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Abstract— This paper studies the discrete-time switched LQR
(DSLQR) problem using a dynamic programming approach.
Based on some nice properties of the value functions, efficient
algorithms are proposed to solve the finite-horizon and infinite-
horizon suboptimal DSLQR problems. More importantly, we
establish analytical conditions under which the strategies gen-
erated by the algorithms are stabilizing and suboptimal. These
conditions are derived explicitly in terms of subsystem matrices
and are thus very easy to verify. The proposed algorithms
and the analysis provide a systematical way of solving the
DSLQR problem with guaranteed close-loop stability and
suboptimal performance. Simulation results indicate that the
proposed algorithms can efficiently solve not only specific but
also randomly generated DSLQR problems, making NP-hard
problems numerically tractable.

I. INTRODUCTION

Optimal control of switched systems has many practical

applications [1], [2] and has challenged researchers for many

years. The bottleneck mostly lies in the determination of

the optimal switching strategy. Many methods have been

proposed to tackle this problem, most of which are in a

divide-and-conquer manner. Algorithms for optimizing the

switching instants for a fixed mode sequence have been de-

veloped for general switched systems in [3] and for switched

systems with autonomous dynamics in [4]. Although an

algorithm for updating the switching sequence is discussed

in [4], finding the best switching sequence is still an NP-hard

problem, even for switched linear systems.

This paper studies the discrete-time quadratic regulation

problem for switched linear systems (DSLQR) based on

a dynamic programming (DP) approach. A generic way

of solving a DP problem is by gridding the state space.

Such method has been used to study various optimal control

problems of switched systems [5], [6], [7]. Its main drawback

lies in the exponential growth of the complexity as the state

dimension increases. Fortunately, for some simple classes of

problems, the value functions may have some nice analyt-

ical properties that can be used to simplify the numerical

computation. For this reason, the quadratic optimal control

problem of switched linear/affine systems has attracted many

research attentions [8], [9], [10]. In our previous papers [11],

[12], we showed that the value function of the DSLQR

problem is the pointwise minimum over a finite number
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of quadratic functions. More importantly, we showed that

these quadratic functions are exactly characterized by a set

of positive semidefinite matrices which can be obtained

using the difference Riccati equation. These properties can

dramatically simplify the solution of the DSLQR problem.

The main contribution of this paper is the design and

analysis of various efficient algorithms for solving the finite-

horizon and infinite-horizon suboptimal DSLQR problems.

The key idea is to use convex optimization to identify

and remove the matrices that are redundant in terms of

characterizing the optimal and suboptimal strategies. This

is in line with the approaches of Neuro-dynamic program-

ming ([13]) and approximate dynamic programming ([14]),

which both try to simplify the computation by finding a

compact representation of the value functions up to certain

numerical relaxations. Compared with the previous work,

our distinctions are the following. (i) We introduce the new

concepts of algebraic redundancy and numerical redundancy

to set up a formal framework for analyzing the suboptimal

algorithms. (ii) A rigorous analysis is carried out on the prop-

agation of the approximation errors through the value itera-

tions. (iii) More importantly, we establish conditions under

which the strategies generated by the proposed algorithms

are stabilizing and suboptimal. Furthermore, these conditions

are derived explicitly in terms of subsystem matrices and

are very easy to verify. Therefore, the proposed algorithms

and the analysis provide a systematical way of solving the

DSLQR problem with guaranteed close-loop stability and

suboptimal performance. Simulation results indicate that the

proposed algorithms can efficiently solve not only specific

but also randomly generated DSLQR problems, making NP-

hard problems numerically tractable.

II. PROBLEM FORMULATION

Consider the discrete-time switched linear system de-

scribed by:

x(t+1)=Av(t)x(t)+Bv(t)u(t), t ∈ TN,{0, . . . , N−1}. (1)

where x(t) ∈ R
n is the continuous state, v(t) ∈ M ,

{1, . . . ,M} is the discrete mode, u(t) ∈ R
p is the continuous

control and TN is the control horizon with length N (possibly

infinite). The sequence of pairs {(u(t), v(t))}N−1
t=0 is called

the hybrid control sequence. For each i ∈ M, Ai and Bi

are constant matrices of appropriate dimensions and the

pair (Ai, Bi) is called a subsystem of (1). This switched

linear system is time invariant in the sense that the set of

available subsystems {(Ai, Bi)}
M
i=1 is independent of time t.

We assume that there is no internal forced switchings, i.e., the



system can stay at or switch to any mode at any time instant.

At each time t ∈ TN , denote by ξt,N , (µt,N , νt,N ) : R
n →

R
p × M the hybrid control law of system (1), where µt,N :

R
n → R

p is called the continuous control law and νt,N :
R

n → M is called the switching control law. A sequence of

hybrid control laws over the horizon TN constitutes an N -

horizon feedback policy: πN , {ξ0,N , ξ1,N , . . . , ξN−1,N}.

