Spark Machine Learning

Amir H. Payberah
amir@sics.se

SICS Swedish ICT
June 30, 2016
Data
Data → Actionable Knowledge
That is roughly the problem that *Machine Learning* addresses!
Data and Knowledge

Data ➔ Knowledge

- Is this email spam or no spam?
Data and Knowledge

Data ➔ Knowledge

- Is this email spam or no spam?
Data and Knowledge

Data ➔ Knowledge

- Is this email spam or no spam?
- Is there a face in this picture?
Data and Knowledge

Data → Knowledge

- Is this email spam or no spam?
- Is there a face in this picture?
Data and Knowledge

Data ➔ Knowledge

- Is this email spam or no spam?
- Is there a face in this picture?
- Should I lend money to this customer given his spending behavior?
Data and Knowledge

Data ➞ Knowledge

- Is this email spam or no spam?
- Is there a face in this picture?
- Should I lend money to this customer given his spending behaviour?
Data and Knowledge

- Knowledge is not concrete
- Spam is an abstraction
- Face is an abstraction
- Who to lend to is an abstraction

You do not find spam, faces, and financial advice in datasets, you just find bits!
Knowledge Discovery from Data (KDD)

- Preprocessing
- Data mining
- Result validation
KDD - Preprocessing

- Data cleaning
- Data integration
- Data reduction, e.g., sampling
- Data transformation, e.g., normalization
KDD - Mining Functionalities

- Classification and regression (supervised learning)
- Clustering (unsupervised learning)
- Mining the frequent patterns
- Outlier detection
Needs to evaluate the performance of the model on some criteria.

Depends on the application and its requirements.
MLlib - Data Types
Data Types - Local Vector

- Stored on a **single** machine
- **Dense and sparse**
 - Dense \((1.0, 0.0, 3.0)\): \([1.0, 0.0, 3.0]\)
 - Sparse \((1.0, 0.0, 3.0)\): \((3, [0, 2], [1.0, 3.0])\)

```scala
val dv: Vector = Vectors.dense(1.0, 0.0, 3.0)
val sv1: Vector = Vectors.sparse(3, Array(0, 2), Array(1.0, 3.0))
val sv2: Vector = Vectors.sparse(3, Seq((0, 1.0), (2, 3.0)))
```
Data Types - Labeled Point

- A local vector (dense or sparse) associated with a label.
- label: label for this data point.
- features: list of features for this data point.

```scala
case class LabeledPoint(label: Double, features: Vector)
val pos = LabeledPoint(1.0, Vectors.dense(1.0, 0.0, 3.0))
val neg = LabeledPoint(0.0, Vectors.sparse(3, Array(0, 2), Array(1.0, 3.0)))
```
MLlib - Preprocessing
To get data in a standard **Gaussian** distribution:

\[
\frac{x - \text{mean}}{\sqrt{\text{variance}}}
\]

```scala
val features = labelData.map(_.features)
val scaler = new StandardScaler(withMean = true, withStd = true).fit(features)
val scaledData = labelData.map(lp => LabeledPoint(lp.label,
                                                 scaler.transform(lp.features)))
```
MLlib - Data Mining
Data Mining Functionalities

- Classification and regression (supervised learning)
- Clustering (unsupervised learning)
- Mining the frequent patterns
- Outlier detection
Classification and Regression
(Supervised Learning)
Supervised Learning (1/3)

- **Right answers** are given.
 - Training data (input data) is labeled, e.g., spam/not-spam or a stock price at a time.

- A **model** is prepared through a training process.

- The training process **continues** until the model achieves a desired level of accuracy on the training data.
Supervised Learning (2/3)

- Face recognition

Training data

[ORL dataset, AT&T Laboratories, Cambridge UK]

Testing data

[ORL dataset, AT&T Laboratories, Cambridge UK]
Supervised Learning (3/3)

- Set of N training examples: \((x_1, y_1), \ldots, (x_n, y_n)\).

- \(x_i = \langle x_{i1}, x_{i2}, \ldots, x_{im} \rangle\) is the feature vector of the \(i\)th example.

- \(y_i\) is the \(i\)th feature vector label.

- A learning algorithm seeks a function \(y_i = f(X_i)\).
Classification vs. Regression

- **Classification**: the output variable takes class labels.
- **Regression**: the output variable takes continuous values.
Types of Classification/Regression Models in Spark

- Linear models
- Decision trees
- Naive Bayes models
Linear Models
Linear Models

- Training dataset: \((x_1, y_1), \cdots, (x_n, y_n)\).

