called algebraically redundant with respect to H \
{(Σ, γ)}, if there exist nonnegative constants {αi}

l−1
i=1 such

that

l−1
∑

i=1

αi = 1, and

[

Σ 0
0 γ

]

�
l−1
∑

i=1

αi

[

Σk(i) 0
0 γk(i)

]

where l = |H| and {(Σ(i), γ(i))}l−1
i=1 is an enumeration of

H \ {(Σ, γ)}.

Using the results from Corollary 1 and Definition 3, the

following theorem provides a condition which characterizes

the branches that can be pruned without eliminating the

optimal solution of the sensor scheduling problem.

Theorem 2: If the pair (Σ, γ) ∈ Ht is algebraically

redundant, then the branch and all of its descendants can

be pruned without eliminating the optimal solution from the

search tree.

Proof: It suffices to show that there exists a pair
(

Σ̃, γ̃
)

∈ Ht \ (Σ, γ) such that ∀σN−t ∈ M
N−t,

γ +

N−t
∑

k=1

qt+ktr(φ
σN−t

k (Σ)) ≥ γ̃ +

N−t
∑

k=1

qt+ktr(φ
σN−t

k (Σ̃)).

Let {αi}
l−1
i=1 be the constants satisfying Definition 3. From

the monotonicity and concavity of φσr

k ,

γ+

N
∑

k=s

qktr(φ
σr

k−t(Σ))≥
l−1
∑

i=1

αi

[

γ(i)+

N
∑

k=s

qktr(φ
σr

k−t(Σ(i)))

]

where r = N − t, s = t + 1 and l = |Ht|. Finally, the

convex combination of scalar variables is lower bounded by

the smallest entry,

γ +

N
∑

k=s

qktr(φ
σr

k−t(Σ)) ≥ γ(i∗) +

N
∑

k=s

qktr(φ
σr

k−t(Σ(i
∗)))

where i∗ = argmin
i∈[0,l−1]

γ(i) +

N
∑

k=s

qktr(φ
σr

k−t(Σ(i))). Therefore

the branch defined by (Σ, γ) and its descendants can be

eliminated because it will not have the optimal solution.

IV. DESCRIPTION OF ALGORITHMS

Using the properties of the objective function and search

tree, two efficient algorithms will be developed. The first

method will employ pruning of the search tree via Theorem 2

to provide the optimal solution. The second method will

reduce the complexity of the problem even more but will

only yield a suboptimal solution.

A. Optimal Solution

The method of enumerating all possible sensor schedules

is only tractable for relatively short time horizons, but

through efficient pruning of the search tree, larger time

horizon solutions are possible. Theorem 2 can be used to

define a condition that characterizes the redundancy of a

branch with respect to other branches. Consequently, an

efficient algorithm can be developed which uses Theorem 2.

Let an equivalent subset of the search tree be defined

as one that still contains the optimal sensor schedule. In

computing the characteristic sets, Definition 3 can be applied

to calculate an equivalent subset of Hk, ∀k ∈ {1, . . . , N},

which is outlined in Algorithm 1. The first step is to sort

Algorithm 1 Computation of the Equivalent Subsets

1: sort Hk in ascending order such that γ(i) ≤ γ(i + 1),
∀i ∈ {1, . . . , |Hk| − 1}.

2: H
(i)
k = {Hk(1)}

3: for i = 2,. . .,|Hk| do

4: if Hk(i) satisfies Definition 3 with H
(i−1)
k then

5: H
(i)
k = H

(i−1)
k

6: else

7: H
(i)
k = H

(i−1)
k ∪Hk(i)

8: end if

9: end for

the set in ascending order based upon the current cost of the

branches, which is a reasonable heuristic for obtaining the

minimum size of the equivalent subset. The equivalent subset

is initialized to the current best branch. Next, each entry in

Hk is tested with the current equivalent subset, H
(i−1)
k , to

determine if it can be eliminated. If not, then it is appended

to the current subset.

