
Theoretical Computer Science 272 (2002) 247–292
www.elsevier.com/locate/tcs

Innocent game models of untyped �-calculus

Andrew D. Ker, Hanno Nickau ∗, C.-H. Luke Ong
Oxford University Computing Laboratory, Parks Road, Oxford OX1 3QD, UK

Abstract

We present a new denotational model for the untyped �-calculus, using the techniques of
game semantics. The strategies used are innocent in the sense of Hyland and Ong (Inform. and
Comput., to appear) and Nickau (Hereditarily Sequential Functionals: A Game-Theoretic Ap-
proach to Sequentiality, Shaker-Verlag, 1996. Dissertation, Universit6at Gesamthochschule Siegen,
Shaker-Verlag, 1996), but the traditional distinction between “question” and “answer” moves is
removed. We :rst construct models D and DREC as global sections of a re=exive object in the
categories A and AREC of arenas and innocent and recursive innocent strategies, respectively.
We show that these are sensible ��-algebras but are neither extensional nor universal. We then
introduce a new representation of innocent strategies in an economical form. We show a strong
connexion between the economical form of the denotation of a term in the game models and a
variable-free form of the Nakajima tree of the term. Using this we show that the de:nable ele-
ments of DREC are precisely what we call e$ectively almost-everywhere copycat (EAC) strate-
gies. The category AEAC with these strategies as morphisms gives rise to a ��-model DEAC which
we show has the same expressive power as D∞, i.e. the equational theory of DEAC is the maxi-
mal consistent sensible theory H∗. We show that the model DEAC is sensible, order-extensional
and universal (i.e. every strategy is the denotation of some �-term). To our knowledge this is
the :rst syntax-free model of the untyped �-calculus with the universality property. c© 2002
Elsevier Science B.V. All rights reserved.

Keywords: Game semantics; Innocent strategies; Untyped �-calculus

1. Introduction

1.1. Overview

In this paper we present a new denotational model for untyped �-calculus, using
the techniques of game semantics. A game model of the lazy �-calculus was given
by Abramsky and McCusker [2] using the history-free strategies of [1]. The particular

∗ Corresponding author.
E-mail address: hanno.nickau@comlab.ox.ac.uk (H. Nickau).

0304-3975/02/$ - see front matter c© 2002 Elsevier Science B.V. All rights reserved.
PII: S0304 -3975(00)00353 -4

248 A.D. Ker et al. / Theoretical Computer Science 272 (2002) 247–292

variety of game used here is a fairly simple modi:cation of that in [9] for a fully
abstract model of PCF – the distinctions of “question” and “answer” are not needed.
In Section 2 we present some standard de:nitions, rephrased to take this into account.

To begin with, we de:ne an arena, which details what moves may be made in the
game, and the notion of well-formed sequence, which (by restricting the possible traces
of moves) sets out some ground rules. The games are played between two imaginary
people called Opponent and Proponent who must alternate moves, and each move
must be justi8ed by some preceding move. These ideas are familiar from the games
literature, and the constructions of function and product arenas are standard.
During a game there is a notion of the view of the play up to that point, a subse-

quence of the moves played so far. This is the “computationally relevant” part, and
we enforce a further rule on the game by the de:nition of legal position, which says
that moves may be justi:ed only by relevant preceding moves.
We assume that the players are operating according to some strategy, which we

present initially as all possible traces of moves which that player will engage in. The
de:nition of strategies allows only for deterministic play. A condition on strategies
called innocence means that a player may not take into account any irrelevant preceding
moves. Furthermore, strategies may be “composed”, if they are strategies for arenas of
appropriate type. All of these de:nitions are standard.
Another familiar idea is that of an innocent function, which is the presentation used

in [17]. Instead of considering a strategy to be the set of all possible sequences of
moves, we de:ne a function telling a player how to react in every possible situa-
tion. Innocent strategies work particularly simply in this form because we de:ne the
function to map from views to (justi:ed) moves and no more conditions are required,
and we show how one may transfer simply from innocent functions to strategies and
vice versa.
In the same fashion as other games literature, we take arenas as objects and innocent

strategies on function space arenas as morphisms to make a category – we call it A.
As one would hope, this is a cartesian closed category.
In Section 3 we discover the :rst model for untyped �-calculus, because there is

an object U – in some sense the maximal countable arena – with the property that
U =U ⇒ U (true equality, not just isomorphism). As is well known, such an object
will give rise to a ��-algebra, which in this case we call D (or, if we restrict our
attention to recursive strategies, DREC). The elements of D are the innocent strategies
on U , and composition of the elements is de:ned in terms of composition of strategies.
We formulate a method of approximation: the approximants to a strategy are those
which only play within a speci:ed :nite part of the arena U . We show that this
satis:es what Barendregt terms the “basic equations” for approximants, which lead in
a totally standard way to the fact that the model is sensible, i.e. that all unsolvable
terms have the same denotation.
However the model has some undesirable properties too. There are many unde:nable

elements (in particular, all the nontrivial :nite approximants to terms are unde:nable)
and the model is not extensional (that is, there are distinct elements of D which have

A.D. Ker et al. / Theoretical Computer Science 272 (2002) 247–292 249

the same applicative behaviour). The unde:nable elements are really to blame for the
lack of extensionality (and a related property, not having enough points).

In order to improve the model we seek in Section 4 a way to characterise the
de:nable elements. To do this we look at both strategies and terms in a diMerent
light. Strategies could be written in economical form, an encoding of the innocent
function which deletes all redundant information. Terms are considered as Nakajima
trees – this is the intuitive extension of a B6ohm tree to an in:nite �-expansion. We
can encode Nakajima trees in a variable-free form, a somewhat technical de:nition but
in essence just a way to write down an in:nite tree (where each label is an in:nite
list of abstractions and a single head variable) as a function from sequence of natural
numbers to pairs of integers. The major result of this section is what we call the
Exact Correspondence Theorem: the denotation of a closed term, in economical form,
coincides precisely with the labelling function for the variable-free form of its Nakajima
tree.
In Section 5 we make use of this, using classical results which characterise those

B6ohm-like trees that are B6ohm trees of terms, transforming these into Nakajima trees
and then into the language of economical forms of innocent strategies. The result
is a new class of innocent strategies, e$ectively almost-everywhere copycat (EAC)
strategies, which (almost by construction) are precisely the elements of D which are
de:nable. Since identity and projection strategies are easily seen to be EAC, it remains
to show that arenas and EAC strategies, as a subcategory of A, still form a CCC
which we call AEAC. This category still has the re=exive object U so we can identify
a new �-algebra DEAC, which is both sensible and universal (every strategy is the
denotation of a term). Consideration of the local structure shows that all three game
models, namely D, DREC and DEAC, equate terms precisely when they are equated
by Scott’s D∞ model. Thus the theory generated by denotational equality is H∗, the
maximal consistent sensible �-theory. (A very similar result has also been obtained
by Di Gianantonio, Franco and Honsell recently [7]. Using history-free strategies, in
the sense of Abramsky, Jagadeesan and Malacaria, they have constructed game models
of the untyped �-calculus which all induce the same theory H∗.) In contrast to D

and DREC, DEAC is order-extensional (from which weak extensionality follows easily,
and so it is a �-model) and universal. To our knowledge, other than term models, the
universality result is the :rst of its kind.
Finally, in Section 6 we outline some further work which allows the model to be

re:ned, so that �-conversion is not validated. Details of the construction, which yield
a universal model whose equational theory is precisely that of B6ohm-tree equality, will
be presented in a sequel.

1.2. Prerequisites

We assume familiarity with the untyped �-calculus for which the standard reference
is [3]. Particularly vital topics include the notions of solvability and head normal forms,
B6ohm trees, standard theories and models.

250 A.D. Ker et al. / Theoretical Computer Science 272 (2002) 247–292

Basic category theory, up to CCCs and adjunctions, is also assumed – see for
example [14]. Some references are made to computability. A knowledge of the stan-
dard literature on Hyland=Ong=Nickau games [9, 17, 15] would motivate many of the
de:nitions, but is not required.

1.3. Notation

We describe some conventions:
• The set {1; 2; 3; : : :} is written N, and N0 is N ∪ {0}.
• The set of all :nite sequences of elements from � is written �∗. Sequences are
written 〈s1; s2; : : : ; sn〉.

• The empty sequence is denoted by �.
• Sequences are usually written s̃ to distinguish sequences from elements. Sometimes
we do not follow this convention.

• Concatenation of sequences is denoted s̃ · t̃. This notation is also overloaded so that,
for example, m · s̃ means 〈m〉 · s̃.

• The length of the sequence s̃ is written |̃s |.
• The usual order on sequences will be pre:x. The subsequence pre-order is written
4.

• We will use f; g for composition in categories. The terminal object will be denoted 1.
• A �-labelled tree is a (possibly in:nitary) tree with nodes labelled with elements
from �.

• A partially �-labelled tree is a tree with nodes labelled with elements from � ∪ {⊥},
such that any node labelled ⊥ has no descendants. A node labelled ⊥ is considered
to be part of the tree, but is without a label.

• A B;ohm-like tree is, informally, a partially labelled tree with labels of the form
�x1 : : : xn:y. A formal de:nition can be found in [3, 10.1.12].

2. Game arenas and innocent strategies

We build on the dialogue games of Hyland and Ong [9] and Hanno Nickau [17]
(christened H2O games by Girard, for Hyland, Hanno and Ong) using a variant in
which there is no sense of question or answer. We present the details from scratch,
and, although useful, no prior knowledge of the above references is required.
To begin with we describe what we mean by a “game”, de:ning the notion of arena,

which details the moves of the game, and legal position, which sets out some rules for
the game. We introduce the notion of a strategy for the two participants of the game,
and the property of strategies called innocence, and thus de:ne the categories A (and
AREC) of arenas and (recursive) innocent strategies, and show that they are cartesian
closed. Both contain the same re=exive object (for which the retraction morphisms are
an isomorphism), leading to ��-algebras D and DREC. Some analysis of the models
shows that they are both sensible.

A.D. Ker et al. / Theoretical Computer Science 272 (2002) 247–292 251

2.1. Arenas, views and legal positions

The abstract idea of a “game” is based on an arbitrary set of moves. The game is
“played” between two players called Proponent and Opponent, and the mathematical
objects we study are the possible sequences of moves. The moves come in a structure
called an arena, which speci:es that certain moves may not be played until certain
others have been (that is, may not appear in a sequence of moves unless certain others
appear earlier in the sequence). The arena also speci:es that each move may be made
only by either Proponent or Opponent, and another rule imposed on the sequences of
moves is that the two players must alternate, with Opponent playing :rst.
This idea is as standard in [9, 17, 15], except that in these references each move is

labelled as a question or an answer, and there are additional rules controlling the inter-
play of questions and answers. We think of our moves as “declarations”, or answerless
questions, and indeed the de:nitions given here do correspond with the standard ones,
with all moves considered to be questions. They are sometimes presented in a slightly
diMerent manner for clarity or because simpli:cations can be made.

De�nition 1. An arena is a :nite tuple of nonempty trees of moves. The root of each
tree is called an initial move.

We emphasise that the moves are just an arbitrary set, which are given some extra
structure to become an arena. Regardless of what the moves are, we will label them
in a uniform way below, in a way which re=ects their arrangement in the arena, and
never refer to them except by label.

Remark 2. Our trees will be considered (and illustrated) “upside-down” with the root
at the top, rather more like family trees than the botanical kind. Following this analogy,
we can refer to a child of a node, and say that one node inherits from another, with
the obvious meanings. Moreover, we assume that the children of a node come with an
ordering and that this distinguishes them, thus we can unambiguously talk about “the
second child of the root node”. This means that we do not consider the trees

to be the same, since in the :rst only the :rst child of the root has a child, and in the
second only the second child of the root has a child.

The standard de:nition of [9] is in terms of a forest (partial order with each upper
set a :nite chain) and it is clear that our tree structure, ordered by inheritance and with
the forests put together, determines such an order. However we wish to make sure that
the trees making up the forest come in a speci:ed order. Further, we will only require

252 A.D. Ker et al. / Theoretical Computer Science 272 (2002) 247–292

:nitely many trees in each forest (which allows for a simple construction of products
later on).
We will only be interested in countably branching, countably deep trees. Thus, we

can encode each tree of the arena as a subset of N∗ by inductively labelling the root as
� and the nth child of the move s̃ as s̃ · n. Hence, each move of each tree is associated
uniquely with a sequence of natural numbers. Conversely, given any subset A⊆N∗
which is pre:x-closed and has the property that whenever s̃ · n∈A we have s̃ · m∈A
for each m6n, we can form an arena of one tree where the moves are the elements
of A, with tree structure given by pre:x. If we represent trees by subsets of N∗, we
say that we are representing arenas in sequence-subset form. In this work, we will
interchangeably talk about arenas in either forest-of-trees or sequence-subset form.
Each arena is of the form 〈A1; : : : ; An〉, where each Ai ⊆N∗. We say that an arena

is single-tree if n=1. Most of our intuition is based on single-tree arenas, and many
de:nitions are given only for this type of arena with the generalisation to multiple-tree
arenas left to the reader.

