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Underlying several advances in the theory of polygraphs, or computads
[Str76, Bur93] — what has become a unifying framework for higher-dimensional
rewriting [LMO09, Mim14, GM16] — there is an analogy with CW complexes:
like their topological counterparts, polygraphs are built by progressively adding
cells of increasing dimension, pasted along their boundary. For example, in the
folk model structure on wCat of [LMW10], polygraphs have the same role, as
cofibrant objects, that CW complexes have in the classical model structure on
Top.

Whereas in point-set topology the pasting of cells is specified by a point-set
map, in the standard theory of polygraphs the same information is supplied
through the algebra of strict w-categories. Unfortunately, this carries over to
polygraphs some well-known technical issues of w-categories, relative to higher-
dimensional cells with degenerate boundaries, which become problematic from
dimension 3 onwards. In particular,

e the category of polygraphs fails to be a Grothendieck topos [MZ08, Chel2],
what is commonly considered a benchmark for a good category of spaces
[Law92], and

e it lacks a geometric realisation functor with the properties that the analogy
would suggest [Sim09, Theorem 4.4.2].

The first issue can be addressed by changing the algebra of pasting in a suitable
way, as showed by Batanin [Bat98]; however, for a theory that should serve as
a foundation for higher-dimensional algebra, this has the troubling effect that
its basic objects become reliant on an external higher-algebraic formalism.

In [Hadl7b], I furthermore suggested that tensor products and quotients
of polygraphs, modelled on topological operations, can be used to introduce a
feature of compositionality into categorical universal algebra and rewriting. The
original framework, however, suffered from the usual w-categorical degeneracies,
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affecting my “smash product” construction, and from the difficulty of computing
tensor products: the simplest way, introduced by Steiner [Ste04], still relies on
covering a polygraph with suitably loop-free polygraphs, and taking a detour
through the formalism of augmented directed complexes.

The problems are in fact related: if polygraphs formed a presheaf category
[S°P, Set] on some shape category S, and S had (easily computable) tensor
products, we could canonically define a monoidal biclosed structure on [S°P, Set]
by Day convolution [Day70]. This leads to the question: is there a restriction on
the shapes of cells of polygraphs that is “harmless enough”, and combinatorial
in nature, yet produces a shape category with the desired properties?

Since I am interested in modelling higher-dimensional string diagrams, and
especially comparing the result with the low-dimensional algebra of Globular
[BKV16], my notion of “harmless enough” forbids any upper bound on the
number of inputs or outputs of a cell. This excludes basically all shape categories
in use for higher categories, with the possible exception of Batanin cells [MZ01],
but including cubes, the one that is closed under tensor products [AABS02].

Several “strongly loop-free” classes of shapes, considered at various points
in the literature [Joh89, KV91, Ste04] are also too restrictive, for they bar the
shapes of Frobenius and adjunction axioms [Pow91], both motivating examples
for diagrammatic reasoning.

My approach is to take the analogy with CW complexes one step further,
by restricting to those cell shapes whose input and output k-boundary, for all
k, is homeomorphic (through the geometric realisation) to a topological k-disk,
if possible without any further restriction. In the lowest-dimensional non-trivial
example, the allowed atomic 2-dimensional cell shapes are those with a sequence
of n input 1-cells and m output 1-cells, for n,m > 0; only the cases n = 0 and
m = 0 are barred.

Superficially, this cannot model O-ary operations in diagrammatic algebra.
In fact we can still directly interpret any string diagram in the presence of
suitably defined weak unit cells [Sim09, JKO7], with the understanding that
“regions of space” are interpreted as weak unit cells, that is, string diagrams
are “pasting diagrams filled up with unit cells”:
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What follows is a report of my progress; all proofs will be published in my
thesis [Had17a], which will be made available before the workshop. The defini-
tions are based on ideas of poset topology [Wac06, Koz08|, and in particular the
characterisation of incidence posets of regular CW complexes in [Bjo84]. First,
I recall some standard poset terminology.

Definition 1. Let X be a finite poset with order relation <. For all elements
z,y € X,y covers x if < y and, for all y/ € X, if z <y’ <y, then ¢/ = v.



