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Abstract— In the past few years, there has been a growing
interest in the use of symbolic models for control systems,
however this has only recently covered the class of continuous-
time stochastic hybrid systems. The main reason for this
interest is the possibility to use algorithmic techniques over
symbolic models to synthesize hybrid controllers enforcing logic
specifications on the original models, which would be hard (or
even impossible) to enforce with classical control techniques.
Examples of such specifications include those expressible via
linear temporal logic or as automata on infinite strings. The
main challenge in this research line is in the identification of
classes of systems that admit symbolic models. In this work we
progress in this direction by enlarging the class of stochastic
hybrid systems admitting such models: in particular we show
that randomly switched stochastic systems, satisfying some
incremental stability assumption, admit symbolic models.

I. INTRODUCTION

Stochastic hybrid systems represent a general class of
dynamical systems that combine continuous dynamics with
discrete components and that are affected by probabilistic
noise and discrete events. There are many real-life systems
from fields such as air traffic control [6], systems biology
[9], and communication networks [8], that can be modeled
as stochastic hybrid systems. Randomly switched stochastic
systems, also known as switching stochastic systems, are a
relevant sub-class of general stochastic hybrid systems. They
consist of a finite family of subsystems (modes or locations),
together with an adversarial random switching signal that
specifies the active subsystem at every instant of time. Each
subsystem is further endowed with continuous probabilistic
dynamics that are described by a control-dependent stochas-
tic differential equation.

Recently, there has been some research focused on char-
acterizing classes of systems, involving continuous (possi-
bly hybrid) components, that admit symbolic models. A
symbolic model is a discrete approximation of a concrete
model resulting from replacing equivalent continuous states
by finite symbols. Symbolic models are interesting because
they allow the application of the algorithmic machinery
for controller synthesis over discrete systems [16] towards
the synthesis of controllers for the original models. Such
controllers are synthesized to satisfy classes of specifications
that traditionally have not been considered in the context of
control theory: these include specifications involving regular
languages and temporal logic.
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The search for classes of continuous-time stochastic (hy-
brid) systems admitting symbolic models include results on
stochastic dynamical systems under contractivity assump-
tions [1], which are valid only for autonomous models (i.e.
with no control input); on probabilistic rectangular automata
[20] with random behaviors exclusively over the discrete
components and with simple continuous dynamics; on linear
stochastic control systems [14], however without providing
any quantitative relationship between abstract and concrete
model; on stochastic control systems without any stability
assumption and no hybrid dynamics [24]; on incrementally-
stable stochastic control systems without discrete compo-
nents [25] and without requiring state-space discretization
[26], and finally on incrementally-stable stochastic switched
systems [23] in which the discrete dynamics, in the form of
mode changes, are governed by a non-probabilistic control
signal. The results in [23], [24], [25], [26] are based on
the notion of (alternating) approximate (bi)simulation rela-
tion, as discussed in [5], [19]. Notions of bisimulation for
continuous-time stochastic hybrid systems have also been
studied in [10], although with a purpose different than
the synthesis of finite abstractions. Indeed, while we are
interested in the construction of bisimilar models that are
finite, the work in [10] uses bisimulation to relate continuous
(and thus infinite) stochastic hybrid systems. Finally, there
exist discretization results based on weak approximations
of continuous-time stochastic control systems [13] and of
continuous-time stochastic hybrid systems [12], however
these do not provide any explicit approximation bound.

To the best of our knowledge there is no work on the
construction of finite bisimilar abstractions for continuous-
time switching stochastic systems for which the discrete
dynamics, in the form of mode changes, are governed by
an adversarial random switching signal. Models for these
systems have become almost ubiquitous in engineering appli-
cations such as power electronics [21], economic and finance
[7]: automated controller synthesis techniques can result in
more reliable system development at lower costs and times.

The main contribution of this paper is to show that
switching stochastic systems, under some incremental sta-
bility assumption, admit symbolic models that are alternat-
ingly approximately bisimilar to the concrete models, with
a precision ε that can be chosen a-priori, as a design
parameter. By guaranteeing the existence of an alternating
ε-approximate bisimulation relation between concrete and
symbolic models, one deduces that there exists a controller
enforcing a desired specification on the symbolic model if
and only if there exists a controller enforcing an ε-related
specification on the original switching stochastic system. Due
to space constraints, most of the proofs of the main results



are omitted from this manuscript and will appear elsewhere.