- \(x_i = \langle x_{i1}, x_{i2}, \cdots, x_{im} \rangle\)

- Model the target as a function of a linear predictor applied to the input variables: \(y_i = g(w^T x_i)\).
 - E.g., \(y_i = w_1 x_{i1} + w_2 x_{i2} + \cdots + w_m x_{im}\)
Linear Models

- Training dataset: \((x_1, y_1), \cdots, (x_n, y_n)\).

- \(x_i = \langle x_{i1}, x_{i2}, \cdots, x_{im} \rangle\)

- Model the target as a function of a linear predictor applied to the input variables: \(y_i = g(w^T x_i)\).
 - E.g., \(y_i = w_1 x_{i1} + w_2 x_{i2} + \cdots + w_m x_{im}\)

- Loss function: \(f(w) := \sum_{i=1}^{n} L(g(w^T x_i), y_i)\)

- An optimization problem \(\min_{w \in \mathbb{R}^m} f(w)\)
Linear Models - Regression (1/2)

- $g(w^T x_i) = w_1 x_{i1} + w_2 x_{i2} + \cdots + w_m x_{im}$

- Loss function: minimizing squared difference between predicted value and actual value: $L(g(w^T x_i), y_i) := \frac{1}{2}(w^T x_i - y_i)^2$
Linear Models - Regression (1/2)

- $g(w^T x_i) = w_1 x_{i1} + w_2 x_{i2} + \cdots + w_m x_{im}$

- Loss function: minimizing squared difference between predicted value and actual value: $L(g(w^T x_i), y_i) := \frac{1}{2}(w^T x_i - y_i)^2$

- Gradient descent
val data: RDD[LabeledPoint] = ...
val splits = labelData.randomSplit(Array(0.7, 0.3))
val (trainigData, testData) = (splits(0), splits(1))

val numIterations = 100
val stepSize = 0.00000001
val model = LinearRegressionWithSGD
 .train(trainigData, numIterations, stepSize)

val valuesAndPreds = testData.map { point =>
 val prediction = model.predict(point.features)
 (point.label, prediction)
}
- Binary classification: output values between 0 and 1
- $g(w^T x) := \frac{1}{1 + e^{-w^T x}}$ (sigmoid function)
- If $g(w^T x_i) > 0.5$, then $y_i = 1$, else $y_i = 0$
val data: RDD[LabeledPoint] = ...
val splits = labelData.randomSplit(Array(0.7, 0.3))
val (trainigData, testData) = (splits(0), splits(1))

val model = new LogisticRegressionWithLBFGS()
 .setNumClasses(10)
 .run(trainingData)

val predictionAndLabels = testData.map { point =>
 val prediction = model.predict(point.features)
 (prediction, point.label)
}
Decision Tree
Decision Tree

- A greedy algorithm.
- It performs a recursive binary partitioning of the feature space.
- Decision tree construction algorithm:
 - Find the best split condition (quantified based on the impurity measure).
 - Stops when no improvement possible.
Impurity Measure

- Measures how well are the two classes separated.

- The current implementation in Spark:
 - Regression: variance
 - Classification: gini and entropy
Stopping Rules

- The node depth is equal to the maxDepth training parameter.
- No split candidate leads to an information gain greater than minInfoGain.
- No split candidate produces child nodes which each have at least minInstancesPerNode training instances.
val data: RDD[LabeledPoint] = ...
val splits = data.randomSplit(Array(0.7, 0.3))
val (trainingData, testData) = (splits(0), splits(1))

val categoricalFeaturesInfo = Map[Int, Int]()
val impurity = "variance"
val maxDepth = 5
val maxBins = 32

val model = DecisionTree.trainRegressor(trainingData,
 categoricalFeaturesInfo, impurity, maxDepth, maxBins)

val labelsAndPredictions = testData.map { point =>
 val prediction = model.predict(point.features)
 (point.label, prediction)
}
Decision Tree - Classification

```scala
def main() {
  val data: RDD[LabeledPoint] = ...
  val splits = data.randomSplit(Array(0.7, 0.3))
  val (trainingData, testData) = (splits(0), splits(1))

  val numClasses = 2
  val categoricalFeaturesInfo = Map[Int, Int]()
  val impurity = "gini"
  val maxDepth = 5
  val maxBins = 32

  val model = DecisionTree.trainClassifier(trainingData, numClasses,
                                            categoricalFeaturesInfo, impurity, maxDepth, maxBins)

  val labelAndPreds = testData.map { point =>
    val prediction = model.predict(point.features)
    (point.label, prediction)
  }
}
```
Random Forest