Example 3. There are three important arenas which will be referred to in this work:
(1) E is the arena consisting of no trees at all; in sequence-subset form it is represented

by 〈〉.
(2) M is the “minimal” single-tree arena, consisting of one tree of one node; in

sequence-subset form it is represented by 〈{�}〉.
(3) U is the “maximal” single-tree arena, consisting of one tree which is countably

branching with every path countably deep; in sequence-subset form it is represented
by 〈N∗〉.

We say that moves at an even depth of the trees (including the roots which are at
depth 0) are O-moves, the moves made by the Opponent, and moves at an odd depth
are P-moves, made by Proponent. O-moves are often denoted by • and P-moves by ◦.
The polarity of a move refers to whether it is a P- or O-move, and we may talk about
swapping the polarity of a set of moves.
We list some properties of, and a relation between, arenas for later use.

De�nition 4. (1) A sub-arena of an arena A= 〈A1; : : : ; An〉 is an arena B= 〈B1; : : : ; Bn〉
(which therefore has the same number of trees as A) with each Bi ⊆Ai.
(2) An arena is 8nitely branching if every tree in it is :nitely branching.
(3) An arena is recursive if, as a subset of N∗, each tree in it is a recursive set

(i.e. membership is decidable).
(4) An arena is recursively enumerable (or just r.e.) if, as a subset of N∗, each tree

in it is recursively enumerable (i.e. membership is semi-decidable).

Arenas can be formed from other arenas by two major constructions.

De�nition 5. Suppose that A= 〈A1; : : : ; Am〉 and B= 〈B1; : : : ; Bn〉 are arenas:

A.D. Ker et al. / Theoretical Computer Science 272 (2002) 247–292 253

(1) The product arena A×B is the “disjoint union” of the trees of A and B, the
concatenation of their tuples. Formally, A×B= 〈A1; : : : ; Am; B1; : : : ; Bn〉.

(2) The function space arena A⇒B is constructed as follows: the initial moves of
A⇒B are those of B; to each tree below each such initial move, we graft onto it
a copy of A. More precisely, A⇒B= 〈C1; : : : ; Cn〉 where

Ci = {�} ∪ {a · s̃ | 16a6m ∧ s̃∈Aa}

∪ {(a+ m) · s̃ | a · s̃∈Bi}:
We illustrate the construction of a function space arena, when the arenas in question
are not single-tree. Suppose that A= 〈A1; A2; A3〉 and B= 〈B1; B2〉. Then A⇒B could
be pictured as

This picture shows how the arena A is duplicated in A⇒B, when B is not single-tree.
It also illustrates how we will draw arbitrary arenas – the triangle with a single symbol
◦ or • at the top indicates some tree with the root a P- or O-move, respectively.

We note that any arena can be decomposed as the product of :nitely many single-
tree arenas. Moves of product and function arenas may be referred to as, for example,
A-moves and B-moves, depending on which part of the composite arena they lie in.
Notice that the polarity of A-moves has been swapped in A⇒B.
We have already seen that the way the moves are arranged in the trees of the

arena determines whether each is played by Proponent or Opponent. The tree struc-
ture of the arena also determines which moves are prerequisite for each move –
the idea is that a move may not be played until after its immediate ancestor in the
arena has been played, and we might call a move’s immediate ancestor its “enabling
move”. It is possible that there might be more than one instance of a move’s en-
abling move, and for reasons which will be illustrated later it is important to identify
one of them as the enabling move which was “used”. For this we need the following
de:nition.

De�nition 6. A justi8ed sequence of an arena A is a sequence of moves of which each
element except the :rst is equipped with a pointer to some previous move. We call
the pointer a justi8cation pointer and if the move m− is pointed to by m we say that
m− justi8es m.

We say that a move m− in a justi:ed sequence hereditarily justi8es m if one can
reach m− from m by repeatedly following justi:cation pointers.

254 A.D. Ker et al. / Theoretical Computer Science 272 (2002) 247–292

Remark 7. For the de:nition it suQces to say that the justi:cation pointers exist. To
give this a proper mathematical meaning we can encode a justi:ed sequence as a
sequences of pairs, the sequence of :rst components being the moves and the second
components being natural numbers, such that if m is justi:ed by m− in a sequence
s̃ ·m− · t̃ ·m · ũ then the number paired with the move m is |̃t |=2. Note that since each
move is justi:ed by a move made by the opposite player, and players alternate, the
sequence t̃ is forced to be of even length. By convention the initial move is paired
with the number zero. (Here the sequences s̃ and t̃ are sequences of moves, each move
of which are, sometimes confusingly, represented by sequences of natural numbers.)
There are other possible encodings of justi:cation pointers, but this particular encoding
matches that used in the de:nition of economical form in Section 4.1.

To avoid tedious detail, in practice we ignore this encoding, and typeset justi:ed
sequences pictorially with lines linking each move to the one move which justi:es
it. An example of how this looks can be found in the next section. When we de:ne
functions on well-formed sequences which involve manipulation of pointers we will
not bother to explain the details of how the encodings are manipulated as a result,
which in any case ought to be obvious.

We may now impose restrictions on the possible sequences of moves made in the
game, as we indicated above.

De�nition 8. A well-formed sequence over A is a justi:ed sequence s̃ which has the
following properties:
Initial move: The :rst element of s̃ is an initial move of A, an O-move.
Alternation: Thereafter elements of s̃ alternate between P-moves and O-moves.
Justi8cation: If m is justi:ed by m− then the move m is directly beneath m− in the

tree of the arena.

Note that the last of these forces each move (except the :rst) to be justi:ed by a
move of the opposite polarity. The de:nitions for dialogue games involve an additional
condition called well-bracketing. This is redundant for declaration-only arenas. Note
that, as a consequence of the de:nition of justi:ed sequence and the condition of
justi:cation, the :rst move may not be repeated in a well-formed sequence.
Well-formed sequences will be the permissible sequences of moves in the games

played on the arena. One could think of these conditions as imposing some basic
ground rules.

Remark 9. Since Opponent can play any of the initial moves of A, and all subsequent
moves are justi:ed (and hence cannot be roots of trees of A), Opponent has chosen
which of the trees of A the rest of the sequence is to be played in. An idea presented
in [17] is to label the roots of the tree Ai in A as �i, and then for any well-formed
sequence we can see which tree it comes from by examining the subscript of the :rst
move. In practice, we almost always examine single-tree arenas (decomposing multiple-

A.D. Ker et al. / Theoretical Computer Science 272 (2002) 247–292 255

tree arenas in the product of single-tree arenas if necessary) and so we shall need not
use this convention.
Since initial moves cannot be justi:ed by any move, and only the :rst move of a

justi:ed sequence is not justi:ed, it is possible to repeat the initial moves of A in the
arena A⇒B but not in the arena A. This is a sort of “hidden !” of Linear Logic, which
is made explicit in McCusker’s presentation [15]. Our presentation is simpler but this
also means that we must be aware of the possibility of moves becoming repeatable in
function spaces.

In a well-formed sequence, some moves are considered “not relevant” to the player
making the next move. We suppose that each time a player makes a move m he is
really only interested in the next move (made by his opponent) which is justi8ed by m.
Once such a move is made, he is supposed to ignore any intervening moves. This will
be made precise in the de:nition of innocence in the next section, but what follows is
the de:nition of the relevant moves of a sequence.

De�nition 10. The P-view of a justi:ed sequence s̃, written �̃s�, is given recursively
by

��� = � for initial moves �

�̃s · m� = �̃s� · m for m a P-move

�̃s · m− · t̃ · m� = �̃s� · m− · m for m an O-move justi:ed by m−

The O-view, �̃s� , is given analogously by

��� = � for initial moves �

�̃s · m� = �̃s� · m for m an O-move

�̃s · m− · t̃ · m� = �̃s� · m− · m for m a P-move justi:ed by m−

It may be the case that for a P-move m justi:ed by an O-move m− in some justi:ed
sequence s̃, the move m− is deleted in �̃s� (similarly if m is an O-move then its
justifying move might be deleted in the O-view.) Thus, the O=P-view of a justi:ed
sequence may not itself be a justi:ed sequence. This motivates the following:

De�nition 11. A legal position of an arena A is a justi:ed sequence s̃ satisfying the
following visibility condition:

For each noninitial O-move m justi:ed by m−, say s̃= t̃1 · m− · t̃2 · m · t̃3, we have
that m− ∈�t̃1 ·m− · t̃2 ·m� . Similarly, all P-moves are justi:ed by O-moves appearing
in the P-view up to that point.

This gives the required property:

256 A.D. Ker et al. / Theoretical Computer Science 272 (2002) 247–292

Lemma 12. If s̃ is a legal position then so are �̃s� and �̃s� .

Proof. Essentially a straightforward induction. See [9, Proposition 4.1] or [15].

By a P-view of an arena A we mean a justi:ed sequence which is the P-view of
some legal position of A.
There are other important properties of views, legal positions and function space

arenas. Only the statements of the major results are given here, and proofs (in our
setting when there is no sense of question or answer) carry over from those of the
similar results described in [9, Section 4:4] or [15].

Lemma 13 (View characterisation). A justi8ed sequence of an arena A is the P-view
of some legal position if and only if it is well-formed and every noninitial O-move is
justi8ed by the immediately preceding P-move. The same statement is true with all
polarities swapped.

Lemma 14 (View idempotency). If s̃ is a legal position then ��̃s� � = �̃s� and ��̃s��

= �̃s�.

De�nition 15. If s̃ is a legal position of a function space arena A⇒B; with a an initial
move of A occurring in s̃; we de:ne the following:
The B-component of s̃, written s̃ �B, is the projection of s̃ onto B, i.e. the subse-

quence formed by taking only the moves in B, together with their justi:cation pointers.
The (A; a)-component of s̃, written s̃ � (A; a), is the projection of s̃ onto the moves

of A which are hereditarily justi:ed by a, together with justi:cation pointers.

In order to make the latter into a well-formed sequence we write s̃ � (A; a)+ for
b · (̃s � (A; a)) where b is the initial B-move justifying a.

Note that we have to identify A-components by their initial move, due to the
“hidden !”.

Lemma 16 (Projection convention). (1) s̃ �B is a legal position in B.
(2) s̃ � (A; a) is a legal position in A.

2.2. Strategies and composition

Informally, a strategy is information which tells one of the players which move to
make next, or not to make a next move, in any given situation. We de:ne a strategy as
the set of all possible sequences of moves which the player is prepared to see played.

De�nition 17. A P-strategy � for a single-tree arena A consists of a nonempty pre:x-
closed subset of legal positions of A subject to:
Determinacy: If s̃ · m∈ �∧ s̃ · m′ ∈ � for P-moves m and m′ then s̃ · m= s̃ · m′, i.e.

these moves and their justi:cation pointers are the same.

A.D. Ker et al. / Theoretical Computer Science 272 (2002) 247–292 257

Contingent completeness: If s̃ ·m∈ � for a P-move m and s̃ ·m ·m′ is a legal position
of A then s̃ · m · m′ ∈ �.

An O-strategy is de:ned analogously. However, we are more often interested in
P-strategies which we will usually just refer to as strategies.
For a general arena A= 〈A1; : : : ; An〉 a P-strategy is an n-tuple of P-strategies, one for

each tree (and we refer to these n P-strategies as the component strategies). However,
an O-strategy is just a single O-strategy on one of the trees, together with information
which selects that tree. This diMerence is in view of Remark 9.
The property of determinacy means that, given any legal position after which it is

Proponent’s turn to play (i.e. the last move was made by Opponent), either Proponent
may not make a reply or their move is uniquely determined. Contingent completeness
means that all of Opponent’s possible next moves are part of the strategy (although
this is not to say that Proponent need reply to them).

Remark 18. The standard de:nitions of strategy [9, 17, 15] do not need to consider
multiple-tree arenas as a special case, since usually the initial moves of the trees can
be referred to under distinct names. A P-strategy is then just a pre:x-closed set of
legal positions, subject to the rules above, which must also contain every initial move
of the arena (and an O-strategy is the same except that it contains at most one initial
move of the arena).

However, we prefer to keep to the terminology that an initial move is labelled �,
and add some special cases to the de:nitions to cope with multiple-tree arenas.

Example 19. The simplest strategy is de:ned by the set {�}, i.e. the only legal position
in it is �. This is a strategy on any single-tree arena, and is denoted ⊥. We call this
the unde8ned strategy or the empty strategy (even though it is not actually an empty
set).

De�nition 20. We can de:ne the play of a P-strategy � against an O-strategy � to be
the sequence of moves generated by them both. By the rules of contingent completeness
and determinacy, �∩� contains one (:nite or in:nite) chain of legal positions (ordered
by pre:x as always). The join of this chain is the play.

If we have strategies � and � on arenas A⇒B and B⇒C, respectively, then we
can form their composite strategy �; � on A⇒C. Informally, we do this by identifying
O=P-moves of the B component of A⇒B with P=O-moves of the B component of
B⇒C, and then hiding all the moves in B. This is reminiscent of CSP’s “parallel
composition” and “hiding” operators. We describe this in formal detail only brie=y, as
details which carry directly to declaration games can be found in [9]. We :rst illustrate
the ideas with an example.

258 A.D. Ker et al. / Theoretical Computer Science 272 (2002) 247–292

Example 21. Suppose that we have strategies � on A⇒B and � on B⇒C, for single-
tree arenas A, B and C. We picture a possible computation of the :rst move of the
composite strategy �; � below.