II. RANDOMLY SWITCHED STOCHASTIC SYSTEMS

A. Notation

The identity map on a set A is denoted by 1A. If A is a
subset of B, we denote by ıA : A ↪→ B or simply by ı the
natural inclusion map taking any a ∈ A to ı(a) = a ∈ B.
The symbols N, N0, Z, R, R+, and R+

0 denote the set
of natural, nonnegative integer, integer, real, positive, and
nonnegative real numbers, respectively. The symbols 0n and
0n×m denote the zero vector and matrix in Rn and Rn×m,
respectively. Given a vector x ∈ Rn, we denote by xi the i–
th element of x, and by ‖x‖ the infinity norm of x, namely,
‖x‖ = max{|x1|, |x2|, ..., |xn|}, where |xi| denotes the ab-
solute value of xi. Given matrices M = {mij} ∈ Rn×m and
P = {pij} ∈ Rn×n, we denote by ‖M‖ the infinity norm of
M , namely, ‖M‖ = max1≤i≤n

∑m
j=1 |mij |, and by Tr(P )

the trace of P , namely, Tr(P ) =
∑n
i=1 pii. We denote by ∆

the diagonal set, namely, ∆ = {(x, x) | x ∈ Rn}.
The closed ball centered at x ∈ Rn with radius λ is defined

by Bλ(x) = {y ∈ Rn | ‖x− y‖ ≤ λ}. A set B ⊆ Rn is
called a box if B =

∏n
i=1[ci, di], where ci, di ∈ R with ci <

di for each i ∈ {1, . . . , n}. The span of a box B is defined
as span(B) = min {|di − ci| | i = 1, . . . , n}. By defining
[Rn]η = {a ∈ Rn | ai = kiη, ki ∈ Z, i = 1, . . . , n}, the set⋃
p∈[Rn]η Bλ(p) is a countable covering of Rn for any η ∈

R+ and λ ≥ η/2. For a box B and η ≤ span(B), define the
η-approximation [B]η = [Rn]η ∩B. Note that [B]η 6= ∅ for
any η ≤ span(B). Geometrically, for any η ∈ R+ with η ≤
span(B) and λ ≥ η, the collection of sets {Bλ(p)}p∈[B]η is
a finite covering of B, i.e., B ⊆

⋃
p∈[B]η

Bλ(p). We extend
the notions of span and approximation to finite unions of
boxes as follows. Let A =

⋃M
j=1Aj , where each Aj is a box.

Define span(A) = min {span(Aj) | j = 1, . . . ,M}, and for
any η ≤ span(A), define [A]η =

⋃M
j=1[Aj ]η .

We denote by dh the Hausdorff pseudometric induced
by a metric d on 2X ; we recall that for any X1, X2 ⊆
X , dh (X1, X2) := max

{
~dh (X1, X2) , ~dh (X2, X1)

}
,

where ~dh (X1, X2) = supx1∈X1
infx2∈X2

d(x1, x2) is
the directed Hausdorff pseudometric. Given a measur-
able function f : R+

0 → Rn, the (essential) supremum
(sup norm) of f is denoted by ‖f‖∞; we recall that
‖f‖∞ = (ess) sup {‖f(t)‖, t ≥ 0}. A continuous function
γ : R+

0 → R+
0 , is said to belong to class K if it is strictly

increasing and γ(0) = 0; γ is said to belong to class K∞
if γ ∈ K and γ(r) → ∞ as r → ∞. A continuous
function β : R+

0 × R+
0 → R+

0 is said to belong to class KL
if, for each fixed s, the map β(r, s) belongs to class K
with respect to r and, for each fixed nonzero r, the map
β(r, s) is decreasing with respect to s and β(r, s) → 0 as
s→∞. We identify a relation R ⊆ A×B with the map
R : A→ 2B defined by b ∈ R(a) iff (a, b) ∈ R. Given
a relation R ⊆ A×B, R−1 denotes the inverse relation
defined by R−1 = {(b, a) ∈ B ×A : (a, b) ∈ R}.

B. Randomly switched (a.k.a. switching) stochastic systems

Let (Ω,F ,P) be a probability space endowed with a
filtration F = (Ft)t≥0 satisfying the usual conditions of
completeness and right-continuity [11, p. 48]. Let {Wt}t≥0
be a q̂-dimensional F-Brownian motion [18].