The directed graph HX with X as set of vertices, and an edge ¢y, : y — = for
all pairs y, x such that y covers z, is called the Hasse diagram of X.

Let X, be X extended with a least element |; X is graded if, for all z € X,
all paths from = to L in the Hasse diagram H X | have the same length. In this
case, if n is the length of paths from x to L, let dim(z) := n — 1, the dimension
of z, and X, := {z € X |dim(z) = n}.

A subset U of a poset X is closed when, for all z,y € X, y € U and
x < y implies x € U. Given any subset U of X, its closure is the closed subset
A(U) ={zxeX|JyeUx <y} Forall x € X, let U, := cl{x}.

If X is graded, a closed U C X is pure if U = cl(U N X,,); in that case, let
dim(U) := n.

Definition 2. Let X be a finite poset. An orientation on X is a labelling of
edges of HX with elements of {4, —}, that is, a function o : HX; — {+,—},
where H X, is the set of edges of HX. The orientation extends to X, by
0(cg, 1) := + for all x of dimension 0. An finite poset with an orientation is an
oriented poset.

Suppose X is graded and oriented, and U C X is a pure subset with
dim(U) = n. For a € {+,—}, let

AU :={z € U| dim(z) =n —1 and, for all y € U,
if y covers z, then o(cy ;) = a},
and 9°U := cl(A*U), U := 97U U O~ U.

An oriented graded poset is essentially what Steiner called a directed pre-
complex [Ste93]. Elements z of the poset with dim(z) = n correspond to n-
dimensional cells, and if y covers z, and o(cy,,) = + (respectively, —), then z is
in the output (respectively, input) boundary of y.

The conditions involved in the combinatorial characterisation of incidence
posets of regular CW complexes [Bjo84, Proposition 4.5] are

1. thinness, alocal condition which essentially imposes that cells be manifold-
like, and

2. a version of shellability , a global condition, preventing cells from having
globally non-spherical (for example, toroidal) boundaries.

The first has the following oriented analogue.

Definition 3. An oriented graded poset X is thin if all intervals [z, y] of length
2 in X | are of the form

Z1 zZ9
N/

in the labelled Hasse diagram H X |, where a3 81 = —asf2, with sign multipli-
cation defined in the usual way: ++, —— = 4, and +—, —+ = —.



Shellability, on the other hand, can be reimagined in the oriented context as
a kind of sequential, pairwise composability of cells in the boundary of another
cell.

Definition 4. Let X be an oriented thin poset. The class of globes in X is
defined inductively on dimension and number of maximal elements, as follows.
For all z € X, dim(x) =0, {«} is a 0-dimensional globe.

For all z € X, dim(z) = n > 0, U, is an atomic n-globe if 89U, is an
(n — 1)-dimensional globe, a € {+, —}.

Given two pure, n-dimensional U, U’ C X, U and U’ are mergeable if

1. UNU' =9*U N 9=V’ for some o € {+, —};
2. UNVU’ is an (n — 1)-globe;
3. 9°(UUU’) is an (n — 1)-globe, for B € {+, —}.

Then, a pure n-dimensional U is an n-globe if it is atomic, or if there exists
a non-trivial bi-partition {x11,...,21,}, {T21,...,%24} of its n-dimensional
elements such that

U1 = C1{$171,...,$17p} and U2 = Cl{.rg,l,...,.rg,q}
are mergeable n-globes.

Definition 5. An oriented thin poset X is a globular poset if, for all x € X,
U, is a globe.

Example 6. The following pasting diagram does not correspond to a parity
complex in the sense of [Str91], nor to a pasting scheme with no direct loops in
the sense of [Joh89], due to the presence of the loop (a,z,b, T, a):

However, it does correspond to a valid globular poset (an atomic 3-globe).

The following notion of composition is implied in the definition of globe.
Suppose that there are n-dimensional elements x; and x5 with the following
property: U, NU,, = U, for some (n — 1)-dimensional y, only covered by x;
and x4, and

X To
NS
Y
in the labelled Hasse diagram of X. Let X’ be the poset obtained from X by

identifying the elements x1, z2, and y; we say X' is obtained from X by a simple
merger.