This diagram illustrates the computation of the :rst P-move of the strategy �; �. Suppose
that the :rst move of the strategy � in response to the initial O-move m0 is the P-move
m1, in the arena B⇒C. The way composition is computed, since the move m1 occurs
in the arena B it is duplicated as the O-move m2 in the arena A⇒B, where it is
the initial O-move seen by the strategy �. We suppose that �’s response to this initial
move is the P-move m3, which is the B-component of the arena A⇒B. This move is
duplicated as the O-move m4 in the arena B⇒C. The strategy � has now seen the
sequence 〈m0; m1; m4〉 (each noninitial move was justi:ed by the immediately preceding
move) and we suppose that its response is the P-move m5, in the B-component of the
arena B⇒C. This is duplicated as an O-move in the arena A⇒B. The strategy � has
now seen the sequence 〈m2; m3; m6〉 (again each noninitial move was justi:ed by the
immediately preceding move) and this time we suppose that its response is the P-move
m7, which is in the A-component of the arena A⇒B. Since this move is not in the
hidden arena B, it is the :rst visible move of the composition after the initial move m0.
Thus we have calculated that the strategy �; �, a strategy on the arena A⇒C, makes
the move m7, the root of the C-component, in response to the initial move m0.

The formal de:nitions are as follows.

De�nition 22. Suppose we are given two arenas A⇒B and B⇒C. We say that s̃
is an interaction sequence of A, B and C and write s̃∈ ias(A; B; C) if the following
conditions hold:
(1) s̃ is made up of moves from the arenas A, B and C, and each move except the

:rst is equipped with a justi:cation pointer to some previous move;
(2) s̃ � (B; C), the subsequence of moves in s̃ in B or C with the polarity of moves of

B swapped to resemble B⇒C, is a legal position of B⇒C;
(3) s̃ � (A; B; b), the subsequence of moves in the A⇒B component hereditarily justi-

:ed by b with the polarity of moves of A swapped, is a legal position of A⇒B,
for all initial B-moves b∈ s̃;

A.D. Ker et al. / Theoretical Computer Science 272 (2002) 247–292 259

(4) s̃ � (A; C), the subsequence of all moves in A and C, with the polarity of moves
in A swapped, and with pointers from A to C via B renamed as pointers directly
from A to C, is a legal position of A⇒C.

For strategies � :A⇒B and � :B⇒C de:ne the composite strategy as follows:

�; �= {̃s � (A; C) | s̃ ∈ ias(A; B; C) ∧

s̃ � (A; B; b) ∈ � for all initial B-moves b ∈ s̃ ∧ s̃ � (B; C) ∈ �}:
An essentially straightforward result, although very technical in proof, is that compo-
sition is well de:ned and associative. For a proof see [9, Proposition 5.1].

Lemma 23. (1) If � and � are strategies on A⇒B and B⇒C; respectively; then �; �
is a strategy on A⇒C.

(2) If; in addition; is a strategy on C⇒D; then (�; �); = �; (�;).

Remark 24. For arenas with multiple trees, one must sometimes identify copies of the
same arena in the composite strategy. For example, if we have strategies � and � on
A⇒ (B1×B2) and (B1×B2)⇒C, respectively, for single-tree arenas A, B and C, then
the composition �; � will look like

and moves made in either copy of A will appear in the single copy of A in the
composite strategy on A⇒C.

2.3. Innocent and recursive innocent strategies

As we commented in Section 2.1, we suppose that both players only notice the
“relevant” previous moves when playing their next move. Exactly which moves were
relevant to Proponent was made precise in the de:nition of P-view, and we now enforce
the property that Proponent’s strategies may only take this relevant information into
account.

De�nition 25. A P-strategy � on a single-tree arena is innocent if for odd-length legal
positions s̃ and t̃ and P-moves m,

s̃ · m ∈ � ∧ t̃ ∈ � ∧ �̃s� = �̃t� ⇒ t̃ · m ∈ � ∧ �̃s · m� = �̃t · m�

i.e. P’s next move, and its justi:cation, at each stage depends only on the P-view up
to that point.

260 A.D. Ker et al. / Theoretical Computer Science 272 (2002) 247–292

A P-strategy on a multiple-tree arena is innocent if each of its components is innocent
in the above sense.

For more motivation of why innocence is important see [9, Section 7:5]. Put brie=y,
innocent strategies have a certain amount of extensionality enforced on them. A key
result, which is technically diQcult to prove (for details see [9, Section 5.3]) is that
composition of innocent strategies is well de:ned:

Lemma 26. If � is an innocent strategy on A⇒B and � an innocent strategy on
B⇒C then �; � is an innocent strategy on A⇒C.

If we recall the de:nition of a strategy, the property of determinacy means that
strategies can be thought of as functions mapping legal positions ending in O-moves
to Proponent’s next move. The rule of contingent completeness then :lls in the rest
of the detail, which is that positions ending in P-moves can be followed by any legal
O-move.
Furthermore, the property of innocence means that the move, and its justi:cation,

made by Proponent depends only on the P-view of the legal position preceding it, so
if a strategy is considered as a function its value depends only on the P-view of its
argument. Recall that by a P-view of an arena A we mean a justi:ed sequence which
is the P-view of some legal position of A; then an innocent strategy on A could be
represented by a function mapping P-views of A to justi8ed P-moves, i.e. P-moves
equipped with a justi:cation pointer back into the argument of the function.

De�nition 27. For an innocent strategy on a single-tree arena � we can de:ne the
innocent function of �, written f�, which is a partial map from P-views which end in
O-moves to justi:ed P-moves, by f(�̃s�)=m, with a pointer from m to the move m−

in s̃, if s̃ · m∈ � and m is justi:ed by m−.
We can de:ne the innocent function of an innocent strategy on a multiple-tree arena

by forming a tuple of the innocent functions of the components of the strategy.

The reader will :nd it easy to verify that the empty strategy ⊥ is trivially innocent,
and that its innocent function is the everywhere unde:ned function.

Remark 28. In order to make this a proper mathematical function we need to encode
the pointer of a justi:ed P-move. We could follow the encoding in Remark 7, then the
justi:ed P-move is a pair consisting of a P-move and a natural number which says how
many pairs of moves one has to go back from the end of the argument of the innocent
function. Indeed, the presentations given in [9, 17] used encodings of justi:ed P-moves
from the start. However we prefer to avoid encoding the pointers when typesetting
innocent functions, leaving encodings for Section 4.1.

A function constructed in this way is called innocent and we can formalise such
functions.

A.D. Ker et al. / Theoretical Computer Science 272 (2002) 247–292 261

De�nition 29. We say that f is an innocent function on a single-tree arena A if f
maps P-views in A with P to move to justi:ed P-moves, and the following conditions
hold:
(1) dom(f) is pre:x-closed,
(2) If s̃ ·m− · t̃ ·m ·m′ ∈ dom(f), with m justi:ed by m−, then f(̃s ·m− · t̃)=m, and

m points to the move m−,
(3) If f(̃s)=m then m is a child in the arena A of the move which it points to in s̃.

Obviously, an innocent function on a multiple-tree arena consists of a tuple of
innocent functions, one for each tree in the arena.
We note that a function with such domain can only encode an innocent strategy.

The conditions listed are required to make the function “strategic”, i.e. the set of legal
positions it describes are pre:x-closed, deterministic and made up of properly justi:ed
sequences of moves. These conditions are suQcient to allow us to construct a unique
strategy from an innocent function as follows:

De�nition 30. Given an innocent function f on a single-tree arena A we can de:ne
an innocent strategy �f inductively by
(1) �∈ �f, where � is the initial move of A.
(2) If s̃∈ �f, |̃s | is even, and s̃ · m a legal position of A then s̃ · m∈ �f.
(3) If s̃∈ �f, |̃s | is odd, and f(�̃s�) is de:ned then the sequence s̃ · f(�̃s�) is in �f,

(where the justi:cation pointer from the move f(�̃s�) points to the move in s̃
which projects to the move speci:ed by f in �̃s�).

Further, the construction of innocent strategy from innocent function and vice versa
are mutually inverse:

Lemma 31. (1) f(�f) =f.
(2) �(f�) = �.
(3) f⊆f′ ⇔ �f ⊆ �f′ .
(4) �⊆ �′ ⇔ f� ⊆f�′

In view of this very strong correspondence between innocent functions on A and
innocent strategies on A, we use the representations of strategies as innocent functions
and subsets of legal positions interchangeably. We draw attention to the diMerence
between “the innocent function” of an innocent strategy, and “an innocent function”
on an arena. Each of the former must be one of the latter.
The representation as an innocent function allows us to de:ne the following prop-

erties of strategies cleanly.

De�nition 32. (1) An innocent strategy is said to be compact if the domain of de:-
nition of its innocent function is :nite.
(2) We say that an innocent strategy is recursive if the innocent function representing

it is (partial) recursive, after some encoding of P-views and justi:ed P-moves.

262 A.D. Ker et al. / Theoretical Computer Science 272 (2002) 247–292

It does not make much sense to talk about a recursive function on a domain which
is not at least r.e., and so we only consider recursive strategies on r.e. arenas. This
also guarantees that as a set of legal positions a recursive innocent strategy is an
r.e. set. Note that the innocent function representation of an innocent strategy can be
found eMectively, and vice versa. Also it is clear that composition of strategies is given
eMectively. Hence,

Lemma 33. The composition of two recursive innocent strategies is itself recursive.

The technology of innocent functions, and the representation of justi:cation pointers
as numbers, allows us to de:ne strategies in an intuitive and typographically sensible
way. (Note: This is not the only reason for their introduction!) We give an example
of some innocent strategies to illustrate some of the recurring themes, to introduce our
notation for innocent functions, and for use in the next section.
For any single-tree arena A we can de:ne the identity strategy on A⇒A, which

can be pictured as below.

Both A1 and A2 are copies of the arena A. We write idA for the strategy which plays
the P-move 〈1〉 in response to the initial move �, and then in response to any O-move
in the component A1 (resp. A2) it plays the identical move (which will be a P-move)
in the component A2 (resp. A1). Formally, the innocent function of idA is

for any sequence of numbers s̃ which is of appropriate parity of length (odd in the
third clause, even in the fourth) and such that the moves 1ãs, 1ãsb, etc., do actually
exist in the arena A⇒A.

A.D. Ker et al. / Theoretical Computer Science 272 (2002) 247–292 263

We have omitted some justi:cation pointers in the innocent function, but they
can be reconstructed from the action of the function on shorter P-view, so this is
unambiguous.
This is an example of a copycat strategy, in which P’s response to any noninitial

O’s move is just to copy it into another tree. To generalise to multiple-tree arenas we
:rst look at another example of a copycat strategy, which we will need in order to
construct the categories we use.
For an arena A= 〈A1; : : : ; An〉 and for i=1; : : : ; n we can de:ne the projection strat-

egy on the single-tree arena A⇒Ai (shown below), written !A
Ai , as a copycat strategy

with innocent function given by

Here s̃ ranges over sequences of appropriate parity, a and b over positive natural
numbers.
Then the identity strategy on any arena A is

idA = 〈!AA1
; : : : ; !AAn〉:

The reader is invited to verify that identities and projections work as expected.

2.4. Categories of innocent strategies

In this section we show that arenas and innocent strategies form a category, which
is cartesian closed. We also make the corresponding de:nition when we restrict our
attention to recursive innocent strategies.

De�nition 34. The Category of Arenas and Innocent Strategies, A, is de:ned as
follows:
(1) objects are arenas;
(2) morphisms f :A → B are innocent strategies on the function space arena A⇒B;

264 A.D. Ker et al. / Theoretical Computer Science 272 (2002) 247–292

(3) composition of morphisms is composition as strategies;
(4) the identity morphism on A is the copycat strategy idA.

Lemmas 23, 25 and the properties of identities show that A is indeed a category.

Theorem 35. A is cartesian closed.

Proof. We de:ne products and exponentials as follows:
(1) the terminal object 1 is the arena E (de:ned in Example 3, the arena consisting

of no trees);
(2) the product of A and B is the product arena A× B;
(3) projections are copycat strategies. If A= 〈A1; : : : ; Am〉 and B= 〈B1; : : : ; Bn〉 then de-

:ne

!A×B
A : (A× B) → A = 〈!〈A1 ;:::;Am;B1 ;:::;Bn〉

Ai | i ∈ {1; : : : ; m}〉;
!A×B
B : (A× B) → B = 〈!〈A1 ;:::;Am;B1 ;:::;Bn〉

Bi | i ∈ {1; : : : ; n}〉;
(4) the exponential object (A⇒B) is the function space arena A⇒B;
(5) note that the arenas (A⇒B)× A⇒B and (A⇒B)⇒ (A⇒B) are identical. Take

the evaluation morphism evalA;B : (A⇒B) × A → B to be the same strategy as
idA⇒ B : (A⇒B) → (A⇒B).

We draw attention to the distinction between idA⇒ B and evalA;B as morphisms. They
are given by the same strategy, but have diMerent domains and codomains and hence
are diMerent morphisms.
It is clear that for any arena A the arena A⇒ 1 is the empty arena E and hence that

there is a unique morphism !A : A⇒ 1, the “empty” strategy ⊥ de:ned in Example 19.
Note that 1⇒A=A.