Definition 2.1: A switching stochastic system is a tuple
Σ = (Rn,U,U ,P,P, F,G), where
• Rn is the state space;
• U ⊆ Rm is a compact input set;
• U is a subset of the set of all measurable functions of

time from R+
0 to U;

• P = {1, . . . ,m} is a finite set of modes;
• P is a subset of the set of all piecewise constant càdlàg

(i.e. right-continuous and with left limits) functions of
time from R+

0 to P, and characterized by a finite number
of discontinuities on every bounded interval in R+

0 (this
ensures no Zeno behavior);

• F = {f1, . . . , fm} is such that, for all p ∈ P, fp :
Rn × U→ Rn is globally Lipschitz continuous;

• G = {g1, . . . , gm} is such that, for all p ∈ P, gp : Rn →
Rn×q̂ is globally Lipschitz continuous with a Lipschitz
constant Z ∈ R+.

A continuous-time stochastic process ξ : Ω× R+
0 → Rn is

said to be a solution process of Σ if there exist π ∈ P and
υ ∈ U satisfying

d ξ = fπ(ξ, υ) d t+ gπ(ξ) dWt, (II.1)

P-almost surely (P-a.s.) at each time t ∈ R+
0 where π is

continuous. For any given p ∈ P, we denote by Σp the
subsystem of Σ defined by the stochastic differential equation

d ξ = fp(ξ, υ) d t+ gp(ξ) dWt, (II.2)

for any υ ∈ U , where fp is known as the drift and gp as the
diffusion. A solution process of Σp exists and is uniquely
determined owing to the assumptions on fp and on gp [18,
Theorem 5.2.1, p. 68].

In this paper, we assume that π randomly dictates in which
mode the solution process ξ is at any time t ∈ R+

0 .
We further write ξπaυ (t) to denote the value of the solution

process at time t ∈ R+
0 under the control input υ ∈ U and

the switching signal π from initial condition ξπaυ (0) = a
P-a.s., in which a is a random variable that is measurable
in F0. Note that a solution process of Σp is also a solution
process of Σ corresponding to the constant switching signal
π(t) = p, for all t ∈ R+

0 . We also use ξpaυ (t) to denote the
value of the solution process of Σp at time t ∈ R+

0 under the
control input υ ∈ U from the initial condition ξpaυ (0) = a
P-a.s..

III. A NOTION OF INCREMENTAL STABILITY

The main result presented in this paper requires a certain
stability property on Σ, which is inspired by the one intro-
duced in [2] and formally defined next.

Definition 3.1: A switching stochastic system Σ is incre-
mentally globally asymptotically stable in the qth moment
(δ-GAS-Mq), where q ≥ 1, if there exists a KL function β
such that for any t ∈ R+

0 , any Rn-valued random variables



a and a′ that are measurable in F0, any υ ∈ U , and any
π ∈ P , the following condition is satisfied:

E [‖ξπaυ (t)− ξπa′υ (t)‖q] ≤ β
(
E
[
‖a− a′‖q

]
, t
)
. (III.1)

One can describe δ-GAS-Mq in terms of the existence of
so-called incremental Lyapunov functions, as defined next.

Definition 3.2: Consider a stochastic subsystem Σp and
a continuous function Vp : Rn × Rn → R+

0 that is twice
continuously differentiable on {Rn×Rn}\∆. Function Vp is
called a δ-GAS-Mq Lyapunov function for Σp, where q ≥ 1,
if there exist K∞ functions αp, αp, and a constant κp ∈ R+,
such that
(i) αp (resp. αp) is a convex (resp. concave) function;

(ii) for any x, x′ ∈ Rn,
αp
(
‖x− x′‖q

)
≤ Vp(x, x′) ≤ αp

(
‖x− x′‖q

)
;

(iii) for any x, x′ ∈ Rn, such that x 6= x′, and any u ∈ U,

LuVp(x, x′) := [∂xVp ∂x′Vp]

[
fp(x, u)
fp(x

′, u)

]
+

1

2
Tr
([

gp(x)
gp(x

′)

] [
gTp (x) g

T
p (x

′)
] [

∂x,xVp ∂x,x′Vp
∂x′,xVp ∂x′,x′Vp

])
≤ −κpVp(x, x′).