If system (1) is driven by a feedback policy πN , then the

closed-loop dynamics is governed by

x(t+1)=Aνt,N (x(t))x(t)+Bνt,N (x(t))µt,N (x(t)), t∈TN . (2)

For a given initial state x(0) = z, the performance of the

feedback policy πN can be measured by the following cost

functional:

JπN
(z)=ψ(x(N))+

N−1
∑

t=0

L(x(t), µt,N (x(t)), νt,N (x(t))), (3)

where ψ : R
n → R

+ and L : R
n × R

p × M → R
+

are called the terminal cost function and the running cost

function, respectively. In this paper, the functions ψ and L
are assumed to take the following quadratic forms:

ψ(x) = xTQfx, L(x, u, v) = xTQvx+ uTRvu,

for x ∈ R
n, u ∈ R

p, v ∈ M, where Qf = QT
f � 0 is

the terminal state-weighting matrix, and Qv = QT
v � 0 and

Rv = RT
v ≻ 0 are the running weighting matrices for the

state and the control, respectively, for subsystem v ∈ M.

When the control horizon N is infinite, the terminal cost

will never be incurred and the objective function becomes:

Jπ∞
(z) =

∞
∑

t=0

L(x(t), µt,∞(x(t)), νt,∞(x(t))). (4)

For a possibly infinite positive integer N , denote by ΠN

the set of all admissible N -horizon policies, i.e., the set of

all sequence of functions πN = {ξ0,N , . . . , ξN−1,N} with

ξt,N : R
n → R

p × M for t ∈ TN . The goal of this paper is

to find the optimal policy π∗
N that minimizes the quadratic

cost function defined in (3) or (4). This problem is a natural

extension of the classical LQR problem to the switched linear

system case and is thus called the Discrete-time Switched

LQR problem, hereby referred to as the DSLQR problem.

Problem 1 (DSLQR problem): For a given initial state

z ∈ R
n and a possibly infinite positive integer N , find the

N -horizon policy πN ∈ ΠN that minimizes JπN
(z) subject

to the dynamic equation (2).

To solve Problem 1, for each time t ∈ TN , we define the

value function Vt,N : R
n → R as:

Vt,N (z)= inf
u(j)∈Rp,v(j)∈M

t≤j≤N−1

{

ψ(x(N))+
N−1
∑

j=t

L(x(j), u(j), v(j))
∣

∣

∣

subject to eq. (1) with x(t) = z
}

. (5)

The Vt,N (z) so defined is the minimum cost-to-go starting

from state z at time t. The minimum cost for the DSLQR

problem with an initial condition x(0) = x0 is simply

V0,N (x0). Due to the time-invariant nature of the switched

system (1), its value function depends only on the number

of remaining time steps, i.e.,

Vt,N (z) = Vt+m,N+m(z),

for all z ∈ R
n and all integers m ≥ −t. In the rest of this

paper, when no ambiguity arises, we will denote by Vk(z) ,

VN−k,N (z) and ξk , ξN−k,N the value function and the

hybrid control law, respectively, at time t = N − k when

there are k time steps left. With the new notations, the N -

horizon policy πN can also be written as πN = {ξN , . . . , ξ1}.

For any positive integer k, the newly introduced ξk can be

thought of as the first step of a k-horizon policy.

By a standard result of Dynamic Programming [15], for

any finite integer N , the value function VN can be obtained

recursively using the one-stage value iteration:

Vk+1(z) = inf
u,v

{L(z, u, v) + Vk(Avz +Bvu)},∀z ∈ R
n,

with the initial condition V0(z) = ψ(z), ∀z ∈ R
n. De-

note by V∞(·) the pointwise limit (if it exists) of the

sequence of functions {Vk(·)}∞k=0 generated by the value

iterations. It is well known ([15]) that even if V∞(z) exists,

it may not always coincide with the true infinite-horizon

value function. To emphasize its substantial difference from

the finite-horizon value function, the infinite-horizon value

function is specially denoted by V ∗(z), i.e., V ∗(z) =
infπ∞∈Π∞

Jπ∞
(z).

III. THE VALUE FUNCTION

In this section, we review some important properties of the

value functions of the DSLQR problems, which have been

derived in our previous papers [16], [12]. These properties

are crucial for the design and analysis of the suboptimal

algorithms to be developed in Sections IV and V.

In the special case when M = 1, the DLQRS problem de-

generates into the classical LQR problem. In this degenerate

case, we denote by (A,B) the subsystem and by Q and R
the state and control weighting matrices. Then, according to

the LQR theory, the value function defined in (5) is of the

following quadratic form:

Vk(z) = zTPkz, k = 0, . . . , N, (6)

where {Pk}
N
k=0 is a sequence of positive semi-definite

(p.s.d.) matrices satisfying the Difference Riccati Equation

(DRE)

Pk+1 = Q+ATPkA

−ATPkB(R+BTPkB)−1BTPkA, (7)

with initial condition P0 = Qf .

In general, when M ≥ 2, the value function is no longer

of a simple quadratic form as in (6). Nevertheless, the DRE

can be generalized to the Switched LQR problems. Let A
be the set of all p.s.d. matrices. The DRE (7) can be viewed

as a mapping from A to A depending on the matrices

(A,B,Q,R). We call this mapping the Riccati Mapping and
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Fig. 1. Typical optimal decision regions of a 2-switched system, where
mode 1 is optimal within the white region and mode 2 is optimal within the
gray region. The optimal mode region is further divided into smaller conic
regions, each of which corresponds to a different Kalman gain.

denote by ρi : A → A the Riccati Mapping of subsystem

i ∈ M, i.e.,

ρi(P )=Qi+A
T
i PAi−A

T
i PBi(Ri+B

T
i PBi)

−1BT
i PAi. (8)

Definition 1: Let 2A be the power set of A. The mapping

ρM : 2A → 2A defined by:

ρM(H) = {ρi(P ) : for some i ∈ M and P ∈ H}

is called the Switched Riccati Mapping (SRM) of Problem 1.