To show that A is cartesian we need that for arenas A, B, C and morphisms � :A⇒B
and � :A⇒C we have a unique morphism 〈�; �〉 such that 〈�; �〉; !B×C

B = � and 〈�; �〉;
!B×C
C = �. Given the above conditions and the properties of the strategies ! we can

easily show that the morphism

〈�; �〉 : A → (B× C) = � · �
works as required (recall that � and � will be tuples of strategies on single-tree arenas
– the operation · is simply concatenation).

To show cartesian closure we need that for each f :A × B → C there is a unique
"(f) :A → (B⇒C) such that f=("(f) × idB); evalB;C . Note that the arenas (A ×
B)⇒C and A⇒ (B⇒C) are identical. Since evalB;C = idB⇒C , as strategies, it is easy
to check that taking "(f) as the same strategy as f is such a unique morphism.

De�nition 36. The Category of Arenas and Recursive Innocent Strategies, AREC, is
the subcategory of A with objects restricted to r.e. arenas and morphisms restricted to
recursive innocent strategies.

A.D. Ker et al. / Theoretical Computer Science 272 (2002) 247–292 265

Lemma 33, and the trivial observation that identity and projection strategies are
recursive, show that AREC is also a cartesian closed category with the same cartesian
closed structure as A.

3. The ��-algebras D and DREC

In this section we use the fact that A and AREC are cartesian closed categories to
construct the models D and DREC. We show that they are ��-algebras and that they
are sensible (all unsolvable terms are equated).

3.1. �-Algebras from A and AREC

The :rst model of the untyped �-calculus was given by Scott in 1969 and a variety
of other models followed in the 1970s. It was not until rather later that the general
idea of what a model of the �-calculus should be took shape.
We consider that a model of the �-calculus must be a �-algebra, a combinatory alge-

bra which also satis:es every equation provable in the �-calculus (i.e. the formal theory
�#). If in addition all equations provable in the ��-calculus (the formal theory �#�)
are satis:ed, we call it a ��-algebra. We describe a �-algebra by a tuple 〈A; •; <−=−〉
where A is a combinatory algebra with application operation •, and for each valuation
 , <−= is a map from �-terms to elements of A. For a precise de:nition, the reader
is referred to [3, Section 5.2].
Scott showed how �-algebras arise in cartesian closed categories, as follows.
For any category we say that an object R is re>exive if there are morphisms

Fun :R→ (R ⇒ R) and Gr : (R ⇒ R)→R satisfying Gr;Fun= idR⇒R. In this case
we say that R ⇒ R is a retract of R, and that Fun and Gr are the retraction mor-
phisms. A CCC C with re=exive object R, together with the retraction morphisms Fun
and Gr, de:ne a �-algebra.
First, some notation: we write Bn for the n-fold product (· · · ((B×B)×B) · · ·)×B,

with the intention that B0 = 1. Given f1; : : : ; fn :A→B we de:ne the n-tuple 〈f1; : : : ;
fn〉 :A→Bn by 〈〉= !A, 〈f1; : : : ; fr+1〉= 〈〈f1; : : : ; fr〉; fr+1〉. Then if &= 〈x1; : : : ; xn〉,
write '&

xi for the obvious projection onto the ith component. Then de:ne a �-algebra
〈A; •; <−=−〉 as follows:
(1) A is the homset HomC(1; R).
(2) For any object A with f; g :A→R de:ne f • g= 〈f;Fun; g〉; evalR;R. In particular

this de:nes a binary operation on A.
(3) If {x1; : : : ; xn}⊇FV(s) de:ne inductively the morphism <s=& :Rn→R, where &=

〈x1; : : : ; xn〉, as follows:

<x=& = '&
x ;

<st=& = <s=& • <t=&;
<�x:s=& = "(<s=&·x);Gr:

266 A.D. Ker et al. / Theoretical Computer Science 272 (2002) 247–292

In the last clause we may assume that x does not appear in & (by renaming if
necessary).

(4) If is a valuation mapping variables to elements of A, and & is as above, de:ne
the morphism & : 1→Rn by &= 〈 (x1); : : : ; (xn)〉. Then set

<s= = &; <s=&:

The following result, along with a proof, can be found for example in
[3, Section 5:5].

Proposition 37. With the above construction 〈A; •; <−=−〉 is a �-algebra. We denote
this model M(C; R;Fun;Gr). This is a ��-algebra if and only if the retraction mor-
phisms are iso (i.e. Fun;Gr= idR).

In fact, every �-algebra can be obtained in this way, from some CCC with a re=exive
object.
Recall that the arena U , the “maximal” single-tree arena de:ned in Example 3, is

given in sequence-subset form by 〈N∗〉. Observe that, as arenas, U =U ⇒ U , so
that the strategy idU de:nes both the morphisms Fun :U → (U ⇒ U) and Gr : (U ⇒
U)→U , and these morphisms satisfy Gr;Fun= idU⇒U and Fun;Gr= idU . Also U is
r.e., and Fun and Gr are recursive strategies, so U is a re=exive object of both A and
AREC, for which the retraction maps form an isomorphism.

De�nition 38. We write D for the ��-algebra M(A; U;Fun;Gr), and DREC for the
��-algebra M(AREC; U;Fun;Gr).

The only diMerence between D and DREC is the ambient categories from which
they arose, and there is no diMerence in the strategies used for identities, projections
and retractions in those categories. Thus, the interpreting function <−=− is the same
in both D and DREC, so we write <s= for the strategy which denotes the term s in
either.
For future use we lift the notion of application in D and DREC directly to strategies

on U :

De�nition 39. For innocent strategies � and � on Un ⇒ U (for any n∈N0) we write
� • � for 〈�;Fun; �〉; evalU;U .

Thus for terms s and t, not necessarily closed, <st=&= <s=& • <t=&.
Since some later results will require a fairly delicate analysis of application as

strategies, we investigate what happens. Firstly, note that since the morphism Fun
is given by the strategy idU it does not aMect the moves of the strategy �. The arenas
of the outer composition are shown below, with each subtree being a copy of the

A.D. Ker et al. / Theoretical Computer Science 272 (2002) 247–292 267

arena U :

The composition identi:es moves made in the U arenas marked U1; U2 and U3 and
all are hidden, with the moves being made in U4 visible. All the little trees labelled A
– which represent the free variables in � and �, so we could call them context subtrees
– are merged into one set of visible trees (as in Remark 24).
The strategy eval plays in response to the initial move, the root of U4, the :rst

move the root of the tree U2. Thereafter moves played in the tree U2 are copied across
into U4 and vice versa. Similarly, moves are copied between U1 and U3. That is, the
composition :rst plays across into the root node of the tree U1 ⇒ U2, on which � is
played. Moves made by this strategy � in the tree U2 are visible, and moves made in
the tree U1 are copied across and played against by �.
Thus the net eMect is that � • � is the strategy whose visible moves are those of �

in all except the leftmost noncontext subtree, in which moves are played and hidden
with � playing as the opponent.
Note that when there are no free variables, and hence no context subtrees, this is

exactly the same as the strategy �; �.

3.2. Properties of D and DREC

We now examine the properties of the �-algebras we have de:ned. We are able
to show that they are sensible (i.e. the equational theory induced by the models is a
sensible �-theory), but in other respects there are rather unsatisfactory.
A standard method to show that a model is sensible is to use an approximation on the

elements of the model. The approximation we will use is based on the approximation
of arenas which then induces an approximation on strategies.

De�nition 40. If � is an innocent strategy on an arena A and B is a sub-arena of A we
de:ne �‖B : ṽ→m, with m justi:ed by a move m− in ṽ, if � : ṽ→m with m justi:ed
by the same move m− in ṽ, and all of the moves in ṽ and m are in the sub-arena B.

Here we are considering � as an innocent function (and the justi:cation pointers of
the P-view ṽ and the move m do not make any diMerence as to whether �‖B : ṽ→m).
Note that �‖B is still a strategy on the arena A, but is unde:ned at some P-views.

An alternative de:nition is to consider the strategies as subsets of legal positions, then
�‖B=(� ∩ {̃s | s̃ is a legal position of B})+, if S+ means the closure of the set S of
legal positions under the rule of contingent completeness.

268 A.D. Ker et al. / Theoretical Computer Science 272 (2002) 247–292

The intuition behind this is that parts of the arena A other than B are “out of bounds”
and �‖B will neither play there nor respond to moves played there, but will otherwise
behave as �.

Lemma 41. If � :A ⇒ B; A′ is a sub-arena of A and B′ is a sub-arena of B then

�‖A⇒B′ = �; +B′ ;

�‖A′⇒B = +A′ ; �;

where +A′ :A→A and +B′ :B→B are the obvious subsets of the identity strategies on
A and B; respectively.

Proof. A straightforward modi:cation of the proof that idA; �= �= �; idB.

Corollary 42. If � :A ⇒ B; � :B ⇒ C; B′ is a sub-arena of B and C′ a sub-arena of
C then

(�‖A⇒B′); �= �; (�‖B′⇒C);

�; (�‖B⇒C′) = (�; �)‖A⇒C′ :

With this de:nition of “restriction” we introduce arenas which approximate the arena
U , and an induced approximation on innocent strategies over U .

De�nition 43. (1) U0 =M; the “minimal” single-tree arena de:ned in Example 3.
(2) Un+1 =Un ⇒ Un:
(3) If � is an innocent strategy on U then �n= �‖Un :

This particular de:nition of Un has the following key property:

Lemma 44. evalU;U‖(Un+1 ×U)⇒U =evalU;U‖(U ×Un)⇒Un .

Proof. As strategies we know that evalU;U and idU⇒U are identical. Further, from
Lemma 41 it is clear that for any sub-arena A′ of A we have idA‖A′⇒A= idA‖A⇒A′ .
Hence taking A′ =Un ⇒ Un and A=(U ⇒ U)=U we have that, as strategies

evalU;U‖(Un+1×U)⇒U = idU⇒U‖(Un⇒Un)⇒(U⇒U)

= idU⇒U‖(U⇒U)⇒(Un⇒Un)

= idU⇒U‖((U⇒U)×Un)⇒Un

= evalU;U‖(U×Un)⇒Un :

Thus �n satis:es these properties, which we need for an approximation:

Lemma 45. For �; � : 1→U in A (i.e. elements of the models D or DREC);
(i) �=

⋃
n∈! �n;

A.D. Ker et al. / Theoretical Computer Science 272 (2002) 247–292 269

(ii) �0 = ⊥;
(iii) (�m)n= �min(m;n);
(iv) �n+1 • �=(� • �n)n.

Proof. Conditions (i)–(iii) follow immediately from the de:nition. For (iv) use
Lemma 44.

Theorem 46. The �-algebras D and DREC are sensible. Any term s is unsolvable if
and only if <s==⊥.

Proof. This now follows a standard argument, which we do not reproduce in entirety.
The full details of this fact for the model D∞ can be found in [3, Section 19:2], and
uses only properties of D∞ which we have proved for D and DREC.

The argument uses the technique of labelled #-reduction introduced by Hyland [8]
and Wadsworth [19]. The properties of the approximation are used to show that la-
belled reduction is monotone in the model, and hence that labelled #-normal forms are
maximal. This gives rise to an approximation theorem – in the model any term is the
union of its approximate normal forms (introduced by Wadsworth [18]). Finally, it
is simple to show that the only approximate normal forms of unsolvable terms have
denotation ⊥.

In addition to being sensible, there are other desirable properties of models which
we might aim for:

De�nition 47. Let M= 〈A; •; <−=−〉 be a �-algebra:
(1) M is a �-model if it is weakly extensional, that is,

(∀a ∈ A: <s= (x:=a) = <t= (x:=a)) ⇒ <�x:s= = <�x:t= :

(The principle is that, after interpretation, (∀x:s= t)⇒ �x:s= �x:t.) 1

(2) M is extensional if for all a and b in A,

(∀x ∈ A: a • x = b • x) ⇒ a = b:

(3) M is universal if every element of A is the denotation of some term, that is,

∀a ∈ A:∃s ∈ "0: <s= = a:

Note that for any function on the elements of a �-algebra, say f(x1; : : : ; xn), there is
an element of the �-algebra representing that function, in this case <�x1 : : : xn:f=. The
principle of weak extensionality ensures that this element is unique. Furthermore, the
�-models have a pleasing categorical structure.

1 Recall that every �-algebra arises as M(C; R;Fun;Gr) as described in Section 3.1, where C is a CCC with
an object R which is re=exive, via the retraction morphisms Fun and Gr. The �-algebra M(C; R;Fun;Gr) is
a �-model if and only if the object R has enough points (i.e. ∀f; g :R→R: (∀r : 1→R: r;f= r; g)⇒f= g).

270 A.D. Ker et al. / Theoretical Computer Science 272 (2002) 247–292

An extensional model has the property that every element is determined by its ap-
plicative behaviour – this is what one might expect in a “functional” setting. However,
the �-calculus itself does not have this property, since Iab= ab=1ab for all terms a; b,
but I �= 1. However, if �-conversion is included the calculus will have this property
(for example I =1 in the ��-calculus).