The operator Lu is the infinitesimal generator associated to
the stochastic process (II.2) [18, Section 7.3]. The symbols
∂x and ∂x,x′ denote first- and second-order partial derivatives
with respect to x and x′, respectively.

It is known that a switching system whose subsystems are
all stable, may exhibit some unstable behaviors under some
switching signals [15], hence the overall system may not
be stable in general. The same can happen for a switching
stochastic system [4]. As a consequence, the δ-GAS-Mq

property of switching stochastic systems can be established
by using a common δ-GAS-Mq Lyapunov function, or al-
ternatively via multiple δ-GAS-Mq Lyapunov functions that
are mode dependent and under sojourn-time conditions.

Let the K∞ functions α, α, and the constant κ be defined
as α = min {α1, . . . , αm}, α = max {α1, . . . , αm}, and
κ = min {κ1, . . . , κm}. Note that in the case of a common
Lyapunov function, we have that α = α1 = · · · = αm
and α = α1 = · · · = αm. The following result provides
a sufficient condition for a switching stochastic system Σ to
be δ-GAS-Mq based on the existence of a common δ-GAS-
Mq Lyapunov function.

Theorem 3.3: Consider a switching stochastic system Σ.
If there exists a common δ-GAS-Mq Lyapunov function V
for all the subsystems {Σ1, . . . ,Σm}, then Σ is δ-GAS-Mq .

The existence of a common Lyapunov function in Theo-
rem 3.3 may fail to hold in general. One can alternatively
describe δ-GAS-Mq stability by resorting to multiple δ-GAS-
Mq Lyapunov functions, under a class of switching signals
that is fairly general and quite natural to consider.

Assumption 3.4: Consider the stochastic process π̂ : Ω ×
R+

0 → P on the probability space (Ω,F ,P) such that, for
every fixed ω ∈ Ω, π(·) = π̂(ω, ·) : R+

0 → P belongs to
P , and assume that π̂ is completely known at time t = 0.
We assume that there exists some λ ∈ R+

0 such that for
any π̂, the probability of sojourning (staying in a mode)
within an infinitesimal time interval h is lower-bounded by

the following, for any p ∈ P:

P [π̂(t+ h) = p | π̂(t) = p] ≥ 1− λh. (III.2)

Remark 3.5: If the switching process π̂ is characterised
by a continuous-time Markov chain with a given generator
matrix Q = {qij} ∈ RP×P, one can obtain the lower bound
on the probability in (III.2) as λ = maxi∈P

∑
i 6=j qij .

For a stochastic switching process π̂, we denote the
number of switches (the discontinuity points of π̂) on the
interval ]0, t] by Nπ̂(t), which is measurable in Ft. We
assume Nπ̂(0) = 0. Due to Assumption 3.4 on π̂, the
probability distribution of Nπ̂(t) satisfies [4]:

P [Nπ̂(t) = k] ≤ e−λt (λt)
k

k!
. (III.3)

From (III.3), one can readily verify that the counting
process {Nπ̂}t≥0 takes with probability one finite values over
finite time intervals. We assume that {Wt}t≥0, {Nπ̂}t≥0,
and the initial condition of Σ, which is measurable in F0,
are mutually independent. The next result provides sufficient
conditions for a switching stochastic system Σ to be δ-GAS-
Mq based on the existence of multiple δ-GAS-Mq Lyapunov
functions and on Assumption 3.4.

Theorem 3.6: Consider a switching stochastic system Σ.
Assume that Assumption 3.4 holds and that for any p ∈ P,
there exists a δ-GAS-Mq Lyapunov function Vp for Σp, and
in addition that there exits a constant µ ≥ 1 such that
(i) for any x, x′ ∈ Rn, and any p, p′ ∈ P,

Vp(x, x
′) ≤ µVp′(x, x′);

(ii) (µ− 1)λ− κ < 0.
Then Σ is δ-GAS-Mq .

We refer the interested readers to the results in [25], pro-
viding special instances where these functions can be easily
computed. For example, for linear stochastic subsystems (i.e.
for subsystems with linear drift and diffusion terms), one
can search for appropriate δ-GAS-Mq Lyapunov functions
by easily solving linear matrix inequalities (LMI).