In words, the SRM maps a set of p.s.d. matrices to another

set of p.s.d. matrices and each matrix in ρM(H) is obtained

by taking the classical Riccati mapping of some matrix in H
through some subsystem i ∈ M.

Definition 2: The sequence of sets {Hk}
N
k=0 generated

iteratively by Hk+1 = ρM(Hk) with initial condition H0 =
{Qf} is called the Switched Riccati Sets (SRSs) of Prob-

lem 1.

An important fact about the DSLQR problem is that its

value functions are completely characterized by the SRSs.

Theorem 1 ([11]): The value function for the DSLQR

problem at time N − k, i.e., with k time steps left, is

Vk(z) = min
P∈Hk

zTPz. (9)

Furthermore, for k = 1, . . . , N , if we define

(P ∗
k (z), i∗k(z)) = arg min

(P∈Hk−1,i∈M)

zT ρi(P )z, (10)

then the optimal hybrid control law at time t = N − k is

ξ∗k(z) = (µ∗
k(z), ν∗k(z)), where µ∗

k(z) = −Ki∗
k
(z)(P

∗
k (z))z

and ν∗k(z) = i∗k(z). Here, Ki(P ) is the Kalman gain for

subsystem i with matrix P , i.e.,

Ki(P ) , (Ri +BT
i PBi)

−1BT
i PAi. (11)

.

Compared with the discrete-time LQR case, the value

function of the DSLQR problem is no longer a single

quadratic function; it actually becomes the pointwise mini-

mum of a finite number of quadratic functions. In addition, at

each time step, instead of having a single Kalman gain for the

entire state space, the optimal state feedback gain becomes

state dependent. Furthermore, the minimizer (P ∗
k (z), i∗k(z))

of equation (10) is radially invariant, indicating that at each

time step all the points along the same radial direction

have the same optimal hybrid control law. These interesting

properties are illustrated in Fig. 1 using an example in R
2

with 2 subsystems. At each time instant, the state space

is decomposed into two homogeneous regions: the white

region and the gray region, which are called the optimal

switching regions. Within the white region, one mode, say

mode 1, is optimal; within the gray region, the other mode,

namely mode 2, is optimal. Furthermore, the states within the

same optimal switching region may have different optimal

feedback gains (Kalman gains). This is illustrated in Fig. 1 by

further dividing the gray regions into smaller conic regions,

each of which correspond to a different Kalman gain. It is

worth mentioning that in higher dimensional state space, the

decision regions are still cones, however, these cones may

no longer be convex and there might be complex manifolds

defining the boundaries between adjacent cones. A salient

feature of the DSLQR problem is that all these complex

decision regions are completely characterized by a finite

number of matrices in the switched Riccati sets {Hk}
N
k=0

that can be obtained analytically.

IV. SUBOPTIMAL CONTROL IN FINITE HORIZON

It is clear from Theorem 1 that the key for solving the

DSLQR problem is the computation of the SRSs {Hk}
N
k=0.

The main challenge lies in the exponential growth of |Hk| as

k increases. Two important facts about the value functions

can be used to simplify the computation of {Hk}
N
k=0. (i) The

matrices in Hk that make no contribution to the minimum

of (9) can be directly removed without causing any error. (ii)

When suboptimal performance is acceptable, the matrices in

Hk that make only a “small” contribution to the minimum (9)

can also be removed. The goal of this subsection is to

use these two ideas to simplify the computation of the

(sub)-optimal solution and to analyze the impacts of these

simplifications on various aspects of the close-loop system.

A. Redundancy and Equivalent Subsets

To formalize the above idea, we introduce a few defini-

tions.

Definition 3 (Algebraic Redundancy): A matrix P̂ ∈ H is

called (algebraic) redundant if for any z ∈ R
n, there exist a

matrix P ∈ H such that zTPz ≤ zT P̂ z.

If P̂ ∈ H is redundant, then H and H \ {P̂} will define

the same value functions. In this sense, these two sets are

equivalent.

Definition 4 (Equivalent Subset (ES)): Let H and Ĥ be

two sets of p.s.d matrices.



Algorithm 1

1) Denote by P (i) the ith matrix in Hk. Specify a

tolerance ǫ and set H
(1)
k = {P (1)}.

2) For each i = 2, . . . , |Hk|, if P (i) satisfies the

condition in Lemma 1 with respect to Hk, then

H
(i)
k = H

(i−1)
k ; otherwise H

(i)
k = H

(i−1)
k ∪ {P (i)}.

3) Return H
(|Hk|)
k .

1) The set Ĥ is called equivalent to H, denoted by H ∼
Ĥ, if minP∈H z

TPz = minP̂∈Ĥ zT P̂ z, ∀z ∈ R
n.

2) Ĥ is called an equivalent subset of H if Ĥ ⊆ H and

Ĥ ∼ H.

Some matrices in Hk are “almost” algebraic redundant

in the sense that removing them will only introduce a

small error to the value function. We call these matrices

numerically redundant.