A universal model is a very powerful structure, as one can be sure of a 1–1 corre-
spondence between the elements of the model and the equivalence classes of the terms
of the �-calculus modulo whatever theory the model imposes. In particular, one might
hope to accomplish existence proofs for the �-calculus by working on the model. A
universal model could even be considered an alternative presentation of the �-calculus,
with respect to some �-theory.
However, the models D and DREC do not enjoy any of these properties.

Theorem 48. D and DREC are not universal; not extensional and not even weakly
extensional (thus they are not �-models).

Proof. Recall that ⊥ is the “empty” innocent strategy with everywhere unde:ned in-
nocent function. De:ne the strategy ⊥′ on the arena U by the following innocent
function:

That is, ⊥′ is the set {�; � · 1} ∪ {� · 1 · n | n∈N}:
We may consider ⊥ and ⊥′ as de:ning morphisms 1→U , and so as elements of

the models D and DREC. Certainly we have ⊥ �=⊥′. However, the fact that neither
⊥ nor ⊥′ ever moves outside the :rst subtree means that they cannot make moves
that are visible in the composition which arises in application. Hence for all strategies
� : 1→U ,

⊥ • � = ⊥′ • � = ⊥:
Hence D and DREC are not extensional.
Now it is a standard result that any �-algebra is extensional if and only if it is

weakly extensional and a ��-algebra. For a proof see, for example, [3, Section 5.2].
Since D and DREC are ��-algebras but are not extensional, they cannot be weakly
extensional either.
We show that ⊥′ is not the denotation of any term as follows: Suppose there is a

term s such that <s==⊥′. We have shown that <s= • �=⊥ for all strategies � : 1 → U ,
so <st==⊥ for all terms t. Hence st is unsolvable for all t, so s is unsolvable and
hence <s==⊥.

Finding an improved version of these models is the subject of the next sections.

A.D. Ker et al. / Theoretical Computer Science 272 (2002) 247–292 271

4. Economical form and exact correspondence

Our aim in this section is to gain more information on the strategies which denote
terms of the �-calculus in the models D and DREC.

To do so we :rst present an economical way to encode strategies. We then recall
the de:nition of the Nakajima tree of a term, an in:nitary syntax tree deriving from
the B6ohm tree after in:nite �-expansion. We give a representation of Nakajima trees
which is variable-free (i.e. all bound variables are replaced by syntax-free encoded
“pointers”, which can be seen as two-dimensional de Bruijn indices). The powerful
result linking strategies and Nakajima trees, which we call an Exact Correspondence
Theorem, is that the denotation of a term, in the new economical representation, is
precisely the same as the labelling function of the variable-free Nakajima tree of that
term. This allows us to examine the local structure of the models D and DREC in more
detail than we were able to in the previous section, and show that they induce the
equational theory H∗.
4.1. Innocent strategies in economical form

Recall the representation of innocent strategies as innocent functions, mapping
P-views to justi:ed P-moves. We may encode any arena as a subset of N∗, so that
a P-view is a (justi:ed) sequence of elements of N∗, and also encode the justi:ca-
tion pointer as a member of N0 by counting the number of pairs of moves it points
backwards over, as in Remarks 7 and 28.
There are three properties which allow for a more compact representation of an

innocent strategy:
(1) We know that the domain of an innocent function is made up of P-views.

Lemma 13 shows that each noninitial O-move in any P-view must be a child
of the previous move, and the initial move must be �.

(2) The conditions on an innocent function mean that, for a P-view which is in the
domain of the function, given only the O-moves in this P-view and the value of the
innocent function on strictly shorter P-views we can reconstruct the P-view entirely.

(3) The condition of Justi:cation on well-formed sequences means that the P-move to
which this P-view is mapped must be a child of the move which it is justi:ed by.

In view of these redundancies, we encode innocent strategies over any single-tree
arena as (partial) maps from N∗ to N×N0. We call this encoding the economical
form of � and sometimes write it e� (but usually we abuse notation and write it f�
too). It is de:ned as follows:

(We set p= n when the resulting move in the clause of f� is a child of the initial
move, intending “̃s0v0” to mean the sequence 〈�〉.)

272 A.D. Ker et al. / Theoretical Computer Science 272 (2002) 247–292

Justi:cation pointers in the P-view can be deduced from the behaviour of f� on
shorter P-views, and so have been omitted. The sequences s̃i are sequences of natural
numbers encoding moves in the way we use for sequence-subset form of arenas. By
the move “̃sivi” we mean the move which encoded by the sequence s̃i · vi, which by
de:nition is the vith child of the move coded by s̃i.
Furthermore, we can expand any partial function f :N∗ * N×N0 which has pre:x-

closed domain and satis:es f(̃v)= (i; p)⇒ 06p6|̃v | into an innocent strategy on U .
Depending on the function, we might not need the whole of U to contain the strategy.
A strategy on a multiple-tree arena will be encoded as a tuple of such functions,

one for each component. In practice, we will only be interested in using this encoding
for the arena U .

Example 49. Recall that the following is the innocent function of the copycat strategy
idU :

Here s̃ range over sequences of appropriate parity, a and b over positive natural
numbers. The reader is invited to check that the economical form of this strategy is
given by � �→ (1; 0); i �→ (i + 1; 1) and for nonempty sequences ṽ; ṽi �→ (i; 1).

4.2. Nakajima trees and variable-free form

The following presentation of terms as trees was :rst proposed by Nakajima [16]. The
principle that a term of the untyped �-calculus may be applied to any number of other
terms suggests that, for example, the term I = �x :x might be better expanded in:nitely
many times by the rule �, and represented by the pseudo-syntax �xz0z1z2 : : :•xz0z1z2 : : :.
The large dot • is used to make clear the “end” of the in:nite chain of abstractions
and the start of the in:nite chain of applications in the term. Combining this idea into
a presentation of terms in the style of B6ohm trees leads to the following de:nition.

De�nition 50. Let � be the set {�x1x2 : : : • y | x1; x2; : : : ; y variables}.
For a �-term s the Nakajima tree of s, written NT(s), is the countably branching,

countably deep partially �-labelled tree de:ned inductively as follows.

A.D. Ker et al. / Theoretical Computer Science 272 (2002) 247–292 273

A formalization of the process of :nding fresh variables at each stage is given in
[16].
In order to work modulo 2-conversion, we would like to follow de Bruijn (as in

[6]) and construct a variable-free representation of Nakajima trees. We know that each
node which has a label has one of the form �x1x2 : : : • y and always has countably
many children, so all we need to encode are the head variables at each node. Assuming
that the term whose Nakajima tree we are encoding is closed, each head variable is
an instance of an abstraction from one of its ancestors in the tree. We thus encode
each labelled node’s head variable as a pair, the second component of which counts
how many levels up the tree we go to :nd the abstraction which introduced this head
variable, and the :rst component counts how far along the in:nite chain of abstractions
this variable appears.

Example 51. We illustrate with an example. The term �x : x3(�y:yx) has Nakajima
tree of which the following is a part (some subtrees are missing):

The node labelled � : : : • z1 should be encoded as the pair (2; 1) corresponding to the
fact that we go up one level of the tree and take the second abstracted variable to get
z1. Similarly, the node in the lowest pictured level labelled � : : : • x should be encoded
(1; 2).

A precise de:nition of this encoding is tricky, because we have to deal with free
variables, of which there are countably many in Nakajima trees. The following de:ni-
tion is quite technical, and we have to do a bit of work to show that this de:nition
matches up with the informal notion just described, but this form is useful for the
characterisation proof which follows.

De�nition 52. For a partially (N × N0)-labelled tree p the tree {p}∗ is the same
tree labelled identically, except that nodes at depth d labelled (i; d+ 1) are relabelled
(i; d+ 2).

Similarly the tree {p}n, for n ∈ N0, is labelled identically except for nodes of depth
d as follows:
(1) those labelled (i; d) are relabelled (i + n; d);
(2) those labelled (i; d+ 1) for i6n are relabelled (n− i + 1; d);
(3) those labelled (i; d+ 1) for i¿n are relabelled (i − n; d+ 1).

274 A.D. Ker et al. / Theoretical Computer Science 272 (2002) 247–292

For a term s with free variables within & the variable-free form of the Nakajima tree
of s, VFF&(s), is the following partially (N×N0)-labelled tree:

Here CC(i) is the in:nite tree de:ned by

One should think of & as a context for the tree — when the pointer for a variable
goes up one beyond the root of the tree, it references the context. The operation {−}n
corresponds to looking up to see which variables lie in the last n of the context and
adjoining them to the left of the tree (in reverse order, for technical reasons). The
operation {−}∗ passes references to the context further up the tree.
We note here that for any tree p; {p}0 =p and {{p}m}n= {p}m+n.

Lemma 53. This de8nition coincides with the informal notion of variable-free form
described earlier. Formally; suppose that s is a term with free variables within all
occurring in the sequence &= 〈vk ; : : : ; v1〉. Construct the Nakajima tree of s; and
rename all the bound variables so that if ã ∈ N∗ is the sequence identifying a node
of the Nakajima tree then the abstracted variables at that node are renamed to
xã1 ; x

ã
2 ; : : : (in that order). Let this renamed Nakajima tree have labelling function A;

and consider VFF&(s) also as a labelling function.
Then for any sequence ã= 〈a1; : : : ; ap〉 there are three possibilities for A(̃a) :

(1) If ã =∈ dom(A) then VFF&(s) is unlabelled or unde8ned at ã.
(2) If A(̃a)= �xã1x

ã
2 : : : • vj then VFF&(s)(̃a)= (j; p+ 1);

(3) If A(̃a)= �xã1x
ã
2 : : : • x〈a1 ;:::;ap−r〉

j then VFF&(s)(̃a)= (j; r).

Proof. By induction on p (the length of ã), for all terms s and sequences & (which
contain all the free variables of s) simultaneously. Throughout this proof we use 8 as
a syntactic abbreviation for & · 〈x1; : : : ; xn〉.
Base case: There are three cases:

(1) If s is unsolvable then � =∈A and VFF&(s) is unlabelled at the root.
(2) If s has HNF �x1 : : : xn:vjs1 : : : sm

then A(�)= �x�1x
�
2 : : : • vj and VFF8(vjs1 : : : sm)(�)= (j+ n; 1) hence VFF&(s)(�)=

{VFF8(vjs1 : : : sm)}n(�)= (j; 1).

A.D. Ker et al. / Theoretical Computer Science 272 (2002) 247–292 275

(3) If s has HNF �x1 : : : xn:xjs1 : : : sm
then A(�)= �x�1x

�
2 : : :•x�j and VFF8(xjs1 : : : sm)(�)= (n− j+1; 1) hence VFF&(s)(�)

= {VFF8(vjs1 : : : sm)}n(�)= (j; 0).

In each case the result holds.

Inductive step: We assume that the result holds for all terms s, sequences & which
contain all the free variables of s, and sequences ã of length up to and including l.
Take a particular term s and sequence &= 〈vk ; : : : ; v1〉 containing all the free variables

of s. If s is unsolvable then the result is trivial as in (i) above. Otherwise, suppose
that s has HNF �x1 : : : xn:ys1 : : : sm for some variable y (which as above will be either
xj or vj, it will make no diMerence which). Take any sequence ã= 〈a1; : : : ; ap〉 for
p6l, and any i ∈ N0. We show that the result holds for the sequence i · ã (and we
already know it holds for the sequence �) which will establish the inductive step as
required.
Suppose that we take the Nakajima tree of the term si, and renamed bound vari-

ables so that the ith abstracted variable at the node encoded by ṽ is renamed to
yṽi . Let the labelling function of this tree be B. We know that the free variables
of this tree are contained within 8, and we will be applying the induction hypothesis
to B. The de:nition of Nakajima tree describes how the labels of B are related to
those of A.
There are six cases:

(1) i6m and i · ã =∈ dom(A). Then ã =∈ dom(B), so by the induction hypothesis VFF8(si)
is unlabelled or unde:ned at ã, and hence VFF&(s) is unlabelled or unde:ned at
i · ã.

(2) i6m and A(i · ã)= �xi·̃a1 : : : • vj. Then B(̃a)= �yã1 : : : • vj so by the induction hy-
pothesis

VFF8(si)(̃a) = (j + n; p+ 1)

hence {VFF8(si)}∗(̃a) = (j + n; p+ 2)

hence VFF8(ys1 : : : sm)(i · ã) = (j + n; p+ 2)

hence VFF&(s)(i · ã) = (j; p+ 2):

(3) i6m and A(i · ã)= �xi·̃a1 : : : • x�j . Then B(̃a)= �yã1 : : : • xj so by the induction hy-
pothesis

VFF8(si)(̃a) = (n− j + 1; p+ 1)

hence {VFF8(si)}∗(̃a) = (n− j + 1; p+ 2)

hence VFF8(ys1 : : : sm)(i · ã) = (n− j + 1; p+ 2)

hence VFF&(s)(i · ã) = (j; p+ 1):

276 A.D. Ker et al. / Theoretical Computer Science 272 (2002) 247–292

(4) i6m and A(i · ã)= �xi·̃a1 : : : • x〈i;a1 ;:::;an−r〉
j . Then B(̃a)= �yã1 : : : •y〈a1 ;:::;an−r〉

j so by the
induction hypothesis

VFF8(si)(̃a) = (j; r)

hence {VFF8(si)}∗(̃a) = (j; r)

hence VFF8(ys1 : : : sm)(i · ã) = (j; r)

hence VFF&(s)(i · ã) = (j; r):

(5) i¿m and ã= �. Then by the de:nition of Nakajima tree, A(i)= �xi1 : : : • x�i−m+n.
On the other hand,

VFF8(ys1 : : : sm)(i) = (i − m; 1)

so that VFF&(s)(i) = {VFF8(ys1 : : : sm)}n(i) = (i − m+ n; 1):

(6) i¿m and ã= b̃ · j for some j∈N0. Then by the de:nition of Nakajima tree,
A(i · ã)= �xi·̃a1 : : : • xi·̃bj . On the other hand,

VFF8(ys1 : : : sm)(i · ã) = (j; 1)

so that VFF&(s)(i · ã) = (j; 1):

We see that the result holds in each case.