In order to show the main result of the paper, we need
the following technical lemma, borrowed from [25], which
provides an upper bound on the distance (in the qth moment
metric) between the solution processes of subsystems Σp
and the corresponding non-probabilistic subsystems obtained
by disregarding the diffusion term (gp). From now on, we
use the notation ζpxυ to denote the solution of the ordinary
differential equation (ODE) ζ̇pxυ = fp (ζpxυ, υ) starting from
the initial condition x and under the input curve υ.

Lemma 3.7: Consider a stochastic subsystem Σp such that
f (0n, 0m) = 0n and gp(0n) = 0n×q̂ . Suppose that q ≥ 2
and that there exists a δ-GAS-Mq Lyapunov function Vp for
Σp such that its Hessian is a positive semidefinite matrix in
R2n×2n and ∂x,xVp (x, x′) ≤ Pp, for any x, x′ ∈ Rn, and
some positive semidefinite matrix Pp ∈ Rn×n. Then for any
x in a compact set D ⊂ Rn and any υ ∈ U , we have

E [‖ξpxυ(t)− ζpxυ(t)‖q] ≤ hp(gp, t), (III.4)

where the nonnegative valued function hp tends to zero as
t → 0, t → +∞, or as Z → 0, where Z is the Lipschitz
constant introduced in Definition 2.1.



In particular, one can compute explicitly the function hp
using equation (9.4) in [25]. For later use, we introduce
function h(G, t) = max {h1(g1, t), . . . , hm(gm, t)} for all
t ∈ R+

0 .

IV. SYSTEMS AND
APPROXIMATE EQUIVALENCE RELATIONS

We employ the notion of system, introduced in [22], to
provide (in Sec. V) an alternative description of switching
stochastic systems that will be directly related to their finite
abstractions.

Definition 4.1: A system S is a tuple S = (X,X0, U,−→
, Y,H), where
• X is a set of states (possibly infinite);
• X0 ⊆ X is a set of initial states (possibly infinite);
• U = A×B is a set of inputs, where

– A is the set of control inputs (possibly infinite);
– B is the set of adversarial inputs (possibly infinite);

• −→⊆ X × U ×X is a transition relation;
• Y is a set of outputs;
• H : X → Y is an output map.
We write x

a,b- x′ if (x, (a, b), x′) ∈−→. If x
a,b- x′,

we call state x′ a successor of state x. For technical reasons,
we assume that for each x ∈ X , there is some successor of
x, for some (a, b) ∈ U – let us remark that this is always
the case for the systems considered later in this paper.

A system S is said to be
• metric, if the output set Y is equipped with a metric

d : Y × Y → R+
0 ;

• countable, if X and U are countable sets;
• finite (or symbolic), if X and U are finite sets.
For a system S = (X,X0, U,−→, Y,H) and given any

initial state x0 ∈ X0, a finite state run generated from x0 is
a finite sequence of transitions:

x0
a0,b0- x1

a1,b1- · · ·xn−1
an−1,bn−1- xn, (IV.1)

such that xi
ai,bi- xi+1 for all 0 ≤ i < n. A finite state

run can be trivially extended to an infinite state run. A finite
output run is a sequence {y0, y1, . . . , yn} such that there
exists a finite state run of the form (IV.1) with yi = H(xi),
for i = 0, . . . , n. A finite output run can also be directly
extended to an infinite output run.

We recall the notion of alternating approximate
(bi)simulation relation, as discussed in [19], which
captures the different role of control and adversarial inputs
in the systems.

Definition 4.2: Let S1 = (X1, X10, A1 ×
B1,

1
- , Y1, H1) and S2 = (X2, X20, A2 ×

B2,
2
- , Y2, H2) be metric systems with the same

output sets Y1 = Y2 and metric d. For ε ∈ R+
0 , a relation

R ⊆ X1 ×X2 is said to be an alternating ε-approximate
simulation relation from S1 to S2 if the following three
conditions are satisfied:
(i) for every x10 ∈ X10, there exists x20 ∈ X20 with

(x10, x20) ∈ R;

(ii) for every (x1, x2) ∈ R, d(H1(x1), H2(x2)) ≤ ε;
(iii) for every (x1, x2) ∈ R, ∀a1 ∈ A1 ∃a2 ∈ A2 ∀b2 ∈ B2

∃b1 ∈ B1 such that x1
a1,b1

1
- x′1 and x2

a2,b2

2
- x′2 with

(x′1, x
′
2) ∈ R.