Definition 5 (Numerical Redundancy): A matrix P̂ ∈ Hk

is called (numerically) ǫ-redundant with respect to Hk if

min
P∈Hk\P̂

zTPz ≤ min
P∈Hk

zT (P + ǫIn)z, for any z ∈ R
n.

Definition 6 (ǫ-ES): The set Hǫ
k is called an ǫ-Equivalent-

Subset (ǫ-ES) of Hk if Hǫ
k ⊂ Hk and for all z ∈ R

n,

min
P∈Hk

zTPz ≤ min
P∈Hǫ

k

zTPz ≤ min
P∈Hk

zT (P + ǫIn)z.

Removing the ǫ-redundant matrices may introduce some

error for the value function; but the error is no larger than

ǫ for ‖z‖ ≤ 1. To simplify the computation, for a given

tolerance ǫ, we want to prune out as many ǫ-redundant ma-

trices as possible. The following lemma provides a sufficient

condition for testing the ǫ-redundancy for a given matrix.

Lemma 1: P̂ is ǫ-redundant in Hk if there exist nonneg-

ative constants α1, . . . , α|Hk|−1 such that
∑|Hk|−1

i=1 αi = 1

and P̂ + ǫIn �
∑|Hk|−1

i=1 αiP
(i), where {P (i)}

|Hk|−1
i=1 is an

enumeration of Hk \ {P̂}.

The condition in Lemma 1 can be easily verified using

various existing convex optimization algorithms [17]. To

compute an ǫ-ES of Hk, we only need to remove the

matrices in Hk that satisfy the condition in Lemma 1. The

detailed procedure is summarized in Algorithm 1. Denote by

Algoǫ(Hk) the ǫ-ES of Hk returned by the algorithm. The

next step is to combine this algorithm with the SRM. To this

end, we define {Hǫ
k}

N
k=0 iteratively as:

Hǫ
0 = H0 and Hǫ

k+1=Algoǫ(ρM(Hǫ
k)), for k ∈ TN . (12)

The iteration (12) computes a sequence of relaxed SRSs

{Hǫ
k}

N
k=0. Using the formulas in Theorem 1, these sets

{Hǫ
k}

N
k=0 also define a sequence of “approximate” value

functions and the corresponding feedback policy. Intuitively

speaking, the cost associated with this relaxed policy should

be very close to the optimal one if the relaxation parameter

ǫ is small. In the next subsection, we shall formally analyze

the performance of this policy. Before doing that, we first

demonstrate the simplicity of computing such a relaxed

policy.
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Consider the example with the following matrices:

A1 =

[

2 1
1 1

]

, A2 =

[

2 1
0 0.5

]

, A3 =

[

3 1
0 2

]

,

A4 =

[

3 1
0 0.8

]

, B1 =

[

1
1

]

, B2 =

[

1
2

]

, B3 = B1,

B4 = B2, Qi =Qf =I2, Ri =1, i= 1, . . . , 4, and N=20.

By Theorem 1, the solution of this problem is completely

determined by the SRSs {Hk}
N
k=0. As shown in Fig. 2, a

direct computation of {Hk}
N
k=0 results in a combinatorial

complexity of the order 1012. However, if we use the relaxed

iteration (12) with ǫ = 10−3, eventually Hǫ
N only contains 14

matrices. This example shows that the numerical relaxation

can dramatically simplify the computation. Our next task

is to prove that a small relaxation ǫ will indeed result in

a suboptimal policy and will not change some important

properties, such as the stability, of the close-loop system.

B. Performance Analysis

We first introduce some notations. Let ‖·‖ be the 2-norm of

a given matrix or vector. Let Z
+ be the set of all nonnegative

integers. Denote by λmin(·) and λmax(·) the smallest and the

largest eigenvalues of a p.s.d. matrix, respectively. Define

λ−Q = mini∈M{λmin(Qi)} and λ+
f , λmax(Qf ). For k =

1, . . . , N , define V ǫ
k (z) = minP∈Hǫ

k
zTPz and let ξǫ

k(·) be

the feedback law generated by V ǫ
k−1, namely,

ξǫ
k(z) = arg min

(u,v)

{L(z, u, v) + V ǫ
k−1(Avz +Bvu)}. (13)

Following a similar proof of Theorem 1 ([11]), one can easily

obtain:

ξǫ
k(z) =

(

−Kiǫ
k
(z)(P

ǫ
k(z))z , iǫk(z)

)

, (14)

where
(

P ǫ
k(z), iǫk(z)

)

= arg min
P∈Hǫ

k−1
,i∈M

zT ρi(P )z,

where Ki(·) denotes the Kalman gain for a given p.s.d.

matrix as defined in (11). Let πǫ
N = {ξǫ

N , . . . , ξ
ǫ
1} be

the N -horizon policy generated by {V ǫ
k }

N−1
k=0 . Let π∗

N =
{ξ∗N , . . . , ξ

∗
1} be the optimal policy generated by the exact

value functions {Vk}
N−1
k=0 . Typically, πǫ

N is much easier to



compute than π∗
N because Hǫ

k contains much fewer matrices

than Hk. However, the relaxation Algoǫ(·) introduces an

error and this error propagates through the iteration (12).

Therefore, to take advantage of the simplicity of πǫ
N , it must

be ensured that Jπǫ
N

(z), namely, the actual cost associated

πǫ
N , does not deviate too far from the optimal cost VN (z).
The goal of this subsection is to derive conditions under

which the feedback policy πǫ
N is stabilizing and suboptimal.