Remark 54. The construction of VFF(s) from s, and that of NT(s) from s, is not a
computable procedure in the same way the :rst de:nition of B6ohm tree in
[3, Section 10:1], is not. However Lemma 53 does give a recursive translation of
Nakajima trees into variable-free form, and the latter can be presented eMectively (as
they are in [16]).

The connection between NT(s) and VFF(s), described formally in Lemma 53, is
now illustrated. Take the term s= �x:x3(�y:yx), the Nakajima tree of which is given
above in Example 51. Applying the rules for constructing the variable-free form gives
a tree of which part is:

The reader is invited to compare this with the Nakajima tree, and check what Lemma 53
means at each pictured node.

A.D. Ker et al. / Theoretical Computer Science 272 (2002) 247–292 277

4.3. Exact correspondence and local structure

The representation of an innocent strategy described in Section 4.1, and that of
Nakajima tree in Section 4.2 are now pulled together. In the models D and DREC the
denotation of a term, in economical form, coincides with the labelling function of the
variable-free form of its Nakajima tree.

Theorem 55 (Exact correspondence theorem). If s∈" with free variables in &= 〈vk ;
: : : ; v1〉 then <s=&= {VFF&(s)}k when the former is considered in economical form and
the latter as a labelling function.
In particular for closed terms s; <s=� =VFF�(s).

Proof. The proof is long-winded and the interested reader is referred to Appendix A.

Example 56. Referring back to the example of the last section, this means that the
economical form of the strategy <�x:x3(�y:yx)= is partially given by

� �→ (1; 0) 〈4〉 �→ (3; 1)

unde:ned on 〈1〉 〈2; 1〉 �→ (1; 2)

〈2〉 �→ (1; 0) 〈2; 2〉 �→ (2; 1)

〈3〉 �→ (2; 1) 〈2; 3〉 �→ (3; 1):

The exact correspondence result gives us the local order structure of the models D and
DREC immediately.

Corollary 57. In the models D and DREC; for closed terms s and t:

<s=⊆ <t= 1⇔ NT (s)⊆NT (t) 2⇔ D∞ |= s6t 3⇔ s 4 t:

The order ⊆ on the model is inclusion of strategies. That on Nakajima trees is
inclusion of labelling function; modulo renaming of bound variables; with amounts to
inclusion of variable-free form. The order 6 on D∞ is the standard order on the
cpo; and the order 4 on "0 is given by

s4t ⇔ for all contexts C[]; C[s] solvable implies C[t] solvable:

Thus the local structure of the models D and DREC is the ��-theory H∗; the maximal
consistent sensible theory.

Proof. Equivalence 1 is a trivial consequence of the Exact Correspondence Theorem,
which shows that <s= and NT(s) are essentially the same thing modulo naming of bound
variables.
Equivalence 2 was proved by Nakajima in [16; 3:5].

278 A.D. Ker et al. / Theoretical Computer Science 272 (2002) 247–292

Equivalence 3 is Hyland’s local structure theorem for D∞ and a proof can be found
in, for example, [3, Section 19:2]. The fact that the local structure is the ��-theory
H∗ follows immediately from this. For a discussion of the properties of H∗, see
[3, Section 16:2].

5. EAC strategies and a universal model of H∗

The reason that D and DREC failed to be universal, or even weakly extensional, is
the existence of strategies like ⊥′ de:ned in the proof of Theorem 48. This strategy
has the same applicative behaviour as ⊥, and is not the denotation of any term. If we
could throw out strategies which oMend in this manner we would hope to improve the
model.
Using a characterisation of B6ohm-like trees which are the B6ohm trees of some

term, we can restrict our attention to the e$ectively almost-everywhere copycat strate-
gies, and show that they live in a cartesian closed category which gives rise to a
�-algebra DEAC. This does turn out to be universal. We then use the universality
property to show that the model is also order-extensional (a stronger property than
extensionality).

5.1. E$ectively almost-everywhere copycat strategies

Now that we have another way to see what the denotations of terms are, we can
translate standard results about de:nable B6ohm-like trees into information about the
de:nable strategies. These will be the e$ectively almost-everywhere copycat strategies,
and in this section we de:ne them and construct a cartesian closed category AEAC

using them.
We :rst have to introduce some notation to refer to subtrees of an arena.

De�nition 58. For tree-like A⊆N∗, i.e. those subsets which are pre:x-closed and sat-
isfy s̃ · n∈A⇒ s̃ · m∈A for all m¡n, we make the following de:nitions:
(1) If s̃∈A then A@s̃= {̃t | s̃ · t̃ ∈A}.
(2) If m∈N0 then A¿m= {(i − m) · s̃ | i · s̃∈A ∧ i¿m}.
Thus A@s̃ is the subtree of A rooted at s̃ (as de:ned it will still be a tree-like subset

of N∗), and A¿m has had the :rst m branches of A deleted.

We also need a way to decode the economical form of innocent functions, at least
to see where in the arena a decoded strategy is playing.

De�nition 59. If f is the economical form of an innocent strategy on a single-tree
arena A and ṽ= 〈v1; : : : ; vn〉 ∈ dom(f) then we de:ne a sequence of moves

A.D. Ker et al. / Theoretical Computer Science 272 (2002) 247–292 279

〈m1; : : : ; m2n+2〉 as follows:

m1 = �;

m2k = m2(k−p)−1 · i if f : 〈v1; : : : ; vk−1〉 �→ (i; p);

m2k+1 = m2k · vk for k¿0:

By m2(k−p)−1 · i we mean the move corresponding to that sequence in the sequence-
subset representation of A, i.e. the ith child of the move m2(k−p)−1.

We say that the mapping f : ṽ �→ (i; p) codes the P-move m2n+2, because by follow-
ing the P-strategy dictated by the function this is the move that will be the one speci:ed
by that mapping. We denote the move m2n+2 constructed from ṽ and f in this manner
by mf

p (̃v). We omit the superscript wherever it is clear which strategy is intended.
Similarly the fact that ṽ∈ dom(f) means that the O-move m2n+1 is in the strategy,

and for this move we write mf
o (̃v).

Note that for any innocent strategy the O-move mo(�) is the initial move � and mp(�)
is the :rst P-move made by the strategy in response.
Now we can make the key de:nitions:

De�nition 60. Consider an innocent strategy in economical form f :N∗→N × N0,
over some single-tree arena A.
We say that f is everywhere copycat (EC) at ṽ∈N∗ if f is unde:ned at ṽ or the

following hold:
(1) The arenas A@mo(̃v) and A@mp(̃v) are order-isomorphic (with respect to the

pre:x ordering, considered as subsets of N∗);
(2) Whenever w̃¿ṽ we have that for all i∈N such that the move mo(w̃ · i) exists,

f(w̃ · i) = (i; 1);
(3) If f(̃v) = (i; p) then p¿0.

We take the opportunity to illustrate an everywhere copycat strategy. Let us assume
that f is an innocent strategy in economical form on an arena A, and suppose f is
de:ned at ṽ.

280 A.D. Ker et al. / Theoretical Computer Science 272 (2002) 247–292

Intuitively, we say that f is everywhere copycat at ṽ if, from mp(̃v) onwards, f’s
behaviour is simply to play copycat for as long as the arena will allow it. In the :gure,
the big triangle represents the arena A; the smaller triangle on the left represents the
subarena A@mo(̃v) and that on the right represents A@mp(̃v) – note that by condition
(i) the two are assumed to be isomorphic. Suppose O’s response at mp(̃v) is to play
its ith child, then P responds with the ith child of mo(̃v). If O at that point plays the
jth child of P’s last move, then P moves over to the other subarena and responds with
the jth child of O’s last move in that subarena, and so on. In the :gure, the strategy
f’s action is indicated by the arrows i.e. P’s response is always to =ip to the other
subarena and copy O’s last move there. Condition (i) in the de:nition guarantees that
P’s copycat move will always be available.
We may view the de:nition in light of the correspondence between innocent strate-

gies and Nakajima trees, owing to the Exact Correspondence Theorem, and here we
see that condition (ii) speci:es that the subtree of the Nakajima tree corresponding to
f, rooted at ṽ, has the following shape:

Condition (iii) of the de:nition is a technicality, which ensures that the variable y is
not one of the xi.

De�nition 61. We say that f is almost-everywhere copycat (AC) at ṽ if f is unde:ned
at ṽ or there exist numbers t̃v ∈N0 and oṽ ∈Z with oṽ6t̃v called the copycat threshold
and o$set, respectively, such that
(1) The arenas (A@mo(̃v))¿(t̃v−õv) and (A@mp(̃v))¿t̃v are order-isomorphic.
(2) For all i¿t̃v such that the move mo(̃v · i) exists, f(̃v · i)= (i − oṽ; 1) and f is

everywhere copycat at ṽ · i.
(3) For all w̃¿(̃v · k) with k6t̃v, if f(w̃)= (i; |w̃ | − |̃v |) then i6t̃v − oṽ.
(4) If f(̃v)= (i; 0) then i6t̃v − oṽ.
(Note that f is EC at ṽ if and only if f is AC at ṽ with t̃v= oṽ=0.)
Finally, we say that f is e$ectively almost-everywhere copycat (EAC) if f is re-

cursive, almost-everywhere copycat at every sequence on which it is de:ned, and the
functions ṽ �→ t̃v and ṽ �→ oṽ are recursive. A strategy � over a single-tree arena A is
EAC if its innocent function is EAC, and a strategy over a multiple-tree arena is EAC
if all of its components are EAC.

A.D. Ker et al. / Theoretical Computer Science 272 (2002) 247–292 281

Suppose P plays a strategy which is almost-everywhere copycat at mo(̃v). The two
arenas A@mo(̃v) and A@mp(̃v) are shown below.

The idea is that except for :nitely many subtrees of the moves in question, P’s
behaviour is “everywhere copycat” at mo(̃v) i.e. P simply copies O’s move between
two isomorphic subarenas (which are shaded in the :gure).
Since the notion of EAC is only de:ned for innocent strategies, we will sometimes

just say “EAC strategy” instead of “EAC innocent strategy”.
For a speci:c P-view ṽ of such a function f, we will say that t̃v and oṽ are valid

copycat threshold and oMset if f satis:es conditions (i)–(iv) of AC at that P-view
with those particular values. Valid copycat thresholds are not unique, as the following
lemma shows.

Lemma 62. If f :N∗→N ×N0 is an innocent strategy in economical form; and f
is de8ned and AC at some P-view ṽ with copycat threshold and o$set t̃v and oṽ
respectively; then for any t′¿t̃v; f is also AC at the P-view ṽ with threshold and
o$set t′ and oṽ respectively. That is; any value larger than a valid copycat threshold
is still a valid threshold for a speci8c P-view (with the same o$set).

Thus at each P-view of an EAC strategy there will be a least copycat threshold,
the least value for t̃v which is still a valid threshold. However, the existence of a
computable function giving valid thresholds does not imply the computability of the
function giving least thresholds.
The following proof is important for what follows, and also serves as an illustration

of the de:nition of EAC strategies.

Lemma 63. For any arena A= 〈A1; : : : ; An〉 the strategies !AAi are EAC. Hence for
any arena A the strategy idA is EAC.

Proof. The innocent function of !AAi is shown in Section 2.3. The economical form is
therefore some subset (depending on the arenas) of the function f de:ned by

f(�) = (i; 0);

f(a) = (a+ n; 1);

f(̃s · a) = (a; 1) for nonempty s̃:

282 A.D. Ker et al. / Theoretical Computer Science 272 (2002) 247–292

A typical P-view of a legal position of this strategy might be

Hence mo(�)= �;mp(�)= i; for even-length s̃, mo(a·̃s)= (a+n)·̃s and mp(a·̃s)= i·a·̃s;
for odd-length s̃, mo(a · s̃)= i · a · s̃ and mp(a · s̃)= (a+ n) · s̃.
Now if B=A ⇒ Ai then B@〈i〉=Ai =B¿n. Thus this strategy is AC at � with t� =0

and o� =−n, and in fact is EC everywhere else. Everything in sight is computable and
so the strategy is EAC.
The result that identity strategies are EAC follows from their de:nition as tupled

projection strategies.

It remains to show the following:

Lemma 64. If � is an EAC strategy on A ⇒ B and � is an EAC strategy on B ⇒ C
then the composite strategy � ; � is an EAC strategy on A ⇒ C.