A relation R ⊆ X1 × X2 is said to be an alternating ε-
approximate bisimulation relation between S1 and S2 if R
is an alternating ε-approximate simulation relation from S1

to S2 and R−1 is an alternating ε-approximate simulation
relation from S2 to S1.

System S1 is alternatingly ε-approximately simulated
by S2, or S2 alternatingly ε-approximately simulates S1,
denoted by S1 �εAS S2, if there exists an alternating ε-
approximate simulation relation from S1 to S2. System S1

is alternatingly ε-approximately bisimilar to S2, denoted
by S1

∼=ε
AS S2, if there exists an alternating ε-approximate

bisimulation relation between S1 and S2.

V. FINITE ABSTRACTIONS FOR
SWITCHING STOCHASTIC SYSTEMS

This section contains the main contribution of this work.
We show that for any δ-GAS-Mq switching stochastic system
Σ, initialized within a bounded set, and for any precision
level ε ∈ R+, there exists a finite system that is alternatingly
ε-approximately bisimilar to Σ. In order to do so, we use
systems as an abstract representation of switching stochastic
systems. More precisely, given a switching stochastic system
Σ and a sampling time τ ∈ R+, we define the associated
system Sτ (Σ) = (Xτ , Xτ0, Uτ ,

τ
- , Yτ , Hτ ), where

• Xτ is the set of all Rn-valued random variables defined
on the probability space (Ω,F ,P);

• Xτ0 is the set of all Rn-valued random variables that
are measurable over the trivial sigma-algebra F0, i.e. the
system starts from a non-probabilistic initial condition;

• Uτ = Aτ ×Bτ , where
– Aτ = {υ ∈ U | the domain of υ is [0, τ [};
– Bτ = {π ∈ P | the domain of π is [0, τ [};

• xτ
υτ ,πτ

τ
- x′τ if xτ and x′τ are measurable, respectively,

in Fkτ and F(k+1)τ for some k ∈ N0, and there exists
a solution process ξ : Ω × R+

0 → Rn of Σ satisfying
ξ(kτ) = xτ and ξπτxτυτ (τ) = x′τ P-a.s.;

• Yτ = Xτ ;
• H = 1Xτ .
Note that a finite state run

x0
υ0,π0

τ
- x1

υ1,π1

τ
- · · · υN−1,πN−1

τ
- xN of Sτ (Σ),

where υi−1 ∈ Aτ , πi−1 ∈ Bτ , and xi = ξ
πi−1
xi−1υi−1(τ)

P-a.s. for i = 1, . . . , N , captures the trajectory of the
switching stochastic system Σ at times t = 0, τ, . . . , Nτ .
This trajectory starts from the non-probabilistic initial
condition x0 and results from the control input υ and the
adversarial input (or switching signal) π obtained by the
concatenation of the control and adversarial inputs υi−1
and πi−1, respectively,

(
that is, υ ((i− 1)τ + s) = υi−1(s)

and π ((i− 1)τ + s) = πi−1(s) for any s ∈ [0, τ [
)
, for

i = 1, . . . , N .
Given a switching stochastic system Σ =

(Rn,U,U ,P,P, F,G), we define for subsequent analysis



the corresponding switching non-probabilistic system
Σ = (Rn,U,U ,P,P, F ), defined by the ODE ζ̇ = fπ(ζ, υ),
for any υ ∈ U and any π ∈ P . Note that due to the
assumptions on fp, for any p ∈ P, each subsystem Σp of
Σ is forward complete [3], i.e. every trajectory is defined
on the interval [0,∞[. Moreover, due to the assumptions on
switching signals π ∈ P , one can conclude that the overall
switching non-probabilistic system Σ is forward complete1

[17]. We also write ζπxυ (t) to denote the point reached
at time t ∈ R+

0 under the control input υ ∈ U and the
switching signal π from the initial condition ζπxυ (0) = x.