A general N -horizon policy πN is called δ-suboptimal over

a set E if for any initial state x0 ∈ E, the cost under

πN is within the δ-neighborhood of the optimal cost, i.e.,

|JπN
(x0) − VN (x0)| ≤ δ. Let x∗z,N (·) be an N -horizon

optimal trajectory originating from z at time 0. Similarly,

denote by xǫ
z,N (·) the N -horizon state trajectory driven by

πǫ
N with initial condition xǫ

z,k(0) = z. Define

Ṽ ǫ
k+1(z) = min

u,v
{L(z, u, v) + V ǫ

k (Avz +Bvu)}. (15)

Following immediately from (14), we have

Ṽ ǫ
k+1(z) = min

P∈ρM(Hǫ
k
)
zTPz.

The iteration (12) together with the definition of ǫ-ES yields

Ṽ ǫ
k+1 ≤ V ǫ

k+1(z) ≤ Ṽ ǫ
k+1(z) + ǫ‖z‖2. (16)

We make the following two assumptions in the rest of this

paper.

(A1) At least one subsystem is stabilizable;

(A2) Qi ≻ 0,∀i ∈ M.

Remark 1: The above assumptions are analogous to

the stabilizability and detectability conditions commonly

adopted in the study of the classical LQR problems. They

are not restrictive because randomly generated subsystem

matrices will satisfy them with probability 1.

Lemma 2 ([12]): Under assumption (A1), there exists a

constant β <∞, such that VN (z) ≤ β‖z‖2 for all N ∈ Z
+

and z ∈ R
n.

Two important inequalities that are frequently used

throughout the subsequent discussions are given in the fol-

lowing lemma.

Lemma 3: Under assumptions (A1) and (A2), for any

integer N ≥ 0, we have

VN (z) ≤ V ǫ
N (z) ≤ VN (z) + ǫη‖z‖2 (17)

and Ṽ ǫ
N (z) ≤ VN (z) + ǫ(η − 1)‖z‖2, (18)

where η =
1+(β/λ−

Q
−1)γ

1−γ .

Proof: See [18].

It has been proved in our previous paper [12] that under

assumptions (A1) and (A2), the optimal trajectory x∗z,N (·)
is exponentially stable. Intuitively speaking, this property

should also hold for xǫ
z,N (·) when ǫ is sufficiently small. We

now derive an upper bound of ǫ that guarantees the stability

of xǫ
z,N (·). The following lemma is the key in deriving this

upper bound.

Lemma 4: Under assumptions (A1) and (A2), the trajec-

tory xǫ
z,N (·) satisfies

‖xǫ
z,N (t)‖2≤

(

γ +
ǫγη

β

)t
(

β + ǫη

λ−Q

)

‖z‖2, for t < N,

and ‖xǫ
z,N (N)‖2≤

(

γ +
ǫγη

β

)N−1
(

ζ2(β + ǫη)

λ−Q

)

‖z‖2.

where β is the constant defined in Lemma 2,

γ = 1
1+λ−

Q
/β

and ζ = maxi∈M‖Ai −BiKi(Qf )‖. (19)

Proof: In this proof, we denote xǫ
z,N (·) by x̂(·)

and assume the corresponding hybrid control sequence is

(û(·), v̂(·)). By (13), (15–18) and Lemma 2, for each t =
1, . . . , N , we have

V ǫ
N−(t−1)(x̂(t− 1)) − V ǫ

N−t(x̂(t))

≥Ṽ ǫ
N−(t−1)(x̂(t− 1)) − V ǫ

N−t(x̂(t))

=L(x̂(t− 1), û(t− 1), v̂(t− 1))) ≥ λ−Q‖x̂(t− 1)‖2

≥
λ−

Q

β VN−(t−1)(x̂(t− 1))

≥
λ−

Q

β

(

V ǫ
N−(t−1)(x̂(t− 1)) − ǫη‖x̂(t− 1)‖2

)

≥
λ−

Q

β V ǫ
N−t(x̂(t)) −

λ−
Q

ǫη

β ‖x̂(t− 1)‖2.

Therefore, for t = 1, . . . , N ,

V ǫ
N−t(x̂(t)) ≤ γ

[

V ǫ
N−(t−1)(x̂(t− 1)) +

λ−
Q

ǫη

β ‖x̂(t− 1)‖2

]

≤
[

γ
(

1 + ǫη
β

)]

V ǫ
N−(t−1)(x̂(t− 1))

≤
(

γ + ǫγη
β

)t

V ǫ
N (z) ≤

(

γ + ǫγη
β

)t

(β + ǫη)‖z‖2.

Here, the second inequality follows from the fact that

V ǫ
k (z) ≥ λ−Q‖z‖

2 for k ≥ 0. Using this fact again yields

‖x̂(t)‖2 ≤
(

γ + ǫγη
β

)t
(

β+ǫη

λ−
Q

)

‖z‖2, for t < N. (20)

For t = N , according to (14), we have that x̂(N) =
(Ai − BiKi(Qf )) · x̂(N − 1) for some i ∈ M. Therefore,

‖x̃(N)‖2 ≤ ζ2‖x̃(N − 1)‖2, where ζ is defined in (19). The

desired result follows from (20).