Proof. We compose EAC strategies in the standard way (i.e. by “parallel composition
plus hiding”). The composite strategy is innocent and recursive by Lemmas 26 and 33.
It remains to give an algorithm that returns a threshold and an oMset, which satisfy
the four conditions of almost-everywhere copycat strategies, at every sequence where
the composite strategy is de:ned. The algorithm and the proof, which take some six
pages when written out in full, are very technical, and some care is needed in the case
analysis. As this paper has a sequel [13] (see [12] for an extended abstract) in which
we develop the idea of almost-everywhere copycat strategies in more depth, to obtain
a universal model for the B6ohm tree �-theory, it seems to us more sensible to present
the material there as part of a systematic account. A full version of the proof can also
be found in the :rst author’s thesis [11].

De�nition 65. The category of arenas and EAC strategies, AEAC, has r.e. arenas as
objects and EAC strategies on A ⇒ B as morphisms from A to B.

Theorem 66. AEAC is a cartesian closed category; in fact a lluf subcategory 2 of
AREC with the same cartesian closed structure.

Proof. Certainly AEAC has the same objects as AREC, and Lemma 63 shows that the
same identity strategies are morphisms of AEAC. Lemma 64 completes the proof that
it is a category.

2 by a lluf subcategory of a category C we mean a subcategory of C which has the same class of objects
of C. See e.g. [5, Section 2.3].

A.D. Ker et al. / Theoretical Computer Science 272 (2002) 247–292 283

Lemma 63 also gives that the projections for AREC are also in AEAC, and recall that
the evaluation morphism is just given by the identity strategy, so cartesian closure of
AEAC follows from that of AREC.

5.2. The model DEAC

The arena U is an object of AEAC, as are the morphisms Fun and Gr (since they
are speci:ed by the identity strategy on U). Thus AEAC has the same re=exive object
as A. This allows us to de:ne a new �-algebra as follows:

De�nition 67. We write DEAC for the �-algebra M(AEAC; U;Fun;Gr).

Since the structure of AEAC is the same as that of AREC, we know that the elements
of the model are a subset of those of DREC, and the function < − =− of DEAC is the
same as that of DREC. Hence,

Theorem 68. DEAC is a ��-algebra with local structure equal to the �-theory H∗
(and local order structure as described for D in Corollary 57).

The aim was that the EAC strategies should be those that correspond to terms of
the �-calculus. We know that every element of the model D which is the denotation
of some term must be EAC, by the above comments. We now show that the converse
holds.

Lemma 69. Given an EAC innocent strategy on the arena U with economical form
f there is some closed term s of the �-calculus such that (as a labelling function
N∗*N×N0) VFF�(s)=f.

Proof. Suppose that the copycat threshold and oMset of f at the P-view coded by ṽ
are t̃v and oṽ, respectively.
Let the set X ⊆N∗ be de:ned inductively by

� ∈ X;

ṽ ∈ X ⇒ ∀i: 16i6t̃v ⇒ ṽ: i ∈ X:

Then X has the following properties:
(1) If ṽ= ũ · i with ũ∈X and ṽ =∈X then i¿t̃u, so f(̃v)= (i− oũ; 1) (by clause (ii) of

the de:nition of AC).
(2) If ṽ= ũ · i with ũ =∈X then f(̃v)= (i; 1) (since f must be EC at ũ, so by clause

(ii) of the de:nition of EC).
We de:ne the labelling function of B6ohm-like tree A (by what we call copycat

collapse) as follows. The domain of A (i.e. the shape of the partially labelled tree A)
is the set X .

284 A.D. Ker et al. / Theoretical Computer Science 272 (2002) 247–292

For any sequence ṽ= 〈v1; : : : ; vp〉 ∈X we de:ne A(̃v) by
(1) If ṽ =∈ dom(f) then A(̃v) is unde:ned (the partially-labelled tree has label ⊥ at this

node).
(2) If f(̃v)= (i; r) then A(̃v)= �xṽ1 : : : x

ṽ
n :x

〈v1 ;:::;vp−r〉
i , where n= t̃v − oṽ.

We make use of the characterisation of those B6ohm-like trees which are the B6ohm
trees of terms, which can, for instance, be found in [3, 10.1.23]. This states that a
B6ohm-like tree A is the B6ohm tree of some term if and only if A has only :nitely
many free variables and the labels of A are given recursively.
Now there are no free variables in the B6ohm-like tree A (since in the second clause

above, if f(〈v1; : : : ; vp〉)= (i; r) then r6p). Since the functions ṽ �→ t̃v and ṽ �→ oṽ are
recursive, and f is recursive, and our procedure for computing A(̃v) from these is
clearly recursive, A itself must be a recursive labelling function. Hence there is some
term s with BT(s)=A.
Now we prove that VFF�(s)=f, and to examine the former we consider NT(s) and

use Lemma 53. Now the relationship between the B6ohm and Nakajima trees of a term
can be deduced fairly easily from the de:nition. Suppose that NT(s) has had bound
variables renamed so that the ith abstracted variable at the node coded by ṽ is xṽi and
that this renamed tree has labelling function B (so that the abstracted variables at each
label of A match the :rst few at the same label of B).
Then at any node where A is unlabelled ⊥, so is NT(s). At a node of the tree

labelled by A of the form

for some trees A1; : : : ; Am, we can deduce that the tree labelled by B has the corre-
sponding subtree of the form

for some trees B1; : : : ; Bm.
Now, we show by case analysis on ṽ that f(̃v)=VFF�(s)(̃v). There are four cases:

(1) ṽ∈X but ṽ =∈ dom(f). In this case A is unlabelled at the node coded by ṽ, so
ṽ =∈ dom(B), and so by Lemma 53 ṽ =∈ dom(VFF�(s)).

(2) ṽ∈X and f(̃v)= (i; r). Then we know that A(̃v)= �xṽ1 : : : x
ṽ
n :x

〈v1 ;:::;vp−r〉
i , so B(̃v)=

�xṽ1 : : : • x〈v1 ;:::;vp−r〉
i . Hence, by Lemma 53, VFF�(s)(̃v)= (i; r).

(3) ṽ =∈X but ṽ= ũ · i with ũ∈X . Then we know that f(̃v)= (i−oũ; 1). Also we know
that A(̃u)= �xũ1 : : : x

ũ
n :y, and has m descendants, for some variable y and where

A.D. Ker et al. / Theoretical Computer Science 272 (2002) 247–292 285

m= t̃u and n= t̃u − oũ. Therefore by examining the diagrams comparing nodes of
B6ohm and Nakajima trees above, we see that B(̃v)= �xṽ1 : : : • xũi−m+n. Hence, by
Lemma 53, VFF�(s)(̃v)= (i − m+ n; 1)= (i − oũ; 1).

(4) ṽ =∈X and ṽ= ũ · i with ũ =∈X . Then we know that f(̃v)= (i; 1). Also we know
that the node coding ṽ is in one of the trees NT(y) for some variable y, so
B(̃v)= �xṽ1 : : : • xũi . Hence, by Lemma 53, VFF�(s)(̃v)= (i; 1).

Hence in every case VFF�(s)(̃v)=f(̃v).

Combining Lemma 69 with the Exact Correspondence Theorem gives that every
member of the homset HomAEAC(1; U) is the denotation of some term. Hence,

Theorem 70. DEAC forms a universal ��-algebra.

5.3. Extensionality of DEAC

Finally, we show that the model DEAC is extensional. In fact, we show the stronger
property of order-extensionality. A direct proof can be given, by means of a “Separation
Lemma” for EAC strategies, but in this work we give a much shorter proof which relies
on known results of the �-calculus and the universality of the model.

Theorem 71. DEAC is order-extensional. That is; for all � and � in DEAC;

(∀ ∈ DEAC:� • ⊆ � •) ⇔ �⊆ �:

Hence DEAC is an extensional ��-model.

Proof. The implication (⇐) follows from the obvious monotonicity of •.
To show (⇒), let �; � be elements of DEAC. Then, by Universality, �= <s= and �= <t=,

for some closed terms s and t. Assume that �*�. By the Exact Correspondence Result,
NT(s)*NT(t), where the ordering on Nakajima trees is inclusion of the labelling
function (modulo renaming of bound variables).
Now we use standard results, commonly found as part of the proof of B6ohm’s

Theorem for the �-calculus. We will quote the versions appearing in [3, 10.2–10.4].
The fact that NT(s)*NT(t) means that BT(s) �∼2 BT(t) for some 2 of minimal

length (see [3, 10.2.21] for the de:nition of ∼2 and [3, 10.2.31] for the proof). Then
by [3, 10.3.13, 10.4.1(ii) and 10.3.4], there is a sequence of terms u1; : : : ; un such that
�� su1 : : : un= I and tu1 : : : un is unsolvable. Hence

<s= • <u1= • · · · • <un= = <I =* ⊥ = <t= • <u1= • · · · • <un=:
But • is monotone so � • <u1=* � • <u1=.

Remark 72. This proof uses ideas from the standard proof of B6ohm’s Theorem. If we
avoid this, taking the longer route to the proof, using properties of EAC strategies and
a “Separation Lemma”, we can in fact produce a semantic proof of B6ohm’s Theorem
instead. Details can be found in [11].

286 A.D. Ker et al. / Theoretical Computer Science 272 (2002) 247–292

6. Further work

6.1. A B;ohm tree model

We have de:ned an EAC strategy to be one such that there exists a computable
function specifying copycat threshold and oMset, and the strategy obeys some constraints
determined by this function. We are not saying that every EAC strategy comes with
such a function speci:ed.
This does make a diMerence because if we are just given a strategy, even if told that

it is EAC, we cannot eMectively determine any such function (and additionally it is
not even semi-decidable whether a given innocent strategy is EAC). Now in order to
turn an EAC strategy into a term we need to know the copycat thresholds and oMsets,
and diMerent thresholds give rise to diMerent terms (the diMerence is �-conversion).
So we might wish to de:ne an explicit EAC strategy, which is one which comes

with a threshold=oMset function. (We note that the oMset can be eMectively and simply
recovered if we know the threshold, so we could miss that out if we wished.) Although
EAC strategies compose, and the proof that they do so is constructive in the sense
that given threshold functions of the composed strategies we have a procedure for
calculating the threshold function of the result, composition of explicit EAC strategies
presents some technical problems. To make a CCC of such strategies we need to make
some fundamental alterations to the structure, in particular using diMerent objects. (One
consequence is that there is not an object U with U =U ⇒U , which one would hope
for in the light of the comments below). The details of this construction are to presented
in a sequel, [13], of which an extended abstract appeared as [12].
This makes a :ner distinction between strategies, because given a threshold at a

P-view of an EAC strategy it is still valid to claim any higher threshold. In terms of
terms this is because for any term s <s== <�x:sx= for fresh x. So two strategies which
have the same moves may be diMerent because they have diMerent threshold functions,
corresponding to diMerent �-expansions. The CCC of explicit EAC strategies will be a
�-algebra which does not validate �-conversion. It turns out that it has the same local
structure as the B6ohm tree model B, and we can prove a result akin to the Exact
Correspondence Theorem, a correspondence between the standard variable-free form
of B6ohm trees and their explicit EAC denotation.
Questions which arise from this are: can we add the copycat threshold information

into the moves of the game, recovering a “noneconomical” form which would not be
quite so close to a term model. A fairly contrived way exists, but maybe it could be
made more natural. Related to this, we note that it is more economical to remove all
the copycat parts of explicit EAC strategies, since they are determined anyway by the
threshold and oMset. Is there a smart representation, and does it help with an eQcient
composition algorithm?
Finally, is there something else we can do in order to model exactly the smaller

theory H (the minimal sensible theory)? More understanding of the diMerence between
B and H is needed.

A.D. Ker et al. / Theoretical Computer Science 272 (2002) 247–292 287

6.2. The extensional collapse of DREC and in8nitary �-calculus

In order to obtain an extensional and universal model, we restricted the morphisms
of AREC directly to the EAC strategies, which corresponds to a reformulation of the
conditions for a B6ohm-like tree to come from a term, after in:nite �-expansion and in
the language of strategies. An interesting line of investigation is whether AEAC, or at
least DEAC, can be reached by some algebraic construction from AREC.
A standard approach to getting an extensional game model is to take an exten-

sional collapse, i.e. quotient by observational equivalence. If we can decide on a good
de:nition of observational equivalence for the model D (more diQcult than usual be-
cause we do not have a clear input=output behaviour) it should be the case that all
EAC strategies live in diMerent equivalence classes. However, there will probably be
equivalence classes not inhabited by any EAC strategy – the innocent strategy cor-
responding to the term intuitively given by �x1x2x3 : : : • x2x1x4x3x6x5x8x7 : : : will be
one. This term is not an unreasonable one for some type of in:nitary lambda-calculus,
which one might think of as reasoning about streams of processes (which themselves
act on streams of processes) or perhaps as a nonterminating process in the language of
�-calculus.
It looks like the EAC condition is imposing extensionality and an extra “:niteness”

condition which is not inherent in innocent strategies. It would be interesting to :nd out
exactly what sort of in:nitary language is being modelled by the extensional collapse of
DREC, and if possible to split the EAC condition into two distinct parts (extensionality
and :niteness) in order to understand it better.
Nakajima introduced a brand of in:nite terms when presenting the �-expanded trees

in [16]. This bears further investigation, although his method (each term is a sequence
of terms which approximate it) is based on the D∞ model and to some extent is
looking from the wrong angle.
In:nitary lambda-calculi are a topic of current research interest. In [10] Kennaway

et al. describe a uniform method for constructing in:nite terms, identifying three in-
dependent ways in which terms can be in:nite (in:nite abstraction, in:nite depth and
in:nite application). By describing 8 metrics on parse trees for terms and constructing
the metric completions they give calculi with all possible combinations of these in:nite
phenomena. However it looks like the intuitive in:nite calculus we are after is none
of these.
Another approach is described by Berarducci [4], but the focus is on in:nite term

rewriting and again the set of in:nite terms seems not to be what we want.
John Longley has commented that the space of increasing sequences of B6ohm trees

might perhaps correspond to the recursive innocent strategies. This could be the way
to approach it. The direction we would like to pursue is to identify exactly what the
language we are thinking about is, possibly to :nd abstract categorical properties of
models of it, and to check that the extensional collapse of DREC is a universal, fully
abstract model. This language might have some interesting features (solvability is not
equivalent to the existence of head normal forms, for example).