- Train a set of decision trees separately.
- The training can be done in parallel.
- The algorithm injects randomness into the training process, so that each decision tree is a bit different.
Random Forest - Regression

val numClasses = 2
val categoricalFeaturesInfo = Map[Int, Int]()
val numTrees = 3
val featureSubsetStrategy = "auto"
val impurity = "variance"
val maxDepth = 4
val maxBins = 32

val model = RandomForest.trainRegressor(trainingData, categoricalFeaturesInfo,
 numTrees, featureSubsetStrategy, impurity, maxDepth, maxBins)

val labelsAndPredictions = testData.map { point =>
 val prediction = model.predict(point.features)
 (point.label, prediction)
}
val numClasses = 2
val categoricalFeaturesInfo = Map[Int, Int]()
val numTrees = 3
val featureSubsetStrategy = "auto"
val impurity = "gini"
val maxDepth = 4
val maxBins = 32

val model = RandomForest.trainClassifier(trainingData, numClasses,
categoricalFeaturesInfo, numTrees, featureSubsetStrategy, impurity,
maxDepth, maxBins)

val labelAndPreds = testData.map { point =>
 val prediction = model.predict(point.features)
 (point.label, prediction)
}
Naive Bayes
Naive Bayes (1/4)

- Using the **probability** theory to classify things.
- Assumption: independency between every pair of features.
Using the probability theory to classify things.

Assumption: independency between every pair of features.

\(y_1: \text{circles}, \) and \(y_2: \text{triangles}. \)

\((x_1, x_2) \) belongs to \(y_1 \) or \(y_2 \)?
Naive Bayes (2/4)

- (x_1, x_2) belongs to y_1 or y_2?
- If $p(y_1|x_1, x_2) > p(y_2|x_1, x_2)$, the class is y_1.
- If $p(y_1|x_1, x_2) < p(y_2|x_1, x_2)$, the class is y_2.

![Diagram showing data points and decision boundary]
(x₁, x₂) belongs to y₁ or y₂?

- If \(p(y₁|x₁, x₂) > p(y₂|x₁, x₂) \), the class is y₁.
- If \(p(y₁|x₁, x₂) < p(y₂|x₁, x₂) \), the class is y₂.

Replace \(p(y|x) \) with \(\frac{p(x|y)p(y)}{p(x)} \).
Naive Bayes (3/4)

- Bayes theorem: $p(y|x) = \frac{p(x|y)p(y)}{p(x)}$

- $p(y|x)$: probability of instance x being in class y.

- $p(x|y)$: probability of generating instance x given class y.

- $p(y)$: probability of occurrence of class y.

- $p(x)$: probability of instance x occurring.
Is officer Drew male or female?

<table>
<thead>
<tr>
<th>Name</th>
<th>Sex</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drew</td>
<td>Male</td>
</tr>
<tr>
<td>Claudia</td>
<td>Female</td>
</tr>
<tr>
<td>Drew</td>
<td>Female</td>
</tr>
<tr>
<td>Drew</td>
<td>Female</td>
</tr>
<tr>
<td>Alberto</td>
<td>Male</td>
</tr>
<tr>
<td>Karin</td>
<td>Female</td>
</tr>
<tr>
<td>Nina</td>
<td>Female</td>
</tr>
<tr>
<td>Sergio</td>
<td>Male</td>
</tr>
</tbody>
</table>
Naive Bayes (4/4)

\[
p(y|x) = \frac{p(x|y)p(y)}{p(x)}
\]

\[
p(\text{male}|\text{drew}) = ?
\]

\[
p(\text{female}|\text{drew}) = ?
\]
Naive Bayes (4/4)

\[p(y|x) = \frac{p(x|y)p(y)}{p(x)} \]

- \[p(\text{male}|\text{drew}) = \frac{p(\text{drew}|\text{male})p(\text{male})}{p(\text{drew})} = \frac{1}{3} \times \frac{3}{8} = 0.33 \]
- \[p(\text{female}|\text{drew}) = \frac{p(\text{drew}|\text{female})p(\text{female})}{p(\text{drew})} = \frac{2}{5} \times \frac{5}{8} = 0.66 \]
Officer Drew is female.