With Lemma 4, the following theorem follows immediately.

Theorem 2: If ǫ < (1−γ)β
γη , the policy πǫ

N is stabilizing.

We now derive an upper bound for the actual cost associ-

ated with the policy πǫ
N

Theorem 3: Under assumptions (A1) and (A2), Jπǫ
N

(z) ≤
VN (z) + ǫ(η − 1)‖z‖2. for any z ∈ R

n and N ≥ 0.

Proof: Let x̂(·) and (û(·), v̂(·)) be the same as

in the proof of Lemma 4. By (13) and (15), we have

L(x̂(t), û(t), v̂(t)) = Ṽ ǫ
N−t(x̂(t)) − V ǫ

N−(t+1)(x̂(t + 1)) for



each t = 0, . . . , N − 1. Therefore,

Jπǫ
N

(z) =
∑N−1

t=0
L(x̂(t), û(t), v̂(t)) + ψ(x̂(N))

=
∑N−1

t=0
[Ṽ ǫ

N−t(x̂(t)) − V ǫ
N−(t+1)(x̂(t+ 1))] + ψ(x̂(N))

=Ṽ ǫ
N (z)+

∑N−1

t=1

{

[Ṽ ǫ
N−t(x̂(t))−V

ǫ
N−t(x̂(t))]

+ [ψ(x̂(N))−V ǫ
0 (x̂(N))]

}

.

Since by definition ψ(z) = V ǫ
0 (z) and Ṽ ǫ

N−t(z) ≤
V ǫ

N−t(z) for any z ∈ R
n and t = 1, . . . N − 1, we have

Jπǫ
N

(z) ≤ Ṽ ǫ
N (z) ≤ VN (z) + ǫ(η − 1)‖z‖2.

Remark 2: Notice that the error function ǫ(η − 1)‖z‖2

does not grow with respect to the horizon N . This property

plays a crucial role in deriving the suboptimal policies for

the infinite-horizon DSLQR problems.

Corollary 1: Under the same conditions as in Theorem 3,

πǫ
N is δ-suboptimal over the unit ball if ǫ ≤ δ

η−1 .

Based on our analysis, a δ-suboptimal policy can be

obtained using the following Algorithm.

Algorithm 2 (Suboptimal Control in Finite Horizon)

1) Initialization: Specify an error tolerance δ. Let ǫ =
δ

η−1 and set Hǫ
0 = Qf

2) Relaxed ES Iteration: Perform iteration (12) over

the whole horizon N .

3) Suboptimal Strategy: The suboptimal N -horizon

policy πǫ
N = {ξǫ

N (x), . . . , ξǫ
1(x)} is given by:

ξǫ
k(x) =

(

−Kiǫ
k
(x)(P

ǫ
k(x))x , iǫk(x)

)

,

where
(

P ǫ
k(x), iǫk(x)

)

= arg min
P∈Hǫ

k−1
,i∈M

xT ρi(P )x.

V. EXTENSION TO LARGE OR INFINITE HORIZON

It is natural to solve the infinite-horizon case in a divide-

and-conquer manner, namely, by applying Algorithm 2 to a

reasonably large size of subhorizon, m, and then extending

the obtained optimal strategy periodically. We now show

that, by choosing proper m and ǫ, such a periodic pol-

icy can achieve an arbitrary suboptimal performance. Let

π̂ǫ
m = (ξ̂ǫ

m, . . . , ξ̂
ǫ
1) be the m-horizon policy returned by

Algorithm 2 with Qf = 0. It follows from Theorem 3 that

Jπ̂ǫ
m

(z)≤V 0
m(z)+ǫ(η−1)‖z‖2≤V ∗(z)+ǫ(η−1)‖z‖2, (21)

where V 0
m(z) denotes the m-horizon value function with

Qf = 0. For m ≥ 2, let πǫ,m
∞ be the periodic extension

of the first m− 1 terms of π̂ǫ
m, i.e.1,

πǫ,m
∞ = {ξ̂ǫ

m, . . . , ξ̂
ǫ
2, ξ̂

ǫ
m, . . . , ξ̂

ǫ
2, . . .}. (22)

1As can be seen from Lemma 4, by using only the first m − 1 terms of
π̂

ǫ
m in constructing π

ǫ,m
∞ , we can obtain a better bound for the convergence

of the close-loop trajectory.

We first establish conditions under which the specially

constructed policy πǫ,m
∞ is stabilizing.

Theorem 4: Under assumptions (A1) and (A2), if ǫ <
(1−γ)β

γη and m >
ln λ−

Q
−ln(β+ǫη)

ln(βγ+ǫγη)−ln β + 1, then πǫ,m
∞ is expo-

nentially stabilizing.

Proof: Denote by x̂(·) the trajectory associated with

the policy πǫ,m
∞ with initial condition x̂(0) = z. Let

cm =

(

γ +
ǫγη

β

)m−1
(

β + ǫη

λ−Q

)

. (23)

It can be easily verified that under our assumptions, cm is

strictly smaller than 1. By Lemma (4), we have ‖x̂(k(m −
1))‖2 ≤ cm‖x̂((k−1)(m−1))‖2 for all k ≥ 1. Thus, ‖x̂(·)‖2

must decrease by a factor of cm < 1 in every m−1 steps. It

follows that the policy πǫ,m
∞ is exponentially stabilizing.