If X is thin, X’ inherits an orientation that makes it thin, and with the right
choice of elements, if X is globular, so is X’. Induction on sequences of simple
mergers is the main technique used in proving most of the following statements.

Example 7. The following is a sequence of simple mergers on a 2-globe, depicted
by pasting diagrams, the coloured arrow pointing from z; to zs:

N - X - T
° \/’o \/’o ’
Theorem 8. Let X be an n-globe, n > 1. Then, for a = {+,—},
0%(0TX) =0%(0~ X).

To my knowledge, this is the first definition of a type of “pasting presenta-
tion” that does not assume Theorem 8 as an axiom, in one form or another.

Posets have a standard notion of geometric realisation X — |X|, composing
the simplicial nerve of a poset with the geometric realisation of a simplicial set;
we can apply it to oriented posets, simply forgetting the orientation.

Theorem 9. Let X be an n-globe. Then |X| is homeomorphic to an n-disk,
and |0X| is homeomorphic to an (n — 1)-sphere.

Corollary 10. Let X be a globular poset. Then the underlying poset of X is
the incidence poset of a regular CW complez.

The proofs are based on the fact that simple mergers of globular posets
induce homeomorphisms of geometric realisations.

Definition 11. Let X,Y be oriented posets. The tensor product X @ Y of X
and Y is the graded poset X x Y, oriented as follows: write x ® y for an element
(z,y) of X xY; then, for all 2’ covered by z in X, y’ covered by y in Y, let
o(Creya'ay) = 0x(Czar),
o(Cry zey’) = (_1)d1m($)oy(cy7y,).
Theorem 12. Let X,Y be oriented posets. Then,
1. if X,Y are thin, X @Y is thin;
2. if X,Y are globular posets, X ® Y is a globular poset.

There may be other interesting notions of morphism of globular posets, but
so far I have only considered the category GlobPos- whose morphisms are
closed embeddings of the underlying posets that also preserve the orientation.
Tensor products induce a monoidal structure on GlobPos .



Proposition 13. There is a monoidal functor D : GlobPos- — ADC, where
ADC is the category of augmented directed complexes of [Ste04]. For all glob-
ular posets X, DX has a unital basis whose elements are the elements of X.

In fact, I conjecture that any globular poset X is a directed complex in the
sense of [Ste93]; a proof would involve connecting the “simple merger” com-
position to w-categorical algebra. This would also imply that a globular poset
presents an w-category generated by its elements: this is is an important open
problem, that I am still investigating.

Since atomic globes, in particular, are closed under tensor products, they
form a suitable class of shapes by the criteria discussed earlier.

Definition 14. Let RG be a skeleton of the full subcategory of GlobPos-
whose objects are atomic globes. A regular polygraph X is a presheaf X :
RG® — Set. A map f : X — Y of regular polygraphs is a morphism of
presheaves.

The tensor product X ® Y of two regular polygraphs X,Y is their Day
convolution with respect to the tensor product of globular posets. The tensor
product defines a monoidal (in fact, monoidal biclosed) structure on the category
RPol of regular polygraphs and maps.

Remark 15. The definition of RG as a skeleton is not very satisfactory; ideally,
we would want an inductive enumeration of the isomorphism classes, akin to
the definition of opetopes in terms of zoom complexes [KJBM10].

The shape category RG contains the category G of globes as a full subcate-
gory; as a consequence, any regular polygraph X restricts to a globular set GX.
Similarly to the opetopic definition of weak higher categories, one can impose
on X various “representability” conditions, in the sense of Hermida [Her00],
inducing coherent higher algebraic structure on GX.

At the moment, only the low-dimensional cases are fully worked out. In
particular, there is a notion of 0-representability, producing a certain type of
equivalence 1-cells, which subsumes the algebraic notions of

1. Saavedra unit [Koc08], for regular 2-polygraphs with an algebraic compo-
sition of 2-cells, and

2. Joyal-Kock weak unit [JK13], for regular 3-polygraphs with an algebraic
composition of 2-cells and 3-cells.

The first case, combined with an analogous notion of 1-representability, suffices
to reconstruct the full algebraic theory of bicategories. The main ideas involved
seem to generalise, and the theory in arbitrary dimensions is under development.
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