In order to construct a symbolic model for any δ-GAS-Mq
switching stochastic system Σ, we will extract a countable
set of inputs Uq from Uτ in such a way that the resulting
symbolic model is countable and indeed finite if we are
interested in the dynamics of Σ initialized within a bounded
set. Note that the approximation of the set of inputs Uτ of
Sτ (Σ) requires the notion of reachable set, as defined next.
Given a switching non-probabilistic system Σ, any τ ∈ R+,
and x ∈ Rn, the reachable set of Σ with initial condition
x ∈ Rn after τ seconds is the setR(τ, x) of endpoints ζπxυ(τ)
for any υ ∈ Aτ and π ∈ Bτ or, equivalently,

R(τ, x) := {y ∈ Rn | y = ζπxυ(τ), υ ∈ Aτ , π ∈ Bτ} . (V.1)

Moreover, the reachable set of Σ with initial condition x ∈
Rn and control input υ ∈ Aτ after τ seconds is the set
R(τ, x, υ) of endpoints ζπxυ(τ) for any π ∈ Bτ , i.e.,

R(τ, x, υ) := {y ∈ Rn | y = ζπxυ(τ), π ∈ Bτ} . (V.2)

The reachable sets in (V.1) and (V.2) are well defined
because Σ is forward complete. Given any desired precision
µ ∈ R+ and η ∈ R+ and following the same approach in
[19], we approximate Uτ in the definition of Sτ (Σ) by means
of the set Uq := Aq ×Bq, where

Aq := ∪xq∈XqA
µ(xq), Bq := ∪xq∈Xq ∪υ∈Aµ(xq) B

µ(xq, υ),
(V.3)

and where Xq = [Rn]η , Aµ(xq) captures the set of control
inputs that can be applied at state xq ∈ Xq, while Bµ(xq, υ)
captures the set of switching signals that can be applied at the
state xq ∈ Xq when the chosen control input is υ ∈ Aµ(xq).
Given any τ ∈ R+, define the following sets:

Aµ(τ, xq) := (V.4){
P ∈ 2[R

n]µ | ∃υ ∈ Aτ s.t. dh (P,R(τ, xq, υ)) ≤ µ
}
,

Bµ(τ, xq, υ) := (V.5){
x′q ∈ [Rn]µ | ∃π ∈ Bτ s.t.

∥∥x′q − ζπxqυ(τ)∥∥ ≤ µ} ,
where dh is the Hausdorff pseudometric induced by the
infinity norm on Rn. Note that for any P ∈ Aµ(τ, xq)
and any x′q ∈ Bµ(τ, xq, υ), there may exist a (possibly
uncountable) set of control inputs υ ∈ Aτ and a (possibly
uncountable) set of switching signals π ∈ Bτ such that
dh (P,R(τ, xq, υ)) ≤ µ and

∥∥∥x′q − ζπxqυ(τ)
∥∥∥ ≤ µ, respec-

tively. One can construct countable (possibly finite) sets of
control inputs and switching signals by just collecting some

1Note that if one had allowed for Zeno behavior in Σ, it might have
caused finite escape time even if all the subsystems were forward complete.

representative ones, as explained in the following. Let us
define the functions

ψ
τ,xq
µ : Aµ(τ, xq)→ Aτ , ϕ

τ,xq,υ
µ : Bµ(τ, xq, υ)→ Bτ , (V.6)

where
• ψ

τ,xq
µ associates to any P ∈ Aµ(τ, xq) one control input

υ ∈ ψτ,xq
µ (P ) ∈ Aτ so that dh (P,R(τ, xq, υ)) ≤ µ;

• ϕ
τ,xq,υ
µ associates to any x′q ∈ Bµ(τ, xq, υ) one

switching signal π = ϕ
τ,xq,υ
µ (x′q) ∈ Bτ so that∥∥∥x′q − ζπxqυ(τ)

∥∥∥ ≤ µ.

Note that functions ψτ,xq
µ and ϕτ,xq,υ

µ are not unique.
Now one can define the sets Aµ(xq) and Bµ(xq, υ)

appearing in (V.3) as follows:

Aµ(xq) := ψ
τ,xq
µ (Aµ(τ, xq)) , (V.7)

Bµ(xq, υ) := ϕ
τ,xq,υ
µ (Bµ(τ, xq, υ)) . (V.8)

We remark again that since Σ is forward complete, sets
Aµ(τ, xq) and Bµ(τ, xq, υ) in (V.4) and (V.5) are nonempty
and therefore Aµ(xq) and Bµ(xq, υ) in (V.7) and (V.8) are
nonempty, as well.

We now have all the ingredients to introduce a symbolic
model for Sτ (Σ).