An efficient method for computing the optimal sensor

schedule which uses the proposed pruning technique is

stated in Algorithm 2. The procedure first initializes the





with

A =









−0.6 0.8 0.5

−0.1 1.5 −1.1

1.1 0.4 −0.2









, Σw =









1 0 0

0 1 0

0 0 1









,

C1 =
[

0.75 −0.2 −0.65

]

, Σv1
= 0.53,

C2 =
[

0.35 0.85 0.35

]

, Σv2 = 0.8,

C3 =
[

0.2 −0.65 1.25

]

, Σv3 = 0.2,

C4 =
[

0.7 0.5 0.5

]

, Σv4 = 0.5

and qk = 1, ∀k. In this example, the horizon length is

N = 50 which results in 1030 branches for the naive brute

force search. Figure 4(a) shows the resulting sensor schedule

for the suboptimal algorithm. This solution is the same for

ǫ = {0.01, 0.1, 0.2, 0.5} with objective function value of

850.57. It is interesting to note that the sensor schedule is

periodic for the non-transient portion of the schedule, with a

repeating sequence of {4, 1, 4, 2, 1, 2, 3}. Figure 4(b) shows

the number of branches in the search tree per time-step for

ǫ = {0.01, 0.1, 0.2, 0.5}, which converge to 166, 43, 25 and

18, respectively. Typically, the number of branches in the

search tree converges to a small number for large ǫ.
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Fig. 4. Results for ǫ = {0.01, 0.1, 0.2, 0.5}. (a) Suboptimal sensor
schedule. (b) Number of matrices per time-step.

Table I compares the performance of different ǫ for 200
random cases in which there are M = 3 sensors and n = 4
states with a planning horizon of length N = 50. Each

row represents the percentage of cases in which for that ǫ

it obtained a strictly larger objective cost than another ǫ.

For example, in 41.5% of the cases AlgoS(5.0) performed

worse than AlgoS(0.1), and for 0.5% of the cases AlgoS(0.1)
performed worse than AlgoS(0.5). In general, smaller ǫ will

generate a better sensor schedule with a smaller objective

function than larger ǫ, but in rare cases larger ǫ can obtain a

better solution. Consider the following example, which refers

to Figure 1, to explain this uncommon occurrence. Let the

branch {1, 2, 1} be the optimal solution in this problem. For

ǫ = 0.1, at time-step 2 the branch {2, 1} will eliminate

{1, 2}. However for ǫ = 1.0, at time-step 1 the branch {1}
will eliminate {2} since it has a larger approximation, and

therefore {1, 2} will not be eliminated at the next time-step.

Consequently, the larger ǫ will yield a better solution than

the smaller ǫ.

TABLE I

EACH ROW REPRESENTS THE PERCENTAGE OF CASES IN WHICH, FOR

THE GIVEN ǫ, A STRICTLY LARGER OBJECTIVE COST WAS OBTAINED

THAN FOR THE CORRESPONDING ǫ IN THE COLUMN.

ǫ 0.1 0.2 0.5 1.0 2.0 3.0 5.0

0.1 - 0.5 0.5 0.5 0.0 0.0 0.0
0.2 1.1 - 0.5 0.5 0.5 0.5 0.0
0.5 5.3 4.3 - 1.1 1.6 1.1 0.5
1.0 11.7 10.6 8.5 - 0.5 1.1 1.1
2.0 26.6 26.1 25.0 18.6 - 2.7 2.1
3.0 31.9 31.4 30.3 26.1 16.0 - 4.8
5.0 41.5 41.5 40.4 36.7 28.2 22.3 -

C. Performance

To characterize the performance of the suboptimal algo-

rithm, 100 random instances were performed with M = 3
sensors, state dimension n = 4, qk = 1, ∀k ∈ {1, . . . , N},

and a horizon of length N = 14. In generating the random

systems, the pair (A,Ci), ∀i ∈ M, was restricted to be

unobservable, with the exception that if all the sensors

are used at once then the system is fully observable. The

rationale for this restriction was to coerce the optimal

solution to switch between sensors instead of only using

one sensor for the entire time horizon. For each problem,

both the optimal solution and the suboptimal solutions over

ǫ = {0.1, 0.2, . . . , 1.0} were calculated. Figure 5(a) displays

the percentage of the solutions that is optimal for each ǫ.