\[
p(y|x) = \frac{p(x|y)p(y)}{p(x)}
\]

\[
p(\text{male}|\text{drew}) = \frac{p(\text{drew}|\text{male})p(\text{male})}{p(\text{drew})} = \frac{1}{3} \times \frac{3}{8} = 0.33
\]

\[
p(\text{female}|\text{drew}) = \frac{p(\text{drew}|\text{female})p(\text{female})}{p(\text{drew})} = \frac{2}{5} \times \frac{5}{8} = 0.66
\]
val data: RDD[LabeledPoint] = ...
val splits = data.randomSplit(Array(0.7, 0.3))
val (trainingData, testData) = (splits(0), splits(1))

val model = NaiveBayes.train(trainingData, lambda = 1.0, modelType = "multinomial")

val predictionAndLabel = test.map(p => (model.predict(p.features), p.label))
Clustering
(Unsupervised Learning)
Clustering is a technique for finding similarity groups in data, called clusters.
Clustering is a technique for finding similarity groups in data, called clusters.

It groups data instances that are similar to each other in one cluster, and data instances that are very different from each other into different clusters.
Clustering is a technique for finding similarity groups in data, called clusters.

It groups data instances that are similar to each other in one cluster, and data instances that are very different from each other into different clusters.

Clustering is often called an unsupervised learning task as no class values denoting an a priori grouping of the data instances are given.
Clustering (2/5)
k-means clustering is a popular method for clustering.
Clustering (3/5)

- **K**: number of clusters (given)
 - One mean per cluster.

- **Initialize means**: by picking **k samples** at random.

- **Iterate**:
 - Assign each point to nearest mean.
 - Move mean to center of its cluster.
val data: RDD[LabeledPoint] = ...

val numClusters = 2
val numIterations = 20
val clusters = KMeans.train(data, numClusters, numIterations)

// Evaluate clustering by computing Within Set Sum of Squared Errors
val WSSSE = clusters.computeCost(data)
println("Within Set Sum of Squared Errors = " + WSSSE)
MLlib - Result Validation
There exists a true output and a model-generated predicted output for each data point.

The results for each data point can be assigned to one of four categories:

1. **True Positive (TP)**: label is positive and prediction is also positive
2. **True Negative (TN)**: label is negative and prediction is also negative
3. **False Positive (FP)**: label is negative but prediction is positive
4. **False Negative (FN)**: label is positive but prediction is negative
▶ **Precision** *(positive predictive value)*: the fraction of retrieved instances that are relevant.

▶ **Recall** *(sensitivity)*: the fraction of relevant instances that are retrieved.

▶ **F-measure**: \((1 + \beta^2) \frac{\text{precision} \cdot \text{recall}}{\beta^2 \cdot \text{precision} + \text{recall}} \)
val model = new LogisticRegressionWithLBFGS()
 .setNumClasses(2)
 .run(trainingData)

val predictionAndLabels = testData.map { point =>
 val prediction = model.predict(point.features)
 (prediction, point.label)
}

val metrics = new BinaryClassificationMetrics(predictionAndLabels)

val precision = metrics.precisionByThreshold
precision.foreach { case (t, p) => println(s"Threshold: $t, Precision: $p") }

val recall = metrics.recallByThreshold
recall.foreach { case (t, r) => println(s"Threshold: $t, Recall: $r") }

val beta = 0.5
val fScore = metrics.fMeasureByThreshold(beta)
fScore.foreach { case (t, f) => println(s"Threshold: $t, F-score: $f") }
Regression Model Evaluation (1/2)

- Mean Squared Error (MSE): \(\frac{\sum_{i=0}^{N-1} (y_i - \hat{y}_i)^2}{N} \)
- Root Mean Squared Error (RMSE): \(\sqrt{\frac{\sum_{i=0}^{N-1} (y_i - \hat{y}_i)^2}{N}} \)
- Mean Absolute Error (MAE): \(\sum_{i=0}^{N-1} |y_i - \hat{y}_i| \)
val numIterations = 100
val model = LinearRegressionWithSGD.train(trainigData, numIterations)

val valuesAndPreds = testData.map{ point =>
 val prediction = model.predict(point.features)
 (prediction, point.label)
}

val metrics = new RegressionMetrics(valuesAndPreds)

println(s"MSE = \${metrics.meanSquaredError}")
println(s"RMSE = \${metrics.rootMeanSquaredError}")
println(s"MAE = \${metrics.meanAbsoluteError}"
Summary
Summary

- Preprocessing: cleaning, integration, reduction, transformation
- Data mining: classification, clustering, frequent patterns, anomaly
- Result validation
Questions?