We now derive a bound for the error between the actual

cost Jπǫ,m
∞

(z) and the optimal cost V ∗(z).
Theorem 5: Under the same conditions as in Theorem 4,

we have

V ∗(z) ≤ Jπǫ,m
∞

(z) ≤ V ∗(z) +
cmβ + ǫ(η − 1)

1 − cm
‖z‖2, (24)

where cm is defined in (23).

Proof: Obviously, V ∗(z) ≤ Jπǫ,m
∞

(z) as πǫ,m
∞ is an

infinite-horizon policy. Let x̂(·) be the system trajectory

generated by the policy πǫ,m
∞ starting from x̂(0) = z. Define

zi = x̂(i · (m − 1)) for i = 0, 1, . . .. Let π̃ , {ξ̂ǫ
m, . . . , ξ̂

ǫ
2}

be the first m− 1 terms of π̂ǫ
m. Then by (21),

Jπǫ,m
∞

(z)=

∞
∑

i=0

Jπ̃(zi)≤

∞
∑

i=0

Jπ̂ǫ
m

(zi)

≤

∞
∑

i=0

[V ∗(zi)+ǫ(η−1)‖zi‖
2].

By Lemma (4), ‖zi‖
2 ≤ cim‖z‖2, where cm < 1 is defined

in (23). Therefore, Jπǫ,m
∞

(z) ≤ V ∗(z)+ cmβ+ǫ(η−1)
1−cm

‖z‖2 for

any initial state z.

With the above result, we can easily derive a lower bound

for m that guarantees the δ-suboptimality of πǫ,m
∞ for an

arbitrary δ > 0.

Corollary 2: Suppose that the conditions in Theorem 4

hold. For any δ > 0, if we further have ǫ < δ
η−1 and

m > mδ,ǫ
∞ ,

ln[δ−ǫ(η−1)]λ−
Q
−ln(β+δ)(β+ǫη)

ln(βγ+ǫγη)−ln β +1, (25)

then the policy πǫ,m
∞ is δ-suboptimal over the unit ball.

For a given tolerance δ on the optimal cost, we only

need to perform mδ,ǫ
∞ steps of the approximate value it-

erations (12). The obtained value functions {V ǫ
k (z)}

mδ,ǫ
∞

k=0

characterize the mδ,ǫ
∞ -horizon feedback policy π̂ǫ

m which can

be used periodically to construct an infinite-horizon policy

πǫ,m
∞ . By Corollary 2, such a periodic policy is guaranteed to

be δ-suboptimal within the unit ball. This idea also applies

when the horizon is large but finite. Denote by [πǫ,m
∞ ]N the

N -horizon truncation of the policy πǫ,m
∞ , i.e., [πǫ,m

∞ ]N (t) =
πǫ,m
∞ (t) for t = 0, . . . , N −1. Similar performance bound as

in Theorem 5 can be derived for [πǫ,m
∞ ]N (t) .



Theorem 6: Under the same conditions as in Theorem 4,

for any N ≥ m, we have

J[πǫ,m
∞ ]N (z)≤VN (z)+

[

cmβ+ǫ(η − 1)

1 − cm
+ λ+

f c
Nm
m

]

‖z‖2,

where cm is defined in (23) and Nm = ⌊N/(m− 1)⌋.

Proof: Denote by x̂(·) the close-loop trajectory gener-

ated by the policy [πǫ,m
∞ ]N . Let π̃ and zi be the same as in

the proof of Theorem 5. Then by (21),

J[πǫ,m
∞ ]N (z) − ψ(x̂(N)) ≤

Nm+1
∑

i=0

Jπ̃(zi)

≤

Nm+1
∑

i=0

Jπ̂ǫ
m

(zi) ≤

Nm+1
∑

i=0

[

V 0
m(zi) + ǫ(η − 1)‖zi‖

2
]

Notice that V 0
m(z) ≤ VN (z), V 0

m(zi) ≤ V ∗(zi) and

V ∗(zi) ≤ β‖zi‖
2 ≤ βcim‖zi‖

2, by adding some small

positive terms, we have

J[πǫ,m
∞ ]N (z)−ψ(x̂(N))

≤VN (z)+

∞
∑

i=1

βcim‖z‖2+

∞
∑

i=0

ǫ(η − 1)cm‖z‖2. (26)

By our hypotheses, we have cm < 1. Thus, J[πǫ,m
∞ ]N (z) −

ψ(x̂(N)) ≤ VN (z) + cmβ+ǫ(η−1)
1−cm

‖z‖2. Considering

ψ(x̂(N)) ≤ λ+
f ‖x̂(N)‖2 ≤ λ+

f c
Nm
m ‖z‖2, the desired result

is proved.

Corollary 3: Suppose the conditions in Theorem 4 hold.

For any δ > 0, if we further have ǫ < δ
η−1 and

N ≥m >mδ,ǫ
N ,

ln[δ−ǫ(η−1)]λ−
Q
−ln(β+δ+σ+

f
)(β+ǫη)

ln(βγ+ǫγη)−ln β +1, (27)

then the N -horizon policy [πǫ,m
∞ ]N is δ-suboptimal over the

unit all.