Consider a switching stochastic system Σ, and a triple q =
(τ, η, µ) of quantization parameters, where τ is the sampling
time, η is the state-space quantization, and µ is a design
parameter. Given Σ and q, consider the following system:

Sq(Σ) = (Xq, Xq0, Uq,
q
- , Yq, Hq), (V.9)

where Xq = [Rn]η , Xq0 = [Rn]η , and
• Uq = Aq ×Bq, where

Aq = ∪xq∈XqA
µ(xq), Bq = ∪xq∈Xq∪υ∈Aµ(xq)B

µ(xq, υ),

and the sets Aµ(xq) and Bµ(xq, υ) are defined in (V.7)
and (V.8), respectively;

• xq
υq,πq

q
- x′q if υq ∈ Aµ(xq), πq ∈ Bµ(xq, υq), and there

exists x′q ∈ Xq such that
∥∥ζπq
xqυq(τ)− x′q

∥∥ ≤ η;
• Yq is the set of all Rn-valued random variables defined

on the probability space (Ω,F ,P);
• Hq = ı : Xq ↪→ Yq.
Note that in the definition of Hq, the inclusion map ı is

meant, with a slight abuse of notation, as a mapping from
a grid point to a random variable with a Dirac probability
distribution centered at that grid point.

The transition relation of Sq(Σ) is well defined in the sense
that for every xq ∈ [Rn]η , every υq ∈ Aµ(xq), and every
πq ∈ Bµ(xq, υq), there always exists x′q ∈ [Rn]η such that

xq
υq,πq

q
- x′q. This can be easily shown, since by definition of

[Rn]η , for any x̂ ∈ Rn there always exists a state x̂′ ∈ [Rn]η
such that ‖x̂ − x̂′‖ ≤ η. Hence, for ζπq

xqυq(τ) there always
exists a state x′q ∈ [Rn]η satisfying

∥∥ζπq
xqυq(τ)− x′q

∥∥ ≤ η.
Before showing the main result of the paper, we need the

following technical result.
Proposition 5.1: Consider a switching non-probabilistic

system Σ = (Rn,U,U ,P,P, F ). For any x ∈ Rn the
reachable set R(τ, x), defined in (V.1), is bounded.



Note that Xq is a countable set. Since R(τ, x), defined in
(V.1), is bounded (cf. Proposition 5.1) and using Proposition
4.4 in [19], one can readily verify that Uq is also a countable
set. Therefore, Sq(Σ) is countable. Moreover, if we are
interested in the dynamics of Σ in a bounded set, which is
often the case in many practical situations, Sq(Σ) is finite.

We can now present the main result of the paper, which
shows that any δ-GAS-Mq switching stochastic system Σ
admits an alternatingly approximately bisimilar symbolic
model.

Theorem 5.2: Consider a δ-GAS-Mq switching stochastic
system Σ, satisfying the result in Lemma 3.7. For any ε ∈
R+, and any triple q = (τ, η, µ) of quantization parameters
satisfying

(β (εq, τ))
1
q + (h(G, τ))

1
q + 2µ+ η < ε, (V.10)

it holds that Sq(Σ) ∼=ε
AS Sτ (Σ).

It can be readily seen that when we are interested in the
dynamics of Σ initialized in a compact D ⊂ Rn of the form
of a finite union of boxes, and for a given precision ε, there
always exists a sufficiently large value of τ and small values
of η and µ, such that η ≤ span(D) and the condition in
(V.10) are satisfied.

Remark 5.3: Note that in order to show the result in
Theorem 5.2, one does not require any probabilistic structure
on switching signals π ∈ P , as long as the switching
stochastic system Σ admits a common δ-GAS-Mq Lyapunov
function or satisfies property (III.1) with some KL function
β. However, Assumption 3.4 allows us to compute the KL
function β, satisfying (III.1), by resorting to multiple δ-GAS-
Mq Lyapunov functions.

VI. CONCLUSIONS

In this paper we have shown the existence of symbolic
models that are alternatingly approximately bisimilar to δ-
GAS-Mq switching stochastic systems, for any q ≥ 1.
Moreover, we have provided a description of the δ-GAS-Mq

property using a common δ-GAS-Mq Lyapunov function or,
alternatively, using multiple δ-GAS-Mq Lyapunov functions.
In future work we plan to focus on constructive approaches
to obtain the symbolic models, the existence of which has
been shown in this work.
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