288 A.D. Ker et al. / Theoretical Computer Science 272 (2002) 247–292

Appendix A. Proof of the Exact Correspondence Theorem

We aim to show: if s∈" with free variables in &= 〈vk ; : : : ; v1〉 then <s=&= {VFF&
(s)}k when the former is considered in economical form and the latter as a labelling
function.
The two sides are partial functions from N∗ to N0 ×N so we need to show that

for all 2̃∈N∗,
<s=&(̃2) = {VFF&(s)}k (̃2):

We prove this by induction on the length of 2̃ for all terms s and contexts & simulta-
neously. Notice that the variables of & are labelled in reverse order again, this is for
convenience in the proof and irrelevant to the statement of the theorem.
Base case: If s is unsolvable then both sides are the empty function. If s is solvable,

then either the head variable is free or not. Let us :rst suppose that s= � x1 : : : xn: xjs1 : : :
sm, and &= 〈vk ; : : : ; v1〉. Then

<s=& = "(· · ·"("︸ ︷︷ ︸
n"’s

(<xjs1 : : : sm=&·〈x1 ;:::;xn〉);Gr);Gr · · ·);Gr;

but since as strategies Gr= idU and "(f)=f we can ignore these for the purposes
of calculating the denotation (as long as we keep track of the domain and codomain
of each strategy so we know which bits to hide when composing). Now,

<xjs1 : : : sm=&·〈x1 ;:::; xn〉 =('&·〈x1 ;:::; xn〉
xj • <s1=&·〈x1 ;:::; xn〉) · · · • <sm=&·〈x1 ;:::; xn〉;

where each term is a map from Un+k to U .
We will examine the nature of these sorts of compositions in a moment, but at

this stage all we need to note is that the :rst P-move in the calculation of such a
composition is the :rst P-move of the :rst term, which is '&·〈x1 ;:::; xn〉

xj . This has :rst
P-move k + j, justi:ed by the initial O-move, and so <s=&(�)= (k + j; 0). This move is
visible in the composition.
On the other hand, VFF&(s)= {VFF&·〈x1 ;:::; xn〉(xjs1 : : : sm)}n.

Now VFF&·〈x1 ;:::; xn〉(xjs1 : : : sm) has root node (n − j + 1; 1), from the de:nition of
VFF, and so the same tree operated on by {−}n will have root node (j; 0). Thus
{VFF&(s)}k(�)= (k + j; 0).
The remaining case is when s= � x1 : : : xn: vjs1 : : : sm and &= 〈vk ; : : : ; v1〉 and this is

entirely similar with both sides mapping � to (k − j + 1; 0).
Inductive case: Suppose that the result holds for all terms s, all contexts & containing

the free variables of s, for all sequences 2̃ up to length l.
Again either s is unsolvable, in which case the result is trivial, or s has HNF � x1 : : : xn:

xjs1 : : : sm or � x1 : : : xn: vjs1 : : : sm for vj ∈&. Again, the last two cases are similar and
we will be able to prove them together.
To do so we will prove the result that <vjs1 : : : sm=&(̃2)= {VFF&(vjs1 : : : sm)(̃2)}k for

sequences 2̃ up to length l+1 and then note that if s= � x1 : : : xn: t (where t has variable

A.D. Ker et al. / Theoretical Computer Science 272 (2002) 247–292 289

at the head) then for 2̃ up to length l+ 1,

<s=&(̃2) = <t=&·̃x (̃2)

= {VFF&·̃x(t)}k+n(̃2)
= {{VFF&·̃x(t)}n}k (̃2) since {{p}m}n= {p}m+n

= {VFF&(�x1 : : : xn:t)}k (̃2)
which implies the required result.
So suppose t= vjs1 : : : sm. Then the induction hypothesis gives that <si=&(̃2)= {VFF&

(̃2)}k for sequences 2̃ up to length l. Now,

<t=&=('&
vj • <s1=&) · · · • <sm=&:

Now we have to take a detailed look at the nature of the above application. Recall that
for s; t :A→U , � • �= 〈�;Fun; �〉; evalU;U and that as a strategy Fun does nothing.

Let us restrict our attention to the case m=1 so that t= vjs′. The trees we compose
look like this:

The application consists of composing the above pair with the eval strategy, which has
the eMect of copying moves made in one X component to the other and hiding both,
and allows moves played in the context subtrees 1; : : : ; k to be identi:ed and made
visible.
Further, we know that on the left-hand tree we are playing the strategy '&

vj which
has initial move k− j+1 and thereafter copies moves from the X⇒Y component into
the k − j + 1 context component.
Now a strategy �= <s′=& is played on the right-hand tree. The diagram above shows

the :rst few moves of the composition. The composite strategy makes an initial move
of k − j + 1 and then in response to the move (k − j + 1)1 copies across to the X
component on the left, thence to the X component on the right. Thereafter any moves
played in the X component of the right-hand side are copied over to the left-hand side,
and then to the k − j + 1 component. These moves are visible on the left-hand side.
In summary, moves played by � in X appear in the k − j + 1 component. Other

moves made by �, i.e. those in the :rst k subtrees, appear visible in the same subtree
on the left-hand side.
Now the induction hypothesis is that down to depth l of the economical form, the

strategy � is {VFF&(s′)}k . By the de:nition of '&
vj the initial move of the composition

is k − j + 1 so the root of the economical form tree is (k − j + 1; 0).

290 A.D. Ker et al. / Theoretical Computer Science 272 (2002) 247–292

Let us consider what the :rst subtree of the economical form of this composition
will be, down to depth l of that subtree (depth l+ 1 of the whole tree):
There are two cases to consider. In the tree VFF&(s′) any node at depth d labelled

(i; d) will be relabelled by the :rst clause of the de:nition of {−}k to (i+ k; d). These
will appear as moves justi:ed by the root of the tree and appearing in the X part of
the tree on the right. Nodes with second component strictly less than their depth are
unaMected. Then the copycat strategy '&

vj reproduces these in the k − j + 1 subtree.
Hence the nodes of the economical form will be precisely those of VFF&(s′), at least
to depth l.
However there might be also nodes at depth d labelled (i; d + 1) in VFF&(s′), but

since all the free variables of s′ are in & we can be sure that i6k. Hence these nodes
are mapped by {−}k to (k − i + 1; d). As a strategy these are moves in the context
subtrees, and in the composition they will appear as children of the very :rst move,
hence justi:ed by a move two before the root of X . Hence the economical form will
have corresponding label (k − i + 1; d+ 1).
That completes the description of the :rst subtree of the economical form of the

composition.

If Opponent’s response to Proponent’s :rst move is (k − j + 1)i for i¿1 then this
move is copied into the Y component on the left-hand side and moves in response are
copied back-and-forth between the subtree i of Y and the k − j + 1 context subtree.
� is not activated, and because the left-hand side has the X component hidden, these
copied moves appear in the composition to be from the k−j+1 subtree to the k+ i−1
subtree.
Thus the economical form of the composition has the following ith subtree, for i¿1:

The root node is labelled (k+ i−1; 1) corresponding to the move shown in the diagram
above, and since we play copycat thereafter all other moves are justi:ed by the one
three beforehand in the P-view, hence the jth child of any node is labelled (j; 1). That
is, this subtree is the same as CC(k + i − 1).

A.D. Ker et al. / Theoretical Computer Science 272 (2002) 247–292 291

where {VFF&(s′)}× is the same as VFF&(s′) except that
(1) nodes at depth d labelled (i; d+ 1) for i6k are relabelled (k − i + 1; d+ 1);
(2) nodes at depth d labelled (i; d+ 1) for i¿k are relabelled (i − k; d+ 1).
However since all the free variables of s′ are in &, we can be sure that the second

case never happens. And that leaves what we have described for the economical form
of the composition, down to depth l for each subtree, i.e. depth l + 1 for the whole
tree.
Finally, we claim that the generalisation for any m clearly works in the same way.

Acknowledgements

The work presented in this paper was undertaken as part of the :rst-named author’s
EPSRC-funded doctoral research, and also under grant GR=L27787.
We are most grateful to John Longley, whose care in looking at a very early draft

of this material went beyond the call of duty. From him we have received invaluable
feedback and ideas.
The notations A@m and A¿n are due to Dominic Hughes, whose ideas on the optimal

way to present arenas and strategies have been most useful. We are also grateful to
Guy McCusker for many challenging discussions.

References

[1] S. Abramsky, R. Jagadeesan, P. Malacaria, Full abstraction for PCF (extended abstract), in: M. Hagiya,
J.C. Mitchell (eds.), Theoretical Aspects of Computer Software: TACS’94, Sendai, Japan, Lecture Notes
in Computer Science, vol. 789, Springer, Berlin, 1994, pp. 1–15.

[2] S. Abramsky, G.A. McCusker, Games and full abstraction for the lazy �-calculus, Proc. 10th Annual
IEEE Symp. on Logic in Computer Science, IEEE Computer Society Press, Silverspring, MD, 1995,
pp. 234–243.

[3] H.P. Barendregt, The Lambda Calculus, Its Syntax and Semantics, 2nd ed., Studies in Logic and the
Foundations of Mathematics, vol. 103, North-Holland, Amsterdam, 1984.

[4] A. Berarducci, In:nite lambda-calculus and non-sensible models, in: A. Ursini, P. Agliano (eds.), Logic
and Algebra, Lecture Notes in Pure and Applied Mathematics, vol. 180, Marcel Dekker Inc., New York,
1996, pp. 339–378.

[5] R.L. Crole, Categories For Types, Cambridge Mathematical Textbooks, Cambridge University Press,
Cambridge, 1993.

[6] N.G. de Bruijn, Lambda calculus notation with nameless dummies, a tool for automatic formula
manipulation, Indag. Math. 41 (1972) 381–392.

[7] P. Di Gianantonio, G. Franco, F. Honsell, in: J.Y. Girard (Ed.), Games semantics for untyped �-calculus,
4th Internat. Conf. TLCA’99, L’Aquila, Italy, April 7–9, 1999, Proc., Lecture Notes in Computer
Science, vol. 1581, Springer, Berlin, 1999.

292 A.D. Ker et al. / Theoretical Computer Science 272 (2002) 247–292

[8] J.M.E. Hyland, A syntatic characterization of the equality in some models of the lambda calculus, J.
London Math. Soc. 2 (2) (1976) 361–370.

[9] J.M.E. Hyland, C.-H.L. Ong, On full abstraction for PCF, Inform. and Comput., to appear, 2000.
[10] J.R. Kennaway, J.W. Klop, M.R. Sleep, F.J. de Vries, In:nitrary lambda calculus, Theoret. Comput.

Sci. 175 (1997) 93–125.
[11] A. Ker, Innocent game models of the untyped �-calculus, Ph.D. Thesis, University of Oxford, 2001.
[12] A. Ker, H. Nickau, C.-H.L. Ong, A universal innocent game model of the B6ohm tree lambda theory, in:

J. Flum, M. RodrWXguez-Artalejo (eds.), Computer Science Logic: Proc. 8th Annual Conf. of the EACSL,
Madrid, Spain, September 1999, Lecture Notes in Computer Science, vol. 1683, Springer, Berlin, 1999,
pp. 405–419.

[13] A. Ker, H. Nickau, C.-H.L. Ong, A universal innocent model of the B6ohm tree lambda theory, Technical
Report PRG-TR-10-00, Oxford University Computing Laboratory.

[14] S. Mac Lane, Categories for the Working Mathematician, Springer, Berlin, 1971.
[15] G.A. McCusker, Games and Full Abstraction for a Functional Metalanguage with Recursive Types,

Cambridge University Press, Cambridge, 1988.
[16] R. Nakajima, In:nite normal forms for the �-calculus, Proc. Symp. �-calculus and Computer Science

Theory, Springer, Berlin, 1975, pp. 62–82.
[17] H. Nickau, Hereditarily Sequential Functionals: A Game-Theoretic Approach to Sequentiality,

Shaker-Verlag, 1996. Dissertation, Universit6at Gesamthochschule Siegen, Shaker-Verlag, Aachen, 1996.
[18] C.P. Wadsworth, Semantics and pragmatics of the �-calculus, Ph.D. Thesis, University of Oxford, 1971.
[19] C.P. Wadsworth, The relation between computational and denotational properties for Scott’s D∞-models

of the �-calculus, SIAM J. Comput. 5 (1976) 488–521.