Motivated by the above analysis, for a large or infinite

N , a δ-suboptimal N -horizon policy can be obtained as

follows. First, find the largest ǫ that satisfies all the conditions

in Corollary 2. Second, let m = mδ,ǫ
∞ or m = mδ,ǫ

N

depending on whether N is infinite or not. Third, compute

the m-horizon suboptimal policy π̂ǫ
m using Algorithm 2 with

Qf = 0. Finally, use π̂ǫ
m to construct πǫ,m

∞ based on (22)

and keep the first N steps of πǫ,m
∞ to obtain an N -horizon

policy [πǫ,m
∞ ]N

2. By Corollary 2 or 3, [πǫ,m
∞ ]N is guaranteed

to be δ-suboptimal over the unit ball. The above procedure of

constructing the suboptimal control policy is summarized in

Algorithm 3. Note that in this procedure, we have assumed

that N > m. If this is not the case, we should still use

Algorithm 2 to carry out the approximate iterations (12) for

the whole horizon N .

Remark 3: The analytical bounds mδ,ǫ
∞ and mδ,ǫ

N derived

in (25) and (27) may be conservative for some applications.

An alternative approach is to start from a smaller value for

m in Step 2) of Algorithm 3 and gradually increase its value

until the performance saturates. Our analysis guarantees that

this tentative procedure can eventually reach any prespecified

suboptimal performance by gradually increasing m.

2If N is infinite, the policy [πǫ,m
∞ ]N would be the same as π

ǫ,m
∞

Algorithm 3 (Large or infinite Horizon Suboptimal Control)

1) Initialization: Specify an error tolerance δ. Let ǫ =
max{ δ

η−1 ,
β(1−γ)

γη }.

2) # of iterations steps: If N = ∞, let m = mδ,ǫ
∞ ;

otherwise, let m = mδ,ǫ
N . If N ≤ m, stop and turn

to Algorithm 2.

3) m-horizon Policy: Calculate the m-horizon subop-

timal policy π̂ǫ
m using Algorithm 2 with Qf = 0.

4) Horizon Extension: Construct πǫ,m
∞ from π̂ǫ

m us-

ing (22) and keep its first N terms to obtain [π∞
m ]N .
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Fig. 3. Convergence of the Value function of Example VI-A.

VI. NUMERICAL EXAMPLES

A. Example 1

First consider a simple DSLQR problem with control

horizon N = 1000 and two second-order subsystems:

A1 =

[

2 1
0 1

]

, B1 =

[

1
1

]

, A2 =

[

2 1
0 0.5

]

, B2 =

[

1
2

]

.

Suppose that the state and control weights are Q1 = Q2 =
I2 and R1 = R2 = 1, respectively. Both subsystems are

unstable but controllable. Algorithm 3 is applied to solve this

DSLQR problem. With δ = 10−3, the upper bound of the

required number of iterations is mδ,ǫ
N = 56, while as observed

in the simulation, the value function already converges in 6

steps. Since Vk(z) is homogeneous and symmetric, in Fig. 3,

we plot the evolution of the value functions on the upper

half of the unit circle, i.e. the points of the form z(θ) =
[cos(θ), sin(θ)]T with θ ∈ [0, π]. The number of matrices in

Hǫ
k at each step k is listed in Table I. It can be seen that

|Hǫ
k| is indeed very small and stays at the maximum value

5 as opposed to growing exponentially as k increases.

TABLE I

|Hǫ
k
| FOR EXAMPLE VI-A

k 1 2 3 4 5 6

|Hǫ
k
| 2 4 5 5 5 5

B. Random Examples

To further demonstrate its effectiveness, Algorithm 3 is

tested by two sets of randomly generated DSLQR problems.
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Fig. 4. Complexity distributions of the random examples.

The first set consists of 1000 two-dimensional DSLQR

problems with 10 subsystems. The second set consists of

1000 four-dimensional DSLQR problems with 4 subsystems.

For both sets, the control horizon N is infinite and δ = 10−3.

All of these problems are successfully solved by Algorithm 3

and the distributions of the complexity, namely, the max-

imum numbers of matrices required for characterizing the

suboptimal policy, are plotted in Fig. 4. It can be seen

from the figure that all of the two-dimensional problems

require less than 50 matrices and a majority of them only

need less than 15 matrices. However, a majority of the four-

dimensional problems need about 40 matrices and some of

them may need more than 100 matrices. The complexity of

Algorithm 3 depends heavily on the state dimension. In a

higher dimensional state space, a larger δ is usually needed

in order to retain a high computational speed.

VII. CONCLUSION

The value functions and the optimal strategies of the

DSLQR problem can be exactly characterized by the SRSs

Hk, whose size grows exponentially fast. However, with

some small relaxation, many matrices in Hk becomes re-

dundant in terms of characterizing the suboptimal strategies.

Efficient algorithms are developed to prune out these re-

dundant matrices and to compute the suboptimal strategies.

Analytical conditions under which the strategies generated

by the algorithms are stabilizing and suboptimal are derived

explicitly in terms of subsystem matrices. The proposed

algorithm and the analysis provide a systematical way of

solving the finite-horizon and infinite-horizon DSLQR prob-

lem with guaranteed close-loop stability and suboptimality.

The results of this paper can be used to study many other

problems of the switched linear systems, such as the switched

Kalman filtering problem, the switched LQG problem, and

the switched receding horizon control problem, etc. All of

these will be our future research directions.
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