As ǫ is increased there is a slow decay in the number that

is optimal. Figure 5(b) displays the mean and maximum

percentage of the final cost over the optimal solution for

each ǫ. For all ǫ, the solution is well within 0.5% of the

optimal objective function value for most of the instances

and is closer to optimal as ǫ is decreased. Figure 5(c) shows

the number of branches in the search tree at the final time-

step. As ǫ increases, fewer branches are needed to represent

the search tree, and even an ǫ = 0.1 requires on average

four orders of magnitude fewer branches than brute force

enumeration. As illustrated in the figure, the general trend

for both the mean and maximum values is an exponential

decay as ǫ increases.

V. HIERARCHICAL ALGORITHM

For larger ǫ, fewer matrices are needed to characterize

the objective function and therefore the sensor schedule can

be quickly computed. Another important aspect of the ǫ-

approximate algorithm is that in general, the smaller the ǫ

the closer the solution is to optimal since more branches are

being explored. Therefore, it would be desirable to be able

to combine the benefits from both the larger and smaller ǫ.

To this end, a hierarchical algorithm can be devised which

uses the objective function, V̄ , acquired from the larger ǫ

as an upper bound to prune branches when computing the

solution with smaller ǫ. The upper bound can be used in

two different ways to prune branches for the smaller ǫ. A

branch can be pruned if the current value of the objective

function is larger than the upper bound or if a lower bound

on the minimal future objective cost along that branch is

larger than the upper bound. A lower bound for the future
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Fig. 5. Performance of the suboptimal algorithm for different ǫ. (a) The
percentage of solutions for the suboptimal algorithm that is the optimal
solution. (b) Mean and maximum relative error, in percentage, between the
suboptimal and optimal solution for each ǫ. (c) The mean and maximum
number of branches in the search tree at the final time-step for each ǫ.

cost can be obtained through the use of all the sensors to

determine an estimate of the state. This is indeed a lower

bound because the Kalman filter is the minimum mean square

estimator for a linear, Gaussian system and by removing

sensor measurements the estimate cannot be improved.

Figure 6 shows the performance of the hierarchical method

for 50 difficult1 random cases with state dimension n = 4,

M = 3 sensors, qk = 1 ∀k ∈ {1, . . . , N} and a horizon of

N = 50. As before, the pair (A,Ci), ∀i ∈ M, was restricted

to be unobservable, but if all the sensors are used at once then

the system is fully observable. For the hierarchical algorithm,

an ǫ = 1.0, which requires on average only 33 branches, is

used as the bounding solution to prune the search tree for

ǫ = 0.1. The average number of branches required for the

hierarchical method for ǫ = 0.1 is 28 compared with 139 for

the non-hierarchical method. Also note that the algorithm

is only able to prune branches after time-step 7 because

the lower bound on the objective function is not a good

representation of the cost of the branch in the early stages

of building the tree.
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Fig. 6. Comparison of the performance of the hierarchical method. (a)
Histogram showing the percentage of the original number of branches
pruned by the hierarchical method for ǫ = 0.1. (b) Plot of the average
number of branches pruned at each time-step for ǫ = 0.1.

VI. CONCLUSIONS

To solve the sensor scheduling problem, a condition on

when an initial schedule is not part of the optimal was de-

1Typically, if the larger ǫ needed a significant number of branches to
represent the search tree, then the sensor scheduling problem was deemed
difficult. A difficult case was required to have at least 15 branches at the
final time-step for ǫ = 1.0 to represent the search tree.

veloped. Using this condition, two algorithms were devised,

which provide the optimal and suboptimal solutions, to prune

the search tree to enable the solution of larger systems and

longer time horizons. The algorithms trade off the quality

of the solution and the complexity of the problem. A bound

on the quality of the solution from the suboptimal algorithm

was also provided.

There are several interesting areas of future work that the

authors wish to explore. First, it has been noticed that the

sensor schedules tend to be periodic for the non-transient

portion of the schedule. The authors would like to analyze

this behavior to determine conditions for the periodicity and

a bound for the objective function if the periodic schedule

were used. Second, the authors want to extend these methods

to consider the case in which the sensors depend on the

state of the system. Lastly, the authors wish to apply these

algorithms to actual systems performing tasks such as multi-

agent perception and environment discovery.
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